A COMBINATORIAL MATRIX IN 3-MANIFOLD THEORY

Ki Hyoung Ko and Lawrence Smolinsky

Abstract

In this paper we study a combinatorial matrix considered by W. B. R. Lickorish. We prove a conjecture by Lickorish that completes his topological and combinatorial proof of the existence of the Witten-Reshetikhin-Turaev 3 -manifold invariants. We derive a recursive formula for the determinant of the matrix and discover some interesting numerical relations.

In this paper we study the matrix $A(n)$ which was defined by W. B. R. Lickorish [3]. We prove a result required by Lickorish which completes his topological and combinatorial approach to the 3 -manifold invariants of Witten-Reshetikhin-Turaev [4], [5]. This matrix arises from a pairing on a set of geometric configurations. These are the configurations of n nonintersecting arcs in the disk with $2 n$ specified boundary points. There are C_{n} such configurations where C_{n} is the nth Catalan number so the matrix increases in size very rapidly. The Catalan numbers were discovered by Euler who considered the ways to partition a polygon into triangles [1]. These two counting problems correspond naturally by considering "restricted sequences".

The matrix has entries in $\mathbf{Z}[\delta]$. Lickorish needed that $\operatorname{det} A(n)=0$ if $\delta= \pm 2 \cos \frac{\pi}{n+1}$. We find a recursive formula for $\operatorname{det} A(n)$ and show that all the roots are of the form $2 \cos \frac{k \pi}{m+1}$ for $1 \leq m \leq n$ and $1 \leq$ $k \leq m$ and verify the result. Using this formula, we derive a simple rule that allows one to recursively compute $\operatorname{det} A(n)$ by generating all of its factors.

There have been three approaches to study polynomial invariants of classical links: the topological and combinatorial approach considered by Kauffman, Lickorish and many other topologists; the study of quantized Yang-Baxter equations and related Lie algebras by Reshetikhin and Turaev; and the study of subfactors and traces of von Neumann and Hecke algebras by Jones. We took a topological and combinatorial viewpoint. The authors have been informed that the essential result needed by Lickorish could have been obtained by pursuing the two other approaches.

1. Combinatorial manipulation. Let D_{n} be the set of configurations of n non-intersecting arcs on a disk joining $2 n$ points on the boundary of the disk. We draw these configurations by taking S^{1} to be $[0,1] / 0 \sim 1$ as in Fig. 1 .

The cardinality of D_{n} is equal to $(2 n)!/ n!(n+1)!$, known as the Catalan number, denoted here by C_{n}. It satisfies the recursive relation:

$$
C_{n}=C_{n-1}+C_{1} C_{n-2}+\cdots+C_{n-2} C_{1}+C_{n-1} .
$$

We can inductively represent the elements of D_{n} by sequences of n integers $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ where $1 \leq a_{i} \leq n-i+1$. The first entry a_{1} means that there is an innermost arc in the configuration joining the a_{1} th point and the $\left(a_{1}+1\right)$ th point on the interval. One then deletes that arc and has an element of D_{n-1} remaining. The sequence $\left(a_{2}, a_{3}, \ldots, a_{n}\right)$ then represents this element of D_{n-1}. See Fig. 2 for an example.

Note that every configuration in D_{n} must contain an innermost arc between adjacent points among the first $n+1$ points. Thus this representation captures all possible configurations but with repetitions. For example the configuration in Fig. 3 has 12 distinct associated sequences.

Figure 1
$(4,1,2,1)$ represents

Figure 2

Figure 3
Given such a sequence $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ one may construct the unique configuration inductively. Into the configuration (a_{2}, a_{3}, \ldots, a_{n}) one can insert two additional points between ($a_{1}-1$)st and a_{1} th points then joining these two new points by an innermost arc. Thus two distinct configurations cannot have the same sequence. To a given configuration in D_{n}, one can associate the unique sequence $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ in which a_{1} indicates the initial position of the first occurring innermost arc and a_{2} does the same for the configuration without the previous innermost arc and so on. Such a sequence is said to be restricted.

Proposition 1.1. A sequence $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of a configuration is restricted if and only if $a_{i-1}-1 \leq a_{i}$ for all $i=2, \ldots, n$.

Proof. For a restricted sequence $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, it is enough to prove $a_{1}-1 \leq a_{2}$ since $\left(a_{2}, \ldots, a_{n}\right)$ is also a restricted sequence. After removing the first innermost arc, either the second innermost arc or the arc joining the $\left(a_{1}-1\right)$ th and the $\left(a_{1}+2\right)$ th point in the original configuration will become the first innermost arc in the remaining configuration. Thus $a_{1}-1 \leq a_{2}$.

Conversely if $a_{i-1}-1 \leq a_{i}$, then the newly inserted innermost arc into the configuration of (a_{i-1}, \ldots, a_{n}) becomes the first innermost arc in the configuration of $\left(a_{i}, \ldots, a_{n}\right)$.

Remark. The number of ways to divide an $(n+2)$ gon into triangles or the number of ways to interpret the product $x_{1} x_{2} \cdots x_{n+1}$ in a non-associative algebra is equal to the Catalan number C_{n}. Restricted sequences are useful to see the correspondence between these and configurations defined earlier. Label the vertex of the $(n+2)$ gon counterclockwise 1 through n except fixed adjacent vertices. A triangle in a partition is said to be outermost if it has a vertex contained in no other triangle. To a partition of the $(n+2)$ gon we assign the sequence ($a_{1}, a_{2}, \ldots, a_{n}$) where a_{1} is the vertex that is solely contained in the first occurring outermost triangle. Then the sequence $\left(a_{2}, \ldots, a_{n}\right)$ inductively represents the partition of the $(n+1)$ gon obtained by deleting the vertex a_{1} and its adjacent sides. See Fig. 4 for an example.
$(1,2,2,1)$ is the unique representation of

Figure 4

We give the lexicographic order to the set of all the sequences of configurations, i.e., $\left(a_{1}, a_{2}, \ldots, a_{n}\right)<\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ if there is an index k such that $a_{1}=b_{1}, \ldots, a_{k-1}=b_{k-1}$ and $a_{k}<b_{k}$. If two distinct sequences α and β represent the same configuration and α is restricted, then clearly $\alpha<\beta$.

