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A DUALITY THEOREM FOR EXTENSIONS
OF INDUCED HIGHEST WEIGHT MODULES

DAVID H. COLLINGWOOD AND BRAD SHELTON

We begin by recalling that homogeneous differential operators be-
tween smooth vector bundles over a real flag manifold correspond to
the intertwining maps between algebraically induced highest weight
modules. Within this framework we prove a duality theorem for ex-
tensions of induced highest weight modules. In particular, this leads
to a duality theory for the nilpotent cohomology of any generalized
Verma module.

1. Introduction. In this short note we recall (and prove) a folklore
result which appeared in Boe's 1982 Yale thesis (without proof) and
was attributed to G. Zuckerman. We apply the result to representa-
tions of real groups and to the theory of highest weight modules. In
particular we obtain a duality theorem for extensions between parabol-
ically induced highest weight modules, cf. Theorem 1.1 below. Non-
trivial applications are discussed in §§4 and 5.

Fix a pair (g, p), g a complex semisimple Lie algebra and p a
parabolic subalgebra. There exists a connected real semisimple matrix
group G with a closed parabolic subgroup P so that g and p are the
complexified Lie algebras of G and P respectively. Let p = IΘ n be
a Levi decomposition of p and f) c I a Cartan subalgebra of both I,
the reductive part of p, and of g.

Recall the category @p of finitely generated g-modules which are
[-semisimple and p-locally finite. Denote by szfp the category of fi-
nite dimensional p-modules which are l-semisimple. Define a functor
Up: s/p -> &p by

Up(E) = U(g)®u{p)E.

Here U(ά) denotes the enveloping algebra of a Lie algebra α. For
any finite dimensional p-module (or P-module) E, let E* denote
the contragradient module. Our main result is then

THEOREM 1.1. For any two p-modules E and F in JZ?P and any
k>0,

dim c Ex4 (UP(E), UP(F)) = d im c Ex4 (UP(F*)9 UP(E*)).
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Using standard homological algebra we can restate a special case
of Theorem 1.1 as a duality for the nilpotent cohomology of certain
standard induced modules, the generalized Verma modules.

COROLLARY 1.2. Let E and F be irreducible finite dimensional l-
modules and extend these to be ^-modules by letting n act trivially.
Then for all k>0f

£ , Hk(n9 UP(F))) = dimcHomi(F*, Hk(n, UP(E*))).

In category @p there is no natural contravariant duality functor
which carries induced modules into induced modules. Thus, in order
to prove Theorem 1.1 we transfer the problem into the smooth vector
bundle category where there is a natural duality, the adjoint. The
existence of this duality is directly related to the existence of Haar
measure which has no counterpart in category 0P.

2. Homogeneous differential operators. In this section we establish
the folklore result mentioned above, relating homogeneous differen-
tial operators between vector bundles to g-homomorphisms between
induced modules. This lemma seems to be known to experts; see for
example the introduction to Lepowsky's paper [L] or §2 of Eastwood-
Rice [ER]. A special case of the lemma appears in a paper of Jakobsen,
[J], (Jakobsen and Eastwood-Rice work in the holomorphic category.
In contrast, we will work in the smooth category so as to allow ap-
plications to real noncomplex Lie groups.) However, we know of no
general reference with proof in the literature. The proof below is a
synthesis of conversations with B. Boe, H. Schlicktkrull and G. Zuck-
erman. Because we have in mind future applications to the theory of
Harish-Chandra modules for real reductive Lie groups, we work in a
slightly more general setting than necessary for the proof of Theorem
1.1.

Recall the Iwasawa decomposition G = KAmNm, K & maximal
compact subgroup of G and θ a corresponding Cartan involution.
Let Pm = MmAmNm be a compatible minimal parabolic subgroup.
We may assume Pm C P. Let P have Levi decomposition P = LN
and recall that P is not, in general, connected. Let P° denote the
connected component of the identity in P. Fix a closed subgroup P'
with P° c P' c P and put L' = LnPf. Since G is linear, there is
a finite Z2-group S c K with P' = SP°, cf. [KZ]. Also, since G is
linear and K is compact, G/P^ = K/M^ is a compact connected real
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analytic manifold. Put X = G/P'. Since ^ C ? ' , I ί sa compact
manifold.

Let (σ, E) be a finite dimensional (but not necessarily irreducible)
representation of P'. Then there is an associated smooth homoge-
neous vector bundle % over X with fiber E at the identity coset
eP'. Similarly, If* is the smooth homogeneous vector bundle over X
associated to the contragradient module E*. In general, let Γχ(s/)
denote the smooth global sections of the smooth vector bundle sf
over X.

