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BMO AND HANKEL OPERATORS
ON BERGMAN SPACES

KEHE ZHU

Let BMOQ be the space of functions on the open unit ball in C"
with bounded mean oscillation in the Bergman metric defined us-
ing the volume LP integral (see Introduction for precise definition).
This paper studies the structure of BM(fd . In particular, we show
how BMOPQ depends on p . We also characterize BMO% in terms of
certain Hankel operators acting on weighted Bergman LP spaces. A
parallel study is made on the companion space VMOPd .

1. Introduction. By a well-known theorem of John-Nirenberg [4],
[5], the classical BMO of the unit circle is independent of the LP
norm used to define it (usually the Lι norm is used for the definition
of BMO on the circle). It is also well known [12] that a function / on
the circle is in BMO if and only if the Hankel operators with symbol
/ and / are both bounded on the Hardy space H2 of the circle.

A new type of BMO, denoted BMOd(Ω), is introduced in [1], [2]
for any bounded domain Ω in the complex space Cn. The space
is defined in terms of the Bergman metric using the L2 norm with
respect to the volume measure. It is proved in [1] that an L2 function
/ on a bounded symmetric domain Ω is in BMOQ (Ω) if and only
if the Hankel operators (defined in terms of the Bergman projection)
with symbol / and / are both bounded on the Bergman L2 space.

In this paper we show that BMO in the Bergman metric actually
depends on the LP norm used to define it (in contrast with the John-
Nirenberg phenomenon). We will precisely describe the dependence
of BMO in the Bergman metric on p. The BMO in the Bergman
metric defined using the volume LP norm will be used to characterize
certain bounded Hankel operators acting on weighted Bergman LP
spaces.

We need to introduce some notation in order to state our results
precisely. For some technical reasons, we will content ourselves with
the open unit ball in Cn . Some of the results and analysis here also
hold for bounded symmetric domains (for example, all the results in
§2 with some obvious changes).

Let Bn be the open unit ball in Cn with normalized volume mea-
sure dv(z). We will also need the following measures:
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dυa(z) = Ca(l-\z\2)adυ(z)9

where a > -1 and Ca is a positive normalizing constant so that
dva is a probability measure. Let β(z9w) be the Bergman distance
function on Bn . For any z e Bn and r > 0 let

D(z,r) = {weBn: β(z,w)<r}

be the Bergman metric ball with center z and radius r. The (normal-
ized) volume of D(z, r) will be denoted by \D(z, r) | . For a locally
dt> integrable function / on Bn we define a function /r on Bn as
follows:

/r00=, * rM ί f(w)dv(w), zeBn.
\υ\z> r)\ JD(z,r)

fr{z) is the integral mean of / over D(z, r). Fix r > 0 and p > 1,
let BMOj? denote the space of all locally LP integrable functions /
on Bn such that

ll/llr,p = sup \f{w)-fr(z)Pdv{w)\
\D(z,r)\JD{z,r)

It is easy to see that BMO? depends on p. For example, if p < q
and / is a function with compact support in Bn such that / is in
LP(Bn, dυ) but not in Lq(Bn, dυ), then / is in BMO? but not in
ΏMCή. In general, BMO} c BMOξ for p < q. The inclusion is
proper if p < q.

Our first result shows that BMU? is independent of r and it tells
how BMO? depends on p.

THEOREM A. BMO? is independent of r. Moreover, a locally LP
integrable function f on Bn belongs to BMO? if and only if f =
f\ + fi > where

sup / l/i o φz{w)\p dva(w) < +00
zeBn JBn

for all (for some) α > — 1 and

\f2(z)-f2(w)\<C(β(z,w)+l)

for some constant C > 0 and all z, w eBn. Here φz is the canonical
involution on Bn described in 2.2 of [6].

By the above theorem, we can write BMOPd for BMOξ . The symbol
d here stresses the fact that being in BMθPd is essentially a "boundary
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condition." It follows easily from the above theorem that BMOPd is
contained in LP{Bn, dva) for all a > - 1 .

