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A COMBINATORIAL MATRIX IN 3-MANIFOLD THEORY

Ki HYOUNG KO AND LAWRENCE SMOLINSKY

In this paper we study a combinatorial matrix considered by
W. B. R. Lickorish. We prove a conjecture by Lickorish that com-
pletes his topological and combinatorial proof of the existence of the
Witten-Reshetikhin-Turaev 3-manifold invariants. We derive a re-
cursive formula for the determinant of the matrix and discover some
interesting numerical relations.

In this paper we study the matrix A(n) which was defined by
W. B. R. Lickorish [3]. We prove a result required by Lickorish
which completes his topological and combinatorial approach to the
3-manifold invariants of Witten-Reshetikhin-Turaev [4], [5]. This ma-
trix arises from a pairing on a set of geometric configurations. These
are the configurations of n nonintersecting arcs in the disk with 2n
specified boundary points. There are Cn such configurations where
Cn is the nth Catalan number so the matrix increases in size very
rapidly. The Catalan numbers were discovered by Euler who con-
sidered the ways to partition a polygon into triangles [1]. These two
counting problems correspond naturally by considering "restricted se-
quences".

The matrix has entries in Z[δ]. Lickorish needed that det A(n) = 0
if δ = ±2 cos j^γ. We find a recursive formula for det A(n) and show
that all the roots are of the form 2 cos -£fγ for 1 < m < n and 1 <
k < m and verify the result. Using this formula, we derive a simple
rule that allows one to recursively compute detA(n) by generating all
of its factors.

There have been three approaches to study polynomial invariants of
classical links: the topological and combinatorial approach considered
by Kauffman, Lickorish and many other topologists; the study of quan-
tized Yang-Baxter equations and related Lie algebras by Reshetikhin
and Turaev; and the study of subfactors and traces of von Neumann
and Hecke algebras by Jones. We took a topological and combina-
torial viewpoint. The authors have been informed that the essential
result needed by Lickorish could have been obtained by pursuing the
two other approaches.
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1. Combinatorial manipulation. Let Dn be the set of configurations
of n non-intersecting arcs on a disk joining In points on the bound-
ary of the disk. We draw these configurations by taking Sι to be
[0, l ] /0~ 1 as in Fig. 1.

The cardinality of Dn is equal to (2n)\/n\(n + 1)!, known as the
Catalan number, denoted here by Cn. It satisfies the recursive rela-
tion:

Cn = Cn-\ + C\Cn-2 H 1- Q-2Q + Crt_i.

We can inductively represent the elements of Dn by sequences of
n integers (a\, CI2, . . . , an) where 1 < a\ < n - i + 1. The first entry
a 1 means that there is an innermost arc in the configuration joining
the αith point and the (a\ + l)th point on the interval. One then
deletes that arc and has an element of Dn-\ remaining. The sequence
((22, #3, . . . , an) then represents this element of Dn-\. See Fig. 2 for
an example.

Note that every configuration in Dn must contain an innermost
arc between adjacent points among the first n + 1 points. Thus this
representation captures all possible configurations but with repetitions.
For example the configuration in Fig. 3 has 12 distinct associated
sequences.

Cut here

FIGURE 1

(4,1,2,1) represents Γ\ / Γ\ Γ\

4 1

FIGURE 2
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Λ Λ Λ Λ Λ
FIGURE 3

Given such a sequence (a\, #2? . . . , an) one may construct the
unique configuration inductively. Into the configuration (02 > #3 > >
απ) one can insert two additional points between {a\ - l)st and
αith points then joining these two new points by an innermost arc.
Thus two distinct configurations cannot have the same sequence. To
a given configuration in Dn, one can associate the unique sequence
(#i, #2 5 > Q>n) in which a\ indicates the initial position of the first
occurring innermost arc and aι does the same for the configuration
without the previous innermost arc and so on. Such a sequence is said
to be restricted.

PROPOSITION 1.1. A sequence (a\, aι, . . . , an) of a configuration is
restricted if and only if ai-\ - 1 < 0/ for all i = 2, . . . , n.

