
PACIFIC JOURNAL OF MATHEMATICS

Vol. 148, No. 1, 1991

THE LOCAL STRUCTURE
OF SOME MEASURE-ALGEBRA HOMOMORPHISMS

RUSSELL LYONS

Extending classical theorems, we obtain representations for bound-
ed linear transformations from L-spaces to Banach spaces with a
separable predual. In the case of homomorphisms from a convolu-
tion measure algebra to a Banach algebra, we obtain a generalization
of Sreίder's representation of the Gelfand spectrum via generalized
characters. The homomorphisms from the measure algebra on a LCA
group, G, to that on the circle are analyzed in detail. If the torsion
subgroup of G is denumerable, one consequence is the following nec-
essary and sufficient condition that a positive finite Borel measure on
G be continuous: 3γa —• oo in G such that V« φ 0 μ(y") —• 0 .

1. Introduction. Given a measurable space X and a (bounded)
complex measure μ on X, the Banach space dual of Lι(μ) is com-
monly represented as L°°(μ). We shall call M an L-space on X if
M is a Banach space of complex measures on X (under the measure
norm) such that v<t:μeM=>veM [Sc]. Sreϊder [Sr] gave a rep-
resentation of the dual M* of M as a space of so-called generalized
functions, i.e., families of functions fμ e L°°(μ) satisfying

(1.1) u<^μ^fI/=fμ z/-a.e.,

(1.2) SUP \\fμ\\L~(μ) <OO.
μ€M

The representation of M*, like that of Lι(μ)*, is by integration:

fμdμ.I
Now, given two Banach spaces, B\ and Bι, we denote by L(B\, Bι)
the Banach space of bounded linear transformations from B\ to Bι.
Since M* = L(M, C), we may ask, in generalizing the above, for a
representation of L(M9 B), where B is an arbitrary Banach space.
Again, the case where M = Lι(μ) is classical [DS]; here, the hy-
pothesis that B has a separable predual is made. In §2, we ex-
tend this theorem to general L-spaces M in a manner similar to
Sreϊder's representation above. In essence, functions are replaced by
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5-valued functions. Our treatment will be entirely self contained,
thus giving an apparently new proof of [DS, Theorem VI.8.6]. How-
ever, another point of view could be adopted. Namely, if we use the
Radon-Nikodym theorem to identify L(μ) = {v < μ : abounded}
with Lι(μ), then we may regard an L-space M as the direct limit
limμeMLι(μ), where M is directed by <C and for v < μ, Lx{y) is
included in Lι (μ). Now L( , B) is a functor from the category of Ba-
nach spaces to its opposite category and, furthermore, is easily checked
to be a left adjoint. Since left adjoints preserve direct limits and in-
verse limits are dual to direct limits, it follows that L(M, B) is the
inverse limit \imμeM L(Lι (μ), B), where, for v < μ, L(Lι(μ), B) is
mapped by restriction to L(Lι(v), B). Hence, given a representation
of L(Lι(μ), B) (as in [DS]) and a construction of inverse limits, we
may obtain a representation of L(M, B). This amounts to the same
as our Theorem 2.1.

Now Sreϊder was actually interested in representing AM, the mul-
tiplicative linear functionals on M, when M was a convolution mea-
sure algebra on a locally compact abelian group. He showed that in
addition to (1.1) and (1.2), the following property was necessary and
sufficient for fμ to define an element of AM:

( 1 . 3 ) V/i, v > 0 f μ * u ( x y ) = f μ { x ) f M μ x i/-a.e. [(x,y)].
We, too, are mainly interested in the subset of homomorphisms
Hom(Λf,i?) c L(M,B) when B is a Banach algebra. A simi-
lar condition to (1.3) is found in Theorem 3.2. In particular, when
M = M{G), the complex Borel measures on a locally compact abelian
group, G, and B = Λf(T), T the circle, Hom(M(G), M(Ί)) con-
tains in a natural way Hom(G, T) = G. The closure of G in a
certain weak topology is related to the behavior of Fourier transforms
at infinity and contains much information about a measure μ when
regarded locally, i.e., when restricted to L(μ), or, what is the same,
when viewed via the Sreϊder representation. For example, this analy-
sis will lead to the following surprising result: if the torsion subgroup
of G is denumerable, then a positive measure μ e M(G) is contin-
uous iff there is a net {γa} c G tending to infinity such that for all
n Φ 0, \imaμ{γ%) = 0. Characterizations of certain other classes of
measures are found in §4; these have proved useful in [KL] and [L4]
Other analyses of the local structure of the closure of G for certain μ
can be found in [L3], [L4], and [L5]. The local structure of G is also
related to asymptotic distribution; this relationship, described here,
has been used in [KL] and [L4].
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The Sreϊder representation, Theorem 3.2, has been given before in
[IgK] for the case Hom(M, Af(T)), M being an L-subalgebra of
M(Ύ), though in slightly different notation. An alternative represen-
tation for Hom(M, M(G))9 where M is a semisimple commutative
convolution measure algebra in the sense of Taylor and G is a com-
pact abelian group, analogous to Taylor's representation of AM via a
structure semigroup, has been given in [InK].