Let $B(n, k)$ be the set of restricted sequences of length n with initial entry k and let $b(n, k)$ be the cardinality $|B(n, k)|$ of the set $B(n, k)$. Since D_{n} can be identified with the set of all restricted sequences of length $n, C_{n}=\sum_{k=1}^{n} b(n, k)$. It is convenient to set $b(n, k)=0$ for $k=0$ or $k>n$.

Proposition 1.2. $b(n, k)=\sum_{i=k-1}^{n-1} b(n-1, i)$ for $k=1, \ldots, n$.
Proof. Immediately follows from Proposition 1.1.
It is interesting that $b(n, 1)=b(n, 2)=C_{n-1}, b(n, n-1)=n-1$, and $b(n, n)=1$. The only element in $B(n, n)$ is $(n, n-1, \ldots, 2,1)$

Figure 5
which represents the configuration in Fig. 5. In fact we have:
Corollary 1.3. Using the binomial coefficients,

$$
b(n, k)=\frac{k}{n}\binom{2 n-k-1}{n-1} .
$$

Proof. By Proposition 1.2, $b(n+1, k)-b(n+1, k+1)=b(n, k-1)$. And this recursive formula together with initial conditions $b(2,1)=$ $b(n, n)=1$ for all n generates all $b(n, k)$'s. But a computation shows that

$$
\frac{k}{n+1}\binom{2 n-k+1}{n}-\frac{k+1}{n+1}\binom{2 n-k}{n}=\frac{k-1}{n}\binom{2 n-k}{n-1} .
$$

Let $\mathfrak{B}(n, k)$ be the set of sequences with initial entry k and the remaining terms forming a restricted sequence of length $n-1$. We will sometimes write (k, α) with α restricted for such a sequence. Note that $|\mathfrak{B}(n, k)|=C_{n-1}$.

Let V be the free $\mathrm{Z}[\delta]$ module generated by D_{n} where δ is a variable. We define a bilinear form on $V \times V$. If α, β are two configurations in D_{n}, we can form the union of their respective disks along the boundary to obtain a configuration of circles in the 2 -sphere. We denote this configuration in S^{2} by $\alpha \cup \beta$. Let c be the number of circles in $\alpha \cup \beta$; then $\langle\alpha, \beta\rangle=\delta^{c}$. Then we linearly extend this pairing to all elements in the free module. Lickorish first considered this symmetric bilinear form to give a more geometric and combinatorial proof of the existence of the 3-manifold invariant developed by Witten and Reshetikhin-Turaev. See [2], [3], [4] and [5]. So we call it Lickorish's bilinear form. We can also consider this a pairing of restricted sequences or of sequences since they correspond to configurations.

Lemma 1.4. For $\alpha, \beta \in D_{n},\langle\alpha, \beta\rangle=\delta^{n}$ if and only if $\alpha=\beta$.
Proof. If $\alpha=\beta$ then each component of $\alpha \cup \beta$ consists of one arc of α and one of β so $\alpha \cup \beta$ has n components. If $\langle\alpha, \beta\rangle=\delta^{n}$ then each arc of α is in a separate component of $\alpha \cup \beta$. But if $\alpha \neq \beta$ then some arc of β joins endpoints of two distinct arcs of α and these arcs are in the same component of $\alpha \cup \beta$.

Theorem 1.5 (Properties of Lickorish's bilinear form). (1) Let S be any subset of D_{n}. Then \langle,$\rangle is nondegenerate over the free \mathbf{Z}[\delta]$ module generated by S.

Figure 6
(2) Suppose α is any configuration in D_{n}. Then for any $b \in$ $\{1,2, \ldots, n\}$ with $\alpha \notin \mathfrak{B}(n, b)$, there is a $\beta \in \mathfrak{B}(n, b)$ such that $\delta\langle\alpha, \gamma\rangle=\langle\beta, \gamma\rangle$ for all $\gamma \in \mathfrak{B}(n, b)$.
(3) $\delta\langle\alpha, \varepsilon\rangle=\langle(a, \alpha),(a, \varepsilon)\rangle=\delta\langle(a \pm 1, \alpha),(a, \varepsilon)\rangle$ for all sequences ε, α whenever $a \pm 1$ makes sense.
(4) Suppose $(a, \alpha),(b, \beta)$ are restricted sequences of length n and there is an $\eta \in \mathbf{Z}[\delta]$ such that $\langle(a, \alpha), \gamma\rangle=\eta\langle(b, \beta), \gamma\rangle$ for all $\gamma \in$ $\mathfrak{B}(n, a)$ with $\gamma \leq(a, \alpha)$.
(i) If $b=a, a \pm 1$ then $\alpha \leq \beta$.
(ii) If $b \neq a, a \pm 1$ then $\alpha<\beta$.

Before we begin the proof, we first define a set of maps

$$
\tau_{a}: D_{n} \rightarrow D_{n-1} \quad \text { for } a=1,2, \ldots, n
$$

These mappings eliminate the a th and the $(a+1)$ st points in D_{n} by an inverse of a "finger move" as in Fig. 6.

Note that $\tau_{a}((a, \alpha))=\alpha$ for any sequence α.

Proof of Theorem 1.5. (1) Suppose $\sum_{\alpha \in S} q_{\alpha} \alpha$ is an arbitrary element in the free $\mathrm{Z}[\delta]$ module generated by S. From among the q_{α}, pick a β so that the degree of q_{β} is maximal. Then by Lemma 1.4 , the degree of $\langle\beta, \beta\rangle$ is strictly greater than the degree $\langle\alpha, \beta\rangle$ for all $\alpha \neq \beta$. Therefore $\left\langle\sum_{\alpha \in S} q_{\alpha} \alpha, \beta\right\rangle$ has a nonvanishing term of degree $\left(n+\operatorname{deg} q_{\beta}\right)$.
(2) If $\alpha \notin \mathfrak{B}(n, b)$, then

$$
\delta\langle\alpha, \gamma\rangle=\left\langle\left(b, \tau_{b}(\alpha)\right), \gamma\right\rangle \quad \text { for } \gamma \in \mathfrak{B}(n, b)
$$

