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THE LOCAL STRUCTURE
OF SOME MEASURE-ALGEBRA HOMOMORPHISMS

RusseLL LyonNs

Extending classical theorems, we obtain representations for bound-
ed linear transformations from L-spaces to Banach spaces with a
separable predual. In the case of homomorphisms from a convolu-
tion measure algebra to a Banach algebra, we obtain a generalization
of Sreider’s representation of the Gelfand spectrum via generalized
characters. The homomorphisms from the measure algebra on a LCA
group, G, to that on the circle are analyzed in detail. If the torsion
subgroup of G is denumerable, one consequence is the following nec-
essary and sufficient condition that a positive finite Borel measure on
G be continuous: 3y, — oo in G such that Vn # 0 ay:) — 0.

1. Introduction. Given a measurable space X and a (bounded)
complex measure 4 on X, the Banach space dual of L!(u) is com-
monly represented as L>®°(u). We shall call M an L-space on X if
M 1is a Banach space of complex measures on X (under the measure
norm) such that v < u € M = v € M [Sc]. Sreider [Sr] gave a rep-
resentation of the dual M* of M as a space of so-called generalized
functions, i.e., families of functions f, € L*(u) satisfying

(1.1) vLu=f,=f, v-ae.,
(1.2) jlelz\p{ N full oo (uy < o0

The representation of M™*, like that of L'(u)*, is by integration:

#'—’/fudﬂ-

Now, given two Banach spaces, B; and B,, we denote by L(B;, B;)
the Banach space of bounded linear transformations from B; to B,.
Since M* = L(M, C), we may ask, in generalizing the above, for a
representation of L(M, B), where B is an arbitrary Banach space.
Again, the case where M = L!(u) is classical [DS]; here, the hy-
pothesis that B has a separable predual is made. In §2, we ex-
tend this theorem to general L-spaces M in a manner similar to
Sreider’s representation above. In essence, functions are replaced by
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B-valued functions. Our treatment will be entirely self contained,
thus giving an apparently new proof of [DS, Theorem VI.8.6]. How-
ever, another point of view could be adopted. Namely, if we use the
Radon-Nikodym theorem to identify L(u) = {v <« u : v bounded}
with L!(u), then we may regard an L-space M as the direct limit
limyepr L' (1), where M is directed by < and for v < u, L'(v) is
included in L'(u). Now L(-, B) is a functor from the category of Ba-
nach spaces to its opposite category and, furthermore, is easily checked
to be a left adjoint. Since left adjoints preserve direct limits and in-
verse limits are dual to direct limits, it follows that L(AM, B) is the
inverse limit lim,ep L(L'(u), B), where, for v < u, L(L!(x), B) is
mapped by restriction to L(L!(v), B). Hence, given a representation
of L(L!(u), B) (as in [DS]) and a construction of inverse limits, we
may obtain a representation of L(M, B). This amounts to the same
as our Theorem 2.1.

Now Sreider was actually interested in representing AM , the mul-
tiplicative linear functionals on M , when M was a convolution mea-
sure algebra on a locally compact abelian group. He showed that in
addition to (1.1) and (1.2), the following property was necessary and
sufficient for f, to define an element of AM :

(1.3) Vi, v 20 fuw(xy) = fu(x)f(y) wxv-ae [(x,y)].

We, too, are mainly interested in the subset of homomorphisms
Hom(M,B) C L(M,B) when B is a Banach algebra. A simi-
lar condition to (1.3) is found in Theorem 3.2. In particular, when
M = M(G), the complex Borel measures on a locally compact abelian
group, G, and B = M(T), T the circle, Hom(M(G), M(T)) con-
tains in a natural way Hom(G,T) = G. The closure of G in a
certain weak topology is related to the behavior of Fourier transforms
at infinity and contains much information about a measure x4 when
regarded locally, i.e., when restricted to L(u), or, what is the same,
when viewed via the Sreider representation. For example, this analy-
sis will lead to the following surprising result: if the torsion subgroup
of G is denumerable, then a positive measure u4 € M(G) is contin-
uous iff there is a net {y,} C G tending to infinity such that for all
n # 0, lim, 4(y") = 0. Characterizations of certain other classes of
measures are found in §4; these have proved useful in [KL] and [L4]
Other analyses of the local structure of the closure of G for certain u
can be found in [L3], [L4], and [LS]. The local structure of G is also
related to asymptotic distribution; this relationship, described here,
has been used in [KL] and [L4].
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The Sreider representation, Theorem 3.2, has been given before in
[IgK] for the case Hom(M , M(T)), M being an L-subalgebra of
M(T), though in slightly different notation. An alternative represen-
tation for Hom(M, M(G)), where M is a semisimple commutative
convolution measure algebra in the sense of Taylor and G is a com-
pact abelian group, analogous to Taylor’s representation of AM via a
structure semigroup, has been given in [InK].