Proof. For a restricted sequence (a\, #2 > > #«) > it is enough to
prove fli — 1 < Λ2 since (02, . . . , 0Λ) is also a restricted sequence.
After removing the first innermost arc, either the second innermost
arc or the arc joining the (a\ - l)th and the (a\ + 2)th point in
the original configuration will become the first innermost arc in the
remaining configuration. Thus 01 — 1 < 02.

Conversely if 0/_i — 1 < 0/, then the newly inserted innermost arc
into the configuration of (<Z/_i, . . . , an) becomes the first innermost
arc in the configuration of (0,-, . . . , an). •

REMARK. The number of ways to divide an (n + 2)gon into tri-
angles or the number of ways to interpret the product X\X2 -xn+\
in a non-associative algebra is equal to the Catalan number Cn . Re-
stricted sequences are useful to see the correspondence between these
and configurations defined earlier. Label the vertex of the {n + 2)gon
counterclockwise 1 through n except fixed adjacent vertices. A trian-
gle in a partition is said to be outermost if it has a vertex contained
in no other triangle. To a partition of the (n + 2)gon we assign the
sequence (01, 02, . . . , 0Λ) where a\ is the vertex that is solely con-
tained in the first occurring outermost triangle. Then the sequence
(02, . . . , an) inductively represents the partition of the (n + l)gon
obtained by deleting the vertex a\ and its adjacent sides. See Fig. 4
for an example.
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(ab)((cd)e)

(1,2,2,1) is the unique representation of

We give the lexicographic order to the set of all the sequences of
configurations, i.e., (a\, a2, . . . , an) < (b\, b2, . . . , bn) if there is an
index k such that a\ = b\, . . . , α^-i = ^ - i a n d ak < bk- If two
distinct sequences α and )? represent the same configuration and a
is restricted, then clearly a < β.

Let B(n, Jc) be the set of restricted sequences of length n with
initial entry k and let b(n> k) be the cardinality \B(n, k)\ of the
set B(n, k). Since /)„ can be identified with the set of all restricted
sequences of length n, Cn = Σl=ι b{n > &) I ι is convenient to set
6(n ? k) = 0 for /: = 0 or k > n.

PROPOSITION 1.2. 6(n, k) = E ^ _ i b(n-l, i) for k = I, ... , n.

Proof. Immediately follows from Proposition 1.1. D

It is interesting that b(n, 1) = b(n, 2) = Cn-\, b(n, AI — 1) = Λ — 1,
and 6(«, n) = 1. The only element in B(n, «) is («, n-1, . . . , 2, 1)

FIGURE 5
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which represents the configuration in Fig. 5. In fact we have:

COROLLARY 1.3. Using the binomial coefficients.

Proof. By Proposition 1.2, b(n+l, k)-b(n+l9 k+l) = £(Λ, fc-1).
And this recursive formula together with initial conditions fc(2, 1) =
b(n, /i) = 1 for all fl generates all £(/ι, fc) 's. But a computation
shows that

k /2n-k+l\ fc+
fl + l \ w / «+

Let 2$(n, k) be the set of sequences with initial entry k and the
remaining terms forming a restricted sequence of length n - 1. We
will sometimes write (k, α) with α restricted for such a sequence.
Note that |®(n, fc)| = Crt_i.

Let F be the free Z[<5] module generated by Dn where <5 is a
variable. We define a bilinear form on V x V. If α, /? are two
configurations in D«, we can form the union of their respective disks
along the boundary to obtain a configuration of circles in the 2-sphere.
We denote this configuration in S2 by al)β. Let c be the number of
circles in a U β then (a, β) = δc. Then we linearly extend this pair-
ing to all elements in the free module. Lickorish first considered this
symmetric bilinear form to give a more geometric and combinatorial
proof of the existence of the 3-manifold invariant developed by Witten
and Reshetikhin-Turaev. See [2], [3], [4] and [5], So we call it Licko-
risk's bilinear form. We can also consider this a pairing of restricted
sequences or of sequences since they correspond to configurations.

LEMMA 1.4. For a, β e Dn, {a, β) = δn if and only if a = β.

