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REAL ALGEBRAIC CURVES AND LINK COBORDISM

PATRICK GILMER

If A is a nonsingular real algebraic curve of degree m, we show
that there is a link cobordism of specified topological type between a
link which depends only on the isotopy type of A and a link which
depends only on m. We prove a generalization of the Ίϊistram-
Murasugi inequalities for link cobordisms and apply it to this situa-
tion.

0. Introduction. In this paper, we will show that if a certain collec-
tion of simple closed curves, C, can be realized as a real algebraic
curve of degree m then there is a cobordism of specified topological
type between two links in a 3-manifold Q. Q may be described as S3

modulo the quaternion eight group. One link, L(C), depends only on
C, and the other link depends only on m. This is our main result. It
was announced at the Durham 4-manifolds conference in 1982. Since
then it has been reformulated and improved with two addenda. Many
of the known restrictions on link cobordisms in S3 may be general-
ized to obtain restrictions on cobordisms in Q-homology 3-spheres.
In [G3], we will develop the theory of 2-signatures and 2-nullities in
a rational homology 3-sphere, and derive the generalized Tristram-
Murasugi inequalities in this context. We will consider non-orientable
as well as orientable cobordisms. Applying these results to the cobor-
dism in / x Q, we have obtained proofs of the strengthened Pretrovski
inequalities, and the strengthened Arnold inequalities ((3.4), (3.5)
(3.6) (3.7) (3.8) (3.9) of Viro's survey article [V]). Applying this same
result to the lift of this cobordism to a covering space of Q, we have
obtained Zvonilov's inequality ((3.23) of [V]). These derivations will
appear in a sequel to this paper [G4]. Another result for links in S3

states that the Arf invariants of two proper links in S3, which are
related by a planar cobordism, must be the same. The correct gen-
eralization of this result to links in a rational homology sphere will
appear in [G3]. Applying these results to our cobordism in Q and
lifts of it to certain covers, we have rederived Rokhlin's congruence
for M-curves, the related congruence for M - 1 curves. (3.2) (3.3)
[V] and Fiedler's congruence [Fl]. These results will be included in
[G4].
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In §1, we explain the problem under investigation in extremely sim-
ple terms. In §2, we study the associated complex curve CA and
prove a theorem which allows us to guarantee certain curves are in
"general position". In §3, we define Q as the projective tangent circle
bundle of RP{2). We also define L(A) and Lm. We also study Q,
the tangent circle bundle of RP(2) and links which lie there. In this
section we establish certain properties of these manifolds and links.
In §4, we give a nice decomposition of CP(2) which we use to prove
our main theorem. Section 5 defines a simple invariant of surfaces
with oriented boundary which we need for the statement of our theo-
rem. In [G3], we will use this invariant to index our 2-signatures, and
possible Arf invariants.

In §6, we state and prove our main Theorem (6.1). We also prove
two addenda. Addenda (6.2) describes the cobordisms for collections
of curves and may be used to study the topology of affine curves.
Addenda (6.3) allows us to add cobordisms arising from certain aux-
iliary complex lines. We have tried to say as much as we can about
the resulting cobordisms. Thus we prove more than is needed for the
presently known corollaries. We do this in the hope that as more tools
are developed for studying link cobordisms, it will be easier to apply
them to the study of real algebraic curves. In §7, we give a new for-
mulation of a theorem of Viro and Zvonilov's (4.8) of [VI] in terms
of linking numbers. In §8, we use the Kirby calculus to describe Q
and the other spaces which arise in this paper. We describe L(A) in
a Kirby calculus picture of Q. This was the way we first described
L(A) in 1982. We also give a Kirby calculus proof of the Massey-
Kuiper-Arnold theorem that CP(2) modulo complex conjugation is
the 4-sphere.

Section 9 presents Theorem (9.5), a generalization of the Tristram-
Murasugi inequalities associated to odd prime powers. The Viro-
Zvonilov inequalities (3.10) of [V] can be derived by applying this
inequality to the lift of our cobordism to I x Q. We will give this
derivation of the Viro-Zvonilov inequalities in [G4]. Theorem (9.7)
gives a result of applying (9.5) to the cobordism in I xQ. It is stated
in terms of certain signatures of L(C). At the moment, it is hard
to apply this theorem as the calculation of the signatures of L(A) is
difficult. We are working on a new method which should make the
calculation more manageable.

We have tried to be very careful about orientations. We orient a
boundary using the last inward convention.
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1. The basic questions to be studied. We are concerned with the
placement problem for a nonsingular real algebraic curve in the real
projective plane. Let F be a real homogeneous polynomial of degree
m in three variables xo, X\, Xι. The zero set of F consists of a
union of lines through the origin in R?. The real projective plane
RP(2) is the set of lines through the origin in R3 and thus the zero
locus of F is determined by a set A in RP(2) called the curve of
F. S2, the unit sphere about the origin in R3, double covers RP(2)
and the inverse image of A is the set of zeros of F restricted to
this sphere. A is called nonsingular if the ordinary gradient VJF in
R3 does not vanish on the zeros of F. Euler's equality (an easy
exercise) says (XQ , X\, Xι) VJF = mF. Therefore along S2 Γ\F~ι(0),
VF is tangent to £ 2 . Thus a nonsingular curve A is a smooth one
dimensional submanifold of RP(2). In other words A is a collection
of disjoint smooth simple closed curves in RP(2).

A simple closed curve in RP(2) is one of two types. It may sep-
arate RP(2) into an open disk and an open Mobius band. In this
case, it is called an oval and the disk is called the interior of the oval
and the Mobius band is called the exterior of the oval. Otherwise it
has a neighborhood homeomorphic to an open Mobius band and its
complement is an open disk. We will call such a curve 1-sided. This
follows immediately from the classification theorem for 2-manifolds.
As a disk can contain no 1-sided curves, A can include at most one
1-sided curve.

Consider F on S2 and shade the regions where F is positive. If
m is even, then the antipodal regions on S2 have the same shading
and we can thus shade the corresponding regions in the complement
of A in RP(2). Since A must be the boundary of the shaded regions,
A does not contain a 1-sided curve. Thus an even degree nonsingular
curve consists entirely of ovals. If m is odd, antipodal regions have
the opposite sign. Join two antipodal points on S2 not lying over
A by a path. The path projects to a loop which crosses A an odd
number of times. Thus A must contain a 1-sided curve. So for m
odd, A consists of one 1-sided curve and a collection of ovals in the
disk which is the complement of the 1-sided curve.

The basic question is how can these ovals be arranged up to isotopy
for a polynomial of given degree. As any two ovals are isotopic and
any two 1-sided curves are isotopic, this question boils down to two
questions: How many ovals can there be? What nesting arrangements
can occur. We say one oval O\ is nested in another oval O2, if O\
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lies in the interior of Oχ . In 1876, Harnack showed

A curve with this number of components is called an M-curve. Har-
nack showed that there exist M-curves for all m. Hubert in his six-
teenth problem asked how the ovals of an M-curve can be arranged.

One may also ask how two or more curves can sit with respect to
each other modulo ambient isotopy. For instance, we can ask how a
curve of degree m can sit with respect to a curve of degree one (a
line). As a projective transformation will take any line to the line at
infinity, we are really asking how affine curves can look.

If A is a real algebraic curve given by F, we define CA c CP{2)
to be {[ZQ , z\, Z2]\F(ZQ, i\, zι) = 0}. If A separates CA into two
components, A is called dividing. If A is dividing and nonsingular,
it inherits an orientation as the boundary of the closure of one com-
ponent of CA - RA. In the next section, we will see that we may
assume CA is a complex submanifold with a canonical orientation.
This orientation on RA is really a semi-orientation as it is only well
defined up to changing the orientation on every component of RA
at once. This ambiguity comes from the arbitrary choice of one of
the two components of CA - RA. This semi-orientation is called the
complex orientation. This is an idea of Rokhlin's [Rl], [R2]. Thus one
can wonder whether a given isotopy class arises as a dividing and/or
non-dividing curve. If it can arise as a dividing curve, what complex
orientations can it have?

2. The complex curve CA. If A is nonsingular, we can assume
after changing the real coefficients a small amount that the complex
curve CA given by F is nonsingular. This is an eminently reasonable
statement, and some statement to this effect is made without proof in
most papers on this subject. It is the purpose of this section to give a
proof of a generalization of this statement. We also want to guarantee
that CA may be taken to be transverse to a given collection of other
curves Γ, assuming CA is already transverse to them along A. Along
the way it is convenient to give a proof of the well-known fact that a
nonsingular curve of degree m in CA has genus ( l / 2 ) ( m - l ) ( m - 2 ) .
We will use this fact later. Thus if the above seems perfectly reasonable
or familiar the reader may want to skip this section.

Let Wm denote the vector space of all homogeneous polynomials
of degree m in z 0 , zχ9 and zι with complex coefficients. Wm



REAL ALGEBRAIC CURVES 35

has a basis consisting of monomials of degree m. So dim Wm =
(l/2)m(m + 3). Equations that differ by scalar multiples define the
same zero set. Thus the associated projective space P{Wm) can be
thought of as the space of all equations for complex curves of degree
m. We borrow the following proposition and proof from Namba [N]
(1.4.3).

PROPOSITION (2.1). S = {F e P(Wm)\F defines a singular curve} is
a proper algebraic subset of P{Wm).

Proof. An algebraic set is the zero of a set of homogeneous poly-
nomials. Thus S = {(p,F) e CP(2) x P{Wm)\VF{p) = 0 and
F(p) = 0} is an algebraic set. Let π: CP{2) x P(Wm) -» P(Wm)
denote projection on the second factor. By the Main Theorem of
elimination theory [M] (2.23) , π(S) = S is algebraic. S is proper
because there exist nonsingular curves of any degree, for instance the
Fermat curves F = zff + zf + zψ. Note for this F, Vi7 is never
zero in C 3 - ( 0 , 0, 0). α

COROLLARY (2.2). P{Wm)-S is path connected. Thus any two non-
singular curves are isotopic and therefore diffeomorphic as embedded
oriented 2-manifolds.