2. The Sreider representation of linear transformations. Suppose
that M is an L-space on a measurable space X and that B is a
Banach space with a separable predual, B,.. Let Z(X, B) denote the
set of maps f: X — B which are bounded in B-norm and measurable
when B is given the weak* topology from B, . If f € #(X, B) and
u € M, there is a unique element [ fdu € B defined by the relation

vboeB. (b, [ fau) = [ (b, 16 ducx).
X
If D is a countable dense set in the unit ball of B., then the equation

1/(X)llz = sup |(bx, f(x))]
b.eD
shows that || f(-)||p is measurable. It is clear that

| [rau| < [171mdm

The set of equivalence classes of % (X, B) under equality u-a.e. will
be denoted Z (X, B), , although this distinction will often be ignored.

The following theorem, which we shall term the Sreider representa-
tion, associates to each element of L(M, B) a certain family of maps
in & (X, B). We denote the image of 4 € M under X € L(M, B)
by X,.

THEOREM 2.1. Let M be an L-space and B a Banach space with a
separable predual. There is a bijection between L(M , B) and the set
of elements {b., u}yem € Il eps B(X, B)y which satisfy

(i) sup || |bx, ullBllL(uy < o0
ueM

(ii) VV < ﬂ € M bx,y = bx"u v-a.e. [x]
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such that if ¥ corresponds to {b. ,}ucm (written L~ b. .), then

(i) VieM ,= / by dp(x)
and
(iv) 12l L, 8) = 32}5 I 16x, wllBll 2 ()

Proof. Given {b. ,} satisfying (i) and (ii), define X by (iii). If
u,v € M, then by (ii), we have by , = by |4+ M-a.c., whence
Xy = [ by |+ du(x). In conjunction with similar equations for Z,
and X,.,, this equation shows that X, + X, = X,,, . Similarly, for
ae€C, X,, =aX,, whence X is linear. Let K denote the quantity
in (i). Then

IZl = sup ||Zu|| = sup I‘/bx,udu(x)”
lluli<1 llull<

< sup [ 155l diule) < K
u||<

To show that ||Z|| = K, choose any nonzero u € M and ¢ > 0. Let
0# v € L(u) be such that || ||b., .|l — || l|b.,ﬂ||B[|Loo(ﬂ)||Lw(V) <e¢. Let
S be the unit sphere of B. Since the unit ball of B is weak* compact,
there exists a finite number of elements, b!, ..., b7, of the unit ball
of B, such that

n
S=|J{beS: [(bl,b)-1|<e}.
i=1
Therefore 30 < w € L(v) 3i ||{bL, bx,u/| bx, pllB) = Ul=(wy < €. We
have
IIZwH 1

; L] [
Bl Zadl = o | [ 04 b ) dootx)
> o [ Mo, lls dox) = 2K 2 16 sl =) ~ 50K + 1.

Thus ||Z|| =

Conversely, let X € L(M, B). Fix u € M . For b, € B, , we denote
by b.oX the map v — (b., Z,). Restricted to L(u), this map is a
bounded linear functional and hence can be represented by a function
8y, € L*®(u). Choose a countable linearly independent set D whose
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linear span over Q, D', isdensein B.. If b, =37 «a;d!, di €D,

a; € Q, define
n
=1

Then b. — hy (x) is rational-linear on D' for every x € X . Further-
more, hb‘ = gp, M-a.e., whence by countability of D',

(2.1) Vb, € D' |y, (x)] < [|ba o Zf| < ||| - [IZ]

for u-a.e. x. Now for every x such that (2.1) holds, b, — hy (x)
extends from D’ to all of B, as a bounded linear functional, hence
element of B, call it f(x). This defines f(x) wu-a.e. and shows that,
given any b, € B., if b, =lim,_,,, b (b € D'), then