Proof If a = β then each component of aUβ consists of one arc
of a and one of β so aUβ has n components. If (α, /?} = <5Π then
each arc of α is in a separate component of aUβ. But if a Φ β then
some arc of β joins endpoints of two distinct arcs of a and these
arcs are in the same component of a U β. D

THEOREM 1.5 {Properties of Lickorish's bilinear form). (1) Let S
be any subset of Dn. Then ( , ) is nondegenerate over the free Z[δ]
module generated by S.
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FIGURE 6

(2) Suppose a is any configuration in Dn. Then for any b e
{1, 2 , . . . , n) with a <£ Ϊ8(n 9 b), there is a β e <B(n, b) such that
δ(a,γ) = (β9γ)forallγe<B(n,b).

(3) δ(a,ε) = <(α,α),(α,β)) = δ((a± l , α ) , ( α , β ) ) for all se-
quences ε, a whenever a ± \ makes sense.

(4) Suppose (a, α), (b, β) are restricted sequences of length n and
there is an η e Z[δ] such that {(a, α), γ) = η{(b, β),γ) for all γ e
5S(«, a) with γ <{a, a).

(i) Ifb = a,a±l then a<β.
(ϋ) Ifbφa,a±l then a< β.

Before we begin the proof, we first define a set of maps

τa:Dn ->Dn-ι for a = 1, 2 , ... ,n.

These mappings eliminate the αth and the (α+l)st points in Dn by
an inverse of a "finger move" as in Fig. 6.

Note that τa((a, α)) = a for any sequence a.

Proof of Theorem 1.5. (1) Suppose Σα eyft*α is an arbitrary element
in the free Z[δ] module generated by S. From among the qa, pick
a β so that the degree of qβ is maximal. Then by Lemma 1.45 the
degree of (β, β) is strictly greater than the degree (a, β) for all
a Φ β. Therefore (Σaes<laa, β) has a nonvanishing term of degree

(2) If a $ <B{n, b), then

δ{a,γ) = ((b,τb(a)),γ) for γe<B(n,b)
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e.g. b = 4

Γ\ \ Γ\ Γ\

I I I V/ I I I

α r\ r\ \ r\

I I I \J I I I

FIGURE 7

Γ\ r\
\J

FIGURE 8

since the innermost arc at 6 performs τ# when joined to a. See
Fig. 7.

(3) τ α (α, a) = τα(α + 1, a) = τα(<z - 1, α) = α. See Fig. 8.
(4) It follows from Lemma 1.4 that

η = ({a9a),(a,«))/({b,β)Λa,"))=δk

for some A: > 0. First suppose b = a and so {b, β) e 9$(fl, α) .
Let S = {ε G Z)Λ»i|β < α } . If (ft, jS) < (α, α ) , i.e., )S < α then
δ ( a - δ k β , ε ) = ( ( a , a ) - δ k ( b , β ) , ( a , ε ) ) = 0 f o r a l l ε E S . T h i s
contradicts property (1). Thus (b, /?) > (α, α ) .

Suppose that fe = α ± l . I f / ? < α then this together with property
(3) contradicts property (1). Thus β > a.

Now suppose that b φ a, a ± 1. If (6, β) e ®(n, α) then 6 < α
because (6, β) is a restricted sequence. So (b, β) < (a, a), which
again contradicts property (1). Thus (b, β) £ 93(n, a). We then
have as in Fig. 9,

((b 9β), y) = (τ β(δ, jϊ), τΛ7) for all y G ®(/i, α) with 7 < (α, α).

Then δ(a, τΛy) = ((α, α) , y) = ^ ( ( 6 , jί), γ) = ^<τβ(ft, i»), τβy>.
Thus

ί ( α , e) = ί f c(τ f l(* J ) 5 f i ) for all εeDn^ with ε < a.τ f l(* J ) 5 f i ) for all ε

Thus we have τa{b, β) >a by property (1). Let a\9 β\, and β[ be
the first entry of restricted sequences a, β, and τ β (6, β) respectively.
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If b < a - 1 then β[ <b <a-\ <a\ because (a, a) is a restricted
sequence. So τa{b, β) < a and this is a contradiction. Thus b >
a+l. Since (b, β) has the first occurring innermost arc at b, β[ =
b - 2 < βι and so τa(b, β) < β. Therefore α < β. •