Proof. Let Fx, F2 e P(Wm) - S. Let L be the line in P(Wm)
through F\ and F2. L is a CP(l) and LnS is a proper algebraic
set and thus a finite set of points. Clearly we can find a path in L - S
joining F\ and F2. This yields an isotopy between the curves. D

COROLLARY (2.3). The genus of any nonsingular curve of degree m
is ( l /2) (m-l ) (m-2) .

Proof. We only need to exhibit one with this genus for each m..
Let π: CP(2) -> CP{\) « S2 given by τr[z0, zu z2] = [z0, * i ] .
When restricted to the Fermat curve, π is easily seen to be an m-fold
cyclic branched covering map with branching over m points. If we
triangulate S2 with these m points as vertices, then we can lift to
a triangulation of the curve. A simple counting argument shows the
Euler characteristic is mχ(S2) - (m- l)ra or 3ra-ra 2 . Thus it has
the above genus. α

Let Un denote the vector space of all homogeneous polynomials in
z 0 , z\9 and z2 with real coefficients, and P(Un) the associated real
projective space.
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COROLLARY (2.4). SR = SnP(Un) is proper real algebraic set

Proof. The real and imaginary parts of the equations which define
S in P{Wn) define SR. Π

COROLLARY (2.5). Suppose F e Un defines a nonsingular A in
RP(2). By changing the coefficients of F an arbitrarily small amount,
we find F' defining A! isotopic to A and CAf nonsingular in CP(2).

Proof. A proper real algebraic set is nowhere dense. This follows
from the results stated in the beginning of §2 [Mil]. D

In fact we will sometimes wish to insure that CA be transverse to
a collection of algebraic curves which are already transverse to A in
RP{2). This can be done by adapting the proof of Prop. (1.4.4) of
[N].

PROPOSITION (2.6). Let Λ; be a finite collection of algebraic curves
in CP(2). Suppose A intersects each Λ/Πi?P(2) transversely in RP(2)
at nonsingular points of Λz which are not points of intersection with
another Λ,. Then we can change the coefficients of F an arbitrarily
small amount {keeping them real) so that CA is nonsingular and Λ,
and CA intersect transversely without changing A U U/(Λ/ Π RP{2))
up to ambient isotopy. Moreover we may insist that CA avoids a finite
number of given points {qj}.

Proof. Let Λ; be defined by (7/. Let

Yi = {(p, F) G CP{2) x P{Wn)\F{p) = G^p) = 0,

Define^ Y to be the union of the Y,. As a finite union of algebraic
sets, Y is an algebraic set. Therefore n(Y) = Y is algebraic. Thus
Z = Y U S is algebraic (S is from the proof of Proposition (2.1)).
As above we conclude ZR is a real algebraic set in P{Um) and so
nowhere dense. Thus we can vary the coefficients of F an arbitrarily
small amount to guarantee that F is not in ZR . If we add to the
equations defining S the equations F{qj) = 0, then the new CA will
miss {qj}. D
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3. Two circle bundles over RP(2). In this section, we discuss el-
ementary properties of STRP(2), the tangent Sι bundle of RP(2)
and PTRP(2) the projective tangent bundle of RP(2). We also de-
fine certain links in them which lie over curves in RP{2)^. Later in this
section, we will show the first space which we denote Q is diffeomor-
phic to L(4, 3). The second which we denote Q is diffeomorphic to
S3 modulo the quaterions with some orientation. These facts have a
long history. However they are not relevant to our main argument.
See [S-T, p. 205] and [P] and the references therein. In (3.2), §4, §6,
and §8, we will come back to these identifications, eventually taking
into account orientations. For the time being, we wish to think of
these spaces as circle bundles over RP{2). Note the tangent bundle
of a manifold has a canonical orientation given by a local orientation
at a point followed by that same orientation in the fiber. Orient the
tangent disk bundle of RP(2) thus. This induces an orientation on
Q and thus Q.

Given a collection on immersed transverse circles C = {Cz} in
RP(2), we can assign an oriented link L(C) in Q and an unoriented
link L(C) in Q as follows. We have:

Q = {(x, l)\x e RP(2) I a line in RP{2) through x},

Q = {(JC , l)\χ e RP(2), / an oriented line in RP(2) through x}.

To each point on C, , we may associate a point x in RP(2) and
the line tangent to C, through x. This defines a knot L(Q) in Q
lying over C/ in RP(2). L(C) is the link with components L(Q).
Let L(Ci) be the 2-comρonent link in Q obtained by considering
both unit tangent vectors to C, at x. We let L(C) be the link in Q
given by the union of L(Q). Note L(C) has a natural orientation
whether C does or not. We oriented each component of L(Q) by
first orienting C\ in the direction of the choice of unit tangent vector
that the component corresponds to and then lifting the orientation
to the component in question. If C is oriented, then we may lift
the orientation to L(C) and obtain an oriented link. Finally if C
is oriented, we may define an oriented knot L+(Ci) in Q lying over
Ci. One simply chooses the unit tangent vector in the direction of the
orientation, and lifts the orientation from below. Again L+(C) is the
union of L+(Q).

We also associate a framing to the normal bundles of L(C), L{C)
and L+(C) as follows. If C, has a trivial normal bundle draw a par-
allel curve C\. If its normal bundle is 1-sided, we draw an almost
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parallel cure C\ by perturbing the immersion by a section of the nor-
mal bundle of the immersion which is zero at only one point. Let C
denote this pushed off collection of curves. Frame L(Q), L(Q) , and
L+iQ) so that its push-off is L(C/), L(C-) and L+(C/) respectively.
It is easy to see that this framing is well defined up to isotopy.

Let Xn denote the nonorientable D2 bundle over RP(2) with Euler
number n and Sn = dXn. We have S\ = Q and S2 = Q. Here Xn

has an orientation as a 4-manifold and the Euler number is RP(2) o
RP(2) in Xn. Poincare duality and the long exact sequence of the
pair (Xn,Sn) give us:

HX(SH) > HX{XH)

H2(RP(2)) H2(Xn) Hχ(RP(2))

0 Z 2 Z 2 0

Thus H\(Sn) is either Z2®Z2 or Z 4 . Now consider the same diagram
with Z2 coefficients. The first horizontal map now between Z2 and
Z 2 is given by multiplication by n mod 2. Thus H\(Sn, Z2) is either
Z2 if n is odd and Z2@Z2 if n is even. Therefore H\(Sn) is Z 4 if
n is odd and Z2 @Z2 if n is even.

If n is odd, H\{Sn) is generated by any element which maps to
the generator of H\(Xn). Thus Hχ(Q) « Z 4 is generated by L+(£)
where £ is an oriented line in RP(2). Let J / denote the antipo-
dal map on Sn which we note extents over Xn. Let £ denote £
with the opposite orientation. Note sf[L+(£)] is L+(£) with the op-
posite orientation, and £ and £ are isotopic in RP(2) (just spin £
180°). Thus L+(£) and L+(£) are isotopic. So we have j/[L+(£)] =
-[L+(£)] = ~[L+(£)] and si induces on H\(Q) the map given by
multiplication by minus one. Let ^ denote [£+(£)] in Hγ(Q).

If n is even, #1 (Sn) is generated by the fiber and a curve that maps
to the generator of Hχ(Xn). Thus H\(Q) ^ Z2® Z2 is generated by
/, the homology class of the fiber, and / , the homology class of
L(£). The inverse image of £ under the projection is a Klein bottle
Kz. By considering the action of sf on K&, one sees <&#{/) = /
and $/#(/)=/ + /. We may define another involution of Q us-
ing the duality between lines and points in RP{2). Given a point
p = [α, b, c] of RP(2), define X(p) to be the line axo+bx\ +cx2 = 0
in RP(2). This gives a well-defined bijection between point and lines
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in RP{2). Define F\ Q -> Q by 7 ( x , £) = (Z'ιSi9 Zx). It is
clear that SΓ{/) = / and &~{/) = / . Let AΓP be the Klein bot-
tle SΓ^KTIJ,)). KZ consists of all pairs: a point q on £, a direc-
tion through #. Ap consists of all pairs: a point r, the direction
of the line through r and p. Let ( , ) denote the intersection
pairing HX(Q, Z2) x H2(Q, Z2) -> Z 2 ; then we have (/, Kp) =

= 0, </,*» = ψϋT^Kp) = </,tfc) = 0, and
^Kz) = {/9Kp) = l. It follows that Kz and Kp

(for any choice of £ and /?) represent generators for H2(Q, Z2). We
are also interested in the Bockstein β: H2(Q, Z2) -+ H\(Q, Z). The
Bockstein is natural so we only need to consider β on the Klein bot-
tles Kz and Kp . Thus β[K2] G H\(Kz) is the unique 2-torsion class.
In this way we see that fi[K&] = / and β[Kp] = b in HX(Q, Z).
Note that J / and ^ generate a subgroup of group of diίfeomor-
phisms of Q which is isomorphic to the symmetric group on three
letters. The isomorphism is given by considering the action on the
nonzero elements of Hχ(Q). Define a e Hι(Q, Z2) by a(/) = 1,
and α(/) = 0. The 2-fold cover Q —• Q is classified by α.