e. g. $b=4$

Figure 7

Figure 8
since the innermost arc at b performs τ_{b} when joined to α. See Fig. 7.
(3) $\tau_{a}(a, \alpha)=\tau_{a}(a+1, \alpha)=\tau_{a}(a-1, \alpha)=\alpha$. See Fig. 8.
(4) It follows from Lemma 1.4 that

$$
\eta=\langle(a, \alpha),(a, \alpha)\rangle /\langle(b, \beta),(a, \alpha)\rangle=\delta^{k}
$$

for some $k \geq 0$. First suppose $b=a$ and so $(b, \beta) \in \mathfrak{B}(n, a)$. Let $S=\left\{\varepsilon \in D_{n-1} \mid \varepsilon \leq \alpha\right\}$. If $(b, \beta)<(a, \alpha)$, i.e., $\beta<\alpha$ then $\delta\left\langle\alpha-\delta^{k} \beta, \varepsilon\right\rangle=\left\langle(a, \alpha)-\delta^{k}(b, \beta),(a, \varepsilon)\right\rangle=0$ for all $\varepsilon \in S$. This contradicts property (1). Thus $(b, \beta) \geq(a, \alpha)$.

Suppose that $b=a \pm 1$. If $\beta<\alpha$ then this together with property (3) contradicts property (1). Thus $\beta \geq \alpha$.

Now suppose that $b \neq a, a \pm 1$. If $(b, \beta) \in \mathfrak{B}(n, a)$ then $b<a$ because (b, β) is a restricted sequence. So $(b, \beta)<(a, \alpha)$, which again contradicts property (1). Thus $(b, \beta) \notin \mathfrak{B}(n, a)$. We then have as in Fig. 9,

$$
\langle(b, \beta), \gamma\rangle=\left\langle\tau_{a}(b, \beta), \tau_{a} \gamma\right\rangle \quad \text { for all } \gamma \in \mathfrak{B}(n, a) \text { with } \gamma \leq(a, \alpha) .
$$

Then $\delta\left\langle\alpha, \tau_{a} \gamma\right\rangle=\langle(a, \alpha), \gamma\rangle=\delta^{k}\langle(b, \beta), \gamma\rangle=\delta^{k}\left\langle\tau_{a}(b, \beta), \tau_{a} \gamma\right\rangle$. Thus

$$
\delta\langle\alpha, \varepsilon\rangle=\delta^{k}\left\langle\tau_{a}(b, \beta), \varepsilon\right\rangle \quad \text { for all } \varepsilon \in D_{n-1} \text { with } \varepsilon \leq \alpha
$$

Thus we have $\tau_{a}(b, \beta) \geq \alpha$ by property (1). Let α_{1}, β_{1}, and β_{1}^{\prime} be the first entry of restricted sequences α, β, and $\tau_{a}(b, \beta)$ respectively.

Figure 9
If $b<a-1$ then $\beta_{1}^{\prime} \leq b<a-1 \leq \alpha_{1}$ because (a, α) is a restricted sequence. So $\tau_{a}(b, \beta)<\alpha$ and this is a contradiction. Thus $b>$ $a+1$. Since (b, β) has the first occurring innermost arc at $b, \beta_{1}^{\prime}=$ $b-2<\beta_{1}$ and so $\tau_{a}(b, \beta)<\beta$. Therefore $\alpha<\beta$.
2. Matrix manipulation. Let T_{n} be the $(n \times n)$ tridiagonal matrix with δ in each diagonal element and 1 in each upper and lower superdiagonal. For example

$$
T_{5}=\left(\begin{array}{lllll}
\delta & 1 & 0 & 0 & 0 \\
1 & \delta & 1 & 0 & 0 \\
0 & 1 & \delta & 1 & 0 \\
0 & 0 & 1 & \delta & 1 \\
0 & 0 & 0 & 1 & \delta
\end{array}\right) .
$$

Let $\Delta_{n}=\operatorname{det} T_{n}$, then it is a polynomial in δ for $n \geq 1$.
Proposition 2.1. (1) $\Delta_{n}=\delta \Delta_{n-1}-\Delta_{n-2}$ for $n \geq 3$.
(2) $\Delta_{n}=\prod_{k=1}^{n}\left(\delta-2 \cos \frac{k \pi}{n+1}\right)$.

Proof. (1) Compute Δ_{n} by expanding along the first row.
(2) Note that Δ_{n} is of degree n and the coefficient of δ^{n} is 1 so that we must find the roots of Δ_{n}. Since $\Delta_{n}=n+1$ when $\delta=2$ and $\Delta_{n}=(-1)^{n}(n+1)$ when $\delta=-2, \delta= \pm 2$ are not roots. We solve the recursion formula by a standard method. Let

$$
\alpha=\frac{\delta+\sqrt{\delta^{2}-4}}{2} \text { and } \beta=\frac{\delta-\sqrt{\delta^{2}-4}}{2}
$$

so that $\alpha \beta=1$ and $\alpha+\beta=\delta$. From the recursion we get $\Delta_{n}-$ $\alpha \Delta_{n-1}=\beta\left(\Delta_{n-1}-\alpha \Delta_{n-2}\right)=\beta^{n}$. Similarly $\Delta_{n}-\beta \Delta_{n-1}=\alpha^{n}$. Then $(\alpha-\beta) \Delta_{n}=\alpha^{n+1}-\beta^{n+1}$. Thus $\Delta_{n}=0$ exactly when $\alpha \neq \beta$ and $\alpha^{n+1}=\beta^{n+1}$. Since $\beta<1<\alpha$ when $\delta>2$ and $\beta<-1<\alpha$ when $\delta<-2, \delta$ cannot be a root for $|\delta|>2$. Thus we may assume $|\delta|<2$ so $\delta=2 \operatorname{Re} \alpha=2 \operatorname{Re} \beta$. Also $\alpha^{n+1}=\beta^{n+1}$ is equivalent to $\alpha^{2 n+2}=1$. If we take α to be one among the first n of $(2 n+2)$ th roots of unity, then α is not equal to β which is now the conjugate
of α. Thus $\delta=2 \cos (k \pi /(n+1))$ for $k=1, \ldots, n$. Since they are all distinct, we found all of the roots of $\Delta_{n}=0$.