2. Matrix manipulation. Let Tn be the (n x ή) tridiagonal ma-
trix with δ in each diagonal element and 1 in each upper and lower
superdiagonal. For example

(δ
1
0
0

1
δ
1
0
0

0
1
δ
1
0

0
0
1
δ
1

0
0
1
δj

Let An = det Tn , then it is a polynomial in δ for n > 1

PROPOSITION 2.1. (1) An =

( 2 ) Δ , = Π L i ( < 5 ^
n-{ - Δ « _ 2 for n > 3

Proof. (1) Compute Δw by expanding along the first row.
(2) Note that An is of degree n and the coefficient of δn is 1 so

that we must find the roots of An . Since An = n + 1 when 5 = 2 and
Δπ = ( - 1 ) Λ ( Λ + 1) when δ = - 2 , J = ±2 are not roots. We solve
the recursion formula by a standard method. Let

a = and β =
2 ^ ~ 2

so that aβ = 1 and a + β = δ. From the recursion we get An -
αΔπ_! = j9(ΔΛ_! - αΔn_2) = /?" . Similarly An - βAn-X = an . Then
(o - β)An = an+i - βn+ι. Thus Δn = 0 exactly when a φ β and

α«+i = βn+ι s i n c e ^ < i < α w hen ί > 2 and jβ < - 1 < Q
when δ < - 2 , (5 cannot be a root for |<5| > 2. Thus we may assume
|<5| < 2 so δ = 2Reα = 2 R e ^ . Also an+ι = βn+x is equivalent to

α2n+2 _ j jf w e ^^g α t Q | j e Q n e a m o n g t ] j e first „ Qf (2« + 2)th
roots of unity, then a is not equal to β which is now the conjugate
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of a. Thus δ = 2cos(kπ/(n + 1)) for k = 1, . . . , n . Since they are
all distinct, we found all of the roots of An = 0. b

LEMMA 2.2. Let A be a symmetric matrix over a ring and A1 be
obtained by deleting the last row and column. If detA' Φ 0, then a
series of row operations and the corresponding column operations within
the ring convert A into (^

Proof Let

o
det^'detΛ

) •

be the last column of A. Let y be the solution of the system of
equations:

>vn-ι
Define

Then

E =

EiτAE =

I -y
0 detA'

A' 0
0 detΛ'detΛ

REMARK. Applying row operations, one gets

ElΐA =

λ

0
Vn-l

Let A(n) be the matrix representation of Lickorish's bilinear form
( , ) over the basis Dn ordered by restricted sequences. A(n) consists
of n2 blocks of matrices A/// such that M\j represents ( , ) on
B(n, /) x B(n, j). So Mij is a b(n, i) x b(n, j) matrix. Let A(n, k)
be the submatrix (Λ/Z7)/,7=i,...,^ of A(n). Thus A(n9 n) = A(n) and
A(n, 1) = δA{n - 1) in this notation. By Theorem 1.5(3),

A ( n 2 ) - ( δ A { n l ) A ( n l

Thus we have the following proposition.
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PROPOSITION 2.3. (1) det A(n, 1) =Δf n ' 1 det A(n - 1).

(2) det A(n, 2) = Δ ^ " 1 ( d e t ^ ( « - I)) 2 .

Proof. Just calculate. D

LEMMA 2.4. A(n) and all of its principal minors have nonzero de-
terminants.

Proof. By Lemma 1.4, only the diagonal entries of A(ή) have the
highest degree n. Thus the term δnCn in the determinant of A{n)
has the coefficient 1. And the same argument applies to all principal
minors. D

Given a matrix M, MW denotes the matrix obtained from M by
deleting the last p rows and columns. And A(n, k)& denotes the
matrix ( M j ^ ) / J = 1 ,...,*.