BM0Pd can be described in terms of certain Hankel operators acting
on weighted Bergman LP spaces. Recall that for α > - 1 , dva{z) =
Ca{\ - \z\2)adv(z), where Ca is a normalizing constant. For p > 1
and a > - 1 , the weighted Bergman space Lp

a(dva) is the subspace
of Lp(Bn, dva) consisting of holomorphic functions. Lp

a{dva) is the
closed subspace of LP(Bn, dva) generated by polynomials.

Let Pa denote the orthogonal projection from L2(Bn, dva) onto
Ll(dva). Pa is an integral operator given by

Paf(z)= ί KM(z9w)f(w)dva{w),

where

A ( Z 9 W ) - ( 1 {

is the reproducing kernel of L%(dυa). It is well known [3] that for
p > 1 and a, λ > -1, Pa is a bounded projection from LP{Bn , dvλ)
onto Lp

a{dvχ) if and only if p(a + 1) > λ + 1.
Given a function / on Bn, let Afy denote the multiplication op-

erator induced by / . For a > - 1 and / on #„ we define two
operators ΓJα) and 7/}α) as follows:

Tf] = P.M/P,, Hf] = (I - Pa)MfPa,

where / is the identity operator. T^ and H^ are called the Toeplitz
and Hankel operator, respectively, with symbol / . Note that these op-
erators are densely defined (but unbounded in general) on LP{Bn , dvλ)
as long as / is in Lp(Bn, dvλ). We can now state our second result.

THEOREM B. Suppose p > 1, p(a + 1) > λ + 1 > 0, and f is in
Lp{Bn, dυλ). Then f belongs to BMOP if and only if the two Hankel
operators H^ and H^ are both bounded on LP(Bn , dυλ).

When a = 0, we will write dv for dυa, P for Pa, K(z, w) for

K(°Xz,w), Lp for Lp(dva), Tf for 7J α ) , and Hf for /fj^. We

state two corollaries to Theorem B.

COROLLARY 1. Ifp> 1 and a > - 1 , then f e BM0% if and only

if Hf] and H^] are both bounded on LP{Bn, dυa).
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The above corollary is proved in [1] in the special case p = 2 and
a = 0. However, all results in [1] are proved in the context of a
bounded symmetric domain in Cn .

COROLLARY 2. // a > λ > - 1 , then f e BM0\ if and only if Hf]

and H^ are both bounded on Lι(Bn, dvλ).

The above corollary is partially proved in [11] in the special case
a = n + 1 and λ = 0; but again the setting in [11] is a bounded
symmetric domain. The projection Pn+\ is frequently used in the
study of the Bergman space L\ (see [7], [12]).

A similar study will be made on the corresponding VMθPd and com-
pactness of Hankel operators on Lp

a(dvλ). Holomorphic functions in
BM0Pd (or VMOQ) are precisely the functions in the Bloch space (or
the little Bloch space) of Bn .

In the first version of the paper Theorem B was proved under the ad-
ditional assumption p(n +1 + a) = 2(n +1 +λ). (The proof was based
on a method introduced in [8].) Daniel Luecking read the preprint and
found a way of getting around this condition. I am grateful to Profes-
sor Luecking for allowing me to use his proof and obtain Theorem B in
its present form. I also wish to thank the referee for carefully reading
the manuscript and making several useful suggestions for improve-
ment (and in some instances corrections) of the paper. In particular,
the referee significantly simplified the proof of Lemma 9 and part of
the proof of Theorem 5.

2. The structure of BMθPd . In this section we study the structure of
the space BMO?, consisting of functions / on Bn with

SUP
zeBn

I ί \f(w)-fr(z)fdv(w)<+OOy

z, r)\ JD{z,r)

where

/
JD(z,r)

is the dv integral mean of / over D(z, r).