REMARK (3.1). One can define the linking number of two disjoint
knots in a rational homology sphere. This linking number may be
rational. If the rational homology sphere is the boundary of a ratio-
nal homology ball, then one can calculate linking numbers by count-
ing the intersections between a pair of surfaces whose boundary is a
multiple of the given link and dividing by the appropriate integer.
Thus to calculate linking numbers in Sn, we may count intersec-
tions in Xn. If O\ and Oι are two disjoint, unnested ovals, then
lk(L(0i), L{02)) and lk(L+(0i), L+{Oι)) is zero. If they are dis-
joint, nested and oriented in the same direction (so that they are
homologous in the complement of a point in the interior of both
of them), lk(L{Oι), L{02)) = 2 and lk(Z,+(Q0, L+ίQz)) = 1. If
they are oriented in opposite directions lk(L(0i), L{Oι)) = -2 and
lk(L+(<9i), L+{O2)) = - 1 . Suppose & is a 1-sided curve and O is
an oval disjoint from £? oriented in the same direction (O is ho-
mologous to twice J5f in the complement of a point in the interior
of C), then lk(L(O), L{&)) = 1 and lk(L+(0), L+(.2*)) = (1/2).
If oriented in the opposite direction, then \k(L(O), L(JS?)) = -1 and
lk(L+(0), L+(^)) = -(1/2). The linking number of two fibers in Q
or Q is zero. Note that F sends the link consisting of two fibers
in Q to the link with the two components L(3[) and L(£f2), where
S?x and &L are two lines in RP(2). Thus lk(L(^), U&i)) i s z e r o
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On the other hand, one calculates that lk(L+(-2ί), L + ( ^ ) ) = -1/4.
Given a local orientation at a point p in RP{2), we may orient the
fiber fp over that point in Q or Q, as the boundary of the disk fiber
with this local orientation. Suppose O encloses p and is oriented as
the boundary of its interior with the extension of the local orientation,
then lk(L(O), fp) = lk(L+(O), fp) = 1.

REMARK (3.2). Rubenstein [Ru] has shown that a free Z 4 or Q(8)
action on S3 is equivalent to an orthogonal action (his result is more
general). As S3 double covers RP(3), RP(3) is diffeomorphic to
SO(3) which is in turn diffeomorphic to STS2, and STS2 double
covers STRP(2), we see that S3 is an 8-fold cover of Q and a 4-fold
cover of Q. As β(8) is the only group of order eight with first homol-
ogy Z2ΘZ2 and Z4 is the only group of order four with first homology
Z4, we conclude that Q^ is indeed S3 modulo a free orthogonal ac-
tion of β(8) and that Q is S3 modulo an orthogonal action of Z 4 .
Thus Q is L(4, 1) or L(4, 3). As l k ( L + ( ^ ) , L+(-2|)) = -1/4, β
must be L(4, 3). The next section will incidently give another proof
of this last fact. Price [P], and Rubenstein [Ru] showed that the map-
ping class group of Q is £3 and Rubenstein showed that the mapping
class group of L(4, 1) is Z2. Thus we have realized all the elements
in terms of J / and SΓ.

4. A decomposition of CP(2). In this section, we show how CP(2)
can be divided into three pieces. One piece is diffeomorphic to / x
L(4, 3) and the other two are tubular neighborhoods of RP(2) and
Σ. Here Σ denotes the quadratic Fermat curve XQ + x\ + x\ = 0
which is a 2-sphere missing RP(2). Let h : CP{2) -• [0, 1] be given
by

h[ZQ, ZUZ2] = γ-p-+Zl+Zl

By the triangle inequality, \h\ < 1. Moreover h[z0, z\, zj\ — 1 if
and only if z^, z\ and z | all lie in the same direction (i.e. are all
positive real multiples of each other). This means h~x(\) = RP(2).

THEOREM (4.1). h2 is a C°° generalized Morse function on CP(2)
with two critical submanifolds: h~x{\) = RP(2) of index 2 and
h~ι(l) = Σ of index 0.
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Proof. See Bott [B, p. 344] or Hirsh [H, p. 149 exercise 6 which
should read "partial tubular neighborhood"] for definitions. Consider

(zZ + ZΊT+ZZ^)2

It is easy to see that h2 is C°° on C 3 - (0, 0, 0) and induces h2

on CP(2). It is elementary but tedious to check that Vh2 Φ 0 in
C 3 - (0, 0, 0) except above RP(2) and Σ. We have

\-a2-b2\2

and

**((1, i, 0) + (a + 60(1, - 1 , 0)) =

These show that the Hessian on the normal fibers is nondegenerate
with given index. D

REMARK. We used this function to prove an early version of (6.1) in
1982. Fiedler has independently studied and used this same function
[F2]. He thanks V. Kharlamov for pointing out the function to him.

We now decompose CP(2) into three pieces: h~ι[O,δ]9

h~ι[δ, 1 - δ], and h~~ι[\ - δ, 0]. Here δ denotes a small num-
ber. The second is diffeomorphic to a product / x h~ι(δ) by [H,
(6.2.2)] or [Mi2], The first and third are diffeomorphic to the closed
disk bundles associated to the normal bundles of Σ and RP(2) in
CP{2), by the exercise in [H] referred to above. Since Σ o Σ = 4,
and Σ is orientable, the normal bundle v^ is an SO(2) bundle with
Euler number 4. Thus we see that h~~ι(δ), oriented as the boundary
of Ϊ/Σ , and therefore h~l(t), oriented as the boundary of h~ι[0, t] (a
submanifold of CP(2) with its complex orientation) for t e (0, 1),
are diίfeomorphism to L(4, 3).

On the other end of the product, we identify h~x{\ - δ) with Q,
the AS1 bundle of tangent bundle of RP(2). Multiplication by / takes
tangent vectors to RP(2) to normal vectors to RP{2). This defines
/ , an isomorphism of O(2)-bundles between TRP{2) and VRP{2) has
an orientation as a 4-manifold induced from the orientation obtained
from the complex structure on CP(2) and the diffeomorphism of the
total space of VRP{2) with a tubular neighborhood. The total space
of TRP{2) has a natural orientation obtained by choosing some local
orientation of RP{2) around a point together with this same orienta-
tion of the fiber over this point. The map / induces an orientation
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reversing map on the total spaces. Thus we see the map J induces
an orientation preserving diffeomorphism of Q with h~ι{\ -δ) ori-
ented as the boundary of h~ι[0, 1 -e], a submanifold of CP(2) with
its complex orientation. Moreover the Euler number of the tangent
bundle, i.e. RP{2)oRP{2) in TRP(2), is χ(RP(2)) = 1. Therefore
RP(2)oRP(2) in CP(2) is - 1 . See Wilson [W, (2.4)].

REMARK (4.2). We can give a nice explicit identification of GP(2) -
Σ with the open tangent disk bundle of RP(2). Let E = {{v, w)\
v, w e R3, \w\ < \v\ = 1 and v w = 0} denote the open unit
tangent disk bundle of S2. The quotient Έ of E by the involution
sending (v, w) to (-?;, -w) is the open unit tangent disk bundle of
RP{2). Define ψ: E -> CP(2) by ^ ( N > *Ί , v2), (w0, wj, ty2)) =
[̂ o + IWQ 9 V\ + iw\, v2 + 1W2]. Note each point in CP{2) - Σ has
a representative z = (ZQ , z\, z2) with z z = z^ + z\ + z\ real
and greater than zero. Let υ ,w e i?3 with z = t> + m;. Note
Z'Z = υ v-W'W + 2v-wi. So υ -v > w -w and Ϊ; w = 0. There
are exactly two such representations ±z with v v = 1. So we see
ί̂  is a 2-1 map onto CP{2) - Σ and induces a diffeomorphism ^ of
E" with CP(2) - Σ sending the zero section RP(2) identically onto
RP{2). Notice Λ^(ί;, w) = (1 - M 2 ) / ( l + | ^ | 2 ) . So the level sets
h~ι(δ) correspond to the sphere bundles of given length.

REMARK (4.3). This decomposition has a little extra structure.
SO(3) acts on C 3 - 0 and thus CP(2) by matrix multiplication. It is
easy to check that h is SO(3) invariant and it follows that the orbits
of this SO(3) action are precisely the manifolds h~~ι(t) for te[0, 1].

5. Surfaces with oriented boundary. In this section, we introduce
a simple invariant of a surface with oriented boundary. It is a good
bookkeeping device and has simplified our treatment of link cobor-
dism.

Let G be a possibly disconnected compact surface whose boundary
has a given orientation. If G is connected and without boundary, we
define γ(G) = β[G] in HX(G, Z). Here [G] is the fundamental class
in H2(G, Z2) and β is the Bochstein associated to the coefficient
sequence 0—>Z—>Z—>Z2—•(). Equivalently, if G is orientable
γ(G) = 0 and if not γ(G) is the unique 2-torsion class in H\(G9 Z2).
However the relation to the Bochstein is useful. If G is connected
with boundary, then H\ (G) is free abelian and [dG] eH\(G), defined
using the given orientation on dG, is null homologous modulo two.
Define γ(G), in this case to be (l/2)[ΘG] e HX(G). In general, define
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γ(G) to be 0 y{Gϊ) where the G,- are the connected components of
G and Hx(G) = ^Hι(Gi).

We can give a uniform definition as follows. Triangulate G extend-
ing a triangulation of d G if d G is nonempty, with each 2-simplex
meeting dG in at most one edge. Choose orientations for the 2-
simplices, inducing the given orientation on the boundary. Then the
boundary of the oriented 2-chain given by these simplices is a 1-chain
representing [dG] and twice another 1-chain g which must be a 1-
cycle. We define γ(G) to be the class represented by g. The following
propositions are easy exercises.

PROPOSITION (5.1). If G' and G" are two surfaces with oriented
boundaries and G is formed by identifying some of the boundary com-
ponents in an orientation reversing manner, then γ(G) = i'*γ(G') +
i"γ{G") where i1 and i" are inclusions of G1 and G" in G.

PROPOSITION (5.2). If G is a surface with oriented boundary, and
G' is the same surface with the orientation on a component K of dG
reversed, then y{Gf) = γ(G) - [K]. Here [K] is the homology class of
K as originally oriented.

Now if we have a map f:G—>X and an orientation on dG, we
will let γ(G) denote f*(γ(G)) as well. It will be clear from context
where γ(G) lives. Of course if G is closed we will then have γ(G) =
β([G]) where now β: H2(X, Z2) -+HX{X9Z).

Let π : X —• X be a J-sheeted covering space projection. Define
tr: Cn(X) —> Cn(X) by sending a simplex to the sum of the sim-
plices covering it. \X induces a well-defined map called the transfer
Tr: Hn(X) -> Hn(X). One has π* o Tr is multiplication by d. We
have the following propositions whose proof we leave to the reader.

