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ON SOME EXPLICIT FORMULAS
IN THE THEORY OF WEIL REPRESENTATION

R. RANGA RAO

The object of this paper is to derive some explicit formulae con-
cerning the Weil representation that allow us to define this projective
representation in a unique manner for each choice of symplectic basis.

Let F be a self-dual locally compact field of char φ 2 and X a
symplectic vector space over F. Let V, V* be two transversal La-
grangian subspaces. Then a classical construction due to Shale-Segal-
Weil gives a projective representation of the symplectic group Sp(JSΓ)
in the Schwartz-space of V. The operators ξ(σ) corresponding to
each σ e Sp(X) are determined uniquely only up to a scalar multi-
ple. The starting point of this paper is an explicit integral formula for
these operators ξ(σ), valid for all σ e Sp(X). In fact (see Lemma
3.2) we have for each σ e Sp(ΛΓ)

ξ(σ)φ :x-+ fσ(x, x*)φ(xa + x*y) dμσ

JV*/kevγ

where μσ is a Haar measure on F*/kery, and fσ is the charac-
ter of second degree on X, associated to σ. Here a — [" £] is
the matrix representation of σ in the decomposition X = V + V*.
This formula is known and already present in Weil's paper when
γ = 0 or when γ is an isomorphism. The extension of its valid-
ity for all σ enables us to show that it is possible to define the
projective representation in a unique way for each choice of sym-
plectic basis. Let β\,... , en, e\, . . . , e* be a symplectic basis of
X such that e\, . . . , en {e\,... , e*) is a basis of V (V*). Let
W be the finite subgroup of Sp(X) consisting of all σ such that
{ei, e*}σ c {±ei, ±ef} for each /. Then one has the well-known
Bruhat decomposition Sp(X) = PWP, where P is the stabilizer of
F * . Then it is shown that it is possible to make consistent choices
of the Haar measures μσ so that (1) ζ{p\σp2) = ζ(Pι)ζ{^)ζ(p2) f°Γ

all Pup2e P and (2) ξ(σισ2) = ξ(σι)ζ(σ2) for all σΪ9 σ2 e W.
Moreover all such are determined. Among these there is one choice
σ —• r{σ) called the standard model which in addition satisfies non-
negativity properties similar to those of the Fourier Transform. All
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this is done in §3 and the main result is stated in Theorem 3.6. For
the standard model the multiplier or the 2-cocycle c(σ\, ai) is explic-
itly described in §4, Theorem 4 in terms of the Leray invariant, i.e.
c(P\ ? Gi) is the Weil index of the Leray invariant of the Lagrangian
subspaces V*, F*σ^"1, F*σi. This formula generalizes one given
by Weil when o\, σi, β\ 02 belongs to the big Bruhat cell. Finally
we find normalizing constants m(σ) such that r~(σ) = m(σ)r(σ) is
metaplectic, i.e. the associated multiplier is ±1 valued. An explicit
formula for the multiplier c~(σ\, ai) of r is given in Theorem 5.1.
This generalizes a result of Kubota. In fact the formula given reduces
to that of Kubota when dimX = 2. Although Moore [18] has de-
scribed the cohomology groups, the explicit formula for the multiplier
given here appears to be new.

Preliminaries on symplectic geometry are discussed in §2. Here
the Leray invariant (= an isometry class of a certain inner product
space) of an ordered triplet of Lagrangian subspaces is defined. The
main result here is Theorem 1 which shows that the Sp(X)-orbits of
an ordered triplet of Lagrangian subspaces are parametrized by the
various dimensions and the Leray invariant. Theorem 2 gives an ap-
plication of this to the structure of Sρ(X). This theorem is used in the
computation of the multipliers. Weil in his paper [16], introduced a
constant γ(f) for each nondegenerate character of second degree. We
call this constant the Weil index of / . The definition and properties
of the Weil index, its relation to the Hubert and Hasse symbols and
various known computations of the Weil index are collected together
in the appendix.

There is a large literature on the subject. For further references see
the recent books of Guillemin and Stemberg [6] and Wallach [17] for
the real case and Gelbart [4] for SL2 and p-adic case and Gerardin
[5] for the case of finite fields. Part of the results of the paper were
obtained when the author was visiting Tata Institute, Bombay, the
Indian Statistical Institute, New Delhi, and the Forschungsinstitut of
E. T. H., Zurich during 1977-78. The author would like to express his
thanks for their hospitality and support. The author is also indebted
to C. Moreno for many stimulating conversations.

Postscript: This paper was written in 1978 and widely circulated
at that time. For various reasons it has not been published. Since
this paper is referred to in many published papers, it was felt that its
publication is still desirable. No attempt has been made to update the
references since they are too numerous. Instead we refer the reader
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to the books of G. Folland [19] and G. Lion and M. Vergne, [20] and
also [21].