(2.2) (b, £(x)) = lim (b2, f(x)) = lim hyn(x)
for every x where f is defined. Write b. , for the equivalence class
of f. From Equation (2.1), we see that |f(x)| < ||Z|| for every

x where f is defined. Together with (2.2), this shows that b. , €
%#(X, B), and gives (i). Now for v € L(u) and b, € D', we have

<b*,/fdu>=/b,,,f /h,, ) du(x
- [ &.0dv) = 6. %)

Since D’ is dense, (iii) follows. We claim that b. , is uniquely deter-
mined by the property just established:

Vvel(u) X, = /bx,#dl/(x)

Indeed, if we also have that Vv € L(u) X, = [ b} ,dv(x) for some
bl ,€%(X,B),, then

Vb € D' W € L(u) /(b*, by, ) dv(x) = /(b*, B, ) dv(x),

whence for p-ae. x Vb, € D' (b, bx u) = (b, US ), 1€, bx y =
by ., wu-a.e. Thus (ii) follows. The same argument shows that if £ ~
b.,.. and £~ b! ., then b..=b! .. o

We define the weak* operator topology (W*OT) on L(M, B) as
the weakest topology such that Yu € M Vb, € B, X +— (b, X,) is
continuous. It is an elementary exercise to show that the unit ball of
L(M, B) is W*OT compact.
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For u € M, let L(M, B), denote the set of Sreider representa-
tions b. , of elements of L(M, B). We give L(M, B), the weak
topology generated by the maps b. , — [(bs, bx,,)dv(x) (b« € B,,
v € L(u)). Thus, the W*OT is the inverse limit of these topologies,
i.e., it is the weak topology generated by the maps X +— b. , (u € M)
from L(M, B) — L(M, B),, where £~ b. ..

Every decomposition M =1& J of M as a direct sum of closed
subspaces yields an addition on L(M, B) as follows: if II!, IIZ €
L(M, B), then we may define

(2.3) T, =T, +11

where u = pur+uy, p€l, pyeJ. If T~b. ., II' ~ bl ., and
ILJ, then by ,=by , +b} , wae

The case where B = M(Y), the space of complex regular Borel
measures on a locally compact metric space, Y, is of interest. A
predual of B is the separable space Cy(Y) of continuous functions
vanishing at infinity. We shall denote the Sreider representation of X
by oy,, in this case; thus, if fe€ Cy(Y) and pe M,

(2.4) [ razi= [ ([ rao..) duco.

(If Y is separable and a countable union of complete subspaces, then
(2.4) holds for f € #(Y, C) since it is preserved under bounded
pointwise limits. In particular, for Borel sets EC Y,

Su(E) = [ ox u(B)du())

Let M* denote the nonnegative elements of M and likewise for
M*(Y). We say that X € L(M, M(Y)) is positive if it carries M+
into M*(Y). It is easy to see from (2.4) applied to |u| that £ > O iff
Vue M Yex[u] ox,, >0 (“V°x[u]” means “for p-a.e. x”-see [L1]).
It is also easy to show that if £ > 0, then v < u = X, < X}, and
[Zul <Xy

3. The Sreider representation of homomorphisms. Let G be a locally
compact semigroup with separately continuous multiplication. Then
M (G) is a Banach algebra under convolution [W]. Let M be an L-
subalgebra of M(G), i.e., a subalgebra which is also an L-subspace,
and let B be a Banach algebra with a separable predual such that
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multiplication is separately weak* measurable and
(3.1) Vfe#B(G,B)YVoeBVueM

[ £)-bauto = ([ rau)-s
& [b-fodutx)=b- [ fau.

In order to state some sufficient conditions that (3.1) be true, we define
the following multiplication on B* x B. If b € B and b* € B*, then
b'— (b'-b, b*) is a bounded linear functional on B ; we denote it by

b*-b. Let B,” be the smallest subspace of B* containing (canoni-

cally) B. which is closed under weak* sequential limits. Let AB be
the subset of B* consisting of the multiplicative linear functionals.

ProrosITION 3.1. Let B be a Banach algebra with a separable pre-
dual. Right multiplication on B is weak* measurable and the first
equation of (3.1) holds if any of the following conditions is satisfies:

(i) B.-BCB,)" .
(ii) Right multiplication is weak* continuous.
(iii) Right multiplication is weak* measurable and B, NAB sep-
arates points in B.