PROPOSITION (5.3). If π: G —• G is a finite covering, and π pre-
serves orientations on dG and dG, then y{G) = Tτ(γ(G)).

PROPOSITION (5.4). If π: X —> X is a finite covering with G Q X

and G C X, and π preserves orientations on dG and dG, then

6. Some link cobordisms. We let Zm denote some collection of
m distinct lines in RP{2) and let Lm denote L(fim). Under the
diffeomorphism &*, Lm is sent to m fibers. Clearly this new link
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is independent up to isotopy of the choice of fibers. Moreover we
may move a fiber along an orientation reversing path in RP(2) and
obtain an isotopy of the oriented link Lm to the link where the string
orientation has been reversed on any one component. Thus the link
Lm is well defined up to isotopy. Moreover as an oriented link it is
equivalent up to isotopy to itself with any choice of string orientation.

Let M be an oriented 3-manifold. Let i\\ M -^d(IxM) be given
by i\(m) = (1, m) and ι0: M -* d(I x M) be given by io(m) =
(0, m). Then i\ is orientation preserving and z'o is orientation re-
versing. A properly embedded surface G in / x M is said to be a
cobordism from the link (iι)'ι(dG) in M to the link (ioy

ι(dG) in
M. Here is our main theorem.

THEOREM (6.1). If A is a nonsingular real algebraic curve of degree
m with € ovals, then there is a connected cobordism G in IxQ from
L(A) to Lm such that

(1) χ(G) = (m-m2)/2.
(2) j * a = w\(G). Here j denotes the inclusion of G in IxQ

composed with the projection to Q.
( 3 ) GoG = [m2/2]. Here G is pushed off itself in I x Q so that

along L(A) and Lm, it has been pushed off with their given framings ,
and [ ] denotes the greatest integer function.

(4) For any orientation of L(A) and some orientation of Lm, j*γ(G)

(5) A is dividing if and only if G is orientable. If G is orientable,
it induces the same orientation on L(A) as the complex orientation on
A does.

(6) The projection on I has no local minima on the interior of G.

Addendum (6.2). If {Λ}"=1 are nonsingular real algebraic curves of
degree raz and each pair of curves {Ai.Aj} intersects transversely in
say rij points, then we have a collection of transverse cobordisms Gj
in IxQ satisfying (6.1) (where m, replaces m and the lines appearing
in all the collections £ m are distinct). Moreover Gz intersects Gj
transversely in (m/m7 - rZ)7)/2 points.

Given a line £ in RP(2), define Z>(£) to be the curve obtained by
taking two lines very close to £ with one to either side and resolving
them at the point of intersection to make an embedded curve, as in
Figure 1. We call D(Σ) the double of £ . If we have a local orientation
at a point p of RP{2), and a collection of oriented immersed circles
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FIGURE 1

C in RP(2)—p, we define r(C, p), the rotation number of C around
p, as follows. Note that Hχ{RP{2) — p) is infinite cyclic. Let a small
circle around p be oriented as the boundary of its interior oriented
with the extension of the local orientation. It represents twice some
generator. Define r(C, p) to be one half the multiple of this generator
which is represented by C.

Addendum (6.3). We may also add to this collection of cobordisms
further cobordisms as follows. Pick a collection of points {pk} in
RP(2) not on any A[. Let Ck denote a small circle around each
pk . Then there are annular cobordisms {Hk} from L(Ck) to L(Dk).
Here Dk is a "double" of a line £k, where the lines {£k} are distinct
from each other and from the lines appearing in the £ m . For each
k, HkoHk = 0, when we push off along the boundaries with the given
framings. For k φk1 Hk intersects Hk> in two points but with alge-
braic intersection number zero. Each Hk intersects Gt transversely
in rrii points. Pick a local orientation at pk, orient Ck as the bound-
ary of its interior with this local orientation, and then orient Hk so
that it induces the same orientation on L(Ck) as Ck does. If A\ is
dividing and is given one of its complex orientations, then Gj o Hk is
2r(Ai9pk).

Comments. Recall £ m with any orientation is isotopic to £ m with
any other, so the qualification "some" in (4) is not significant. Also
£ m has no natural orientation arising from the problem, unless A
is dividing, in which case by (5) with this orientation γ(G) is zero.
By (5.2), if we change the orientation of one component of £ m , we
change γ{G) by / . Thus (4) says as much as we can hope for.
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The idea for Addendum (6.3) came from Fiedler's paper [F3] where
he makes use of auxiliary complex lines in CP(2). The idea for Ad-
dendum (6.1) comes from Viro's paper [V2] and Fiedler's paper [F4]
where they make use of auxiliary real lines. The theorem itself was
reported at the Durham 4-manifolds conference in 1982. At that time
the links L(A) were described by how they sat in a Kirby calculus
picture of Q. See §8.

Proof (of (6.1)). By Proposition (2.6), we can assume that CA
is nonsingular and intersects Σ transversely. By Proposition (2.3),
χ(CA) = 2-2g where g stands for (l/2)(ra - l)(ra - 2). So for
δ small enough CA n h~~ι[09 δ] is isotopic to 2m disk fibers of the
bundle h~ι[0, δ] -> Σ.

If υ is a tangent vector to A in RP{2), then iv is a tangent vector
to CA as CA is a complex submanifold. But iv is also a normal
vector to RP(2) as above. Thus we see that CA n h"ι[l - δ, 1] is
isotopic to J{TA) in J{TRP{2)) « vRP{2) « / r 1 ^ -<J, 1] for δ

small. Therefore C ^ n / r ^ l - * * ) is L{A) in β . Here A-^ l- t f ) is
oriented as the boundary of h~ι[δ, 1-5] which in turn inherits the
orientation on CP(2).

Let T denote the involution on CP(2) defined by T[ZQ , z\, zj\ =
p o , z7,zΓ]. As F has real coefficients, Γ leaves (L4 invariant.
Γ induces the map multiplication by - 1 on Hι{CP(2)), and so
is orientation reversing when restricted to CA. If A is dividing,
CA - A has two components: say CA±. Then Γ induces an ori-
entation reversing diffeomorphism between CA+ and CA-. Let
G denote the intersection of CA with h~ι [δ, 1 - δ]. We have
χ(G) = #(C4) - 2m = m- m2 . G has a natural orientation coming
from the complex structure on CA. If C is dividing, G has two
components diffeomorphic to each other. Let G+ be one of them.
If C is not dividing, G is connected and T induces an orientation
reversing free involution on G.

We must see what curve a fiber of h~ι (δ) —• Σ is when viewed
in h~ι(l - δ) « Q under the diffeomorphism given by the product
structure or equivalently the flow induced by Vh2. Consider CA
above in the case m = 1. We may as well choose F[XQ , X\, Xj\ = xo.
Then Ĉ 4 intersects Σ transversely at the two points [0, ±i, 1] and
CAΓ\RP(2) is a line £ . This is a dividing curve. Choose CA+ passing
through [0, /, 1]. Give £ the resulting complex orientation it obtains
from CA+, and let (7+ be CA+ Π G. Then G+ is a cobordism in
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h~ι[δ, 1 - δ] between the fiber and £+(£). We can parameterize
CA+ by ψ(u, v) = [0, u + iv, 1] for u,v e R, and υ > 0. Note
h2ψ(u, υ) = 1 - (4^2)/(l + w2 + Ϊ ; 2 ) 2 . One can check that VΛ2 o ^
is non-zero except at (0, 1) which maps to [0, /, 1] e Σ. Thus the
cobordism G+ is level preserving and yields an isotopy of knots in

In general if X C CP(2) is Γ-invariant, we will let X denote the
orbit space of X under T\x. Since the fix point set of T is RP(2),
CP(2) is the 2-fold branched cyclic cover of CP(2) along i?P(2) and
RP(2)oRP(2) is - 2 . Γ |Σ is orientation reversing and fix point free.
So Σ » Λ P ( 2 ) and Σ o Σ is 2, as Σ o Σ is 4.

Q can be identified with h~x(\ - δ) as both are orbit spaces of Q
under the same free involution on Q classified by a € Hι(Q,

As h is invariant with respect to^ T, we see h~ι[δ,l-δ]

« [ ί , l - ί ] x β . Let G denote G. Then G is embedded in
[ ί , l - J ] x β L 6 n { l - ί } x β = L{C). We have χ(G) is one half
χ(G). Since G is orientable, ^i(G) is α restricted to G. More-
over (? is orientable if and only if G is disconnected if and only
if A is dividing. Finally Gπh~ι(δ) is m fibers of the Sι-bundle

As Σ = RP(2), the associated bundle is a rational homology ball.
Thus the linking numbers of distinct fibers must be zero. So
G Π h~ι (δ) is isomorphic to the link obtained from one fiber by shak-
ing off m - 1 extra components with mutual linking numbers zero.
Lm can be obtained from L(£) in just this way. The above isotopy
between a fiber of Λ""1^) —• Σ when viewed in δ x Q and £+(£)
gives us an isotopy between a fiber of h~ι(δ) —• Σ when viewed in
δ x Q and L(£). This is because G+ and T(G+) are disjoint in the
dividing (m = 1) case. It follows that Gπh-ι(δ) when viewed in
δ x Q is isotopic to L w .

If we standardize with an affine map from [δ, 1 - <J] to [0, 1] = / ,
we have proved our theorem with conditions: (1), (2), and (5). To
prove (3), begin by letting Go be a pushoff of G in [δ, 1 - δ] x Q
with the assigned framing^ at the ends. Let Go be the surface lying
over Go in [δ, 1 - δ] x Q. Go can be extended to a surface CAo
in CP(2) homologous to CA as follows. In h~ι[0, δ], we can cap
off Go with disk fibers disjoint from CA. In h~ι[l - δ, 1], we add
annuli corresponding to TAQ where AQ is the parallel push-off of A
used to define the framing of L(A). Thus if m is odd, CA and
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will intersect in one point in h~ι[l - δ, 1] and if m is even they will
not intersect in this region. Thus we see that

0 if m is even.