Lemma 2.2. Let A be a symmetric matrix over a ring and A^{\prime} be obtained by deleting the last row and column. If $\operatorname{det} A^{\prime} \neq 0$, then a series of row operations and the corresponding column operations within the ring convert A into $\left(\begin{array}{ccc}A^{\prime} & 0 \\ 0 & \operatorname{det} A^{\prime} \operatorname{det} A\end{array}\right)$.

Proof. Let

$$
\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right)
$$

be the last column of A. Let y be the solution of the system of equations:

$$
A^{\prime} x=\operatorname{det} A^{\prime}\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n-1}
\end{array}\right)
$$

Define

$$
E=\left(\begin{array}{cc}
I & -y \\
0 & \operatorname{det} A^{\prime}
\end{array}\right) .
$$

Then

$$
E^{\operatorname{tr}} A E=\left(\begin{array}{cc}
A^{\prime} & 0 \\
0 & \operatorname{det} A^{\prime} \operatorname{det} A
\end{array}\right) .
$$

Remark. Applying row operations, one gets

$$
E^{\operatorname{tr}} A=\left(\begin{array}{cc}
& v_{1} \\
A^{\prime} & \vdots \\
& v_{n-1} \\
0 & \operatorname{det} A
\end{array}\right)
$$

Let $A(n)$ be the matrix representation of Lickorish's bilinear form \langle,$\rangle over the basis D_{n}$ ordered by restricted sequences. $A(n)$ consists of n^{2} blocks of matrices $M_{i j}$ such that $M_{i j}$ represents \langle,$\rangle on$ $B(n, i) \times B(n, j)$. So $M_{i j}$ is a $b(n, i) \times b(n, j)$ matrix. Let $A(n, k)$ be the submatrix $\left(M_{i j}\right)_{i, j=1, \ldots, k}$ of $A(n)$. Thus $A(n, n)=A(n)$ and $A(n, 1)=\delta A(n-1)$ in this notation. By Theorem 1.5(3),

$$
A(n, 2)=\left(\begin{array}{cc}
\delta A(n-1) & A(n-1) \\
A(n-1) & \delta A(n-1)
\end{array}\right) .
$$

Thus we have the following proposition.

Proposition 2.3. (1) $\operatorname{det} A(n, 1)=\Delta_{1}^{C_{n-1}} \operatorname{det} A(n-1)$.
(2) $\operatorname{det} A(n, 2)=\Delta_{2}^{C_{n-1}}(\operatorname{det} A(n-1))^{2}$.

Proof. Just calculate.
Lemma 2.4. $A(n)$ and all of its principal minors have nonzero determinants.

Proof. By Lemma 1.4, only the diagonal entries of $A(n)$ have the highest degree n. Thus the term $\delta^{n C_{n}}$ in the determinant of $A(n)$ has the coefficient 1. And the same argument applies to all principal minors.

Given a matrix $M, M^{\langle p\rangle}$ denotes the matrix obtained from M by deleting the last p rows and columns. And $A(n, k)^{\langle\bar{p}\rangle}$ denotes the $\operatorname{matrix}\left(M_{i j}^{\langle p\rangle}\right)_{i, j=1, \ldots, k}$.

Lemma 2.5. (1) For $0 \leq p \leq b(n, k)-1$, we have the following recursion formula:

$$
\operatorname{det} A(n, k)^{\langle\bar{p}\rangle}=\Delta_{k}\binom{\operatorname{det} A(n-1)^{\langle p\rangle}}{\operatorname{det} A(n-1)^{\langle p+1\rangle}}^{k} \operatorname{det} A(n, k)^{\langle\overline{p+1}\rangle}
$$

(2) For $2 \leq j \leq k-1$ and $b(n, j+1) \leq p \leq b(n, j)-1$, we have the following recursion formula:

$$
\operatorname{det} A(n, k)^{\langle\bar{p}\rangle}=\Delta_{j}\left(\frac{\operatorname{det} A(n-1)^{\langle p\rangle}}{\operatorname{det} A(n-1)^{\langle p+1\rangle}}\right)^{j} \operatorname{det} A(n, k)^{\langle\overline{p+1}\rangle}
$$

In order to help the understanding of the proof given below, we will describe some of the properties of $A(n)$ that reflect the properties of Lickorish's bilinear form in Theorem 1.5. Let $\mathfrak{M}_{i j}$ be the matrix representing \langle,$\rangle on \mathfrak{B}(n, i) \times \mathfrak{B}(n, j)$. Then property (2) in Theorem 1.5 means that each column of $\mathfrak{M}_{i j}$ is equal to either one of columns of $\mathfrak{M}_{i i}$ or δ^{-1} times one of the columns. Property (3) implies that $\mathfrak{M}_{i i}=\delta A(n-1)$ and $\mathfrak{M}_{i(i \pm 1)}=A(n-1)$. Furthermore the last column of $\mathfrak{M}_{i i}$ is independent of every column in the blocks $\mathfrak{M}_{i j}$ for $j \neq i, i \pm 1$. This can be seen through property (4) since unrestricted sequences (i.e., repeated configurations) always appear first in the sets $\mathfrak{B}(n, k)$ for $k \geq 3$. Then row operations as in Lemma 2.2 with $A=A(n-1)$ convert the last row of $\mathfrak{M}_{i i}$ into $(0, \ldots, 0, \delta \operatorname{det} A(n-1)), M_{i(i \pm 1)}$ into $(0, \ldots, 0, \operatorname{det} A(n-1))$, and $\mathfrak{M}_{i j}$ for $j \neq i, i \pm 1$ into $(0, \ldots, 0,0)$.