Since X = G/Pf = K/(K n P1) as homogeneous spaces, there is a
unique A^-invariant volume form dμx on X with total volume 1. We
fix this volume form on X. Each g eG determines a diffeomorphism
of X via left multiplication and we obtain a corresponding modular
function c(g, x) defined by

(2.1) g*dμx = c(g,x)dux, geG, xeX.

Following [W], we can now define a smooth G-action UE on Tχ{%)
by

(2.2) [πE(g)f](x) = \c(g~l, x)\ι/2gf(g-ιx),

geG,xeX,feΓx{g).

Suppose E and F are two finite dimensional Pr modules with
associated G-modules Γχ(&) and Γχ(^) respectively. We denote by

, Tχ{^)) the space of continuous maps L: Tχ{^) -•
which intertwine %E and πf. The space of homogeneous

differential operators is then

(2.3) D ( I M r ) , Tx{9-)) = {D G Hom G (Γ^(^), Γ x ( ^ ) )

I supp Dφ c supp </> for all 0 E Γ ^ ( r ) } ,

where supp φ is the support of the section φ.
For a finite dimensional P'-module E, let £ also denote the p-

module obtained by differentiation. Observe that the induced g-mod-
ule UP(E*) carries a compatible action of the finite group S. We can
now state the desired lemma.

LEMMA 2.4. Let E and F be finite dimensional representations of
P'. Then there is a vector space isomorphism

D(IMSr), Tx{9-)) = HomQiS(Up(F*), UP(E*)).

Proof. Let 3f'(&) = 3\X,%) denote the continuous dual of
Γχ(% ) (where Tχ{%*) is given the usual Frechet topology, [H]),
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i.e. distributions, and denote by &$(%) — 2$${X, &) the subspace of
2'(%) consisting of distributions supported at the identity coset.

The exponential map realizes ΠQ = 0(no) as a coordinate patch
around the identity coset ePf in X. Since n^ = Rn , the vector valued
version of Schwartz's theorem then gives a vector space isomorphism
T: U(n~)®E -> 9t^{%). We may describe this isomorphism explicitly
as follows. We identity Tχ(^*) as a G-representation with the space

of functions on G given by

= {f:G-+ E*\f is smooth, f{gp) = σE*{p)-ιf{g)

for geG, peP'},

under the left regular representation on 2^(1?*). Then the isomor-
phism of Schwartz's theorem is given by

T ( Y ® v ) ( φ ) = { R γ φ ( e ) , v ) , φ e T . Y e U { x Γ ) , v e E .

Here Ry denotes right differentiation by Y and ( , ) is the natural
pairing on E and E*. Since UP(E) = U(n~)®E, as vector spaces, a
moderately tedious calculation shows that T, with the formula given
above, becomes a well-defined g-module isomoφhism

(2.5)

It now suffices to give an isomorphism

(2.6) Ψ:

For D G B(Γ;r(r), Tχ(^)), define Ψ(D) e
by Ψ(D)(//)(0) = μ(Dφ) for 0 G Γ x ( ^ ) and μ G ^ / ( ^ * ) . The
support condition on D assures that Ψ(D) preserves distributions
supported at the identity coset. Also, for Y G g, φ G Tχ{β) and

= μ{dπF(-Y)Dφ)

Thus Ψ(£>) commutes with the action of g. A similar calculation
shows that Ψ(£>) commutes with S and so we have a well-defined
map Ψ for (2.6). In order to show that Ψ is an isomorphism we will
construct an inverse map.

Fix a basis v\, . . . , vt for F and let v\, . . . , v* be the dual basis
of F*. Identify vf with l®v* in UP{F*). Let
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and define

Φ: H o m ^ ^ ό ^ * ) , &&**)) - Homc(ΓM^), ΓX(Γ))

by the formula

Φ(A)(φ)(x) = ΣMni®vΐ))(πE(χ-ι)φ)υi9 xeG,φe r{Z).

Notice that by linearity, Φ is independent of the basis chosen for
F. Since Φ(Λ) can be computed in terms of differentiation by ele-
ments of U(n~) translated to x G G, it is clear that supp(Φ(Λ) (</>)) c
supp(</>). Thus Φ(Λ) is a differential operator. Moreover, for g EG,
since πE(χ-χ)πE(g) = i*E((g~lx)~l)9 we see Φ(A)(πE(g)φ)(x) =
Φ(A)(φ)(g-ιx) = πF(g)Φ(A)(φ)(x). Thus Φ(Λ) is G-homogeneous.
So we have

Φ: Hom β , 5 (^ό(^*)> ̂ o(^*)) - »(Γjr(*), ΓX(Γ)).

Finally, for 0 e 3r(&)9 D e D(Γ X (^) , Γx(f)) and x e G we

have:

Thus Φ o ψ is the identity. A similar computation shows that Ψ o Φ
is the identity. This proves the isomorphism in (2.6) and completes
the proof of (2.4).