Since Go Go is our definition of GoG, (3) follows.
To prove (4) give A and £ m any orientation. Then L(A) and

L(£m) are oriented and y(G) is defined. If we give G the orienta-
tion it inherits from CA and then orient L(A) and L(£m) as the
boundary, we get the natural orientation on L(A) and the opposite of
the natural orientation on L(£m). Next note that in order to make the
covering map G —• G preserve orientations on the boundary, we must
change the natural orientation on L(A) and L(£m) by changing the
orientatioi^of exactly one curve lying over each component of A and
£m . Let G\ denote G with the boundary oriented so that the cov-
ering to G preserves orientation on the boundary, let G2 denote G
with the natural orientations on L(A) and L(£m), and G3 denote G
with the boundary oriented as thej3oundary of G with the orientation
induced from CA. We have γ{G^) is zero. By (5.2) y{Gι) =
and

if m is odd,

if m is even.

By (5.3), y(Gi) = Tr(y(G)).Thus

Ύτ(γ(G)) = ([m/2] - €)2^ = ([m/2] +

Since T r / 7 = 2^ and Tr( / ) = 0, we conclude that γ(G) =
([m/2] + C ) / + μ/ where μ is zero or one. However if μ is one, we
simply change the orientation on one component of L{£m) and then
γ(G) is as stated in (4).

We only have the proof of (6) left. Let p be a point of G and as-
sume without loss of generality that p is in the chart given by ZQ Φ 0.
Thus p = [1, α, b] and [1, tϋi, W2] parameterizes a neighborhood
of p . In these local coordinates, G is given by W\ = f\(z) and
Wi = fi(z) > where Z G [ / C C is a local complex coordinate for CA
around p and the fι are complex analytic. Then (l/h)\o is given
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locally by

where \p is a branch of the square root around 1 + a1 + 6 2 ,
| (z 0 , z 1 ? . . . , zΛ) | = \zo\

2+\zι\2+- -\zn\
2, and 77: C/ -> C 3 is defined

by the above equation. Note that H is analytic in each coordinate.
We need the lemma given below which we could not find in the litera-
ture, lΐ h\o has a local minima, then {l/h)\G has a local maximum.
Thus \H(z)\ has a local maximum. By Lemma (6.4), H and thus f\
and fι are constant, but this is impossible. This completes the proof
of (6.1). D

LEMMA (6.4). IfUcC, H: U -> Cn is analytic in each coordinate,
and \H\ has a local maximum, the H is constant.

Proof. The lemma for n = 1 is the familiar maximum modulus
principle. For n > 1, assume \H\ has a local maximum at p . Define
H(z) = H(z) H(p). By the Cauchy-Schwarz inequality \H(z)\ <
\H{z)\ \H{p)\ < \H(p)\2 = H(p). As H has a maximum at p, by the
maximum modulus principle, H is constant. So the Cauchy-Schwarz
inequality must be an equality. Therefore H(z) = λ(z)H(p) where
\λ(z)\ < 1 and λ is analytic. As λ(p) = 1, again by the maximum
modulus principle λ is constant. Therefore H is constant. D

Proof (of Addendum (6.2)). Using (2.6), we may inductively make
CAi nonsingular, transverse to each other and to Σ, with no triple
intersections. CAi intersects CAj positively in m z m ; points with
dij points occurring on RP(2). The other points come in complex
conjugate pairs away from Σ. The result follows. D

Proof (of Addendum (6.3)). Consider the two lines £±i through
[1, 0, 0]: z2 = ±iz\. They intersect Σ in one point [ 0 , 1 , ±/].
The individual intersections with RP{2) are transverse at [ 1 , 0 , 0 ] .
The intersections at [ 0 , 1 , ±i] are tangencies of order two, because
Σ has degree two and £ ± l have degree one. If we take a small δ
neighborhood of [ 0 , 1 , ±i] in RP(2) and let Dδ denote the normal
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FIGURE 2

2-disk bundle over it in h~ι[09δ], then ΣnDό (the 0-section) in-
tersects dDβ an unknot. Also £±/ will intersect dD$ in an unknot
lying in h~ι{δ). Thus we obtain a link in dDs with two unknot-
ted components and with linking number 2 (as the multiplicity of the
intersection is two). Here we orient the components as the bound-
ary of DSΓ\Σ and Dδ Π £±/. This link is an algebraic link given by
the singularity w{z2 — w2 — 2w) = 0. (Here we use the local chart:
ZQ = z, z\ = 1, Z2 = i(w + 1).) Thus it is a particular type of it-
erated torus link [E-N], The only algebraic link with two unknotted
components with linking number two is the symmetric link in Figure
2.

Note £±| form two complex conjugate lines in CP(2) and thus lead
to a single annulus in h~ι[δ, 1 — δ] « Q x I. We wish to describe
£iΓ\h-{(δ) and fi/ΓlA-^l-<J) in Q. Consider the following pro-
cess. Begin with the oriented circle fiber of h~ι(δ) —• Σ which maps
to [0, 1, ±i] and shake off two parallel fibers. Next join these fibers
by a band sum where the band's core is the path of a point during the
shake-off, and such that linking of the original fiber with the new curve
is +1 (in either dDδ or h~ι(δ)). The linking numbers in dD$ or
h~ι(δ) will be the same as both can be computed from intersections
in D# as D# is part of the rational ball h~{[0, δ]. See Figure 3 for
the above process taking place in dDs . Thus we obtain in this way
£iΠh-ι(δ) up to an isotopy in fi^nFψ).

Since a fiber of h~ι(δ) corresponds to L(£) for some £ in RP(2)
under the diffeomorphism to Q induced by the gradient of h2, if we
perform the same process to L(£) in Q, we will obtain £/ Π (0 x Q)
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Before

During

in β . By (3.1), Lk(L(£), L(D{£))) is one. Moreover £(/>(£))
arises from a band sum of the two pushed off lines along a band with
the specified core. Thus we see that £, n (0 x Q) in Q is given by
L(D(£)).

Now £± intersects RP(2) transversely at [ 1 , 0 , 0 ] . They also
intersect each other transversely there. Take a small J-neighborhood
Dδ of [1, 0, 0] in RP(2) and let Bδ denote the normal 2-disk bundle
over it in h'ι[l -δ, 1]. Then £ ± and ΛP(2) intersect 55^ in a
link with three unknotted components. Pick a local orientation of
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RP(2) in a neighborhood of [ 1 , 0 , 0 ] , say that given by the chart
x0 = 19 χx = x 9 and X2 = y, and the orientation on R2 given by
the frame e\, £2 Then orient dBs as the boundary of B$ with
the orientation it inherits from CP(2), and orient the components
of the link as the boundary of the oriented disks they bound in Bδ .
Complex conjugation induces an orientation preserving involution on
dBs which fixes the component on RP(2) and switches the other two
components while reversing their string orientations. An elementary
exercise using stereographic projection allows one to see this situation
clearly. Up to isotopy the oriented link is given in Figure 4a. One
may also see the 2-component link in the orbit space dBs. We use
the orientation on the intersection with £ z to orient one component
of the link in the quotient. It is pictured in Figure 4b. We have
identified h~x{\ -δ) oriented as the boundary of h~ι[\ - δ, 1] with
Q = PTRP(2) in an orientation reversing way. Note dBδΠh~ι(l - δ)
is sent to PTDs by a bundle map (they are both circle bundles over
Dδ) which is orientation reversing on the fibers. We are interested in
the knot £^ n 1 x <2 in l x β oriented as the boundary of 5/ Π / x Q
with 5/ oriented with the orientation of the complex manifold £ z .
This lies in the boundary of the disk bundle associated to PTDδ . We
may obtain a picture of it here from Figure 4b. We should reflect the
circle fibers across a horizontal plane and reverse the orientation of
the component associated to 5/. In this way we obtain Figure 4c, and
after an isotopy we arrive at Figure 4d. This can be described as a
picture of PTCs in PTDs where Q is a small circle around [1,0,0]
oriented as the boundary of its interior with the local orientation at
[ 1 , 0 , 0 ] .

RP(2)

\f

FIGURE 4a FIGURE 4b
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y.

FIGURE 4C FIGURE 4d

Thus we have an annulus H in Ix Q with Hn(l x (?) = L ( Q ) and
Hn(OxQ) = L(D(£)) where £ is the line with L(£) corresponding
to the fiber over [0, 1, i] e Σ. We have a similar annulus for every
point in pk e RP(2) and local orientation at pk There are exactly two
complex conjugate lines in CP{2) through a given point p e RP{2)
which are tangent to Σ. So we can do the same construction as above.
Or we can use the SO(3) action described in Remark (4.3) to move
H around to the position we want. Thus given a collection of points
pk with local orientations around them we can find annulus {Hk} in
/ x Q, so that HkΠ(lxQ) = L(Ck) and Hkn(0xQ) = L(D{Zk)).
By moving the pk a small amount we can guarantee that the Zk are
distinct from all the lines appearing in the £ m .