The matrix $\left(\mathfrak{M}_{i j}\right)_{i, j=1, \ldots, n}$ of the blocks has repeated rows due to the presence of unrestricted sequences. $A(n)$ then is obtained from this matrix by deleting repeated rows and corresponding columns. From $\mathfrak{M}_{i j}$ one would delete the first $\sum_{k=1}^{i-2} b(n-1, k)$ rows and $\sum_{k=1}^{j-2} b(n-1, k)$ columns so an undeleted column in $\mathfrak{M}_{i j}$ does not change its position when counted from the rear. Let $\mathfrak{B}(n, i)^{\langle p\rangle}$ and $B(n, i)^{\langle p\rangle}$ denote $\mathfrak{B}(n, i)$ and $B(n, i)$ with the last p configurations deleted. Consider the matrix given by \langle,$\rangle on \mathfrak{B}(n, i)^{\langle p\rangle} \times$ $\bigcup_{j=1}^{n} B(n, j)^{\langle p\rangle}$. Any multiple of the column corresponding to the last element of $B(n, i)^{\langle p\rangle}$ appears only at the spots corresponding to the last elements of $B(n, i \pm 1)^{\langle p\rangle}$. By property (4) any other multiples were eliminated in the p deletions since they occur nearer the rear of their respective $\mathfrak{B}(n, i)^{\langle p\rangle} \times B(n, j)^{\langle p\rangle}$ block.

In the matrix $A(n)$ there is still a minor which is $\mathfrak{M}_{i j}$; however it does not appear as a solid block since some of its configurations have innermost arcs which occur before the i th spot. However one can perform the desired row operations by borrowing the missing rows from the blocks above. One may do similar operations on $A(n)^{(\bar{p})}$.

Proof of Lemma 2.5. (1) Let E be the matrix as in the proof of Lemma 2.2 such that
$E^{\operatorname{tr}} A(n-1)^{\langle p\rangle} E=\left(\begin{array}{cc}A(n-1)^{\langle p+1\rangle} & 0 \\ 0 & \operatorname{det} A(n-1)^{\langle p+1\rangle} \operatorname{det} A(n-1)^{\langle p\rangle}\end{array}\right)$.
We may assume that the entries of E are indexed by the first $C_{n-1}-p$ elements in D_{n-1} that is ordered by the restricted sequences. Consider the set \mathfrak{S} of sequences (i, α) for $i=1, \ldots, k$ and the first $C_{n-1}-p$ restricted sequences α in D_{n-1}. There is an obvious equivalence relation in which two sequences are equivalent if they represent the same configuration. Mod out \mathfrak{S} by this relation and we obtain a subset S of D_{n}. For $i=1, \ldots, k$ define a matrix E_{i} whose entries are indexed by S. The $([(i, \alpha)],[(i, \beta)])$ th entry of E_{i} is equal to the (α, β) th entry of E for all elements $[(i, \alpha)],[(i, \beta)]$ of S. All other diagonal entries of E_{i} are 1 and all other off-diagonal entries are 0 . Hence E_{1} is the identity except in the upper $\left(C_{n-1}-p\right) \times\left(C_{n-1}-p\right)$ corner where it is E. And E_{i} is obtained from E_{1} by permuting rows and corresponding columns. Perform row operations $E_{1}^{\text {tr }}$ to $A(n, k)^{(\bar{p}\rangle}$ and denote the blocks of $E_{1}^{\mathrm{tr}} A(n, k)^{(\bar{p}\rangle}$ by $\left(G_{i j}\right)$. Then the last row of G_{12} consists of zeros except the last entry because the (1,2)th block of $A(n, k)^{\langle\bar{p}\rangle}$ is exactly equal to $A(n-1)^{\langle p\rangle}$. And by Theorem 1.5(3), $G_{11}=\delta G_{12}$. Theorem 1.5(2) and (4) say
that every column of the $(1,3)$ th $, \ldots,(1, k)$ th blocks of $A(n, k)^{\langle\bar{p}\rangle}$ is equal to one of the columns of the $(1,2)$ th block of $A(n, k)^{\langle\bar{p}\rangle}$ which is not the last. Thus the last rows of $G_{13}, \ldots, G_{1 k}$ are all zero. We now perform additional row operations $E_{2}^{\operatorname{tr}}, \ldots, E_{k}^{\mathrm{tr}}$ and all the corresponding column operations. Then the resulting matrix $E_{k}^{\operatorname{tr}} \cdots E_{1}^{\operatorname{tr}} A(n, k)^{\langle\bar{p}\rangle} E_{1} \cdots E_{k}$ looks like

$$
\left(\begin{array}{cccclclc}
& 0 & & 0 & & 0 & & 0 \\
M_{11}^{\langle p+1\rangle} & \vdots & M_{12}^{\langle p+1\rangle} & \vdots & M_{13}^{\langle p+1\rangle} & \vdots & & \vdots \\
& 0 & & 0 & & 0 & & 0 \\
0 \cdots 0 & \delta \xi & 0 \cdots 0 & \xi & 0 \cdots 0 & 0 & 0 \cdots & 0 \\
& 0 & & 0 & & 0 & & 0 \\
M_{21}^{\langle p+1\rangle} & \vdots & M_{22}^{\langle p+1\rangle} & \vdots & M_{23}^{\langle p+1\rangle} & \vdots & & \vdots \\
& 0 & & 0 & & 0 & & 0 \\
0 \cdots 0 & \xi & 0 \cdots 0 & \delta \xi & 0 \cdots 0 & \xi & 0 \cdots & 0 \\
& 0 & & 0 & & 0 & & 0 \\
M_{31}^{\langle p+1\rangle} & \vdots & M_{32}^{\langle p+1\rangle} & \vdots & M_{33}^{\langle p+1\rangle} & \vdots & & \vdots \\
& 0 & & 0 & & 0 & & 0 \\
0 \cdots 0 & 0 & 0 \cdots 0 & \xi & 0 \cdots 0 & \delta \xi & \cdots & 0 \\
& 0 & & 0 & & & & 0 \\
& \vdots & & \vdots & & \vdots & & \vdots \\
& \vdots & & \vdots & & \vdots & & \vdots \\
0 \cdots 0 & 0 & 0 \cdots 0 & 0 & 0 \cdots 0 & 0 & 0 \cdots & \delta \xi
\end{array}\right)
$$

and $\xi=\operatorname{det} A(n-1)^{\langle p+1\rangle} \operatorname{det} A(n-1)^{\langle p\rangle}$. By permuting rows and corresponding columns, the matrix becomes

$$
\left(\begin{array}{cc}
\xi T_{k} & 0 \\
0 & A(n, k)^{\langle\overline{p+1}}
\end{array}\right) .
$$

But

$$
\operatorname{det} E_{i}=\operatorname{det} A(n-1)^{\langle p+1\rangle}
$$

and

$$
\operatorname{det}\left(\xi T_{k}\right)=\Delta_{k}\left(\operatorname{det} A(n-1)^{\langle p+1\rangle} \operatorname{det} A(n-1)^{\langle p\rangle}\right)^{k} .
$$

(2) The proof is similar. The only difference is that $A(n, k)^{\langle\bar{p}\rangle}$ now has j^{2} blocks so we try to factor the tridiagonal matrix T_{j} out from it.