2. Preliminaries on symplectic geometry.

2.1. Let k be a field and X a symplectic vector space over k, i.e.
X is a finite dimensional ^-vector space with a non-degenerate bilin-
ear form x, y —> (JC , y) , which is symplectic, or {x, x) = 0 for all
x E X. If X and Y are symplectic vector spaces, a fc-linear isomor-
phism of X and y which preserves the symplectic structures is called
a symplectomorphism. Let Sp(X) denote the group of symplectomor-
phisms of X onto itself. A subspace I of I is said to be isotropic
if LπL1 Φ {0}, nonisotropic if L n L x = {0}. A nonisotropic sub-
space is also called a symplectic subspace, since the restriction of the
symplectic form to it is nondegenerate. If X\ c X is a symplectic
subspace, so is X2 = Xγ~ and X = X\ + X2 direct sum. A subspace
L is totally isotropic if L c L x and maximal totally isotropic or La-
grangian if L = ZA . Two subspaces L\, L2 are said to be transversal
if Li 1ΊL2 = {0}. An ordered basis {t^ , . . . , v2n} of X is said to be
a symplectic basis if the following relations hold:

(Vi, t/7 ) = (v/ + r t, υJ+n) = 0 (t;/, v ; + Λ) = ί y

for all /, j with 1 < /, j < n. The following lemma and its conse-

quence will repeatedly be used in this section (for proof see Bourbaki

[1]).

LEMMA 2.1. (i) Let v\,..., υm be linearly independent vectors of
X, satisfying (Vi.Vj) = 0 for all i, j . Then there exist vectors
Wι, . . . ,
wm in X such that

(Wi, Wj) = 0 for all i, j and {Vj, wj) = δjj.

(ii) If L is a Lagrangian subspace, then dimX = 2dimL and
there exists a Lagrangian subspace transversal to L.

(iii) If -Li,I/2 are two transversal Lagrangian subspaces, and
V\, ... 9υn is a basis of L\, there exists a basis vn+χ, . . . , v2n of
Li such that v\, . . . , v2n is a symplectic basis of X.

(iv) Let X and Y be symplectic vector spaces and L\, L2 (M\9 M2)
be Lagrangian subspaces of X {of Y). If dimX = dim 7 , and σ is
an arbitrary k-linear map of L\ onto M\ then a can be extended as
a symplectomorphism of X onto Y, mapping Li on Mit i — 1, 2.
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2.2. Following Weil, we write the action of the group Sp(JΓ) on X
on the right. Let A(X) denote the set of all Lagrangian subspaces of
X. It is clear that Sp(X) acts transitively on A(X). For L e A(X),
let PL denote the isotropy subgroup at L for the action of Sp(ΛΓ),
i.e.

PL = {σeSp(X)\L σ = L}.

Also write

NL = {σe Sp(X)|?;<7 = υ for all v eL}.

In the rest of the section we develop some results (needed later) on
the orbits of PL on A(X) and on A(X) x Λ(X).

LEMMA 2.2. Let L\, L2 £ A(X). Then there exists a decomposition
X = X\ + X2 ϊΛίo ^ d/recί swm of orthogonal symplectic subspaces X\,
X2 such that

(1) L\, L2 commute with the decomposition, i.e. Li = Li n X\ +
Li Π JF2 > / = 1, 2 α«ί/ L/ Π X, αr^ Lagrangian subspaces of Xj.

(2) On Xj, Lι=L2, i.e. L1nXi=L2nXi.

(3) On X2> ^i> ^2 are transversal, i.e. (LinX 2 )n(L 2 nX 2 ) =

Proof. Let M = Li n L2. Then M is a totally isotropic subspace.
From Lemma 1, it follows that there exists a totally isotropic subspace
F, such that X = ML + F direct sum. Let X\ = M + F, X2 = ̂
Then Z i , X2 are symplectic subspaces. Now Λf c ML, so we have
A/x ΓΊ Xi = M, and M 1 = M + X 2 . Since M c Lz c M 1 it
follows that Li = M + Li Π X2 = ̂ / Π X\ + Li n X2 From dimension
considerations it follows that L ΠX/ are Lagrangian subspaces of Xj .
It is clear that L\Γ\X\ = M = L2nX\. This clearly implies (2) and
(3). D

LEMMA 2.3. Let Lϊf L2, LeA(X) be arbitrary. Then
(1) there exists σ e NL such that L\a = L2 if and only if LχΓ)L =

L2Γ\L. The element σ is unique if L\ and L2 are both transversal
to L.

(2) There exists σ e PL such that L\σ = L2 if and only if dimLi n
L = dim L2ΠL.

Proof. (1) Suppose LιΠL = L2nL = M. Choose an isotropic
subspace F such that ML + F = X direct sum. Let X\ = M + F
and X2 = X^ . Then the decomposition X = X\ + X2 has all the
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properties of Lemma 2.2, for both the pairs L\, L and L2, L. Thus
on X\, L\ = L2 = £ and on X2> £1 and L2 are both transversal to
L. Let a = diag(σi, σ2), where σi is the identity element of Sp(Xi)
and σ2 is any element of Sp(X2) such that (L\ n X2)(τ2 = ^2 n X2

and σ2 = identity on LΓ\X2. The existence of such a σ2 can be
seen by considering symplectic bases associated to the decompositions
X2 = LnX2 + Lι ΠX2 = LnX2 + L2nX2. It is then clear that σ e NL

and Li<7 = L2. It remains to check uniqueness when L\, L2 are
both transversal to L. Suppose L\σ = L2 = Z^σ'. Let w = σσ / - ι .
Then ue NL and L\u = L\. If x e L\ and y e L, then

(xu-x, y) = {x-u, y) - (x, y) = (xu9 yu) - (x, y) = 0.