3. Application to highest weight modules. In this section we apply
(2.4) using the pair (G, P°), that is, we ignore the finite group S.
We emphasize that the pair (G, P°) is not unique to the data (g, p).

Let -2*(g) denote the center of C/(g). If θ is a character of J2*(g)
and M is an object in <fp let M# be the C/(g)-invariant subspace
of M on which «SΓ(g) acts by generalized character θ. Then M =
φ Affl, and although the sum is taken over all characters θ it is a
finite direct sum.

LEMMA 3.1. Let E and F be finite dimensional p-modules and θ
a character of -Z^g). Then

Proof. We begin by recalling that the function c satisfies the cocycle
relation

c(gh, x) = c(g, hx)c{h,x)9 g9 heG, xeX.
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Writing e = g~ιg this formula leads us to the formula

(3.2) \c(g,x)\\c(g-ι,gx)\ι'2 = \c(g9x)\1'2.

Define A: B(Γx(g), Tx{^)) -> Ώ(ΓX(^*), Tx{&*)) by taking the
transpose adjoint with respect to dμx, as in [H]. That is, for D e
B(Γ;r(r), Tχ{&)), A(D) is defined by

ί (ζ, A(D)φ)dμx = f(Dζ, φ)dμx, ζ G ΓX(V), φ e TX{Γ*).
Jx Jx

Let g be in G. Using equation (3.2) we have for all ζ e Tχ(&) and
φeΓx(&*):

ί (C, *E<g)Φ)dμx = ί (ζ{x), \c(g-{ ,

= / (C(^), \c{g~x

= f (\c(g,x)\ι/2g-ιζ(gx),Φ(x))dμxJx

= ί (πE(g-l)ζ(x),Φ(x))dμx.
Jx

Of course a similar equation holds if ζ is in TX(3Γ) and 0 is in
Tx{9^*). It follows immediately that A{D) is (/-homogeneous when-
ever D is G-homogeneous. Then A is easily seen to be an isomor-
phism. In view of (2.4), this proves the lemma with the θ 's erased.
The lemma then follows easily by tracing the action of -2*(β) as it
is transformed under each of the specific isomorphisms used in the
proof of (2.4) and under the action of A. This completes (3.1).

LEMMA 3.3. Let E be in s/p and θ a character of «5Γ(g). Then
there is a p-module A in s/p and a p-module surjection A-^ E such
that UP(A)Θ is projective in <?p.

Proof. This is implicit in 4.1 and 4.2 of [RC].

We can now complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Fix E, F and θ as in Lemma 3.1. Write
Exti{Up(E)9 UP(F)) for ExfyUp(E)θ9 UP(F)Θ). Then we are to
prove

(3.4) dimExtί(l/p(£),t/p(F))

= dimExtJ.(C/p(F ), UP(E*)), k>0.
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We proceed by induction on k, the case k = 0 being (3.1). Choose
A —• E as in Lemma 3.3. Let K — ker(^4 —> is) so that we have
a short exact sequence 0->K-^A-+E-+0. Then by the pro-
jectivity of UP(A)Θ we have Extι

θ(Up(A), UP(F)) = 0. There are
two long exact sequences obtained by applying Extβ(Up( ) , ^p(^))
and Ext^*((7p(F*), t/p( *)) to the short exact sequence K -^ A -+ E.
Comparing the first 5 terms of these sequences and using (3.1) we see:

(3.5) dimExtι

θ(Up(E) 9 UP(F)) < dimExtι

θ*(Up(F*), UP(E*)).

However, this argument is valid for the pair (i 7*, E*) as well as for
the pair (E, F). So we see that the inequality in (3.5) is actually an
equality, establishing (3.4) for k = 1.

For k > 1 the projectivity of UP(A)Θ and comparison of the two
long exact sequences gives (using induction)

(3.6) dimExtk

θ(Up(E), UP(F)) = dimExt^1 (UP(K), UP(F))

= dimExtJr1 (C/p(F*), C/P(A:*)

^(C/p(F*), UP(E*))

since by induction Ext^Γ^C/pίF*), UP{A*)) - ExtJ-^C/p^), C/P(F))
= 0. Again by symmetry in the argument, the inequality in (3.6) must
be an equality. This establishes (3.4) and proves Theorem 1.1.

4. Application to real groups. Consider now the case when P — P1'
then P is not necessarily connected. As before put X = G/P . Given
a finite dimensional P-module E we let Ip{E) denote the space of
infinite vectors in Tχ{%). If E is irreducible and trivial as an N-
module we refer to these as degenerate series representations of G.
In case P = Pm , these are usually referred to as principal series rep-
resentations. A general problem in the subject is to parameterize the
intertwining operators between any two degenerate series representa-
tions. Since the /^-finite vectors of Tχ(&) are dense in Yχ{%?), we
have an inclusion (via the restriction map)

(4.1) D ( I M r ) , Tx{9-)) - Homfl,A:(//>(£), Ip(F)).