Lemma 2.6. For $3 \leq k \leq n$, we have the following recursion formulae:

$$
\operatorname{det} A(n-1)=\Delta_{k}^{b(n, k)}\left(\frac{\operatorname{det} A(n-1)}{\operatorname{det} A(n-1, k-2)}\right)^{k} \operatorname{det} A(n-1)^{\langle\overline{b(n, k)\rangle}},
$$

and when $2 \leq j \leq k-1$,

$$
\begin{aligned}
& \operatorname{det} A(n-1)^{\langle\overline{\langle(n, j+1)\rangle}} \\
& \quad=\Delta_{j}^{b(n, j)-b(n, j+1)}\left(\frac{\operatorname{det} A(n-1, j-1)}{\operatorname{det} A(n-1, j-2)}\right)^{j} \operatorname{det} A(n-1)^{\langle\overline{b(n, j)\rangle}} .
\end{aligned}
$$

Proof. We successively apply the recursion formula (1) in Lemma 2.5. Then

$$
\begin{aligned}
\operatorname{det} A(n, k)= & \Delta_{k}\left(\frac{\operatorname{det} A(n-1)}{\operatorname{det} A(n-1)^{\langle 1\rangle}}\right)^{k} \operatorname{det} A(n-1)^{\overline{1}\rangle} \\
= & \Delta_{k}^{2}\left(\frac{\operatorname{det} A(n-1)}{\operatorname{det} A(n-1)^{\langle 1\rangle}}\right)^{k}\left(\frac{\operatorname{det} A(n-1)^{\langle 1\rangle}}{\operatorname{det} A(n-1)^{\langle 2\rangle}}\right)^{k} \operatorname{det} A(n, k)^{\overline{2}\rangle} \\
& \cdots \\
= & \Delta_{k}^{b(n, k)}\left(\frac{\operatorname{det} A(n-1)}{\operatorname{det} A(n-1)^{\langle 1\rangle}}\right)^{k}\left(\frac{\operatorname{det} A(n-1)^{\langle 1\rangle}}{\operatorname{det} A(n-1)^{\langle 2\rangle}}\right)^{k} \\
& \cdots\left(\frac{\operatorname{det} A(n-1)^{\langle b(n, k)-1\rangle}}{\operatorname{det} A(n-1)^{\langle b(n, k)\rangle}}\right)^{k} \operatorname{det} A(n, k)^{\langle\overline{b(n, k)\rangle}} \\
= & \Delta_{k}^{b(n, k)}\left(\frac{\operatorname{det} A(n-1)}{\operatorname{det} A(n-1)^{\langle b(n, k)\rangle}}\right)^{k} \operatorname{det} A(n, k)^{\langle\overline{b(n, k)\rangle}} .
\end{aligned}
$$

But $A(n-1)^{\langle b(n, k)\rangle}=A(n-1, k-2)$ because

$$
b(n, k)=\sum_{i=k-1}^{n-1} b(n-1, i)
$$

The other formula can be shown by using the formula (2) in Lemma 2.5.

Theorem 2.7. For $3 \leq k \leq n$, we have the following recursion formula:
$\operatorname{det} A(n, k)$

$$
=\frac{\Delta_{k}^{b(n, k)} \Delta_{k-1}^{b(n, k-1)-b(n, k)} \cdots \Delta_{2}^{b(n, 2)-b(n, 3)}(\operatorname{det} A(n-1))^{k}}{(\operatorname{det} A(n-1, k-2))(\operatorname{det} A(n-1, k-3)) \cdots(\operatorname{det} A(n-1,1))} .
$$

Proof. We recursively use the formulae in Lemma 2.6.
$\operatorname{det} A(n, k)$

$$
\begin{aligned}
= & \Delta_{k}^{b(n, k)}\left(\frac{\operatorname{det} A(n-1)}{\operatorname{det} A(n-1, k-2)}\right)^{k} \operatorname{det} A(n, k)^{\overline{(b(n, k)\rangle}} \\
= & \Delta_{k}^{b(n, k)} \Delta_{k-1}^{b(n, k-1)-b(n, k)}\left(\frac{\operatorname{det} A(n-1)}{\operatorname{det} A(n-1, k-2)}\right)^{k} \\
& \cdot\left(\frac{\operatorname{det} A(n-1, k-2)}{\operatorname{det} A(n-1, k-3)}\right)^{k-1} \operatorname{det} A(n, k)^{\langle\overline{b(n, k-1)\rangle}} \\
& \cdots \\
= & \Delta_{k}^{b(n, k)} \Delta_{k-1}^{b(n, k-1)-b(n, k)} \cdots \Delta_{3}^{b(n, 3)-b(n, 4)}\left(\frac{\operatorname{det} A(n-1)}{\operatorname{det} A(n-1, k-2)}\right)^{k} \\
& \cdot\left(\frac{\operatorname{det} A(n-1, k-2)}{\operatorname{det} A(n-1, k-3)}\right)^{k-1} \\
& \cdots\left(\frac{\operatorname{det} A(n-1,2)}{\operatorname{det} A(n-1,1)}\right)^{3} \operatorname{det} A(n, k)^{\overline{b(n, 3)\rangle}} \\
= & \frac{\Delta_{k}^{b(n, k)} \Delta_{k-1}^{b(n, k-1)-b(n, k)} \ldots \Delta_{3}^{b(n, 3)-b(n, 4)}(\operatorname{det} A(n-1))^{k}}{(\operatorname{det} A(n-1, k-2))(\operatorname{det} A(n-1, k-3)) \cdots(\operatorname{det} A(n-1,2))} \\
& \cdot \frac{\operatorname{det} A(n, k)^{\langle\overline{b(n, 3)}}}{(\operatorname{det} A(n-1,1))^{3}} .
\end{aligned}
$$