Thus xw-x e L1^ = L. But JCW-JC G LI . Thus x w = x and w = id
on Li also. Since L\ + L = X, it follows that w = id.

Proof of (2). Let X = X! + X2 = ^1 + *2 be the decompositions
of Lemma 2 for the pairs L\, L and L2, L respectively. Now
dimXi = 2dimL Π L\ = 2dimL Π L2 = dim 7i. Thus there exists a
symplectomorphism σ\ of Xi into Y\ which takes LdX\ to LnFi.
Let σ2 be a symplectomorphism of X2 onto I2 which takes LπX2

to LΠ Y2. If σ = diag(σi, ^2), then σ e PL and L\σΓ)L = L2Γ\L.
The result now follows from the first part. D

2.3. Let L\, L2, £3 be Lagrangian subspaces which are pairwise
transversal. Then by Lemma 3 there exists a unique u e NL such
that L2 w = L3. Let w be represented by the matrix

in the decomposition X = L2 + L\. Since w is symplectic one has
that, for x, y e L2,

β(x,3>) = (χ,y w) = {χ,y-p) = {y,χ-p)

is a symmetric bilinear form on L2. Since L3 = {x + x /?: x E L2},
the transversality of L2 and L3 implies that /? is injective or the
symmetric bilinear form is nondegenerate.

DEFINITION 2.4. For any three pairwise transversal Lagrangian sub-
spaces L\,L2, L3 of X, let q(L\, L2, L3) denote the isometry class
of the inner product space {L2, Q( , )} introduced above. We call
g(L\, L2, L3) the Leray invariant of L\, L2 , L3 (see Leray [8]).
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LEMMA 2.5. Let X and Y be symplectic vector spaces of the same
dimension. Let Lχ,L2,L3 e A(X), L[,L'2,L'3 e A(Y) be two
triplets ofpairwjse transversal Lagrangian subspaces. Then there exists
a symplectomorphism a of X onto Y such that

Lj-σ = L'j, j = 1, 2, 3,

if and only if

Proof. Suppose first L,σ = L7 , j — 1, 2, 3, for a symplectomor-

phism a. Let u G NL be such that L2-u = L3. Let uf = σ~ιuσ.

Then it is clear that u1 G NL . σ = NL> and L'2-uf = L2-σu' = L2uσ —

L3σ = L 3 . Thus, for x, y e L2

Q'{x σ, y σ) = (x σ, y σu) = (x, y uf) = Q(x, y).

Thus Q and Q are isometric. Conversely suppose q(L\, L 2 > L3) =
ί ( L j , L2, L3). Let w G iVL}, ur G iVL' be the unique elements such
that

L2. w = L 3 , Z£ κ; = Z/3.

Let Q 7 ^ 7 , / ) = ( x ' , / w'}, Λ : 7 , / G L^. Similarly Q(x,y) =
{x,y u)9 x,y G L2. Since Q and β 7 are isometric, there exists a
fc-linear isomorphism σ of L 2 onto L'2 such that Q'(x-σ, y-σ) =
Q(x, y) for all x,y. Now X = Lx + L2 and 7 = L\ + L'2. By

using symplectic bases, it is clear a can be extended to a symplecto-
morphism of X onto Y such that Li σ = Z/j. Let L3 = L 3 σ. We
have only to show that Z/3

7 = L7

3 . Now Z/3

7 = L2u α = L2σ(σ~ιuσ) =
L2 w77 where w77 = σ~ιuσ G JV *̂. Now, for all x, y G L 2 ,

, y) = Q7(xσ, yσ) = (x σ, y σ. w7).

On the other hand

(x a, y σ w77} = (Λ: σ, 3; uσ) = (x, yu).

Thus (x 7,3/V 7) = ( J C 7 , / W7) for all JC7 = c σ, / = y σ G L7,.
Since both w7, u" e NL>, it follows that u' = u". But L'2-uf = L7

3.
Thus Z/3 = L7

3

7 = L 3 σ / D

For the sake of clarifying the nature of the invariant q(Lχ, L2, L3)
we note the following.
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LEMMA 2.6. If L\, L2, L 3 is any triplet of pairwise transversal
Lagrangian subspaces, then

q(L\, L2, L3) = q(L2 , L 3 , L\) = q(L$, L i , L2)

and
q(Lx, L2 , L3) = - ^ ( L i , L 3 , L 2 ) .

Here -q is the isometry class of the symmetric bilinear form (-Q),
if q is the isometry class of Q.