2. The Sreϊder representation of linear transformations. Suppose
that M is an L-space on a measurable space X and that B is a
Banach space with a separable predual, B*. Let 3B{X > B) denote the
set of maps / : X -> B which are bounded in 2?-norm and measurable
when B is given the weak* topology from 2?*. If / €&(X, B) and
μ G M, there is a unique element / fdμeB defined by the relation

VZ>* e B* (b.,

If D is a countable dense set in the unit ball of B*, then the equation

\\f(x)\\B=SUp\(b*,f(x))\
b^eD

shows that | |/( )||# is measurable. It is clear that

The set of equivalence classes of 3S{X9 B) under equality μ-a.e. will
be denoted 3S{X, B)μ, although this distinction will often be ignored.

The following theorem, which we shall term the Sreϊder representa-
tion, associates to each element of L(M, B) a certain family of maps
in 3B{X> B). We denote the image of μ e M under Σ e L(M9 B)
by Σμ.

THEOREM 2.1. Let M be an L-space and B a Banach space with a
separable predual There is a bijection between L(M, B) and the set
of elements {b^μ}μeM € YlμeM^(X> B)μ which satisfy

() |
μeM

and

(ϋ) Vi/ < μ e M bXtU = bXjβ v-a.e.[x]
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such that ifΣ corresponds to {b.,μ}μβM (written Σ ~ b.r), then

(iii) Vμ G M Σ^

and

(iy) \\Σ\\L(M.B) = S U P

μ = jbx,μdμ(x)

. Given {b.,μ} satisfying (i) and (ii), define Σ by (iii). If
μ, v G M , then by (ii), we have bXfμ = bX9\μ\+\v\ μ-a.e., whence
Σμ = fbX9\μ\+\u\ rf//(x). In conjunction with similar equations for Σv

and Σμ+v , this equation shows that Σμ + Σy = Σμ+jy. Similarly, for
a G C, Σαμ = αΣ^, whence Σ is linear. Let K denote the quantity
in (i). Then

||Σ|| = sup
IMI

= sup / bx,μdμ(x)

< sup ί||^^||J|//|(x)<^.
ιijMiι<i y

To show that | |Σ|| = K, choose any nonzero μ e M and ε > 0. Let
OφveL(μ) be such that || | | έ . ^ | | 5 - || Ĥ  ./έlUIL^^I^oe.x < e. Let
S be the unit sphere of B . Since the unit ball of B is weak* compact,
there exists a finite number of elements, b\, . . . , b" , of the unit ball
of B* such that

S={J{beS:\(bi,b)-l\<ε}.

Therefore 30 < ω e L(u) 3/ | |<#, bx,μ/\\bx,μ\\B)- l\\L-{ω) < ε. We
have

> *ω| 1

\co\\ ω
•\(bί,Σω)\ =

1

ω
J(bi,bx,μ)dω(x)

Thus | |Σ|| = K.
Conversely, let Σ e L(M, B). Fix μ € M. For 6* € 5*, we denote

by έ* oΣ the map v ι-+ φ*,Σv). Restricted to L(μ), this map is a
bounded linear functional and hence can be represented by a function
gb € L°°(μ). Choose a countable linearly independent set D whose
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linear span over Q, Df, is dense in 5*. If b* = £ ? = 1 α; d?i, d[ e D,
α / E Q , define

ί = l

Then £* h-> A# (x) is rational-linear on Df for every x e X. Further-
more, A^ = gb^ μ-a.e., whence by countability of D1,

(2.1) Vό*e/)Ί\WI<ll^oΣ| |< | |6* | | . | |Σ | |

for μ-a.e. x . Now for every x such that (2.1) holds, b* »-• Â  (x)
extends from Z>' to all of if* as a bounded linear functional, hence
element of B, call it f(x). This defines f(x) μ-a.e. and shows that,
given any b* e B*, if Z>* = lim -̂̂ oo ^ (fej e D1), then

(2.2) (b., /(x)) = Jim ( ^ , /(x)) = 6 ; ( )

for every x where / is defined. Write b.,μ for the equivalence class
of / . From Equation (2.1), we see that | |/(x)| | < | |Σ|| for every
x where / is defined. Together with (2.2), this shows that b.,μ e
33 (X, B)μ and gives (i). Now for v e L(μ) and b* e Df, we have

v^i = J(b*,f(x))dv(x) = Jhbm(x)dv(x)

= / gbSχ)dv(χ)= ( ό * ' Σ ^)

Since Df is dense, (iii) follows. We claim that b.ijU is uniquely deter-
mined by the property just established:

Vi/ eL{μ) Σu= bX9μdv(x).