Proof. The class of b* € B* such that b — (b, b*) is weak* measur-
able contains B, ar}d is closed under weak* sequential limits. Thus,
all elements of B~ are weak* measurable. Now right multiplication
is weak* measurable iff Vb € B Vb, € B, b’ — (b., b’ - b) is weak*
measurable. But (b., b’ - b) = (', b. - b), whence this condition is
equivalent to all elements of B, - B being weak* measurable. The
sufficiency of (i) for measurability is now obvious. Also, the class of
weak* measurable b* € B* such that

([ rau.e7)= [¢r.6)an

is closed under weak* sequential limits by the bounded convergence

theorem, hence contains B, . Thus, if (i) holds, then Vb, € B.
Vb e B

<b*,/f~bd,u>=/(b*,f-b)dy=/(f, b, - by du

_ </fd,u,b*-b>=<b*, (/fdu)-b>,

whence the first equation of (3.1).
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Now (ii) is equivalent to B.-B C B, since B, is the set of weak*
continuous linear functionals on B. Thus, sufficiency follows from
that of (i). Finally, if (iii) holds, then for f € #(G, B), b € B,

uE€M,and b* eﬁiw* NAB, we have

</f-bdu,b*>=/<f-b,b*>du=/<f,b*><b,b*>du
= (v by .8 = ([ fau. b)Y (o,

{(fr) o).

from which the first equation of (3.1) follows. 0

Let %(G, B) denote the Baire-measurable functions from G to
B, where B is given the weak* topology. For u, v € M(G), let uxv
denote, besides the usual product measure, also its unique extension
to a regular Borel measure in M(G x G). If f € %(G, B) and
u,v e M(G), then

[ rausv= [ fomydux v, »)
= [[ fom dutx)aviy),

as can be seen by applying any b, € B, [W].

The Sreider representation of Hom(M , B), the continuous homo-
morphisms from M to B, satisfies one property additional to those
in Theorem 2.1.

THEOREM 3.2. Let G be a locally compact semigroup with separately
continuous multiplication and M an L-subalgebra of M(G). Let B
be a Banach algebra with a separable predual and separately weak*
measurable multiplication satisfying (3.1). Let ¥ € L(M, B) and
choose b. , € %(G,B) (u € M) so that Z ~ b.... Then X €
Hom(M, B) iff

(3.2) Vﬂ,V€M+ bxy’/l*y-:bx"u'by’y fO",LtXV-a.e. (x, y).
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Proof. Suppose first that (3.2) is satisfied. Then for u, v e M,
Zu*u = /bt,|y|*]u| d/'t * V(t) = // bxy, lul*|v| d/l(X) dV(y)

= //bx,lul by du(x)dv(y)

= / ( / by lul d,u(x)) - by, dv(y)

- /bx,,ﬂ, du(x) -/by,M dv(y)=%,-5,.

Conversely, if ¥ € Hom(M, B), then given u, v € M+, we have for
all /€ L(u) and v' € L(v),

/bxy’/‘*’/ dﬂ’ X V’(xs y) = /bt,#*u dﬂ, * V’(t) = Z#’*u'
=X, L, = /bx,,; d,ul(X)'/by,de’(y)
B // bx,u-by,vdi'(x)dv'(y)
= /bx,”'by,ydﬂ, xvV'(x,y).

Since the span of L(u) x L(v) is dense in L(u x v), (3.2) follows. O

If multiplication in B is jointly weak* continuous (for example, if
B.NAB separates points in B), then the unit ball in Hom(M, B) is
easily shown to be W*OT compact. An example where compactness
fails is Hom(M(R), M(R)): define 7,, (n > 1) in the unit ball by

/ FO0) d(T)u(x) = / fx)ydu(x)  (f € Go(R))
R R

and let X: u — u({0})d(0), where J(0) is the Dirac measure at 0.
Then 7T, — X in W*OT, but

T e L(M(R), M(R))\ Hom(M(R), M(R)).