Proof. Let Uj G NL , j = 1, 2, 3, be defined by L2-u\ — L 3 ,
L 3 w2 = L i , Li w3 = L2 . In the decomposition X = L2 + L i , let
the matrix of u\ be

Then L 3 = {x2 + x2 p: x2 G L2} . Then it may be checked that

Γ / 01 \ 21 p
U2= \ i - , W3 = i Jl

From this it follows that u^U\U2 = -(u\)~3. In particular u^U\U2 G
NL Similarly U\U2Uτ> = — (w2)~3 G iV̂  etc. Now q{L\, L 2 , L3) is
the isometry class of Q 2(x 2, y2) = (x2, y2 Mi), x 2 , y2 E i 2 Note
that L\-ui = L2 and

= (xi w3w2, >Ί u^uιu2)

= {x\ w3 , —yi) = (vi, X\ w3).

Here in the last step we have used that (—u^u\U2) G NL , and
^2 € Λfc . Since q(L$, L\, L2) is the isometry class of the form
{(*i>J>i K3),*i,yi G Li} , it follows that q(L3, Lχ9 L2) =
q{L\ 9 L2, L 3 ) . The other relations are proved similarly.

REMARK. When k is the field of real numbers Leray in [8] intro-
duced the inertia of three pairwise transversal Lagrangian subspaces
L\, L2 , L 3 as follows: Consider x7 G L/ such that Xi + x 2 + x 3 = 0.
Note given one of the X/'s, the other are uniquely determined, thus
given X\, x2 is the unique element of L2 such that X\ + x 2 G L 3 etc.
Let p be the map L2 —• Li defined by x 2 —• Xi, when xλ + x 2 G L 3

etc. Then /? is symmetric and it is clear that L 3 = {x2-\-x2p: x2 G L} .
Thus the U\ E NL such that L 2 Wi = L 3 introduced earlier is given
by

U ι = Ό 1
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etc. The index of inertia (or the number of negative eigenvalues of p)
is called by Leray the inertia of the triplet. Since the index of inertia
of a real quadratic form of a given degree, determines its isometry
class, it seems appropriate to call this the Leray invariant (see also the
book [6]).

2.4. We have just seen that the isometry class q(L\, L2, £ 3 ) de-
scribes the Sp(X) orbit of the triple L\, L2, L 3 , when they are
pairwise transversal. Our next object is to classify the general orbit.
This requires some preparation.

LEMMA 2.7. Let L{, L2, L3 e Λ(X). Then for the pair Lx, L2,
there exists a decomposition X = X\ + X2 with properties stated in
Lemma 2, such that L3 also commutes with the decomposition, i.e.
L3 = L 3 n X\ + L 3 n x2.

Proof. First consider the case when L\ n L2 Π L3 = {0}. Then
L\ + L2 + L 3 = X. Thus there exists a subspace F c L3 such that
X = (Li n L2)

L + F direct sum. If M = Lx n L2 , let Xx = M + F,
X2 = X^ then the decomposition X = X\ + X2 has the required
properties. It is only necessary to check that L3 commutes with the
decomposition. In fact F± = F + X2 and since F c L 3 c F1-, it
follows that L^ = F + L^ΠX2 = L^nX\+L3nX2. Now consider the
general case. Let MQ = L\ n £2 n £ 3 . Let FQ be a totally isotropic
subspace such that M^-+Fo = X. Let 1̂  = M 0 + J F 0 , 72 = f̂1 Then
it is easy to see that L\, L2, L 3 commute with the decomposition
X = 7i + Y2. On 7!, Lγ = L2 = L3 so the lemma is valid. On Y2,
L\ ΠL2 n L 3 = {0} so that the first case discussed above applies. This
completes the proof. D

LEMMA 2.8. Let Li , L2, L3 G Λ(X). ΓA^π there exist pairwise
orthogonal symplectic subspaces Xj, j = 0, 1, . . . , 4, such that the
following hold:

(1) X = X0 + - + X4

(2) Li (i = 1,2,3) commute with the decomposition, i.e. Li =
ΣjLiΠXj.

(3) On Xo, L{=L2 = L3.
(4) On X\, L2 = L 3 and L\, L2 are transversal.
(5) On X2, L 3 = L\ and L2f L3 are transversal.
(6) On X3, L\ = L2 and L 3 , L\ are transversal.
(7) On X4, L\y L2, L3 are pairwise transversal.
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Proof. Note first that the statement (2) above implies that L, n Xj
is a Lagrangian subspace of Xj and a property is said to hold for L/'s
on Xj , if the same holds for L; n Xj. Now to prove the lemma, let
X = γx + γ 2 be the decomposition of the previous Lemma 5. Then
L\, L2, L3 commute with the decomposition and on Yj, L\ = L2
and on Y2, A Γ1JL3 = {0}. On 7i , apply Lemma 5 again to the triple
L2, L3, L i . Then Yi = XQ + X3> a n d o n ^0 ? ^2 = £3 and on
X3, L2 and L3 are transversal. But on YΪ9 L\ = L2. Thus on Xo >
L\ = L2 = £3 and on X3, L\ = L2 and L2 and L3 are transversal.
Proceeding in the same way and applying Lemma 5 to Y2 repeatedly
we get the result. D

Our next object is to show that the isometry class

is invariantly defined. For this we recall the technique of passing to the
quotient XM (see Leray [8], or Guillemin and Sternberg [6]). Let M
be a totally isotropic subspace of X and let XM = MLjM. Then XM
becomes a symplectic vector space with the symplectic form defined
as

(x + M, y + M) = {x, y), x,yeML.