LEMMA 1. f is in BMO? if and only if there exists a constant C > 0
such that for any z eBn there is a constant λz with

\f{w)-λzψdv{w)<C.
D(z,r)
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Proof. The "only i f part follows by taking λz = fr(z). To prove
the " i f part, assume that the above inequality holds for all z e Bn.
By the triangle inequality for the LP integral,

^[wbτιLjnw)-λ'lP"v(w)
i/P

But

\fr{z)-λz\ = t
\D\Z > r)\ JD{z,r)

(f(w)-λz)dv(w)

Therefore,

/
D(z9r)

<2
lD(z,r)

completing the proof of the lemma.

ηi/p

\f{w)-λzψdv{w)

D

For any r > 0, let BOr denote the space of continuous functions
/ on Bn such that

ωr(f)(z) = sup{|/(z) -/(w)|: w eD(z, r)}

is a bounded function on Bn . ωr{f){z) is the oscillation of / at z
in the Bergman metric.

LEMMA 2. BOr is independent of r. Moreover, a continuous func-
tion f on Bn is in BOr if and only if there is a constant C > 0 such
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that
\f(z)-f(w)\<C(β(z,w) + l)

for all z and w in Bn.

Proof. See [1]. D

We will simply write BO for BOr. The initials BO stand for
"bounded oscillation." We will put the following semi-norm on BO:

\\f\\ = fs*v{\f{z)-f{w)\:β{z,w)<\}.

Let BA? denote the space of all functions / on Bn with the prop-

erty that \f\p

r(z) e L°°{Bn). The initials BA stand for "bounded

average." The next lemma describes the functions in BAp

r.

LEMMA 3. BA? is independent of r. Moreover, the following con-
ditions are all equivalent:

(1) feBA?;
(2) supzeB j B \foφz(w)\p dvλ(w) < +oo for all (or some) λ > - 1

(3) Mf: Lp

a(dvλ) —• LP(Bn , dvλ) is bounded for all (or some) λ >
- 1 .

Proof. See Theorem A in [10]. D

We will simply write BAP for BAp

r. We will use the following
norms on BAP:

= sup / \foφz(w)\pdvλ(w).
zeBn Jβn

For λ > -1 and / on Bn we will write

Bλf(z)= I foφz(w)dvλ(w), zeBn.
J

This is called the Berezin transform of / with respect to the measure
dυλ. It is easy to check that the following change of variable formula
holds for all λ > -1:

Bλf(z)= I f(w)\k{

z

λ)(w)\2dvλ(w),

where

' y/KW(z,z)

are the normalized reproducing kernels for L2

a{dvχ).
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LEMMA 4. Suppose r, s, and R are positive constants', then there
exists a constant C > 0 such that

(1) C-ι<\D(z,r)\/\D(w,s)\<C,
(2) C-1 < (1 - |z|2)/|l - (z, w)| < 2(1 - |z|2)/(l - M 2 ) < C,
(3) C - 1 < | Z ) ( z ? r ) | / ( l ~ | z | 2 r + 1 < C ,

/ o r all z,w eBn with β(z ,w) <R.

Proof. See Lemmas 6 and 8 in [2]. D

We can now prove the main result of this section.

THEOREM 5. Suppose r > 0 and p > 1. Then the following are
equivalent:

(1) feBMO?;
(2) feBO + BAP;
(3) supz€β JB \f o φz(w)-Bλf(z)\P dvλ(w) < +oo for all (or some)

n n

λ>-\;
(4) For any (or some) λ > - 1 , there exists a constant C > 0 such

that for any z e.Bn there is a constant λz with

f \foφz{w)-λzψdvλ{w)<C.