Indeed, if we also have that Mv e L(μ) Σu = ί b'xμdv(x) for some

Vό* eD'Vve L(μ) j(b*, bx,μ) du(x) =

whence for //-a.e. x VZ>* e 2)' (fe*, bXtμ) = (b*, br

xμ), i.e., bx,μ =
ĵc,// /^"a e Thus (ii) follows. The same argument shows that if Σ ~

b.\ and Σ ~ έ ί . , then b.9. = *;> β. D

We define the weak* operator topology (W*OT) on L(M, B) as
the weakest topology such that Vμ e M V6* E 5 * Σ I-> (έ*, Σμ) is
continuous. It is an elementary exercise to show that the unit ball of
L{M,B) is W*OT compact.
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For μ e M, let L(M, 1?)^ denote the set of Sreϊder representa-
tions b.,μ of elements of L(M, B). We give L(Af, 2?)μ the weak
topology generated by the maps b.9μ ι-> f(b*, fc*,!/) rfi/(.x) (£* e 5*,
z/ G L(μ)). Thus, the W* OT is the inverse limit of these topologies,
i.e., it is the weak topology generated by the maps Σ*-+ b.,μ (μ e M)
from L(M, B) -+ L(M, B)μ, where Σ ~ b.r .

Every decomposition M = / Θ / of M as a direct sum of closed
subspaces yields an addition on L(M, B) as follows: if Π 1 , Π2 e
L(M, B), then we may define

(2.3) Σμ = n ι

μ i + n 2

μ j ,

where μ = μi + μj, μj e /, μj e J. If Σ ~ ό. 5., Π̂  ~ 6/ ., and
/±/,then ^ 5 / , = ̂ > / / + δ 2 ^ μ-a.e.

The case where B = M(Y), the space of complex regular Borel
measures on a locally compact metric space, Y, is of interest. A
predual of 5 is the separable space Co(Y) of continuous functions
vanishing at infinity. We shall denote the Sreϊder representation of Σ
by σXyμ in this case; thus, if / e CQ(Y) and μ e M,

(2.4)

(If Y is separable and a countable union of complete subspaces, then
(2.4) holds for / e 3&{Y, C) since it is preserved under bounded
pointwise limits. In particular, for Borel sets £ C Γ ,

Σμ(E) = / σx,μ(E)dμ(x).)
Jx

Let M+ denote the nonnegative elements of M and likewise for
M+(Y). We say that Σ e L(M, M[Y)) is positive if it carries Af+
into M+(Y). It is easy to see from (2.4) applied to \μ\ that Σ > 0 iff
VμeM Ψx[μ] σx,μ > 0 (u\/ex[μ]» means "for //-a.e. x"-see [LI]).
It is also easy to show that if Σ > 0, then v < μ =» Σv < Σ|μ | and

3. The Sreϊder representation of homomorphisms. Let G be a locally
compact semigroup with separately continuous multiplication. Then
M(G) is a Banach algebra under convolution [W]. Let M be an L-
subalgebra of M{G), i.e., a subalgebra which is also an L-subspace,
and let B be a Banach algebra with a separable predual such that
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multiplication is separately weak* measurable and

(3.1) Vfe^(G,B)VbeBVμeM

f(x) bdμ(x)=(J

&Jb f(x)dμ(x) =

In order to state some sufficient conditions that (3.1) be true, we define
the following multiplication on B* x B. If b e B and b* eB*, then
b11-+ (bf -b, b*) is a bounded linear functional on B we denote it by

b* b. Let Tϊs™ be the smallest subspace of B* containing (canoni-
cally) B* which is closed under weak* sequential limits. Let ΔJ5 be
the subset of B* consisting of the multiplicative linear functionals.

PROPOSITION 3.1. Let B be a Banach algebra with a separable pre-
dual Right multiplication on B is weak* measurable and the first
equation o/(3.1) holds if any of the following conditions is satisfies:

(i) B.BCβf.
(ii) Right multiplication is weak* continuous,

(iii) Right multiplication is weak* measurable and Til™ nAB sep-
arates points in B.