For any L e A(X), let the subspace LM of XM be defined as
LM = (L n ML)jM. L M is clearly a totally isotropic subspace of
XM . By dimension considerations one verifies that LM is actually a
Lagrangian subspace of XM (see one of the above cited references).

LEMMA 2.9. Let L u L2, L3e A(X).

M = (Li n i 2 ) + (L2 n i 3 ) + (£3

Them M is a totally isotropic subspace and moreover the images [LI)M
in XM are pairwise transversal. Moreover

q{{Lx)M, (L2)M, (£3W) = « ( I Ί n x 4 , L 2 n x 4 , ^ 3 n x A )

where the symplectic subspace X4 is the one introduced in Lemma 2.8.

Proof. Since ML = {Lx + L2) n (L2 + L3) Π (L3 + Li), it is clear
that Λf c ML or Λf is totally isotropic. Using Lemma 6 and the
notation there, it is clear that M and ML both commute with the
decomposition X = X) Xj and Λ/1 = Λf 4- X4, M n l 4 = {0}.
Thus the symplectic vector space X4 is isomorphic to XM and the
isomorphism takes L, Γ1X4 onto (L()M, i• == 1 , 2 , 3 . The lemma
follows from this and Lemma 4. D
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The above lemma enables us to introduce the following definition.

DEFINITION 2.10. For any three Lagrangian subspaces L{, L 2 , L 3 ,
we define

q{Lx, L 2 , L3) =

and refer to it as the Leray invariant of L\, L 2 , L 3 .

THEOREM 2.11. Let Lif L\y i = 1 , 2 , 3 , be two triplets of La-
grangian subspaces of X. Then there exists a σ e Sp(ΛΓ), such that

Li*a = L'ι, for i = 1, 2, 3

if and only if the following relations are satisfied:
(1) dim(Li n L2 ΠL3) = d i m ^ nL^ίlZ/ 3 ).
(2) dim(L/ n Lj) = dim(L; n L^.), for all i, j .
(3) ( ' ' '

Proof. The necessity of the conditions being clear we consider suf-
ficiency. Let X = ΣXj = ΣX'j be the decompositions of X asso-
ciated by Lemma 6 to the triples L/ and L\ respectively. Then it is
easy to see that

o = 2dim(Li ΠL2Π L3),

= 2 dim(L2 ( Ί I 3 ) - di

dim X2 = 2 dim(L3 Π l i ) - dim Xo >

dimX3 = 2 dim(Li Π L2) - d imZ o

From this it is clear that dimX ; = dimXj for 0 < j < 4. It is easy
to see from the defining properties of the decomposition in Lemma 6,
that there exists a symplectomorphism a}•: Xj? -> Xj , 7 = 0, 1 , 2 , 3 ,
such that

(L n x ^ ^ L n x ), 1 = 1,2,3,

for each 7 = 0 , 1 , 2 , 3 . From Lemmas 4 and 7, it follows that there
exists a symplectomorphism (74: X4 —> X4 such that

( L / n x 4 ) ^ 4 = ^ n x ; , 1 = 1 , 2 , 3 .

Let the map σ: X -• X, be defined by σ|X7 = σ y. Then σ e Sp(X)
and L/(7 = L\ for / = 1, 2, 3. This completes the proof. D

From the above theorem the following corollary is immediate.



THE WEIL REPRESENTATION 345

COROLLARY 2.12. Let LiyL2,L3 e A(X) and let X = Σχj =
j be two decompositions with the properties stated in Lemma 6,

for the triple Lt. Then there exists σ e PL{Π PLI Π PL3 such that
Xrσ = Xfj for all j .

2.5. The group W. We fix two transversal Lagrangian subspaces
V, V* of X and bases ex, . . . , en of F and e*, e\,... , ^ of F*
such that (ef , ej) = <$//. Thus ^i, . . . , e* is a symplectic basis of X.
Let

W = {σ G Sp(X)|{e/, ^*}σ c {±^ , ±e*} for all /}.

Then clearly W is a finite subgroup. Define the elements τ , r^,
^5 € Sp(JSΓ) as follows:

^ . T = —e* ? e*τ = e/ for all /.

For a subset S c {1, 2, . . . , « } , let

ieS,

LEMMA 2.13. Any element w of W can be written uniquely in the
form

for some subsets S\, S2 of {1,2, ... , n}. Moreover the following
relations hold: τ2

s = as and τ$\js = ?$ - τ ^ if S\, S2 are disjoint.
In particular W is a commutative group of order 22n. Every element
of W is of order at most 4 and the set of elements of order 2 is precisely
the set {as}.

Proof. Let σ e W. Then it is clear that σ is of the form

f - β ι < , ieS, ^ ί ε /^> ieB9

I P £> Ί d. v I P o^ i d R

The condition that σ is symplectic now gives that S = B and £/ = e[
for all z. It is then clear that σ = % τ^ where 5*2 = 5 and 5Ί = {i:
ef = —1}. The rest of the statements follow easily from this.