Using (2.6), we can change the Fj a small amount inductively so
that the (7/ and the Hk are in general position, i.e. intersect trans-
versely with no triple points. We will have G; intersect Hk in m;
points. Note that the choice of orientation at pk and thus of Hk

picks out one of the two complex lines through pk and tangent to
Σ, say H£. Suppose A\ is dividing. A complex orientation of A\
picks out one component of CAj - Aι, say CAf . The positive points
of intersection between G; and Ak come from the points of intersec-
tion of CA^ and H£ . The negative points of intersection come from
points of intersection of T{CA+) and H£. Since all the points of
intersection of CAf and H£ take place in / x Q and Q is a rational
homology ball we have by (3.1):

CA+ o H+ = lk(L+(Λ), M Q ) ) " lk(L + (£ W | ), £+(/>(£*)))

= r(Ai, pk) + rm/2

and T(CA+) o H+ = -r(At, pk) + rm/2. Thus Gt o Hk = 2r(At, pk).
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We calculate H^ o Hk similarly using linking numbers in Q. It is
quite easy to see that two distinct H^s will intersect in 2 points of
opposite sign. D

REMARK (6.5). The diffeomorphism φ of h~ι(δ) with h~ι(l — δ)
given by the flow associated to Vh2 can be seen as follows. First we
identify h~ι(δ) with Q using the normal bundle projection h~ι(δ) ->
Σ = RP{2). Next identify h~ι(l - δ) with Q using the normal bun-
dle projection h~ι(l-δ) -> RP(2). Here we are giving h-1 (1 - δ) the
orientation it acquires as the boundary of h~ι[δ, 1 - δ] and h~ι(δ)
the orientation it acquires as the boundary of h~1 [0, δ ]. Then φ:Q—>
Q is orientation preserving. (It had better be as there are no orien-
tation reversing diffeomorphisms by [Ru].) In the proof of (6.1), we
showed φ sends a fiber of h~ι(δ) -* Σ to L(£). The identification of
h~ι(δ) with Q is only well defined modulo $/ which extends over
the disk bundle. Therefore φ is isotopic modulo s/ on the domain
to the map ZΓ discussed in §3.

7. A new formulation of a theorem of Viro and Zvonilov. Let C be
a collection of disjoint oriented simple closed curves {Q} in RP(2).
Let € be the number of ovals. A pair of ovals is called injective if
one is nested in the interior of the other. An injective pair of ovals is
called negative if they are homologous in the complement of a point
interior to both of ovals. Otherwise the pair is called positive. If C
includes a 1-sided curve, we say an oval O is negative, if the oval is
homologous to twice the 1-sided curve in the complement of a point
interior to the oval. Otherwise it is called positive. Let Π+ denote
the number of positive injective pairs, and Π~ denote the number of
negative injective pairs. Let Λ+ denote the number of positive ovals,
and Λ~ denote the number of negative ovals. If there is no 1-sided
curve, we set Λ+ and Λ~ to be zero. These notations are due to
Rokhlin [R2]. Given a collection as above, in §3 we defined a pushed
off collection C. The following proposition follows easily from (3.1).

PROPOSITION (7.1).

lk(L(C), L(C)) = 2€ + 4 ( i r - Π+) + 2(Λ" - Λ + ) .

THEOREM (7.2) (Rokhlin). If A is a nonsingular dividing curve in
RP{2) with one of its complex orientations, then for the collection A :
C + 2(Π- - Π+) + (A- - Λ+) = [m2/4].
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Proof. Let L'm be a copy of Lm pushed off with the given framing.
By (3.1), \k(Lm, L'm) is zero. It is easy to see that lk(L(A), L{A')) -
lk(Lm, L'm) = GoG for the cobordism of (6.1). By (6.1), G o G1 =
[m2/2]. D

THEOREM (7.3). Let A\ and A2 be two nonsingular dividing real
algebraic curves which intersect transversely in r points. Then

\\k(L(Aι),L(A2))\<(mιm2^r)/2

with equality modulo two.

Proof. We apply (6.2). Twice the total number of intersections of
G\ and G2 is m\m2-r. Let τ denote twice the number of negative
intersections. So πi\m2 - r > τ > 0. Then lk(L(A\), L(A2)) =
GxoG2 = (mιm2-r)/2-τ. n

Suppose A\ is the zero locus of F\ in RP(2) and A2 is the zero
locus of F2 in RP{2). Then A\UA2 is the zero locus of F\ F2 in
RP(2) and CA{UCA2 is the zero locus of Fx F2 in CP(2). Suppose
we have already changed the coefficients of F2 using (2.6) so that CA\
intersects CA2 transversely. According to Brussotti's Theorem (see
[Gu, p. 12])? we can change the coefficients of F\ F2 an arbitrarily
small amount while keeping them real so that we can affect an arbi-
trary choice of smoothing at each real double point. If necessary we
may then make a further small choice of coefficients using (2.6) so that
the zero locus in CP{2) is nonsingular. Let F be the resulting poly-
nomial, A its zero locus in RP{2), and CA its zero locus in CP{2).
Near the complex double points of CAX u CA2, CA is isotopic to the
resolution obtained by replacing neighborhoods of the double point
on CA\ and CA2 by an annulus which is compatible with the orien-
tations on CA\ and CA2 given by the complex structure. Suppose
we choose the smoothing at each double point to be compatible to the
complex orientations of A\ and A2. Recall the choice of complex
orientations comes from a choice of one half of CA\ denoted CA\+
and a choice of one half of CA2 denoted by CA2+ . A will divide
CA if and only if CA\+ intersects only CA2+ and misses T(CA2).
This will happen if and only if all the intersections between G\ and
G2 are positive; i.e. the τ of the proof of (7.2) is zero. Thus we have
proved:
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THEOREM (7.4). Let A\ and A2 be two nonsingular dividing real
algebraic curves which intersect transversely in r points. Suppose A
is formed as above by smoothing the intersections using some complex
orientations on A\ and A2. We have that A is dividing if and only if
Lk(L(A\), L(A2)) = [nt\m2 - r)/2 using the chosen complex orienta-
tions on A\ and A2. In this case the orientation on A induced by the
complex orientations on A\ and A2, is a complex orientation for A.

REMARK (7.5). Now if A is dividing with this complex orientation,
it must satisfy (7.1). Just thinking about linking numbers, we can see
that, if A\ and A2 also satisfy (7.1), A will satisfy (7.1) if and only
if Lk(L(A\), L(A2)) = [m\m2 - r)/2. Viro and Zvonilov's theorem
(4.8) of [V] is thus equivalent to (7.2), (7.3) and (7.4).

8 Kirby calculus. In this section, we use the Kirby calculus [K],
[A-K] to describe Xn, Q, Q, and L(A) in Q. We also use the
calculus to show Q is the lens space L(4, 3) and Q is S 3 modulo
the quaternion eight subgroup with the orientation reversed. We give
a new proof of the theorem of Massey and Kuiper that CP(2) modulo
complex conjugation is S 4 .

PROPOSITION (8.1). Xn can be built with one 0-handle, one l-handle
and one 2-handle as prescribed in Figure 5a. Thus Q and Q are given
respectively by the framed links in Figures 5b and 5c (or 5d).

\ Γ

-

n-2

-1

FIGURE 5a FIGURE 5b
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Proof. RP(2) can be built with one 0-handle, one 1-handle attached
in a nonorientable way, and one 2-handle. Since Xn must be a trivial
2-disk bundle over each of these pieces, it can be built in the same way,
except the one handle must be attached in an orientable way. Our first
0-handle is just a 4-ball with boundary S3 . Our 1-handle is attached
to B4 along the two 3-balls pictured in Figure 6 in such a way that if
the 3-ball is slid along the 1-handle, it will come out at the other 3-ball
with the point labelled 1 landing at the point labelled 1' on the other
3-ball, etc. Finally the 2-handle is attached along an S 1 x ΰ 2 whose
core circle consists of the arcs joining 4 to V and 1 to 4' in Figure
6 plus two arcs which travel straight over the 1-handle. We leave the
framing of this last 2-handle temporarily undetermined. Finally note
that the 0-section of Xn is isotopic to a disk bounding the unknot in
S 3 pushed into B4 union a 1-handle in the 4-dimensional 1-handle
union the core of the last 2-handle. Now we isotope the picture so that
the two three balls are identified by reflection in the plane separating
them. See Figure 7a. Next following Akbulut and Kirby [A-K], we
view B4 union the 1-handle as the complement of an unknotted disk
in B4 and denote this by a circle with a dot. Figure 7b then means:
take B4, excavate an open tubular neighborhood of the unknotted
disk in B4 which spans the dotted curve, and then attach a 2-handle
to the other curve with framing still to be determined. The 0-section
of Xn is the evident Mobius band in the 3-sphere pushed into the 4-
ball union the core of the 2-handle. Since the framing on the attaching
curve for the 2-handle which comes from the Mobius band is - 2 , if
we attach the 2-handle with framing - 2 , we will get a bundle with
euler number zero. Thus Xn is obtained by attaching the 2-handle in
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3 31

FIGURE 6

FIGURE 7a FIGURE 7b

Figure 7b with framing n - 2. To obtain a surgery description of Sn ,
we can just replace the circle with a dot with a 2-handle with framing
zero as in Figures 5b and c. D

PROPOSITION (8.2). Q is oriented diffeomorphic to L(4, 3) and -Q
is oriented diffeomorphic to S3 thought of as the unit quaternions mod-
ulo the subgroup with element {±1, ± 1 , ±j, ±k}.

Proof. If we blow down the unknot which is framed - 1 in the
framed link description for Q, we get an unknot with framing 4.
This is a description of -L(4, 1) = L(4, 3). The framed link for Q
appears in Rolfsen [Ro, pp. 304-305] where he shows πι(Q) is the
above quaternion eight group, and that Q is the 3-fold branched cover
of S3 along the mirror image of the trefoil knot as drawn in Rolfsen's
table. This is the link of the singularity z3 + w2 = 0. Note the pic-
tures of this link in both [Mil] and [M] have the wrong orientation.
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The pictures in [E-N] have the correct orientation. Thus Q is ori-
ented diίFeomorphic to the Breiskorn manifold M(2,3,3) (oriented
as the boundary of z\ + z\ + z\ = δ intersect a small ball around the
origin) [Mi3, Lemma (1.1)]. By [Mi3, Theorem (4.5)], AΓ(2, 3, 3)
is oriented diίFeomorphic to S3 modulo the left action of a discrete
subgroup of SU(2) (the proof shows that the difFeomorphism is ori-
entation preserving). By the calculation in Rolf sen this subgroup is
isomorphic to {±1, ±i, ±j, ±k} . It is not hard to see that any two
subgroups of SU(2) isomorphic to {±1, ±/, ±j, ±k} must be con-
jugate. There is a well-known isomorphism of the unit quaternions
with SU(2). However the left action of the unit quaternions on S3

by left multiplication on itself is different than the action it gets from
this isomorphism with SU(2). One action may be obtained from
the other by conjugating with an orientation reversing involution on
S3. Therefore -Q is difFeomorphic to the unit quaternions mod-
ulo {±1, ±i, ±j, ±k}. Here we orient the unit quaternions as the
boundary of the 4-disk. D

REMARK (8.3). As the orientation preserving difFeomorphisms of Q
freely permute the non-zero elements of Hx{Q,Zj) (which classify
the non-trivial 2-fold covers) all the non-trivial 2-fold covers of M are
oriented difFeomorphic to Q = L(4, 3). As L(4, 3) does not possess
an orientation reversing difFeomorphism (this follows easily from the
linking form), Q cannot possess an orientation reversing difFeomor-
phism. This is given another proof in [Ru], It follows that although
S3 and SU(2) are isomorphic as Lie groups, no isomorphism between
them matches up their usual left actions on *S3 .