Proof. (1) => (2): Since r is arbitrary, it suffices to show that
C.BO + BAp . Given / G J9Λ/Ofr and β(z,w)<r, we have

|/Γ(Z) - fr(w)\ < \fr(z) - /2Γ(Z)| + |/2r(z) - /,(w)|

^-TT / \f(u)-f2r(z)\dv(u)
z 9 r)\ JD(z,r)

\Au)-f2r(z)\dv(u).
D(w, r)

By Lemma 4, |Z)(z, r)\ - |D(tt;, r)\ - |D(z, 2r)| for all weD(z,r).
Now the first term above is bounded because of Holder's inequality,
D(z, r) c D(z, 2r), and / G BMOPlr. That the second term above is
bounded follows from Holder's inequality, D(w , r) c 2)(z, 2r), and
/ G £Λ/O£.. This proves that fr belongs to BOr (and hence BO) if
feBMO%r.

Let g = f - fr with / G 2?Af0fΓ, we show that g G BAP. It is
rather easy to see that if / is in BMO%r, then / is in BMOξ . By the
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triangle inequality,

.. Γ t r - Vlp

[\8\PΛ

> r)\ JD{z,r)

Since /r is in BOr, we see that g = f - fr is in 2?,4P . Thus we have
shown that / € BMOPlr implies that / = / , + ( / - fr) eBO + BAP.

(2)^(3): Fix λ> -1 and write || ||p for || l l ^ ^ ) . First note that

\\foφz-Bλf(z)\\p<\\foφz\\p + \Bλf(z)\<2\\foφz\\p.

By Lemma 3, | | /o φz - Bχf(z)\\p is bounded in z if / is in
On the other hand,

\\f°φz-Bλf{z)\ψp= I \foφz{w)-Bλf{z)ψdυλ{w)

< I I \foφz(w)-foφz(u)\pdvλ(w)dvλ(u).
JB JB

n n

If / € BO, then Lemma 2 shows that there is a constant C > 0 such
that \f{z) - f ( w ) \ < C ( β ( z , w) + 1) for all z,w e B n . Th is , a long
with the Mobius invariance of the Bergman metric, implies that

\\foφz-Bλf(zψp<σ I I (β(w,u) + iydvλ(w)dvλ(u).

The right side of the above inequality is a finite constant; this follows
from the triangle inequality β(w, u) < β(0,w) + β(0,u) and the
following explicit formula for the Bergman distance:

We see that / e BO implies that | |/o φz - Bλf(z)\\p is bounded in
z.

The proof of the equivalence of (3) and (4) is similar to that of
Lemma 1. We omit the details.
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(3) => (1): By Lemma 4, there is a constant C > 0 such that

l<CCλ\D(z,r)\\k?\w)\2(l-\w\2)λ

for all z eBn and w € D(z ,r). It follows that

1—i / |/(to) - ^ ( z ^ ^ u / )
z> r)\ JD{z,r)

< C I \f(w)-Bλf(z)\o0\w)\2dvλ(w)
JD(z,r)

<C I \foφz(w)-Bλf(z)\t>dvλ(w).
J

The desired result now follows from Lemma 1. D

Theorem 5 shows that BMO$ is independent of the radius r. We
will write BMO% for BMO?. A canonical semi-norm on BM(?d is

= sup | | / 0 ^

where λ > — 1. It is easy to check that the above semi-norm is com-
plete and invariant under Mobius transformations.

COROLLARY 6. If λ > -1 and f e BM0%, then Bλf e BO and
f-BJeBA?.

Proof. By Lemma 4, we can choose a constant C > 0 such that

\<CCλ\D{z,r)\\k^\w)\2{\-\w\2)λ

for all z e Bn and w e D(z, r). It follows that

\Bλf(z) - fr(z)\ < I f \f(w) - Bλf(z)\ dv(w)
\D{z, r)\ JD{z,r)

<C I \f(w) - Bλf(z)\ \kz

λ\w)\2dvλ{w)
JD(z,r)

<C ί \foφz(w)-Bλf(z)\dvλ(w)
JBn

<C\\foφz-Bλf{z)\\U{dVλ).