Proof. The class of b* e B* such that b\-+ (b, b*) is weak* measur-
able contains 2?* and is closed under weak* sequential limits. Thus,
all elements of "Bs™ are weak* measurable. Now right multiplication
is weak* measurable iff V6 e B V&* e 5 * V *-> {b*, b' b) is weak*
measurable. But φ*, V b) = φf, b* b), whence this condition is
equivalent to all elements of B* B being weak* measurable. The
sufficiency of (i) for measurability is now obvious. Also, the class of
weak* measurable b* eB* such that

is closed under weak* sequential limits by the bounded convergence
*

theorem, hence contains ~BS™ . Thus, if (i) holds, then Vδ* € 5*
VbeB

*, Jf bdμ^= J(b*,f b)dμ = f(f,Kb)dμ

dμ,b. b} = (b., (Jfd

whence the first equation of (3.1).
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Now (ii) is equivalent to B* B C B* since B* is the set of weak*
continuous linear functionals on B. Thus, sufficiency follows from
that of (i). Finally, if (iii) holds, then for / € &{β, B), b e B,

μ e M, and b* € B~s™ n AB, we have

(Jfbdμ,b^ = J(f b,b*)dμ = J{f,b*)(b,b*)dμ

= J(f, b*)dμ • (b, b*) = (ffdμ, bή • φ,b*)

= ((Jfdμ).b,bή,

from which the first equation of (3.1) follows. D

Let &Q(G9 B) denote the Baire-measurable functions from G to
B, where B is given the weak* topology. For μ, v e M(G), let μ x v
denote, besides the usual product measure, also its unique extension
to a regular Borel measure in M(G x G). If / e £&Q(G, B) and
μ, v e M(G), then

/ fdμ *u= f(xy) dμ x v{x, y)

= fff(xy)dμ(x)dv(y),

as can be seen by applying any 6* e B* [W].
The Sreϊder representation of Hom(M, B), the continuous homo-

morphisms from M to B, satisfies one property additional to those
in Theorem 2.1.

THEOREM 3.2. Let G be a locally compact semigroup with separately
continuous multiplication and M an L-subalgebra of M(G). Let B
be a Banach algebra with a separable predual and separately weak*
measurable multiplication satisfying (3.1). Let Σ € L(M\ B) and
choose b.,μ e &0(G,B) (μ e M) so that Σ - £.,.. Then Σ e
Hom(M,'£) iff

(3.2) Vμ, v e M+ bxy^μ*v = bXiμ byiU for μ x v-a.e. {x, y).
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Proof. Suppose first that (3.2) is satisfied. Then for μ, v e M,

Zμ*v = I bίAμμWldμ*v(t) = // bxyΛμ\*\v\dμ{x)dv{y)

= JJ bxλμVbyMdμ{x)dv{y)

= J (j bxMdμ(x)J -byMdv(y)

= j bxΛμ\dμ(x) J byM dv{y) = Σμ-Σv.

Conversely, if Σ e Hom(Λf, B), then given μ, v e M+, we have for

all μ1 e L(μ) and v1 e L(v) 9

I bXyiμ*udμf xvf(x,y) = / bt,μ^dμr * i/(ί) = Σ^^/

= Σ /̂ Σu> = y 6 X , A <///'(*) y fcy>1/ έ/i/;(y)

= JJbx,μ.by9Udμ\x)dv'(y)

= / bx^-by^dμ1 xv'(x,y).

Since the span of L(μ) x L(y) is dense in L(μ x i/), (3.2) follows. D

If multiplication in B is jointly weak* continuous (for example, if
B* ΠAB separates points in B), then the unit ball in Hom(M, B) is
easily shown to be W* OT compact. An example where compactness
fails is Hom(Af(R), Af(R)): define Tn (n > 1) in the unit ball by

/ f{x) d(Tn)μ(x) = f f(nx) dμ(x) (/ G C0(R))
JR JR

and let Σ : / / H μ({0})δ(Q), where (J(0) is the Dirac measure at 0.
Then Tn -> Σ in W* OT, but

Σ e L(M(R), M(R))\ Hom(M(R), M(R)).

We define the following multiplication on L(M, B): if Σ - 6.,.
and Π ~ b.f., then Σ Π is defined by its Sreϊder representation
bχ,μ'bxμ. When B is commutative, Hom(Λf, B) is closed under
multiplication. It is easily verified that if multiplication in B is sepa-
rately weak* continuous, then multiplication in L(M, B) is separately
W*OT continuous.
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Suppose that M = / φ / , where / is a closed ideal and / is a
closed subalgebra. If Π 1 , Π2 e Hom(M, B) satisfy

(3.3) V μ e / V ι / e / Π ^ = Π j . Π 2 & Π ^ = Π 2 Π j ,

then the "sum" Σ of Π1 and Π2 defined in (2.3) is a homomorphism.