Now we wish to describe L(C) in the above surgery description of
β , if C is a collection of embedded curves in RP{2). As L{C) is
determined up to isotopy by the isotopy class of C, we may isotope
the 1-sided curve S? (if any) so it consists of the core of 1-handle and
part of the boundary of 0-handle in the original handle decomposition
of RP(2). Isotope the remaining ovals into a small disk D in the 0-
handle. Lying over Jΐ?, there is a Klein bottle K^ and lying over
each oval Q , there is a torus 7} sitting in the solid torus T lying
over D. If we follow these surfaces through our construction of X2
and Q, K& and T wind up as pictured in Figure 8.

L(Jΐ?) is a section of K& —• £?. However there are only two sec-
tions up to isotopy in K& and they differ by the antipodal map. Since
the antipodal map restricted to T is isotopic to the identity, we can
pick the simplest looking section for L(-S*) without loss of generality.
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FIGURE 8

By definition L(Q) is a (2, 1) torus knot on Γz. Here the first fac-
tor tells us how many times the curve goes counterclockwise around
the fiber direction in T, and the second number gives the degree of
the projection onto C, (oriented counterclockwise). Note any com-
plex orientation on Q is irrelevant here to the location of £ ( Q ) , but
does then induce an orientation on L(C, ) after its location is deter-
mined. This determines L(C). For instance if C is as pictured in
Figure 9a then L(C) is shown in 10b. In general L(^f) will appear
as drawn and inside T, we will have a collection of (2, 1) torus knots
lying over the different ovals of C. Note also that L(Jϊf) by itself
is isotopic to a meridian to the handle on the right so Lm up to iso-
topy consists of m unlinked meridians of this handle. See Remark
(3.1). The process described in the proof of (6.3) allows one to see
how D(<2?) is obtained from L(&) as well.

The surgery description of Q given in Figure 5d has an obvious
symmetry of order 2. This defines an involution which switches /
and / in H\(Q). So this is isotopic to the involution called ΪΓ in §3.

FIGURE 9a
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FIGURE 9b

Using Remark (6.5), we see that the orbit space CP(2) can be built
from two copies of Xι glued together by &~. This allows us to give
a new proof of the following theorem.

THEOREM (8.4) (Massey [M], Kuiper [K], Arnold [A]). The orbit
space of complex conjugation on CP{2) is diffeomorphic to S4.

Proof. Let JV be a neighborhood of a fiber of X2 . It is of course
diffeomorphic to D2 x D2 . When glued to the second copy of X2, it
becomes a 2-handle attached along a meridian for the circle with dot
in the handle decomposition of this second copy of X2. Xi~ int(./f)
is a D2-bundle over a closed Mόbius band with orientable total space.
Thus X2 - irύ{yy) is also a D3 bundle over Sι with orientable total
space. So X2-mt(J/') « SιxD3 and can be built with a 0-handle and
a 1-handle. Thus our orbit space can be built with one 0-handle, one
1-handle, two 2-handles (one given by JV), a 3-handle and a 4-handle
(turning upside down the decomposition of X2 - int(.#*)). However
the 2-handle given by Jlί geometrically cancels the 1-handle, and thus
our space has a decomposition with one 0-handle, one 2-handle, one
3-handle and one 4-handle. Moreover the 2-handle is attached along
an unknot with framing zero. Thus the orbit space is obtained by
identifying the boundaries of S2 x D2 and Sι x D3. By [L-P], this
must be the 4-sphere. D

9. A generalization of the Tristram-Murasugi inequalities with an
application. We begin by defining a common generalization of the
Casson-Gordon invariant of a character on a closed oriented 3-mani-
fold [C-Gl], [C-G2], [Go, p. 42] and an invariant of Z^-colored links
in S3 which we defined in our thesis [Gl], [G2]. Let M be a closed
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oriented 3-manifold (not necessarily connected), L an oriented link in
M which comes equipped with a framing / of its normal bundle, and
ψ a ^-character (by this we mean an element in H1 (M—L, Zd)). We
insist that ψ evaluated on meridians of L be units. This last require-
ment is convenient but not really necessary, as we will show in a future
paper. We will shortly see that in this situation we can always find a
triple (W, G, θ) where W is a 4-manifold with dW = rM some
multiple of Af, G is a properly embedded surface with dG = rL,
and θ e Hι(W — G, Zj) where θ evaluates on meridians of G to
be units and θ restricted to each copy of M on the boundary is
ψ. In this situation, we will say d(W, G, θ) = r(M, L, ψ), that
(W, G, θ) is a coboundary of r(M, L, ψ) and that [W 9 G, θ) is a
rational coboundary of (Af, L9ψ). Casson and Gordon showed that
if L is empty then (Af 9L9ψ) has^a rational coboundary with G
empty. Using θ, we may construct W, a branched cyclic cover of W
along G with a specified generator g for the group of covering trans-
formations^Let H denote the ζ = e2πιld eigenspace for the action of
g on Hι(W, C) . For each component (7/ of G, let #/ denote the
integer in the range [0, d - 1] which is congruent modulo d to θ of
a positive meridian to Gj . Let Sign(/f) denote the signature of the
intersection pairing on Hι{W, R) Hermitianized and then restricted
to H. Let G' denote a copy of G made transverse to G so that it has
been pushed off along L by the specified framings on the components
of L. We define

\

PROPOSITION (9.1). Some multiple (Af, L, θ) has a coboundary.
s(M, L, θ) is well defined.

Proof. As ψ on each meridian of L gives a unit, we can find a fram-
ing e on L so that ψ evaluates zero on push-oίfs of components of
L with this framing. Then ψ extends uniquely to a characteristic ψι

on e-framed surgery to M along L, which we denote N. Moreover
if we let V be the result of adding 2-handles to Af x / along LxO
with the framing e and Δ the union of the cores of the 2-handles with
Lx I. There is a unique θ such that (V, Δ, θ) is a coboundary of
the disjoint union of (-Af, L, ψ) and (N, φ, ψ'). Here 0 denotes
the empty set. As by Casson and Gordon, (N9 φ9 ψ

f) has a rational
coboundary, it follows that (Af 9L9ψ) has a rational coboundary. As
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the integers act on the framings of a component, we can define bt to
be the "difference o f e\ and f.

To see s(M, L, θ) is well defined we add multiples of two choices
of rational coboundaries together to form a closed cyclic branched
cover, use Novikov additivity, and apply some corollary of the G-
Signature theorem, for instance (5.4) of [G2]. We omit the details of
this by now familiar argument. D

We also define η(M, L9ψ) to be the rank of the C-eigenspace for
the action of g on H\ (M, C) where (M, g) is the cyclic branched
cover of M along L given by ψ. We call this the nullity. Actually
this is the same as the rank ofjthe C-eigenspace for the action of g
on Hi(M - L, C) where (M - L, g) is the cyclic unbranched cover
of M-L, by a Mayer-Vietoris argument [G2, (3.2)]. This generalizes
η(M9 ψ) defined in [G2, p. 356]. We have η(M9 φ9ψ) = η(M9 ψ).

PROPOSITION (9.2). s(M, φ, ψ) = σ(M9 ψ), the Casson-Gordon
invariant Moreover, in general s(M, L, ψ) = σ(N, ψ1) + SignF -
(2/d2)Σi<ίi(d-ai)bi. Moreover η(M, L,ψ) = η(N, ψf). Here V,
N, ψ1, and b\ are as in the proof of {9 λ) above.

Proof. We just use (V,A,Θ) to calculate d(V9A,θ), and use the
additivity of the invariant over disjoint union. The Mayer-Vietoris
sequence argument gives the equality of nullities. D

Using the above proposition and Theorem (3.6) of [G2], one may
calculate s(M, L, ψ) and η(M, L, ψ) given a picture of L in a
surgery description of M. In §8, we gave such a description of L(C)
where C is a collection of embedded curves in RP{2). However it
is quite laborious to calculate these invariants in this way. We are
working on developing a new more efficient procedure.

If M is a rational homology sphere we can assign a "canonical"
framing to a link in one of two ways. The first way assigns to each
component Kj the framing for which when we take a push-off with
that framing we get K\ with lk(Ki9Kϊ) in the range [0,1) . If &
denotes the Q/Z valued linking form on Hi (M), then this number
is simply the representation of Jΐ?([Ki], [Ki]) in the range [0, 1). If
Ki is null homologous in M (which it must be if M happens to be
a homology sphere), this framing is given by the way a Seifert surface
for Ki must meet Ki. For lack of a better name, we call this the
first framing. The second framing is given similarly except we make
\k(Ki9Kt) + J2j#WKi,Kj) ώ the range [0,1) . If £,.[*,-] is zero
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in H\ (M), then L has a Seifert surface and the second framing is
given by the way a Seifert surface for L meets L. Thus for links
in a rational homology sphere, the extra data of a framing is really
unnecessary to define an invariant. We simply define the invariant as
above to be calculated with the first framing for instance. We have
a slightly different invariant if we calculate with the second framing.
Of course, they are related by a formula involving the linking number
of the components. For our purposes, it is convenient to have links
come equipped with the extra data of a framing. It may be the first
framing, the second framing, or some other explicit framing like the
framings defined in §3.