This shows that Bχf — fr is bounded on Bn if / is in BMO%. Since
bounded continuous functions are both in BO and BAP, the desired
result now follows from the proof of the implication (1) =$> (2) in the
above theorem. D
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REMARK. It follows from the proof of the above corollary that if
/ e BMOPd , then Bλf(z) - Baf(z) is bounded on Bn for all a,
λ > - 1 . This, together with Theorem 5, easily implies that / e BM(?d

if and only if

sup / \foφz(w)-Baf(z)\pdvλ(w)<+oo
zβBn JBn

for all (or some) a, λ > - 1 (not necessarily the same!).
Recall that the Bloch space 3§[Bn) of Bn consists of holomorphic

functions / on Bn such that

are bounded on Bn . The little Bloch space &o{Bn) of Bn is the space
of all holomorphic functions / on Bn such that

for all \<k<n. See [9] for the theory of Bloch functions in several
complex variables.

THEOREM 7. Let H{Bn) denote the space of all holomorphic func-
tions in Bn . Then BMθPd n H(Bn) = &(Bn) for all p>\.

Proof. It is shown in [1] that BOnH(Bn) = &{Bn). Thus &{Bn)
C BM0Pd n H(Bn). On the other hand, if / is a holomorphic func-
tion in BMOPd , then Baf = f for all a > - 1 and hence / is in
BOn H{Bn) = 3S{Bn) by Corollary 6. D

REMARK. The dependence of BMOPd on p is on the "bounded part"
of BMOPd , BAp the "smooth part" of BMOPd , BO, is independent
of p. In this sense, the dependence of BMOPd on p is not heavy.

3. Bounded Hankel operators on Bergman spaces. This section is
devoted to the proof of Theorem B. Recall that for any λ > -1,

are the normalized reproducing kernels of L%(dvχ). For any p > 1,

^]P are unit vectors in LP(Bn, dvλ).
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LEMMA 8. For - 1 < s + λ < a there exists a constant C > 0 such
that

for all z eBn.

Proof. Given t > - 1 and c < 0 we can choose a positive integer
k such that

By the explicit formula for β we can find a constant Q > 0 satisfying

, w) <

Using 1.4.10 of [6] we see that there exists a constant C > 0 with

-\w\2)t+c>/k

for all z eBn. The desired result now follows easily from the change
of variables w h-> φz(w). D

LEMMA 9. L^ί Γ and S be the operators defined by

Then T and S are both bounded on Lp{Bn,dυλ) provided that
p(a+ 1) >λ+ 1 > 0 .

Proof. We prove the boundedness of T. The boundedness of S
can be proved similarly (see [3]).

The case p = 1 follows directly from Fubini's theorem and Lemma
8. So we assume 1 < p < +oo and i + 1 = 1. Write
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By Schur's theorem [12], T is bounded on Lp(Bn , dvλ) if we can find
a number σ and a positive constant C > 0 such that the function
h(z) = (I - \z\2)σ satisfies

for all z eBn and

for all w e Bn. By Lemma 8 this is possible provided that

-1 < a + qσ < α, -1 < λ+pσ < α,

or
α + 1 Λ λ + 1 α-λ

Q P P

Clearly such a number σ exists if and only if

P P J \ Q

is nonempty. The desired result now follows easily from the assump-
tion p{a+\)> λ+\> 0 and the observation that (A, B) Π (C, D)
is nonempty when C < B and A < D. D

LEMMA 10. For each p > 1 and λ > - 1 f/zere exzsts a constant
C>0

\f(z)ψdvλ(z)<C I \u{z)ψ dvλ(z)
JBn

/

for all holomorphic functions f on Bn with /(0) = 0, where u is the
real part off.

Proof. By using a limit argument, we may as well assume that / is
holomorphic in a neighborhood of Bn . Choose a so that p(a+l)>
λ + 1 > 0; then Pa is bounded on LP(Bn, dvλ). Thus there is a
constant C > 0 such that

/ \Pau(z)Pdυλ(z)<C I \u{z)ψdvλ{z)
B JB

n n

for all functions u on Bn . Now if u is the real part of a holomorphic
function / on Bn with /(0) = 0, then
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and hence

It follows that

rau- 2 - 2 - 2 .