4. Limit points of group homomorphisms. If H is a locally compact
group, then convolution is separately weak* continuous in M(H).

Indeed, if μa, μ, v e M{H) with μa - ί C μ, then for / € C0(H),

the map x ι-> / f(xy) dv{y) lies in Co(H), whence

y /rf/έα * v = ί[f(χy) du(y) d^(χ)

- ff f{xy)dv{y)dμ{x) = f fdμ*v,

which is to say that μa*v -^-> μ*u. A similar argument applies

to v * μα. Thus, if G is a locally compact semigroup with sepa-
rately continuous multiplication and if is a locally compact metriz-
able group, then the preceding section applied to Hom(M, M(H)) for
any L-subalgebra M of M(G). Every continuous homomorphism
φ: G —• H yields an element of Hom(M, M(H))9 which we also
denote by φ, defined by (/, φμ) = (/ o φ, μ) for / e CQ(H) . The
δreϊder representation of such a #> is particularly simple: φ ~ <J(p(x))
(independent of μ), where <J(ί) denotes the Dirac measure at /.

We identify Hom((z, H) with a subset of Hom(Af((?), M(H)) in
the above manner. Our aim is to study the set

Λ = Hom(G, H)\ Hom(G, H)

and its local structure

A(μ) = {Σμ:ΣeA}, A(μ) = {σ.,μ : σ.9. e A},

where Λ consists of the Sreϊder representations of elements of Λ.
Since all elements of Hom(G, H) are positive and lie in the unit ball,
the same holds for Λ. (In fact, every positive homomorphism lies in
the unit ball: if 0 < Σ € Hom(M(Cr), M{H)), then for μ e M(G)
and n > 1, we have

I W < | |ΣW | |» = HΣjy = | | Σ M . | | < ||Σ|| \\μ\n\\ = ||Σ|| \\μ\\n,
whence ||Σ|| < 1.)

We are particularly interested in the case where G is a locally
compact abelian group and H is a circle group, T. In this case,
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Hom((r, T) = (J, the dual of G, and the identification of G as a
subset of Hom(Af ((?), Af (T)) preserves the usual topology of G (of
uniform convergence on compact subsets). Furthermo£e, as G lies in

the unit ball of Hom(Af(G), Af(T)), it follows that G = GuA is a
compactification of G.

Recall that a sequence {XkJ^Li Q G is said to have an asymptotic
distribution σ, written {x^} ~ σ, if

ir) -^-^ <τ a s AT —• e x ) .

For n e Z and^ Σ G Hom(M(G), M(T)), define Σ(Λ) €
by (μ, Σ(n)) = Σ^(«). We write the Sreϊder representation of χ e
AM(G) as χμ(x). Thus, if Σ ~ σ.r and χ = Σ(n), then

Note that for all n, the map Σ *-+ Σ{n) from (Hom(M(G), Af (T)),
W* OT) to AM(G) (with its usual Gelfand topology) is continuous.
We regard the Fourier transform as a restriction of the Gelfand trans-
form; thus, in accordance with the Sreϊder representation, we have
μ(γ) = Jγdμ for γeG.

PROPOSITION 4.1. Let G be a locally compact abelian group and

A = G\G in Hom(M(G), M(Ί)). Then

JX) A is closed topologically and under multiplication by elements

ofG;

(ii) if σx,τxe A(μ), then σx*τxe A(μ) ^
(iii) A(μ) = {v e M(T): 3 net {γa} C G (γa -> oo&V« e Z

(iv) A(μ) = {σ. G&{G, M(Ί))μ: 3 net {γa} c G (γa-+ oo&Vn e
Z γ^σ.(n) weak* in L°°(μ))}\

(v) if G is metrizable, then the nets in (iii) and (iv) can be

replaced by sequences and A(μ) = {σ. e 3§{G, M(Ί))μ: 3y; e G
{γj -> oc& for every subsequence γjk, Ψx[μ] {Vjk(x)}kLι ~ °χ)}

. Suppose that Σ G Λ is the limit of a net {γa} c G. Then
Σ(Λ) = limy£ in ΔΛ/(G) for all n e Z. Now if yα -> y G G, then
7α —• 7n> whence Σ = y. But since Λ n G = 0 , this is impossible,
and so γa —• oc in (?. In particular, Σ(l) is 0 on Lι(G) [HMP,
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p. 136, Proposition 4] and consequently Λ is closed. It is clear that
Λ G C Λ , from which (i) now follows. Statement (ii) ensues as well.
Now if v G Λ(μ), then let G 3 γa —• Σ e Λ be such that v = Σμ.