REMARK. If Ws is the subgroup of Sp(Xs) corresponding to the
data, X$ = Vs + Vg and the symplectic basis {eι, e*, i € S} then
Ws is just the group obtained by restricting W to the subspace Xs.
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2.6. The P-double cosets. From now on we write

Thus in the decomposition X = V + V*, the elements of P and N
have the matrix representations of the form

a β] \I p
0 δ\ ' [0 1

respectively. The following lemma is known. It describes the P dou-
ble cosets in Sp(Λf).

LEMMA 2.14. Let

ςij = {σ e Sp(X)\ dim V*nV*σ = n-j}9 0<j<n.

Then Sρ(X) = | J Ω 7 . Each Ω 7 is a single double coset of P. Moreover

. Since P is the stabilizer of V*, it is clear that P Ω ; P = Ω 7 .
Now suppose σ\, (72 G Ω 7 . Then from Lemma 2.3, it follows that
V*σ\p = F*σ2 for some p eP. Thus σγpσ^1 stabilizes F* and also
in P. Thus σi G PojP, i.e. Ω7 is a single P-double coset. For the
last part note that dim K* Π F*σ = dim F* Π F*σ" 1 and

This completes the proof.

LEMMA 2.15. (i) V* n F*τ 5 = F* n FV^Γ1 = F5*, where S' is the
complement of S.

(ii) τ$ £ Ω ; , where j is the number of elements in S. In particular
Sp(JT) = PWP.

(in) If Wj = du.τjj., 7 = 1,2, ί/zen ^ 1 , ^2 belong to the same
P-double coset if and only if the number of elements in the sets B\, B2
are the same.

The proof is straightforward and is omitted.
The following theorem plays a central role in the description of the

multiplier of the Segal-Shale-Weil representation.
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THEOREM 2.16. Let σ\,σ2 e Sp(Jf). Then there exist suitable

P\>Pi>P ^P such that

σ2=pκ2p2,

S i , τsup) = τSιυs up,

κ2 = diag(τs2, τs) = τSlus,

5Ί and S2 are contained in the complement S1 of S and the
diag( , ) is relative to the decomposition X = Xs> + Xs. Here p is
a nondegenerate symmetric map of V$ onto Vg, whose isometry class
is that given by the Leray invariant —q(V*, V*σ\, F*σ^ 1 ).

Proof Let Lx = K*, L2 = P ^ " 1 , L3 = F*σ!. Let j \ = dim F* n
K*σ!, 72 = dim F* n F*σ2 and j = dim F* n K*σiσ2, Jo = dim F* n
F*σi Π F*σ 2

- 1 . Choose a partition £ 0 , - , ^4 of {1, 3, . . . , n) with
Jo, j-h> 7i-7o, 72-70, Λ + 27Ό-(71+72+7) elements respectively.
Let Xi = XBι and l̂  = VB., ^* = V£m. Let /? be a nondegenerate
symmetric map of V4 onto V£ . In the decomposition X = Σ Xx-9 let
κ\, κ2 be defined as follows:

κ\ =diag(7, τ , / , τ , τ t ^ ) , κ2 = diag(/5 τ , τ , / , τ)

where the diagonal components belong to Sp(Z/) respectively and τ
as a diagonal component is to be understood as τ restricted to the
appropriate Sp(X/). Let L\ = F * , L'2 = V*K£1 , L;

3 = F*^i . Then
it is clear that dim L\ n JL2 (Ί L3 = dim Lj Π L2 Π L;

3 and dim L/ n Ly =
dim L\ Π L^ , for all /, 7 . If we now choose the map /? such that the
isometry class of ( x , x /?) on F4 is equal to q(L\, L 2 , L 3 ) , then by
Theorem 13 there exists p eP, such that

F*σ2"
1p = F * ^ 1 , V*σxp = F*K!.

Thus

σ^xpκ2 e P, &ipK^1 eP.

If Si = # ! U B3, 5 2 = Bγ U J52 and S = B4, then Ki, κ2 have the
form stated in the theorem and this completes the proof.

REMARK. From the above theorem it is easy to check that

Ω Λ Ω , 2 =

In particular Ω^ = Sp(X). Also note Ω j 1 = Ω 7 .
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2.7. An example. Let d imZ = 2 and suppose e\, e2 is a sym-
plectic basis, so that {a\β\ + a2e2, b\e\ + b2e2) — a\b2 - a2b\. Let
V = k-e\, V* = k-e2. Now Lagrangian subspaces are just lines in
X and we shall get an expression for the Leray invariant of three lines
L\, L2 , L 3 . Since the Leray invariant is trivial when two of them co-
incide, we assume that they are all distinct. Let Xj £ Lj be non-zero
points. Then there exist scalars a, b such that x 3 = ax2 + abx\. If
p: L2 —> L i , defined as /?: tx2 —> ίfoci, then I 3 = {X + X//:XG L2} .
Thus the associated quadratic form ί —• (tx2, f*2 p) — t2b(x2, X\).
One gets from this that q(L\, L2, L3) is the isometry class of the
form (pt2) where

/> = - ( * ! , *2)<*2,*3>C*

Now suppose σ\, σ2e Sp(X, fc) and

\ai bj
σj = \ J

for j = 1, 2. Then the above calculation leads to the following result:

t f trivial if (Ti , Or or tji cr? £ P,
q(V\V*σ-ι,V*σι) = \ \9 2 ι 2 ' .