/ \f{z)P dυλ{z) = 2> ί \Pau{z)ψ dυλ(z)
JB JB

n n

<2PC ί \u(z)\p dvλ(z),

completing the proof of Lemma 10. D

We can now prove the main result of this section. Recall that
for a > -1 and / on Bn, the Hankel operator H^ is defined

by H^ = (I - Pa)MfPa, where / is the identity operator, Mf is
the multiplication operator induced by / , and Pa is the orthogonal
projection from L2(Bn, dva) onto L%{dva).

THEOREM 11. Suppose p > 1 and p(a + 1) > λ + 1 > 0. Then a
function f on Bn belongs to BMCPd if and only if the Hankel operators

Hf] and H^] are both bounded on LP{Bn, dvλ).

Proof. First assume that / e BMQPd . We show that i/ |α ) and

Hψ are both bounded on LP(Bn , dvλ). Since BM(fd = BO + BA?

(by Theorem A) and H^ depends on / linearly, it suffices to show

that Hf] and H^] are bounded on U{Bn, dvλ) for f e BO and

If / E BAP, then Lemma 3 implies that Mf and Mj are both

bounded as operators from Lp

a(dvλ) into LP{Bn,dvχ). Since

p(a + l ) > Λ + l > 0 , Pa is a bounded projection from Lp(Bn , dvλ)

onto Lp

a(dυλ). Thus Hf] = (I-Pa)MfPa and //ία) = (I-Pa)MjPa

are both bounded on LP{Bn, dvχ).
On the other hand, the integral formula for Pa gives

Hf]g{z)= ( (f(z)-f(w))K^(z,w)g(w)dva(w),

gel/a(dυλ).

Since Pa maps Lp(Bn, dυλ) boundedly onto Lp

a(dvλ), the bounded-

ness of Hf] :LP(Bn, dvχ) -+U>(Bn, dvλ) is equivalent to the bound-

edness of H^: Lp(dvλ) -• LP(Bn, dvλ). Now if / e BO, then
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Lemma 2 shows that there is a constant C > 0 such that

\f{z)-Aw)\<C(β{z,w)+l)

for all z and w in Bn . It follows that

{β{z,w) + l)\Kl"\z, w)\\g(w)\dva(w)

for all g e Lp

a(dvλ) and z e Bn . It follows from Lemma 9 that 7/}α)

is bounded on LP(Bn> dvλ). Similarly, f e BO implies that H^]

is bounded on LP(Bn, dvλ). Thus we have proved that / e BMθPd

implies that both 7/Jα) and 7/|α) are bounded on L^(5W, dvλ).

Next we assume that i/jα) and /ίiα ) are bounded on LP{Bn, dυλ).

We show that / e BMOPd . By considering the real and imaginary parts

of / , we may as well assume that / is real-valued. Since (k^)2^
are unit vectors in LP{Bn, dvλ), there is a constant C > 0 such that

for all z e 5 r t . || || in this paragraph always means the norm in

Lp(Bn, dvχ). Using the definition of 7/|α), we have

Note that each kψ1 is a nonzero holomorphic function on Bn and
\kz\w)\2 is the Jacobian determinant of the change of variable w ι->
^z(^) with respect to the measure dvλ. Thus for each z eBn there
is a holomorphic function gz on lϊw with

\\foφz-gz\\<C.

In fact, gz can be chosen as follows:

Since / is real-valued, \\foφz — gz\\<C implies that

| | I m & | | < C , zeBn.

By Lemma 10, there exists another constant M > 0 such that
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for all z eBn. It follows from the triangle inequality that

\\foφz-gz(0)\\<C + M

for all z e Bn. By the equivalence of (1) and (4) in Theorem 5, we
have / € BMOPd . This completes the proof of Theorem 11. D

COROLLARY 12. For any p > 1 and a > - 1 we have f e BMQPd if

and only if Hf] and H^] are both bounded on U{Bn , dva).