We define the following multiplication on L(M, B): if Z ~ b. .
and IT ~ b. ., then X -II is defined by its Sreider representation
bx,u- by ,. When B is commutative, Hom(M, B) is closed under
multiplication. It is easily verified that if multiplication in B is sepa-
rately weak* continuous, then multiplication in L(M , B) is separately
W*OT continuous.
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Suppose that M = I @ J, where I is a closed ideal and J is a
closed subalgebra. If IT1!, I1> € Hom(M , B) satisfy
(3.3) VvuelweJn,, =0,-IZ & I, =13 10,
then the “sum” X of I1! and I1? defined in (2.3) is a homomorphism.
4. Limit points of group homomorphisms. If H is a locally compact
group, then convolution is separately weak* continuous in M(H).
Indeed, if u,, u, v € M(H) with u, —— u, then for f € Co(H),
the map x — [ f(xy)dv(y) lies in Cy(H), whence

[ fauary = [[ 1) avy) duao)
~ [[ 1) avi)auce) = [ fausew,

which is to say that u, * v —— u*v. A similar argument applies

to v x u,. Thus, if G is a locally compact semigroup with sepa-
rately continuous multiplication and H is a locally compact metriz-
able group, then the preceding section applied to Hom(M , M(H)) for
any L-subalgebra M of M(G). Every continuous homomorphism
¢: G — H vyields an element of Hom(M , M(H)), which we also
denote by ¢, defined by (f, ¢u) = (foo, u) for f e Co(H). The
Sreider representation of such a ¢ is particularly simple: ¢ ~ d(¢(x))
(independent of u), where d(¢) denotes the Dirac measure at ¢.

We identify Hom(G, H) with a subset of Hom(M(G), M(H)) in
the above manner. Our aim is to study the set

A =Hom(G, H)\Hom(G, H)
and its local structure
Alp) ={Z,:Z €A}, Alp)=A{0. ,:0..€ A},

where A consists of the Sreider representations of elements of A.
Since all elements of Hom(G, H) are positive and lie in the unit ball,
the same holds for A. (In fact, every positive homomorphism lies in
the unit ball: if 0 < X € Hom(M(G), M(H)), then for u € M(G)
and n > 1, we have

IZull™ < Wil = NZL = N D < W20 el = 120 - el

whence ||Z|| <1.)
We are particularly interested in the case where G is a locally
compact abelian group and H is a circle group, T. In this case,
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Hom(G,T) = G, the dual of G, and the identification of G as a
subset of Hom(M(G), M(T)) preserves the usual topology of G (of
uniform convergence on compact subsets). Furthermoie, as G lies in
the unit ball of Hom(M(G), M(T)), it follows that G = GUA is a
compactification of G.

Recall that a sequence {x;}32, C G is said to have an asymptotic
distribution @ , written {x;} ~ g, if

K -
Tl(,-kz:ld(xk) 2.0 as K —oo.
For n € Z and X € Hom(M(G), M(T)), define £(n) € AM(G)
by (u,Z(n)) = Z,(n). We write the Sreider representation of x €
AM(G) as xu(x). Thus, if Z~o. . and x = X(n), then

Au(x) = a'x,,u(n) .

Note that for all n, the map X — fl(n) from (Hom(M(G), M(T)),

W*OT) to AM(G) (with its usual Gelfand topology) is continuous.

We regard the Fourier transform as a restriction of the Gelfand trans-

form; thus, in accordance with the Sreider representation, we have
= [ydu for yeG.

PROPOSITION 4.1. Let G be a locally compact abelian group and
A= G\G in Hom(M(G), M(T)). Then

(i) A is closed topologically and under multiplication by elements
of G; _ _

(ii) if ox, Tx € A(u), then ox xTx € A(u);

(i) A(p) = {v € M(T): 3 net {yo} € G (Yo — 0&Yn € Z
A(vg) = 2(m)};

(iv) Aw) = {0. € B(G, M(T)),: 3 net {7,} CG (74— 0&Vne
Z y" — 6.(n) weak* in L*®(u))};

(v) if G is metrizable, then the nets in (iii) and (iv) can be
replaced by sequences and K(,u) = {0. € (G, M(T)),: Iy; € G
(yj = oo & for every subsequence Vi, » Yex[ul {7), (X))}, ~ ox)}-