I ^i^2(^i^2 + «iQ) (fc ) 9 otherwise;

here one has identified the nontrivial isometry classes with kx/(kx)2 .

3. The standard form for the Segal-Shale-Weil representation.

3.1. Throughout the rest of the paper we assume that (1) F is a self-
dual locally compact field, i.e. F is either a finite field or a nondiscrete
locally compact field, (2) chari 7 φ 2. It should be noted that in §2,
the field F was allowed to have characteristic 2. It is possible to
generalize the results of this section also to the case of char/c = 2,
although the representation obtained is not of the symplectic group,
but of the pseudosymplectic group. For simplicity of presentation we
shall assume however that char/7 φ 2.

We fix the following notation: X is a symplectic vector space over
F, V, F* two transversal Lagrangian subspaces of X, β\, . . . , e* is
a symplectic basis of X such that β\, ... ,en (e\, . . . , e*) is a basis
of V (V*); χ is a nontrivial continuous unitary character of the
additive group of JF d^x denotes the Haar measure of the additive
group of F which is self-dual relative to the pairing α, b —> χ(ab)
of F with itself. Let V$, V$ denote the subspaces spanned by {ej,
j £ S} and {e^, j £ S} respectively. Here S is an arbitrary subset
of {1,2, ... , n}. Then Vs, Vg are locally compact groups which
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may be considered as character groups of each other, via the pairing
v > v* —* X((v > v*)) Let dγs, dj/* denote the Haar measure on Vs,
Fjy respectively defined as the product Haar measures. For instance

Then the Haar measures dy and dv are dual to each other relative
to the pairing χ introduced above. Let ^(V), S^(VS) etc. denote the
space of Bruhat-Schwartz functions on V, Vs etc. Then it is known
and easy to check that &{VSχ) ®<9>(Vs2) = ^{Vg^s,) if 5Ί Π 5 2 =
(see for instance Bruhat [2]). The Fourier transforms 3% ^ { )

are defined as:

χ((x, x*))φ(x) dvx,

χ((x,x*))ψ(x*)dv;x*
s

/
Jvs

v;
for all φ e S*(VS), ψ e ^{Vg). The Haar measures dys, dv*
being dual to each other is equivalent to saying that ^s*^φ = φ°,

g = ψ° where φ°(x) = φ(—x), ψ° being defined similarly.

3.2. We next recall the definition of the projective representation
of symplectic groups known as the Segal-Shale-Weil representation.1

(The basic references are Weil [16], Shale [15], Segal [13]; see Mackey
[10], for a historical survey and also Gelbart [4], for further refer-
ences.) Let U = Uyty denote the projective unitary representation
of X in L2(V) defined as follows:

(3.1) U(v + v*)φ: x t-+ χ((x, v*))φ{x + v).

If Wjf = vj + v*j € X, j = 1, 2 , then

(3.2) U(Wl)U(w2) = χ{{υx, v*2))U(w1 + w2).

Let H = H{V, V*, χ) denote the Heisenberg group defined as H =
X x T with group law

(3.3) (wi, tx) o (w2, t2) = (to, + w2, tιt2χ({vι, vj")))

If

(3.4) U(w , t) = tU(w)

It is also referred to in the literature as the Weil representation, or Shale-Weil representation,
the oscillator representation or the metaplectic representation. We follow Weil's paper rather
closely.
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then U is an irreducible, unitary representation of H with central
character χ. According to Stone-von Neumann there is only one such
unitary representation of H up to unitary equivalence. Now let Ps(if)
denote the pseudosymplectic group of H, i.e. the set of all continuous
automorphisms of H which leave the center element-wise fixed. Let
Us: (w,t) -> U((w, t)-s), s e Ps(i/). Then it follows from the
Stone-von Neumann Theorem that there exists a unitary operator ξs,
such that

(3.5) ζ~ o Uoζs = U .

The operators ξs satisfying (3.5) are unique up to a scalar multiple.
Thus any choice s —• ξs of such operators gives rise to a Weil (projec-
tive) representation of the group Ps(H). Let s e Ps(i/), and suppose
(w 9 l)s = (w σ, f(w)) then ( σ , / ) parametrize Ps(//) and are
characterized by the properties

(i) σ is a continuous automorphism of the additive group of X,
which leaves the form v( , ) invariant;

(ii) / : X —> Γ is a continuous map, such that

/(Ml + ^ l ) ! / ^ ! ) } - 1 ! / ^ ) } - 1 = X((vϊσ , ^ ) ) { / ( ( ^ l , ^2*))}"1

for all My = Vj• + Vj e X , where Wj σ = vyσ + vyσ, 7 = 1,2.