Proof. This follows from Theorem 11 by setting a = λ. D

COROLLARY 13. Suppose a > λ > - 1 . Then f e BMO\ if and only

if Hf] and Hίa) are both bounded on Lx(Bn, dvλ).

Proof. This is just the special case p = 1 in Theorem 11. D

COROLLARY 14. Suppose p > 1, p(a + 1) > λ + 1 > 0, am/ / is

holomorphic in Bn. Then H^ is bounded on Lp(Bn, dυλ) if and

only if f e&, theBloch space of Bn.

Proof. This follows from Theorems 7 and 11 and the fact that
Hf] = 0 if / is holomorphic. D

4. VM0Pd and compact Hankel operators. In this section we study
the companion space VMOPd and its relationship to compact Hankel
operators on LP{Bn, dvλ). When 1 < p < +oo, any two reason-
able definitions for compact operators on LP(Bn, dvλ) are equivalent.
However, when p = 1, the space Lι(Bn, dvχ) is no longer reflexive,
and hence the definition for compact operators on Lι(Bn , dvχ) will
surely make a difference. In this section we will think of the Hankel
operators H^ as acting on the Bergman spaces Lp

a{dvχ). We first
clarify the notion of compact operators on Lp

a(dvχ).
When 1 < p < +oo, Lp

a{dvλ) is the dual of Lq

a(dvλ). L\{Bn , dvλ)
is the dual of the little Bloch space 38§ (see [3]). The dualities just
mentioned are given by

</,*)= lim / f{rz)Wϊ)dvλ{z).
r->\~ JB

n

(The above limit can be taken inside the integral when 1 < p < +oo.)
For 1 < p < +oo, we equip Lp

a(dvλ) with the weak-star topol-
ogy induced by the above dualities. We say that a linear operator
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T: Lp

a{dvλ) -> LP{Bn, dvλ) is compact if Tfn -» 0 (in norm) in
Lp(Bn, dvλ) whenever fn —> 0 in the weak-star topology of Lp

a(dvλ).
If 1 < /? < +oo, then the weak-star compactness defined above is
equivalent to the usual compactness of operators on Banach spaces.

LEMMA 15. For any 1 < p < +oc and λ > -ί, a sequence {fn}
in LPa{dvχ) converges to zero in the weak-star topology if and only if
fn(z) -> 0 uniformly on compact sets and \\fn\\Lp(dv) ^ C for some
constant C > 0 and all n>\.

Proof. The proof is similar to that of Lemma 11 in [11]. D

COROLLARY 16. For any p>\ and λ > - 1 we have {kf])2lp -+ 0

(|z| —• 1~) in the weak-star topology of Lp

a(dvλ).

Proof. This follows directly from Lemma 15. D

For any p > 1 and r > 0, let FM3? denote the subspace of BMOPd

consisting of functions / such that

lim I ί \f(w)-fr(z)\pdv(w) =
1 1 1 \ D Z n\ J

ί \f(w)-
JD{z,r)

To describe the structure of VMO?, we introduce two subspaces of
VMO?.

Recall that

ωr{f){z) = sup{|/(z) - f(w)\ :weD(z, r)}

is the oscillation of a continuous function / at z in the Bergman
metric. Let VOr be the space of all continuous functions / on Bn

such that ωr(f)(z) -> 0 (|z| -> 0). The initials VO here stand for
vanishing oscillation.

LEMMA 17. VOr is independent of r. Moreover, VOr is the closure
of C(Bn) in BO, where C(B^) is the space of all functions on Bn

which are continuous up to the boundary of Bn .

Proof. The proof here is similar to that in the case n = 1 given in
§7.2 of [12]. We omit the details here. D

We will simply write VO for VOr.
For r > 0 and p > 1, let VAPr denote the space of functions /

on Bn such that \f\p

r{z) -> 0 (\z\ -• 1~). The initials VA stand for

vanishing average. We have
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LEMMA 18. VAp

r is independent of r. Moreover, VAp

r is the closure
in BAp of the set of functions with compact support in Bn.