Then 7Q ~> oc and (γa)μ -̂ —• Σμ = v, which gives the inclusion C of

(iii). On the other hand, if γa —• oc and VΛ £(?") —> v(n) > ^en by

compactness of G, we can choose a subnet {y«} of {yα} converging

to some Σ. Since γ'o —> oo, it follows that Σ G Λ and u = Σμe Λ(μ).

This completes the proof of (iii). The proof of (iv) is analogous.

Finally, if G is metrizable, then Lι(μ) is separable for μ e M(G)

and so L{M(G), M(Ύ))μ is metrizable. Thus, if μ e M(G) and

γa -* Σ ~ σ.,., pick any non-zero p E Lι(G) and a subsequence

{δ(Vaj('))} converging to σ.M+\pl in L(M(G), M(Ί))\μMp\. Then

— (Σ(l)) = 0 in L°°(p)9 whence yβy - oc

in G, and y .̂ - ^ (Σ(n))μ = σ.ϊiI£(/ι) in L°°(μ). This shows the
sufficiency of sequences for (iii) and (iv). Furthermore, if Vn yn —•
σ.(n) weak* in L°°(μ), then by [L2, Lemma 5], there is a subsequence
{ŷ  } of {γj} such that every further subsequence {y'j } satisfies

(4.1) V°x[μ]{yjk(
χ)}kLi~σχ

Conversely, if {γj} is a sequence, every subsequence of which satisfies
(4.1), then we claim yn —• σ.(«) weak* for every n . If not, then for
some n there would be a subsequence {γf} converging to a different
limit χ . Then also

1 K

n W*

k=\

and by (4.1),

±
A : = l

Therefore χ = σ.(n), a contradiction. Thus (v) follows from (iv). D

When G is regarded as a subset of AM(G), we shall use the no-
tation Γ rather than G to avoid confusion. Let Tn e Hom(G!, G)
denote the map x »-> xn (n e Z), as well as the corresponding map
induced in Hom(M(G), M(G)). Thus, for Σ e Hom(M(G), M(T)),
we obtain Σ o Tn e Hom(M(G), M{Ί)) note that if Σ = γ e G, then
7 o Tn = γ» .
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PROPOSITION 4.2. Let G be a LCA group and

Σ e Hom(Af(G), Af (T)).

Then Σ e 6 iff Σ(l) e T and V n j Z Σ(n) = Σ(l) o Tn. The map

Σκ->Σ(1) is an isomorphism from G onto Γ sending G to Γ.

. If Σ G G, let G 3 yα

 W ^ O T ) Σ. Since γa(n) = 72, we have

> Σ(n) for all n. In particular, Σ(l) € Γ. Also, Σ(n) = l i m ^ =
'β o Γrt = (limyα) o Γ Λ = Σ(l) o Γ* . Conversely, if Σ(l) € Γ and

Vn Σ(n) = Σ(l)o ΓΛ, then let yα -+ Σ ( l ) . Choose a convergent subnet
y'β -> Π in Hom(Af(G), Af (T)). Then from the above, Π(π) = Π(l)o

ΓΛ = Σ(l) oΓ n = Σ(/i) for all n, whence Σ = Π e G .
It follows from this that the map Σ H+ Σ(l) is injective. Surjectivity

onto Γ is proved by a compactness argument similar to the above. D

We write M(G) = Mc(G)®Md{G) for the decomposition of a mea-
sure into its continuous and discrete parts. Then hd: μ »-> JG dμd =
μd(0) is in Γ\Γ [HMP, pp. 136-7, (4.1.4)]. We denote the element
of Λ corresponding to hd by Πd . If G has at most countably many
torsion elements, then we claim that

*w -' °
hd

whence

where λ is Lebesgue measure on T. To see this, note first that

Second, if « ^ 0 , then for all g € G, there are, by the supposition,
denumerably many x eG such that xn = g. Therefore

χn=g

whence

ftd(n): μ ~ J2^oTn')({£))
geG

= Σ Σ (̂W) = Σ MW) = A*(0).
" = ^ xeG

This proves the claim.
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Related elements of Λ are Σ Πd for Σ G G if, as above, the
torsion subgroup of G is denumerable, then

(Σ π% = A:(oμ + Σμd.