Proof. Suppose that X € A is the limit of a net {y,} C G Then
$(n) = limy” in AM(G) for all n € Z. Now if y, — y € G, then
y? — y", whence X = y. But since AN G = &, this is impossible,
and s0 ¥, — oo in G. In particular, f‘.(l) is 0 on LY(G) [HMP,
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p. 136, Proposition 4] and consequently A is closed. It is clear that
A-G C A, from which (i) now follows. Statement (ii) ensues as well.
Now if v € A(x), then let G 3 y, — Z € A be such that v = X,
Then y, — oo and (y,), — Z, = v, which gives the inclusion C of
(iii). On the other hand, if y, — oo and Vn [(y]) — 2(n), then by
compactness of @, we can choose a subnet {y}’g} of {y.} converging
to some X. Since ng — o0, it follows that € A and v =%, € A(u).
This completes the proof of (iii). The proof of (iv) is analogous.
Finally, if G is metrizable, then L!(u) is separable for 4 € M(G)
and so L(M(G), M(T)), is metrizable. Thus, if 4 € M(G) and
Yo — X ~ 0.,., pick any non-zero p € L!(G) and a subsequence
{5(yaj(-))} converging t0 0. |44 0 L(M(G), M(T))|44|p - Then

Ya, = 6(a,())~ (1) = (X(1)), = 0 in L™(p), whence 7, — o

in G, and y? > (£(n))y = 6..4(n) in L®(u). This shows the
sufficiency of sequences for (iii) and (iv). Furthermore, if Vn y} —
6.(n) weak* in L*®°(u), then by [L2, Lemma 5], there is a subsequence
{7j} of {y;} such that every further subsequence {y}k} satisfies

(4.1) vex[u] {7}, (X)) ~ Ox.

Conversely, if {y;} is a sequence, every subsequence of which satisfies
(4.1), then we claim Y= 6.(n) weak* for every n. If not, then for
some n there would be a subsequence {yJ’.jc } converging to a different
limit y . Then also

and by (4.1),

Therefore y = 6.(n), a contradiction. Thus (v) follows from (iv). O

When G is regarded as a subset of AM(G), we shall use the no-
tation I rather than G to avoid confusion. Let 7, € Hom(G, G)
denote the map x — x" (n € Z), as well as the corresponding map
induced in Hom(M(G), M(G)). Thus, for £ € Hom(M(G), M(T)),
we obtain X0 7, € Hom(M(G), M(T)); note thatif Z=p € G, then
yoT,=y".
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PROPOSITION 4.2. Let G be a LCA group and
X € Hom(M(G), M(T)).

Then 2 € G iff £(1) € T and VneZ S(n) = (1) o Ty,. The map
pIFe 2(1) is an isomorphism from G onto T sending GtT.

Proof. If T € E let G> Vo W OT, 5. Since P.(n) =y, we have

i — $(n) forall n. In partlcular $(1) eT. Also, Z(n) =limy? =
lim YaoTn = (limy,)o Ty, = E(l) o T, . Conversely, if $(1) eT and
vn E(n) = Z(l)o T, , then let y, — £(1). Choose a convergent subnet
yy — IT in Hom(M(G), M(T)). Then from the above, [1(n) = Ii(1)o
T, = f.(l) oT, = fl(n) for all n, whence E=I1€G.

It follows from this that the map X — fl( 1) is injective. Surjectivity
onto I is proved by a compactness argument similar to the above. O

We write M(G) = M.(G)® M;(G) for the decomposition of a mea-
sure into its continuous and discrete parts. Then h;: u— [; dug =
f4(0) is in T\I' [HMP, pp. 136-7, (4.1.4)]. We denote the element
of A corresponding to 4; by I1?. If G has at most countably many
torsion elements, then we claim that

~ 0 ifn=0,
hy ifn#0,

whence

% = f1c(0)A + 24(0)6(0),
where A is Lebesgue measure on T. To see this, note first that

I14(0): u = (o Ty") ™ (0) = A(0).

Second, if n # 0, then for all g € G, there are, by the supposition,
denumerably many x € G such that x"” = g. Therefore

(wo T H({gh) = D u({x}),
x"=g
whence

) pe Y (wo T7N)({8})

geiG
=3 N u({xh) =Y u({x}) = 214(0)
g€G x"=¢g x€G

This proves the claim.
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Related elements of A are X -II¢ for X € E; if, as above, the
torsion subgroup of G is denumerable, then

(Z-T1%), = 3c(0)A + 2, .