Denote by Diff(//>(2s), Ip(F)) the image of the map in (4.1). These
are the differential intertwining operators. We may apply (2.4) and
conclude that the differential intertwining operators correspond to
Hom055(J7p(i7*), Up(E*)), where S is (Z/2z)m for some m.
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As an example, let G be the real Lie group SL(2, R) and con-
sider the category <%%? of admissible representations of G having the
same infinitesimal character as a fixed irreducible finite dimensional
G-representation F. Then βZ&p contains two reducible principal se-
ries representations which we denote by //>(quo) and //>(sub), indi-
cating that F is the unique irreducible quotient or subrepresentation
respectively. As is well known,

(4.2) dimcHomβ,*:(//>(quo), /p(sub)) = 1

and

(4.3) dim c Hom0 ,#(//>(sub), IP(quo)) = 2.

Using (2.4) we thus obtain

(4.4) dim c Difffl>*(/j>(sub) > Ipfauo)) = 1

and

(4.5) dimeDifffl,^(//>(quo), //>(sub)) = 0.

Similar calculations may be carried out in the case of any real rank
one Lie group. This follows from [Cl] and [C2].

5. The extension problem. We were initially led to Theorem 1.1
through an interest in the Extension Problem for the category ffp.
To see the connection with our theorem let ff§ be the subcategory
of *fp consisting of modules with the same generalized infinitesimal
character as the trivial g-module. Denote by W (respectively Ψ{) the
Weyl group of g (respectively I) and recall that each coset of W\\^Γ
admits a unique coset representative of minimal length. Denote by
Wx the collection of these representatives. Let WQ (resp. W[) be the
longest element of W (respectively W\). Let p be the half sum of the
positive weights of f) in g. Then for each i G f 1 we denote by Ex

the irreducible [-module of highest weight wixw^p - p and consider
Ex as a p-module by letting n act trivially. Set Vx = UP(EX). These
are the generalized Verma modules in 0$. We denote by Lx the
unique irreducible quotient of Vx. Finally, for each y, w e
define polynomials

(5.1) Ey9W(9) = Y V - ^ V d i m c E x t ^ , Vw).
* » p

k>0

The Extension Problem is just the problem of computing in some
fashion the polynomials Ey^w{q). In general, this problem is as yet
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unsolved and there are not even conjectures for the form of the an-
swer. However, if p is a Borel subalgebra then there is a conjectured
recursion formula for the polynomials, cf. [GJ], and if g and p form
an indecomposable Hermitian symmetric pair then there is a known
recursion formula, cf. [S]. Theorem 1.1 imposes an interesting relation
on these generating functions. To state this carefully, recall that there
exists an order reversing involution d: Wx —• W{ d{x) = WIXWQ . As
a corollary to (1.1) we obtain:

COROLLARY 5.2. For all y,w e

In low rank examples, (5.2) can be an effective tool in solving the
extension problem. For the remainder of this section we will sketch a
representative example of such a computation.

Let β be sl4(C) and denote the simple roots of g by a\, c*2,
and #3. Choose p to be the maximal parabolic subalgebra whose
Levi factor ί has simple roots a\ and a^. If Si denotes the simple
reflection corresponding to α, , then

Wx = {e, s2, s2s3, s2s\, s2s3sι, s2s3sιs2}.

In this simple case, the spaces Ext£ (Vy, Lw) are known explicitly
p

for all y and w in Wx. Furthermore there are explicit formulas
for the (unique) Loewy series of the modules Vw. All of this in-
formation can be found in either [CC] or [ES]. By combining these
two pieces of information and analyzing the collection of long exact
sequences which they give rise to, one can easily compute all of the
spaces Ext^ (Vy,Vw) except for the single case y = e, w = S2S^S\ and

P

k = 1. This last case is handled by Theorem 1.1. Since d(e) = S2s?>S\S2
and d(s2S$s\) = s2 we have

(5.3) d i m c E x t ^ , K W i ) = d i m c E x t J ^ , K W A ) .

The right-hand side of (5.3) is easily shown (by the methods men-
tioned above) to be zero. This allows one to compute the following
table for the polynomials Ey^w{q).

REMARK. We must point out that in this simple example the poly-
nomials EyyW(q) can also be computed by the recursion formulas
given in [S].
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TABLE 1
Generating polynomials E w for

e

52

S2S\

W l

s2s3s{s2

e

1

0

0

0

0

0

52

l-q

1

0

0

0

0

s2s3

-q + q2

l-q

1

0

0

0

V i

—q + q

l-q

0

1

0

0

I — 2q + q

l-q

l-q

1

0

V 3 V 2

1 - q - <73 + q4

Q2-q*

-Q + q2

—q + q

l-q

1
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