But

$$
\begin{aligned}
A(n, k)^{\langle\overline{b(n, 3)\rangle}\rangle} & =A(n, 2)^{\langle\overline{b(n, 3)\rangle}} \\
& =\left(\begin{array}{cc}
\delta A(n-1)^{\langle b(n, 3)\rangle} & A(n-1)^{\langle b(n, 3)\rangle} \\
A(n-1)^{\langle b(n, 3)\rangle} & \delta A(n-1)^{\langle b(n, 3)\rangle}
\end{array}\right) .
\end{aligned}
$$

Since $A(n-1)^{\langle b(n, 3)\rangle}=A(n-1,1)$,

$$
\begin{aligned}
\operatorname{det} A(n, k)^{\langle\overline{(b(n, 3)\rangle}} & =\Delta_{2}^{b(n-1,1)}(\operatorname{det} A(n-1,1))^{2} \\
& =\Delta_{2}^{b(n, 2)-b(n, 3)}(\operatorname{det} A(n-1,1))^{2} .
\end{aligned}
$$

Remark. By inserting the factor $\Delta_{1}^{b(n, 1)-b(n, 2)}$, which is 1 , into the formula in Theorem 2.7, we obtain a recursion formula that works for all $k=1, \ldots, n$. See Proposition 2.3.

Corollary 2.8. The $\operatorname{det} A(n)$ vanishes at twice the real part of any primitive $2(n+1)$ st root of unity and $\operatorname{det} A(m, k)$ for $1 \leq m \leq n-1$ and $1 \leq k \leq n-1$ never vanishes at these values.

Proof. The recursion formula of Theorem 2.7 shows that the determinants $\operatorname{det} A(m, k)$ for $1 \leq m \leq n$ and $1 \leq k \leq m$ can be written as a product of positive or negative powers of $\Delta_{1}, \ldots, \Delta_{n}$. It also shows that $\operatorname{det} A(n)$ contains the factor Δ_{n} exactly once and all the other determinants of lower indexes do not contain the factor Δ_{n}. Therefore $2 \cos \frac{k \pi}{n+1}$ must be a root of $\operatorname{det} A(n)$ if k is relatively prime to $n+1$.

Corollary 2.9. After setting δ to be twice the real part of any primitive $2(n+1)$ st root of unity, Lickorish's pairing can be considered as a symmetric bilinear form over the real (or complex) vector space with a basis D_{n}. Then the basis element $\alpha=(n, n-1, \ldots, 2,1)$ has the property that there is a linear combination $\sum_{\beta \neq \alpha} q_{\beta} \beta$ of basis elements other than α such that $\langle\alpha, \gamma\rangle=\left\langle\sum_{\beta \neq \alpha} q_{\beta} \beta, \gamma\right\rangle$ for all γ in the vector space.

Proof. The last row of $A(n)$ corresponds to α and $A(n)^{\langle 1\rangle}=$ $A(n, n-1)$. By Corollary $2.8, A(n)$ is singular but $A(n, n-1)$ is nonsingular. Thus it follows from Lemma 2.2. In fact, q_{β} 's are equal up to sign to the (α, β) th cofactor of $A(n)$ divided by $\operatorname{det} A(n, n-1)$.

Remark. In fact the last elements of each block $B(n, k)$ of D_{n} as well as the rotations of the configuration ($n, n-1, \ldots, 1$) have the property of Corollary 2.9.

Corollary 2.10. We have the following recursive formula:
$\operatorname{det} A(n)=\prod_{i=1}^{[(n+1) / 2]}(\operatorname{det} A(n-i))^{(-1)^{i-1}\left(n_{i}^{n-i+1}\right)} \prod_{i=0}^{[(n-1) / 2]}\left(\frac{\Delta_{n-i}}{\Delta_{i}}\right) b(n-i, n-2 i)$
where $\Delta_{0}=0$.
Proof. One can derive this from the formula in Theorem 2.7 using the following identities:

$$
\binom{n-i+1}{i}=\sum_{k_{1}=1}^{n-2 i+2} \sum_{k_{2}=1}^{k_{1}} \cdots \sum_{k_{i}=1}^{k_{i-1}} 1
$$

and

$$
b(n, k)-b(n, k+1)=b(n-1, k-1) .
$$

Let $d(n, j)$ denote the exponent of Δ_{j} in $\operatorname{det} A(n)$. It is not hard to see that $d(n, j)$ is well defined for $j \geq 1$.

Corollary 2.11. For $j \geq 1$, we have that

$$
\sum_{i=0}^{[(n+1) / 2]}(-1)^{i}\binom{n-i+1}{i} d(n-i, j)=b(j, 2 j-n)
$$

where $b(n, k)=-b(n-k,-k)$ for $k<0$ and $b(n, 0)=b(n, k)=0$ for $k>n$.

Proof. Immediate from Corollary 2.10.

Remark. It is interesting to note that the Catalan numbers satisfy the similar formula:

$$
\begin{aligned}
& \sum_{i=0}^{[(n+1) / 2]}(-1)^{i}\binom{n-i+1}{i} C_{j-i+1} \\
& \quad=b(j+2, n+2) \quad \text { for } j \geq\left[\frac{n+1}{2}\right] .
\end{aligned}
$$

This formula can be proved by recalling that $b(n, k)$ is the number of configurations in D_{n} that the first innermost arc occurs at the k th point and by applying the inclusion-exclusion principle.

The following theorem shows that $\operatorname{det} A(n)$ is generated by a simple rule.

Theorem 2.12. For $j \geq 1$, we have that

$$
d(n, j)=d(n-1, j-1)+2 d(n-1, j)+d(n-1, j+1)
$$

where $d(n, 0)=2 C_{n}-C_{n+1}=-\frac{4}{n+2}\binom{2 n-1}{n+1}$.
Proof. By the remark following Corollary 2.11, the formula in Corollary 2.11 holds for $j=0$ if we set $b(0, k)=-b(-k,-k)=-1$ for $k<0$. Use an induction on (n, j) with lexicographic order. Since $d(1,0)=2 C_{1}-C_{2}=0, d(2,1)=d(1,0)+2 d(1,1)+d(1,2)$.