Thus, if we set IT: 4 — (0)A, then X TI? is the sum of II and X
defined by (2.3) and (3.3) from the decomposition M = M. ®M,;. An
interesting example is G =T and X: u — u; in this case, (Z-IT9) =

e(0)A + pg -
5 Provided still that G has a denumerable torsion subgroup, the
Sreider representation 74, of I is given by

A if p({x})=0,
4.2 d =
(42) o ={50) it ueh 0.
Let A€ #(G, M(T)), be defined by A(x) =A. Then from [HMP, p.
70, Corollaire 2] and Proposition 4.2 (or from (4.2) and the following
proposition),
(4.3) peM(G) o ieA).

This yields other characterizations of M.(G) when combined with
Proposition 4.1 (iv), (v). For example,

1€ My(G) & Iy, — 0o Vv € L(y) Yn # 0 0(3") — 0
& Iy, > oo VyeGVn#£0 a(yy) — 0.

Our next proposition describes K( u) completely when u is discrete
(cf. [HMP, pp. 67-68]).

) (¢

PROPOSITION 4.3. Let G be a LCA group. Let G denote the
Sreider representations of G C Hom(M(G), M(T)) and, for u €

M(G), G(u) ={0. ,:0..€G}. Let G; denote G with the discrete
topology and, for u € My(G), let G; denote the discrete subgroup
generated by the mass-points of u.

() V2 G 9 € Gy Yue My(G) Zy = 3y b({x})d(p(x))
and oy, =0(¢(x)), where Z~ 0. ..

(i) Yu € My(G) E("l ~ G,

(i) 4 € My(G) & E(u) is a group (under the multiplication
in L(M(G), M(T))).



STRUCTURE OF SOME MEASURE-ALGEBRA HOMOMORPHISMS 103

Proof. (i) Let G> Ya mz. Then for x € G,

0(Ya(-)) = 0. 5(x) € LIM(G), M(T))s(x) »

i.e., 0(7a(x)) = 0x s5(x) eventually. Thus, y,(x) stabilizes at some
point ¢(x) and oy s5x) = 6(9(x)). The assertions now follow from

linearity and properties of the Sreider representation.

(i1) The fact that E( W) can be identified as a compact subgroup
of Gg follows from (i). If it were not the whole group, then there

~

would be a nonzero x € Gg such that ¢(x) =1 forall ¢ € E(u). In

particular, y(x) =1 forall y e G, whence x = 0, a contradiction.
(iii) This follows from [HMP, p. 68, Proposition 10] and (ii).0

We now arrive at the characterization of positive continuous mea-
sures mentioned in the introduction.

THEOREM 4.4. Let G be a LCA group whose torsion subgroup is
denumerable and let n € M*(G) be positive. Then u € M} (G) iff
there is a net G > y, — oo such that for all n #0, a(y?)— 0.

Proof. By Proposition 4.1 (iii), this is equivalent to u € M (G) &

A(0)A € A(u). For p € MF(G), this follows from 4 € A(u) (see
(4.3)). If u ¢ MF(G) and X € A, then £, =%, +%, >2, since
#c 2 0 and X > 0. However, by Proposition 4.3(i), X, is nonzero
and discrete; hence X, cannot equal 2(0)A. O

Because of the interest this theorem may present, we provide the
following “elementary” proof and strengthening for the case G =T.
If u € M,(T), then by Wiener’s theorem [K, p. 42], there is a sequence
{m}cl)} of density one in N such that [t(m,(cl)) — 0. Likewise, there is
a sequence {mfc”)} of density one such that ﬂ(nm}c”)) = (T,T) ﬂ(m,(c”) ) —
0 since (T,), € M., for n # 0. By an elementary intersection argu-
ment, we obtain a sequence {my}, still of density one, such that for all
n#0, g(nm;) — 0. (A similar argument produces a sequence {m;}
of density one such that for n # 0 and all r, a(r+nm;) — 0, ie.,
d(myx) — 4 in L(M(T), M(T)),, thereby strengthening (4.3).) For
the converse, we use the following proof due to Jean-Frangois Méla.
Let K;(x) be the Fejér kernel of order /. Then if x > 0 and if for
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all n#0, a(nmy)— 0, then
1 1
u({0}) < /T ST Kimex) du(x) = 7= R(0) s k — oo

by hypothesis. Since this is true for all /, it follows that x({0}) =0.
Now apply this result to u * i, where i(E) = u(-FE).

The local structure of A can be used to characterize other classes
of measures besides M, and M, . If & is a class of subsets of G, let

#L = {ue M(G): VE € % |u|(E) = 0}.
Thus, if 2 is the class of singletons, 2+ = M.(G).