LEMMA 2.5. (1) For 0 < p < b(n, k) - 1, we have the following
recursion formula:

dctA(n,

(2) For 2<j<k-\ and b{n,j + 1) <p < bin, j) - 1, we have
the following recursion formula:

In order to help the understanding of the proof given below, we
will describe some of the properties of A{n) that reflect the prop-
erties of Lickorish's bilinear form in Theorem 1.5. Let 9Jl/7 be the
matrix representing ( , ) on QS(«, /) x 55(«, j). Then property (2)
in Theorem 1.5 means that each column of 9Jtz; is equal to either
one of columns of 971// or δ~ι times one of the columns. Property
(3) implies that UJtu = δA(n - 1) and 9tt/(/±i) = A(n - 1). Further-
more the last column of 3JI// is independent of every column in the
blocks 9JΪ// for j Φ i, i ± 1. This can be seen through property (4)
since unrestricted sequences (i.e., repeated configurations) always ap-
pear first in the sets 03(#, k) for k > 3. Then row operations as
in Lemma 2.2 with A = A(n - 1) convert the last row of 3 % into
(0, . . . , 0 , < 5 d e t ^ ( n - l ) ) , Mi{i±ι) into (0, . . . , 0, d e t ^ ( n - l ) ) , and
SDty for jφi, i±\ into (0, . . . , 0 , 0 ) .
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The matrix (9Jtij)ij=ι,..m9n of the blocks has repeated rows due to
the presence of unrestricted sequences. A(ή) then is obtained from
this matrix by deleting repeated rows and corresponding columns.
From ΐΰiij one would delete the first ]Γ)Jb=2i Hn - 1 >k) Γ 0 w s and
ΣkZ] b(n -l9k) columns so an undeleted column in 9ft/, does not
change its position when counted from the rear. Let 2$(n, i)^ and
B(n, i)W denote 5B(«, /) and B(n, i) with the last p configura-
tions deleted. Consider the matrix given by ( , ) on <B(n ? i)^) x
U;=i ^ 5 j)^ Any multiple of the column corresponding to the
last element of B(n, ϊ)^) appears only at the spots corresponding to
the last elements of B(n, i ± 1 ) ^ . By property (4) any other mul-
tiples were eliminated in the p deletions since they occur nearer the
rear of their respective *B(n, i)^ x B(n, j)b) block.

In the matrix A(n) there is still a minor which is UJlij however it
does not appear as a solid block since some of its configurations have
innermost arcs which occur before the ith spot. However one can
perform the desired row operations by borrowing the missing rows
from the blocks above. One may do similar operations on A(

Proof of Lemma 2.5. (1) Let E be the matrix as in the proof of
Lemma 2.2 such that

W 0

We may assume that the entries of E are indexed by the first Cn-\ -p
elements in Dn-\ that is ordered by the restricted sequences. Con-
sider the set 6 of sequences (/, a) for / = 1, ... , k and the first
Cn-\-p restricted sequences α in Dn-\. There is an obvious equiv-
alence relation in which two sequences are equivalent if they represent
the same configuration. Mod out 6 by this relation and we obtain a
subset S of Dn. For i = 1, . . . 5 k define a matrix E\ whose entries
are indexed by S. The ([(/, α)], [(/, β)])th entry of E\ is equal to
the (α, β)Xh entry of E for all elements [(/, o)], [(i, β)] of S. All
other diagonal entries of E\ are 1 and all other off-diagonal entries are
0. Hence E\ is the identity except in the upper (Cn-\-p)x{Cn-\-p)
corner where it is E. And Eι is obtained from E\ by permuting
rows and corresponding columns. Perform row operations Ef to
A{n,k)® and denote the blocks of EfA{n, k)® by (G,7). Then
the last row of G\2 consists of zeros except the last entry because
the (1, 2)th block of A(n9 k)&> is exactly equal to A(n - 1)<P> .
And by Theorem 1.5(3), Gn = SGX2. Theorem 1.5(2) and (4) say
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that every column of the (1, 3)th, . . . , (1 , fc)th blocks of A(n, k)®
is equal to one of the columns of the (1, 2)th block of A(n, k)&>
which is not the last. Thus the last rows of G 1 3 , . . . , G\k are all
zero. We now perform additional row operations E$, ..., Ex£ and
all the corresponding column operations. Then the resulting matrix