Thus, if we set Π://«-> μ(0)λ, then Σ IT* is the sum of Π and Σ
defined by (2.3) and (3.3) from the decomposition M = Mc®Md. An
interesting example is G = T and Σ: μ t-+ μ in this case, (Σ Πd)μ =
μc(0)λ + μd.

Provided still that G has a denumerable torsion subgroup, the
Sreϊder representation π?9. of Π^ is given by

(4 2) π"

Let λ e &{βt M{Ί))μ be defined by λ(x) = λ. Then from [HMP, p.
70, Corollaire 2] and Proposition 4.2 (or from (4.2) and the following
proposition),

(4.3) μ € MC(G) <ϊλe A(μ).

This yields other characterizations of MC(G) when combined with
Proposition 4.1 (iv), (v). For example,

μ e MC(G) &3γa-+ooVue L(μ) Vn φ 0 u(γ%) -+ 0

<* 3γa -+ oo Vy € G Vn φ 0 /έ(yj£) -» 0.

Our next proposition describes A(μ) completely when μ is discrete
(cf. [HMP, pp. 67-68]).

PROPOSITION 4.3. Let G_be a LCA group. Let G denote the

Srelder representations of G c YLom(M(G), Af(T)) am/, for μ e

M(G), G(μ) = {σ.iμ:σ.).eG}. Let Gd denote G with the discrete
topology and, for μ e Md{G), let Gμ

d denote the discrete subgroup
generated by the mass-points of μ.

(i) VΣ G G 3φeGd Vμ G Md(G) Σμ = Σ*^MW)<%W)
and σXίβ = δ(φ(x))> where Σ ~ σ.r.

(ii) VμeMd(G) d(μ)^G^

(iii) μ G Md(G) <& G(μ) is a group (under the multiplication
in L(M(G),M(Ί))).
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Proof, (i) Let G 3 γa

 W * O T > Σ . Then for x e G,

•)) - σ.9δ{x) e L(M(G),

i.e., <$(yα(*)) = ^JC,^(X) eventually. Thus, γa(x) stabilizes at some
point φ(x) and σXίδ{X) = δ(φ(x)). The assertions now follow from
linearity and properties of the Sreϊder representation.

(ii) The fact that G(μ) can be identified as a compact subgroup

of Gμ

d follows from (i). If it were not the whole group, then there

would be a nonzero X G G J such that φ[x) = 1 for all φ e G(μ). In

particular, γ(x) = 1 for all γ eG, whence x = 0, a contradiction.

(iii) This follows from [HMP, p. 68, Proposition 10] and (ii).D

We now arrive at the characterization of positive continuous mea-
sures mentioned in the introduction.

THEOREM 4.4. Let G be a LCA group whose torsion subgroup is
denumerable and let μ e M+(G) be positive. Then μ e M+(G) iff
there is a net G 3 γa -• oo such that for all nφO, μ(γ%) -• 0.

Proof. By Proposition 4.1 (iii), this is equivalent to μ e M+(G) <»

μ(0)λ e A(μ). For μ e M+(G)9 this follows from λ e Λ(μ) (see
(4.3)). If μ £ Af+(G) and Σ e Λ, then Σμ = Σβc + Σ ^ > Σβd since
μc > 0 and Σ > 0. However, by Proposition 4.3(i), Σμd is nonzero
and discrete; hence Σμ cannot equal μ(0)λ. D

Because of the interest this theorem may present, we provide the
following "elementary" proof and strengthening for the case G = T.
If μ E MC(Ί), then by Wiener's theorem [K, p. 42], there is a sequence
{raj^} of density one in N such that μ(m^) -+ 0. Likewise, there is

a sequence {m[w)} of density one such that μ(nm^) = (Tn)μ(m^) ->
0 since {Tn)μ e Mc, for nφ§. By an elementary intersection argu-
ment, we obtain a sequence {mk}, still of density one, such that for all
nφO, μ{nm^)—• 0. (A similar argument produces a sequence {m^}
of density one such that for n Φ 0 and all r, #(r + /im*) -• 0, i.e.,
δ{mkx) -> λ in L(Λ/(T), Af(T))^, thereby strengthening (4.3).) For
the converse, we use the following proof due to Jean-Franςois Mela.
Let Kι(x) be the Fejer kernel of order /. Then if μ > 0 and if for
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all nφO, μ[nm^) —• 0, then

) dμ(x) -

by hypothesis. Since this is true for all /, it follows that μ({0}) = 0.
Now apply this result to μ * μ, where μ(E) = μ(-E).

The local structure of Λ can be used to characterize other classes
of measures besides Mc and Mj . If W is a class of subsets of G, let

= {μ e M(G):\/Ee& \μ\(E) = 0}.