Note that if M is a Z^-homology sphere, then a character ψ e
H1 (M-L, Zj) which evaluated on each meridian is a unit, is simply
given by assigning freely to each component of I , a unit in Zd.
Thus for links in a Z^-homology sphere, we have an invariant of Z^-
colored links. We will use the same letter ψ to denote a coloring and
the related character. In our thesis [Gl], [G2, pg. 367], we define a
signature invariant σ(L, ψ) and nullity invariant η(L, ψ) of colored
links in S3 generalizing the Levine-Tristram signatures of uncolored
links [L], [T]. Later Cooper [Cl], [C2] in his thesis defined a related
signature invariant for ^-component links in *S3 parameterized by an
n-torus. More recently Smolinsky has defined a related invariant in
high dimensions as well [S].

PROPOSITION (9.3). Suppose L is a link in S3 with the second fram-
ing and ai is the color of the ith component of L. Then

s(S3 ,L,ψ) = σ(L,ψ) + -^

η(S\L, ψ) = η(L, ψ).

Proof. Compare the formula in (9.2) with the definition of σ(L, ψ)
in [G2, middle of p. 367], and the definitions of the two nullity in-
variants. D

When L is nonempty, we will write s(L, ψ) for s(M, L, ψ) and
η(L, ψ) for η{M9 L, ψ), as M is understood from L. Let c(a, b)
denote -1 + 2(a + b)/d - 4ab/d2 for a, b e [1, d - 1] representing
units in Z j .

PROPOSITION (9.4). Let L betheHopflinkin S3 of two components
with linking number one and the first framing. Suppose ψ colors one
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component a\ and the other <z2> where 0 < <2Z < d. Then s(L, ψ) =
c(a\, a2) and η(L, ψ) is zero.

Proof. This follows from (9.3) above and (3.8) of [G2] which says
σ(L, ψ) = - 1 . We only need to adjust for the difference between the
first and second framing. D

THEOREM (9.5). Let d be a power of a prime p and M a Zp-
homology sphere. Let {Li} and {Lf

t} be two collections of disjoint
framed links in M (we allow some of these links to be empty). For
every i, let Gi be an oriented link cobordism between Lt and L\.
Assume the Gi are transverse with no triple points in I x Q. Let G
denote the union of the Gi in I x Q, L the union of {Li} in Q and
LI the union of {L^}. To simplify matters, we also assume that there
exists a path on G joining the two sides of I x Q, and there are no
closed components. Let G\ denote Gi pushed off itself so that along
the boundary the push-off is given by the framings of the links. Color
the cobordism by assigning ai e Z^ to Gi. Let ψ and ψ1 denote
the induced colorings of the links L and Lr. We have the following
inequality which is an equality modulo two;

s{L, ψ)-s{L', ψ')-

+ η(L, ψ) + η(L' 9 ψ) < βι (G) - βo(G) + 2Δ

where Δ = Minimum{τ/(L, ψ) + η(U, ψ), —1+Σi βo(Gi)}

Proof. Let N denote a regular neighborhood of G (the union of
small tubular neighborhoods of the individual Gi), E = Ix β—int(JV)
and S = NΓ)E. We have H4(I x Q,E,ZP) « H4(N,S,ZP) «
H0(N, iV n {dl x Q), Zp) « H0{G, dG, Zp) « 0, as we hypothesized
no closed components. Also

HX(G9 dG, Zp) « HX(N9 NΓi(dI x Q)9ZP)

« H\I x β, ^ , Zp) -+ H\I xQ,Zp)

can be seen to be onto because there exists a path on G joining the
two sides of I x Q. Thus using the long exact Zp cohomology se-
quence of the pair ( / x β , £ ) , w e see that H3(E, Zp) = 0. Simi-
larly H2(G9 OG, Zd) « H2(N, Nn{dlx Q),Zd) « H2{N, 5, Zrf) «
/ί 2(/ x β, E, Zd). As //!(/ xQ,Zd) and /f2(/ *Q,Zd) are both
zero, we see, using the same long exact sequence with Zd coefficients,
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that Hι(E, Zd) « H2(I x Q, E, Zd) « ^ ( ί ? , 3G, Zd) which is a
direct sum of a copy of Zd for each component of G/. Moreover
the character associated to a component of Gj in this way is one on
a positive meridian of that component, and zero on the meridians of
other components of Gj and the components of the other Gj. Thus
we may pick Ψ e Hι(E, Zd) which assigns α, to the meridians of
each component of G/ for all /. Note Ψ|i x ρ = ψ and Ψ|oxg = Ψ1

Let £ψ denote the regular Z^ cover of E given by Ψ, together
with the induced generator for the group of covering transforma-
tion, as in §1 of [G2]. We may complete Eψ to form a space Eψ
lying over I x Q which is a branched cover of / x Q minus the
points of intersection of the G/ and above each of these points we
have a single point which has a neighborhood which is a cone on
the lens space which is the branched cover of S3 along the Hopf
link which describes the point of intersection. Let W denote I x Q
minus smaljjopen spherical neighborhoods of the points of intersec-
tion, and W the part of Eψ which lies over W. Note we may
use (W9 Gn W9 Ψ) to calculate s(L9 ψ) - s(L', ψ') - Σs(Hk, ψk)
where k runs over all the points of intersection and (Hk, ψk) de-
notes the Hopf link which describes the intersection together with
the restriction of Ψ. Since SignW = 0, we have that s(L9 ψ) -
s(L', ψ')-Έs{Hk, ψk) is Sign(/ί) + ( 2 / ^ 2 ) Σ ^ / ( ^ - ^ ) ^ o G ; . . By
(9.4), ΣXffc, Ψk) = Σi>jΦi^j)GioGj. Here H denotes the ζ-
eigenspce for the action on Hι{W, C) together with the restriction of
the intersection Hermitian form. Thus we have that Sign(/f) is given
by s(L, ψ)-s(L'9 ^)rEi>jC{ai9 aj)GioGj^f2YJiai{d^ai)GioG'i.
Let η denote the nullity of this form.

We will let pk(X) denote dimHk(X,Zp), Ήk(Y) denote the C-
eigenspace for g acting on Hk(Y, C), where Y denotes a space with
Zd action with a specified generator g, and βk{Y) denote the dimen-
sion of ~Hk{Y). Mayer-Vietoris sequences show βk(Eψ) = βk{E^) =
Jk{W) for k φ 0. Since p3(E) = 0, by [G2, (1.4)], J3(E^) = 0.
By [G2, (1.1)], χ(E), the alternating sum of the βk(X)9 is χ(E).
As N deformation retracts on G, and χ(S) and χ(I x Q) are zero,
χ{E) = -χ(G) = β\(G) -J3o(G). As £ Ψ is connected, "βg{Eψ) = 0.
Thus^/(£) = -Ω + ^ 2 ( £ Ψ ) where Ω = ~βx{Eψ) = ~βx(W). Thus
J2(EΨ) = βλ(G) - βo(G) + Ω. As />!(£) ^ Σ / Λ ί G i O ^ Ω ^ -1 +
Σifio(Gi)9 by [G2, (1.5)]. By duality £X(W9 dW) ^β3(W) = 0.
The first map in the exact sequence, H2(W, C) -*- H2(W, 9 ίF, C) ->
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Ήχ(dW, C) —>Ήι(W, C) —> 0, is given by a matrix which alsojep-
resents the Hermitianized intersection pairing on H. As β\(dW) =
?/(L, ^) + f/(L', yθ, we have η = ί/(L, ^) + τ/(Z/, y/) - Ω. From
this it follows that Ω < η(L, ψ) + η(Lf, y/). Thus we have Ω < Δ.
Finally our main equality comes from | Sign(i/)| + η < /^GEψ) with
equality mod two. D

We now illustrate how this inequality may be applied to the cobor-
disms provided by §6. We will only apply this to the cobordism given
by (6.1) although it is easy to apply it as well to those provided by
(6.2) and (6.3). It is also worthwhile to apply this inequality to the
cobordisms obtained by lifting the cobordisms in IxQ to IxQ where
Q is one of the five covering spaces of Q. In fact, the Viro-Zvonilov
inequality (3.10) [V] may be obtained by applying these methods to
the cobordism in IxQ.

PROPOSITION (9.6). Let d be an odd integer and ψ be a Z^-coloring
of the components of Lr. Then s(Lr, ψ) is zero and η(Lr, ψ) = r-1.

Proof. The diffeomorphism J of β sends Lr to r distinct fibers
of the projection to RP(2). We will compute the invariants of ^{Lr)
instead. Suppose tT{Lr) lies over points say {p{\ in RP(2). As
RP{2) is a Z^-homology disk, we may take the branched Zd-cover of
RP(2) along the pi given by a character on the complement which
sends the meridians to α, . Denote this by RP(2). This extends to a
branched cover of the associated disk bundle X2 along the disk fibers
over the pi. Thereover of the disk bundle equivariantly deforma-
tion retracts to RP(2). It is easy to j>ee J^(RP(2)) = J^(RP{2)) =
0. Thus J[{RP{2)) is minus χ(RP(2)) which in turn is minus
χ{RP{2) - \J{Pi}) or r - 1. The result follows. α

The following theorem follows instantly from (6.1), (9.5) and (9.6).
We have yet to work out an efficient method to calculate s(L(C), ψ).
However we are quite hopeful that when we do (9.7) will give new
restrictions on the possible isotopy types of C.

THEOREM (9.7). Let d be an odd prime power, and b relatively
prime to d and in the range [ 1 , ^ - 1 ] . Suppose A is a nonempty
nonsingular dividing real algebraic curve of degree m with its complex
orientation. Give L(A) the framing specified in §3, and the induced
orientation, and let ψ assign b to every component of L(A). Let [ ]
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denote the greatest integer function. Then

s(L(A),ψ)-
2b(d-b)[m2/2] _ ί τ ( Λ , ( m -
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