From the formula in Corollary 2.11,

$$
d(n, j)=b(j, 2 j-n)+\sum_{i=1}^{[(n+1) / 2]}(-1)^{i-1}\binom{n-i+1}{i} d(n-i, j) .
$$

By the induction hypothesis and the identity $\binom{n-i+1}{i}=\binom{n-i}{i}+\binom{n-i}{i-1}$,

$$
\begin{aligned}
& \sum_{i=1}^{[(n+1) / 2]}(-1)^{i-1}\binom{n-i+1}{i} d(n-i, j) \\
& =\sum_{i=1}^{[(n+1) / 2]}(-1)^{i-1}\binom{n-i}{i}(d(n-i-1, j-1)+2 d(n-i-1, j) \\
& +d(n-i-1, j+1)) \\
& +\sum_{i=1}^{[(n+1) / 2]}(-1)^{i-1}\binom{n-i}{i-1}(d(n-i-1, j-1)+2 d(n-i-1, j) \\
& +d(n-i-1, j+1)) \\
& =\sum_{i=1}^{[n / 2]}(-1)^{i-1}\binom{n-i}{i}(d(n-i-1, j-1)+2 d(n-i-1, j) \\
& +d(n-i-1, j+1)) \\
& +\sum_{i=0}^{[(n-1) / 2]}(-1)^{i}\binom{n-i-1}{i} \\
& \times(d(n-i-2, j-1)+2 d(n-i-2, j) \\
& +d(n-i-2, j+1)) \\
& =d(n-1, j-1)-b(j-1,2 j-n-1) \\
& +2 d(n-1, j)-2 b(j, 2 j-n+1)+d(n-1, j+1) \\
& -b(j+1,2 j-n+3)+b(j-1,2 j-n) \\
& +2 b(j, 2 j-n+2)+b(j+1,2 j-n+4) \\
& =-b(j, 2 j-n)+d(n-1, j-1)+2 d(n-1, j) \\
& +d(n-1, j+1) \text {. }
\end{aligned}
$$

The last equality is achieved by several uses of the identity

$$
b(n, k)-b(n, k+1)=b(n-1, k-1)
$$

for all integer k and all $n \geq 2$.
One can now easily generate $\operatorname{det} A(n)$ by using the rule in Theorem 2.12 as in the following table. The term $\Delta_{0}=1$ is inserted for a
computational purpose.

$$
\begin{aligned}
& \operatorname{det} A(1)=\Delta_{0}^{0} \quad \Delta_{1} \\
& \operatorname{det} A(2)=\Delta_{0}^{-1} \quad \Delta_{1}^{2} \quad \Delta_{2} \\
& \operatorname{det} A(3)=\Delta_{0}^{-4} \quad \Delta_{1}^{4} \quad \Delta_{2}^{4} \quad \Delta_{3} \\
& \operatorname{det} A(4)=\Delta_{0}^{-14} \quad \Delta_{1}^{8} \quad \Delta_{2}^{13} \quad \Delta_{3}^{6} \quad \Delta_{4} \\
& \operatorname{det} A(5)=\Delta_{0}^{-48} \quad \Delta_{1}^{15} \quad \Delta_{2}^{40} \quad \Delta_{3}^{26} \quad \Delta_{4}^{8} \quad \Delta_{5} \\
& \operatorname{det} A(6)=\Delta_{0}^{-165} \Delta_{1}^{22} \quad \Delta_{2}^{121} \Delta_{3}^{100} \Delta_{4}^{43} \Delta_{5}^{10} \Delta_{6} \\
& \operatorname{det} A(7)=\Delta_{0}^{-572} \Delta_{1}^{0} \quad \Delta_{2}^{364} \Delta_{3}^{364} \Delta_{4}^{196} \Delta_{5}^{64} \Delta_{6}^{12} \Delta_{7} \\
& \operatorname{det} A(8)=\Delta_{0}^{-2002} \Delta_{1}^{-208} \Delta_{2}^{1092} \Delta_{3}^{1288} \Delta_{4}^{820} \Delta_{5}^{336} \Delta_{6}^{89} \Delta_{7}^{14} \Delta_{8}
\end{aligned}
$$

Remark. Notice that the exponents of Δ_{i} may be negative; however $\operatorname{det} A(n)$ is a polynomial in δ. The negative exponents arise since the Δ_{i} 's are not relatively prime to each other. In fact the factor $\delta-2 \cos \frac{k \pi}{i+1}$ of Δ_{i} is also a factor of Δ_{j} if $i+1$ divides $j+1$. Moreover, if k is relatively prime to $i+1$, then the converse holds. For example δ is a factor of $\Delta_{2 i+1}$ for all i and $\delta^{2}-1$ is a factor of $\Delta_{3 i+2}$ for all i. R. A. Litherland has shown that the exponent of δ in $\operatorname{det} A(n)$ is C_{n} and that the exponent of $\delta^{2}-1$ is $C_{n}-1$.

References

[1] R. A. Brualdi, Introductory Combinatorics, North-Holland, New York, 1977.
[2] R. C. Kirby and P. Melvin, Evaluations of the 3-manifold invariants of Witten and Reshetikhin-Turaev for $\mathrm{sl}(2, \mathbf{C})$, (to appear).
[3] W. B. R. Lickorish, 3-manifold invariants from the combinatorics of the Jones polynomial, preprint.
[4] N. Yu. Reshetikhin and V. G. Turaev, Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math., (to appear).
[5] E. Witten, Quantum field theory and Jones' polynomial, Comm. Math. Phys., 121 (1989), 351-399.

Received February 23, 1990 and in revised form April 5, 1990. The first author was partially supported by a Korea Science and Engineering Foundation Postdoctoral Fellowship, and the second author partially supported by a Louisiana Education Quality Support Fund grant LEQSF(87-89)-RD-A-8.

Korea Institute of Technology
Taejon, 305-701, Korea
Currently visiting: Louisiana State University
Baton Rouge, LA 70803
AND
Louisiana State University
Baton Rouge, LA 70803