Thus, if 2J is the class of singletons, 2^ — MC(G).

DEFINITION. A set E c G is called an Hset if there is a sequence
G 3 γfc —• oc such that {^(x): A: > 1, Λ: € E} is not dense in T. A
set E c G is called a Dirichlet set if there is a sequence G 3 γ^ —• oc
such that lim^_^oosupXG£ |y^(x) — 11 = 0. A measure μ G Af(G) is
called a Dirichlet measure if lim^oo | |//|(y)| = | |μ| | .

For background on /ί-sets, see [Z, Chapters IX, XII]; on Dirichlet
sets and measures, see [HMP, pp. 34-35, 240-247]. The following
proposition is used in [KL].

PROPOSITION 4.5. Let G be a LCA group.

(i) If G is metrizable, then

H1 = {μ: Vσ. G A(μ) Yx[μ] supptr* = T}

= {μ: VΣ G Λ Vi/ G L(μ) supply = T} .

(ii) μ w a Dirichlet measure iff the constant function δ(0) G A(μ).

(iii) ^ = {μ: Vσ. G

Proof. Part (i) follows from Proposition 4.1(v) and a straightfor-
ward generalization of [L4, Theorem 13]. Part (ii) follows from Propo-
sition 4.2 and the fact that μ is a Dirichlet measure iff the constant
function 1 G (Γ\Γ)(μ) [HMP, p. 34, Lemma 6]. Part (iii) follows
from part (ii) and the fact that D1 consists of the measures orthogo-
nal to the Dirichlet measures [HMP, p. 243, Proposition 9]. D

Our final remarks concern the circle group.

DEFINITION. A positive measure μ G M+(Ύ) is called C'quasi-
symmetric if for all pairs of adjacent arcs, / and / , on T of equal
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length, μl <C μJ. We denote the class of C-quasisymmetric mea-
sures by QS(C).

Note that quasisymmetric measures are continuous.

PROPOSITION 4.6. The class QS{C) is weak* closed. IfμeQS(C),

then A(μ) C QS{C), A(μ) c QS(C) in the sense that if σ. e A(μ),
then Ψx[μ] σx G QS(C), and A(i/) C QS(C) for all 0 < v e L{μ).

Proof. Let QS(C) 3 μa -^-+ v. Given adjacent arcs /, / of equal

length and ε > 0, pick / , g e C(T) such that / < 1/, lj < g,

f(h-f)dv<ε,and f(g-lj)dv<e. We have

vl < / /rf̂  + ε = lim / /^//α + 6 < hmμal + ε

< C Π i n / / α / + ε < C l i m / ̂  ̂ //α + ε = Cgdv + ε

< C'vJ + {C+\)ε.

Since ε was arbitrary, we see that vl < C vJ, whence v G β5(C).
Choose μ e QS(C). Then ŷ  e QS(C) for any y G f. Since

A(μ) is contained in the weak* closure of {γμ} € - , it follows that
A(μ) c j2*S(C). Suppose that £ c T and μE > 0. If / and /
are adjacent arcs of equal length and ε > 0, then choose U, a finite
union of arcs, such that μ(UAE) < ε. By continuity of μ, we have
for all large γ,

<C-μ(Enγ-ι[J]) + (C + 2)ε.

Since ε was arbitrary, it follows that A(μ\E) C β5(C). As
is a positive cone, we deduce that A(v) c QS(C) for 0 < ι/ G L(μ).

Finally, let σ. G Λ(μ). Let P be the essential range of σ., i.e, the
smallest weak* closed set P such that σx e Pμ-a.e. Then P is con-
tained in the weak* closure of {/ σx dv{x): 0 < v G L(/ι), ||i/|| = 1} =
U(Λ(ι/): 0 < z/ G L(μ), ||i/|| = 1}, which, by the above, is contained
in QS(C). O

As an example of the pathology possible for A(μ), we present the
following observation.

PROPOSITION 4.7. There is a measure μ e M(Ύ) such that for any

probability measure v G M(Ύ), there exists σ. G A(μ) such that σx =
vμ-a.e.
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Proof, Let {Pk)k>\ be a set of trigonometric polynomials such that
{Pk-λ} is weak* dense in the set of probability measures. Let {n^} c
N satisfy n^+1 > 3rifc degi\. Form the generalized Riesz product
[HMP, Chapitre 5] μ = ΠA:>I ^k(nkx) Then given a probability v,

let Pkλ -^-> z/. For any r, m e Z, it is easy to see that μ(r+mnkι) -+

/i(r)z>(m), i e., δ(nkx) -> 1/ in L(Λf (T), AT(T))^. ' D
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