• E/c looks like

0 0 0 0 \

0 0 0 0
O O δξ O O ξ O O 0 O 0

0 0 0 0

0
0
0

0
0
0

0 0 0
O O ξ O O δξ O O ξ O

0 0 0

0 0 0
O O 0 O O ξ O O δξ

V o o 0 o o 0 o o 0 o δξj
and ξ = detA(n - l)^+ 1>detΛ(« - 1)<">. By permuting rows and
corresponding columns, the matrix becomes

(tτk ° —\
V 0 A(n,

But

and
det{ξTk) = Δfc(det A(n - 1)<"+1> detA(n -

(2) The proof is similar. The only difference is that A(n, k)Φ> now

has j 2 blocks so we try to factor the tridiagonal matrix 7) out from

it. D

LEMMA 2.6. For 3 < k < n, we have the following recursion formu-
lae.



COMBINATORIAL MATRIX IN 3-MANIFOLD THEORY 331

and when 2<j<k-\,

= A ίdct A(n - 1, j - 1)V' _
i \detA(n-l,j-2)J

Proof. We successively apply the recursion formula (1) in Lemma
2.5. Then

delA(n-
5

detA(n-l) \k(detA(n
J \detA(n -

_Ab(n,k)(

But y4(« - l )(*(».*)> = A{n-\,k-2) because

i=k-\

The other formula can be shown by using the formula (2) in Lemma
2.5. D

T H E O R E M 2.7. For 3 < k < n, we have the following recursion
formula:

n, k)

-\,k- 2))(det A(n -l,k-3)) (det A(n - 1 , 1 ) ) '
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Proof. We recursively use the formulae in Lemma 2.6.

n, k)

k \detA(n- I, k-

Λb(n,k)Λb(n,k-ϊ)-b(n,k)f det A(n - 1) \

* k~ι \detA(n-l,k-2)J
( ( - I , k-2)\k~l

\detA(n
detA(n-I, k-2)\

(n-l,k-3)J

_ Ab(n,k)Ab(n,k-i)-b(n,k) ,b{n,7,)-b{n A) XA{n-\) \
n-l,k-2)J

i 9^\*

n-l',l)J

( d e t ^ ( n - 1, k - 2)){dttA{n - 1, k - 3)) (detΛ(n - 1 , 2 ) )

' {dttA{n-\, I ) ) 3 '

But

_ (δA{n - 1)W»>3)> A(n -
" \A(n-l)M"-3»

Since ^(n - 1)W»'3)) = ̂ (n - 1, 1),

= Δ*("-1 1 )(det^(Λ-l,l))2

REMARK. By inserting the factor Δ { ( " ' l)'b{"'2), which is 1, into the
formula in Theorem 2.7, we obtain a recursion formula that works for
all k = 1 , . . . , n. See Proposition 2.3.

COROLLARY 2.8. The det A(n) vanishes at twice the real part of any
primitive 2(n + ί)st root of unity and det^4(m, k) for 1 < m < n - 1
and \<k<n-\ never vanishes at these values.
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Proof, The recursion formula of Theorem 2.7 shows that the de-
terminants det A(m, k) for 1 < m < n and 1 < k < m can be
written as a product of positive or negative powers of Δi, . . . , An .
It also shows that det^(n) contains the factor An exactly once and
all the other determinants of lower indexes do not contain the factor
An . Therefore 2 cos ^ must be a root of det̂ 4(>2) if k is relatively
prime to n + 1. D

COROLLARY 2.9. After setting δ to be twice the real part of any
primitive 2(n+l)st root of unity, Lickorish's pairing can be considered
as a symmetric bilinear form over the real (or complex) vector space
with a basis Dn. Then the basis element α = (n,Λ — l , . . . , 2 , l )
has the property that there is a linear combination Σβ^a Qββ of basis
elements other than a such that (α, γ) = (Σβ^aQββ> V) for a^ V ̂ n

the vector space.

Proof. The last row of A(n) corresponds to a and A(n)^ =
A[n, n - 1). By Corollary 2.8, A{n) is singular but A{n, n - 1) is
nonsingular. Thus it follows from Lemma 2.2. In fact, qp 's are
equal up to sign to the (α,/?)th cofactor of A(ή) divided by

(n, n- 1). D

REMARK. In fact the last elements of each block B(n, k) of Dn as
well as the rotations of the configuration ( Λ , Λ - 1 , . . . , 1 ) have the
property of Corollary 2.9.