Proof, The proof is similar to that of the special case p = 2 and
n = 1 given in §7.2 of [12]. We omit the details here. See also
[10]. D

The above lemma enables us to write VAP for VAp

r . Note that a
similar version of Lemma 3 can also be proved for VAP . We can now
describe the structure of the space VMO? .

THEOREM 19. The space VMO? is independent of r. Moreover, the
following conditions are equivalent

(1) feVMO?;
(2) feVO+VAP;
(3) For any e > 0, there exists a constant δ e (0, 1) such that for

any δ < \z\ < 1 in Bn there is a constant λz with

/ \f(w)-λz\
pdv(w)<ε;

D(z,r)

(4) l i m | z H 1 - \\foφz-Bλf{z)\\LPidVλ) = 0 for all (or some) λ > - 1

(5) For any ε > 0 and λ > - 1 , ί/zere ex/ste <5 e (0, 1) swc/z that for
any δ < \z\ < 1 m 5W there is a constant λz with \\f°φz-λz\\LP(dv) <
ε.

Proof. The proof for the theorem is similar to that of the corre-
sponding statements for BMOPd in §2. We omit the details here. D

We will write VMθPd for VM0Pr . By the above theorem and Lem-
mas 17 and 18, VM0PQ is the subspace of BM0Pd generated by func-
tions in C(Bn) and functions with compact support.

THEOREM 20. Suppose p > 1 and p(a + 1) > λ + 1 > 0. Then a

function f on Bn belongs to VMOPd if and only if H^f and H^] are

both compact on Lp

a(dvλ).

Proof. It is easy to show that H^ and H^ are both compact on

Lp(Bn, dvλ) if / e C(Bn). Also if / e BAP has compact support in

Bn, then H^ and i/ία) are both compact on LP{Bn, dvλ). Since

VM0Pd is generated by C(Bn) and functions with compact support, we

see that Hf] and Hίa) are compact on U{Bn, dvλ) for / e VMθPd .
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Conversely, if i/Jα) and 7/ία) are both compact on Lp(Bn,

then

f 0, | |J3ί β ) (^ A ) ) 2 ^| | - 0 (|z| - I")

since (k^λ))2/p -• 0 (|z| -• 1~) in the weak-star topology of Lp

a{dvλ),
where || || denotes the norm in LP{Bn, dvλ). By the second part
of the proof of Theorem 11, we have \\f o φz - £ z(0)| | -> 0 (\z\ —•
1"). By Theorem 19, / e VMOPd , completing the proof of Theorem
20. d

The following two corollaries are immediate consequences of The-
orem 20.

COROLLARY 21. If p> 1 and a > - 1 , then f e VM0Pd if and only

Hf] and Hίa) are both compact in U{Bn , dva).

COROLLARY 22. // a > -λ > - 1 , then f e VMO\ if and only if

f
Hf] and Hίa) are compact in Lι(Bn , dυλ).

Finally, we show that holomorphic functions in VMOPd are precisely
the functions in the little Bloch space. Recall that H(Bn) is the space
of all holomorphic functions on Bn and ^(Bn) is the little Bloch
space of Bn.

LEMMA 23. VMOPd n H(Bn) = SB^Pn)

Proof. It is shown in [1] that VOnH{Bn) = ̂ {Bn). Thus &0(Bn)
c VMOPd Π H(Bn). On the other hand, it is easy to see that if / e
VM0Pd , then Baf e VO for all a > -1 (see the proof of Corollary 6).
Thus if / is a holomorphic function in VM(?d , then / = Baf e VO,
and hence fe£&o(Bn). π

C O R O L L A R Y 2 4 . S u p p o s e p > 1 , p ( a + l ) > Λ , + l > 0 , a n d f i s

holomorphic in Bn . Then H-^ is compact on Lp

a(dvλ) if and only if

fe&0(Bn).

Proof. This follows from Lemma 23 and Theorem 20. D
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