_DEFINITION. A set E C G is called an H-set if there is a sequence
G > yr — oo such that {y,(x):k>1,x € E} isnotdensein T. A
set E C G is called a Dirichlet set if there is a sequence G Vi — 00
such that limy_, supycg |7x(x) — 1| = 0. A measure u € M(G) is
called a Dirichlet measure if lim,_ | m/\)(y)l = ||ull-

For background on H-sets, see [Z, Chapters IX, XII]; on Dirichlet
sets and measures, see [HMP, pp. 34-35, 240-247]. The following
proposition is used in [KL].

PrOPOSITION 4.5. Let G bea LCA group.
(i) If G is metrizable, then

H* ={u:Vvo. € X(u) Vex[u] supp oy =T}
={u:vXe AVv e L(u) suppZ, =T}.

(ii) u is a Dirichlet measure iff the constant function 6(0) € A(u).
(ili) D+ = {u: Yo. € A(u) ¥ex[u] ox # 5(0)}

Proof. Part (i) follows from Proposition 4.1(v) and a straightfor-
ward generalization of [L4, Theorem 13]. Part (ii) follows from Propo-
sition 4.2 and the fact that u is a Dirichlet measure iff the constant
function 1 € (T\I(x) [HMP, p. 34, Lemma 6]. Part (iii) follows
from part (ii) and the fact that D! consists of the measures orthogo-
nal to the Dirichlet measures [HMP, p. 243, Proposition 9]. O

Our final remarks concern the circle group.

DEFINITION. A positive measure 4 € M*(T) is called C-quasi-
symmetric if for all pairs of adjacent arcs, / and J, on T of equal
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length, ul < C-uJ. We denote the class of C-quasisymmetric mea-
sures by OS(C).

Note that quasisymmetric measures are continuous.

PROPOSITION 4.6. The class QS(C) is weak* closed. If u € QS(C),

then A(u) € QS(C), A(u) C QS(C) in the sense that if . € Au),
then V¢x[u] ox € QS(C), and A(v) CQS(C) forall 0<veL(u).

Proof. Let QS(C) 3 u, v, v . Given adjacent arcs I, J of equal

length and ¢ > 0, pick f, g € C(T) such that f < 1;, 1; < g,
J(; - f)dv<e,and [(g-1;)dv <e. We have

vl < /fdu+8=lim/fdua+esﬁﬁual+e

sC-muaJ+asC-lim/gd,ua+a=C/gdu+e

<C-vJ+(C+1)e.

Since ¢ was arbitrary, we see that vI < C -vJ, whence v € oS(C).

Choose u € QS(C). Then y, € QS(C) for any y € T. Since
A(u) is contained in the weak* closure of {yﬂ}ye?, it follows that
A(u) € OS(C). Suppose that E C T and puE > 0. If I and J
are adjacent arcs of equal length and ¢ > 0, then choose U, a finite
union of arcs, such that u(UAE) < ¢. By continuity of x4, we have
for all large y,

WENy ) <uUny ) +e < C-p(Uny ' [J]) + 2¢
<C-wENy I+ (C+2)e.

Since ¢ was arbitrary, it follows that A(u|g) € QS(C). As QS(C)
is a positive cone, we deduce that A(v) C OS(C) for 0 <v € L(u).

Finally, let 0. € A(u). Let P be the essential range of o., i.e, the
smallest weak* closed set P such that g, € Pu-a.e. Then P is con-
tained in the weak* closure of {[ oxdv(x): 0<v e L(u), lv|=1}=
U{A(v): 0 < v e L(u), |lv| =1}, which, by the above, is contained
in QS(C). m]

As an example of the pathology possible for A(u), we present the
following observation.
PrOPOSITION 4.7. There is a measure u € M(T) such that for any

probability measure v € M(T), there exists . € A(u) such that o, =
vu-a.e.
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Proof. Let {Py}r> be a set of trigonometric polynomials such that
{P -A} is weak* dense in the set of probability measures. Let {n;} C
N satisfy ng,; > 3n; - deg P, . Form the generalized Riesz product
[HMP, Chapitre 5] u = [[;>; Px(nix). Then given a probability v,

let Pk,l 2.y, For any r, m € Z, it is easy to see that ﬁ(r+mnk1) —
Mr)o(m), ie., é(ngx)— v in L(M(T), M(T)),. O
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