COROLLARY 2.10. We have the following recursive formula:

detA(n)= Π (det^(n-ι)) ("1 Γ( i )

where ΔQ = 0.

Proof. One can derive this from the formula in Theorem 2.7 using
the following identities:

("T')= Σ Σ-Σ
v 7 k=l fc,=l k=l

a n d

b(n,k)-b(n9k+l) = b{n-l9k-1). α
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Let d(n, j) denote the exponent of Δ7 in det^4(n). It is not hard
to see that d(n, j) is well defined for j > 1.

COROLLARY 2.11. For j > 1, we have that

/ - U

where b(n,k) = -b(n-k, - k ) for k < 0 and b(n,O) = b(n, k) = 0
for k > n.

Proof. Immediate from Corollary 2.10. D

REMARK. It is interesting to note that the Catalan numbers satisfy
the similar formula:

[(Λ+1)/2] / n _ / + 1 \

-29n + 2) forj>

This formula can be proved by recalling that b(n, k) is the number
of configurations in Dn that the first innermost arc occurs at the λ th
point and by applying the inclusion-exclusion principle.

The following theorem shows that det^4(n) is generated by a simple
rule.

THEOREM 2.12. For j > 1, we have that

d(n 9j) = d(n-l,j-l) + 2d(n - 1, j) + d{n - 1, j + 1)

where d(n,0) = 2Cn - Cn+ι = - ^ ( ί ^ 1 ) .

Proof. By the remark following Corollary 2.11, the formula in Corol-
lary 2.11 holds for j = 0 if we set 6(0, k) = -b(-k, —it) = —1 for
/c < 0. Use an induction on (n, ;') with lexicographic order. Since

0) = 2 C i - C 2 = 0, rf(2,l) = </(l,0) + 2</(l, !) + </(!, 2).
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From the formula in Corollary 2.11,
Γ(«+l)/2] 7 . v

, j-n)+ Σ< ~ι { i )

By the induction hypothesis and the identity ("-/+1 ) = ("-') + ( «j/),

r «/ \ I J

[(n+l)/2]

i=l

Σ (-I)'"1!? 1
ί=l ^

[»/2] / M _ , \

= Σ("1) /"1 / )(rf(Λ-/-l,J-

Σ (-
ί=0

d(n-lJ-\)-b(j-U2j-n-\)

+ 2d(n - 1, ) ~ 2b(j, 2j - n + 1) + d(n - 1, j + 1)

/, 2y - « + 2) + 6(; + 1, 2j - n + 4)

j-n) + d(n-l,j-l) + 2d(n -l,j)

The last equality is achieved by several uses of the identity

b(n, k) - b(n, k + 1) = b(n - 1, k - 1)

for all integer k and all n > 2. o

One can now easily generate detΛ(n) by using the rule in Theorem
2.12 as in the following table. The term ΔQ = 1 is inserted for a



detΛ(7) = Δ ό 5 7 2 Δ? Δ 3 6 4 Δ f 4 Δ* 9 6 Δf Δ*2Δ7
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computational purpose.

Δi

Δ 2 Δ 2

Δf A\ Δ 3
4 Δ* Δ * 3 A6

3 Δ 4

o 8 Δ} 5 Af A26 A* A5

detΛ(6) = ΔQ 1 6 5 Δ 2 2 Δ*2 1 Δ*0 0 Af Aψ Δ 6

Δ 3 6

9 2 Δ i 2 8 8 Δ f °Δ
REMARK. Notice that the exponents of Δ, may be negative; how-

ever άtlA{ή) is a polynomial in δ. The negative exponents arise
since the Δ/ 's are not relatively prime to each other. In fact the fac-
tor δ - 2 cos j£j of Δ/ is also a factor of Δ7 if / + 1 divides j + 1.
Moreover, if fc is relatively prime to / + 1, then the converse holds.
For example δ is a factor of Δ2/+1 for all / and δ2 - 1 is a factor
of Δ3/+2 for all /. R. A. Litherland has shown that the exponent of
δ in dtt A(n) is Cn and that the exponent of δ2 - 1 is Cn-\.
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