The subgroup

Ps(//, i7) = {(σ, / ) E Ps(/f)|σ is F-linear}

is called the linear pseudosymplectic group. When F = R or Qp it
coincides with Ps(/7) and is smaller for all other F. If X* denotes
the character group of X, then the subgroup {(1, / ) e Ps(J/)} may
be identified with X* and the sequence

0 -> X* -» Ps(77, i7) -> Sp(X) -* 0

is exact (see [16], p. 150). Moreover since we have assumed that
chari 7 Φ 2, the exact sequence splits. In fact when char/7 Φ 2,
the following lemma gives a splitting homomorphism of Sp(X) into
P s ( # , F) (see Weil [16], p. 150).

LEMMA 3.1. Assume chari 7 Φ 2. Let σ e Sp(X) have the matrix
representation

'a β

. y
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in the decomposition X = V + V*. Let

qσ(υ + v*) = J(t;α, υβ) + ί(v*γ,υ*δ) + (v*γ,vβ),

Then σ —• (σ, /σ) w α homomorphism of Sρ(X) into Ps(//, i 7 ) .
/n particular a mapping σ ^ ζσ of Sρ(X) mto unitary operators in
L2(V) is a Weil (projective) representation if

(3.7) ζ-χ U(v + v*)ξσ = fσ(v + υ*)U((v + υ*) σ)

for all v + v* eX.

3.3. Our next object is to present an explicit integral formula for
the operators ξσ satisfying (3.6). This is essentially known and in
fact Weil himself has given this when the matrix entry γ of σ in
(3.6) is either an isomorphism or 0. However for our purposes it is
important to do it for all σ. After this work was done, the author came
across the paper of Lions [9], where a related formula for intertwining
operators of unitary representations of a real nilpotent group is given.
We shall present a proof based on Bruhat decomposition of Sp(X)
(see Lemma 2.14) and it would appear that this was the way Weil
derived his general formula also. For the meaning of the symbols
P = PV*, N = Nv*9τ,τs etc. see §2.5.

LEMMA 3.2. (1) Let p e P. Then the operator ξσ satisfying (3.6)
is a scalar multiple of r{p), where

(3.8) r(p)φ:x^\a\ι'2fp(x)φ(xa).

(2) Let S be an arbitrary subset of {1, 2, . . . , n} the operator ξσ,
for σ = τ$ > is a scalar multiple of r(τs), where r(τs) is the partial
Fourier transform

(3.9) r(τs)φ

where S' is the complement ofS in {1, 2, . . . , n) and x = x$ + Xς1

in the decomposition V = Vs + Vs>.
(3) For a general σ e Sp(X), let Mσ = V*/ ker γ, and μσ denote a

Haar measure on Mσ. Let

φ:x-+ /
JM
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where x* is the coset x* + kery. Then for φ e S^(V), the integral
is absolutely convergent and Tσφ e 5^(V). Moreover Tσ satisfies the
identity

TσU(v + v*)φ = fσ(υ + υ*)U((υ + v*)σ)Toφ

for all φ e ^ ( F ) . In particular for a suitable choice ofHaar measures
μσ, the map σ —+ Tσ is a Weil (projectίve) representation.

Proof. The statement (i) and (2) are straightforward to verify. In
fact (i) and (ii) when τ$ = τ is already present in [16]. For a general
subset S, note that X — Xs + X$' a n d τs = diag(τ, /) and the
formula follows from that for τ . From Bruhat decomposition Lemma
2.14 it follows that operators satisfying the identity (3.6) will leave the
Schwartz space invariant.

To prove (3), note the integrand is a well-defined function of the
coset x* + kery. For this one has only to check fσ(x + x* + z*) =
fσ(x + x*) if z* G ker γ . In fact this is clear from the formula for fσ

given in Lemma 3.1. Since γ is F-linear, the image of γ is a linear
subspace Eσ of V and is thus isomorphic to Mσ . From this we have
the estimate

\Tσφ-(x)\< ί \φ(x+y)\dEy

where dEy is a Haar measure on Eσ. Thus Tσφ is a continuous
function of x . The verification of the identity (3.7) is straightforward
and so is omitted. If therefore Aσ = Tσξ~ι, where ξσ is a unitary
operator leaving the space S^{V) invariant and satisfying (3.7), then
Aσ: c5^(F) —• C(V) is a linear operator which commutes with U.
From standard arguments it now follows that Aσ is a scalar. This
completes the proof. D

LEMMA 3.3. With the notation of the above lemma, we have
(1) If p e P, then Mp = {0} and Tp = r(p), provided μp{0} =

1/2

(2) Mσp = Mσ, and Tσp = Tσr(p) if

(3) The map x* —• x*p of F* onto F* factors down to a map
x* —• x*p of Mpσ onto Mσ . Then Tpσ = r(p)Tσ if and only if1

μpσ =

Here for a measure v on M , (p)~ v is the measure on Mσ , denned as the linear
form φ —> ι/(φ op) for functions φ on M .
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Proof, (i) This follows from r{p)φ (0) = | deg(p\V*)\-l/2<p(0) while
(0) = μp{0}φ(0).

(ii) Note keτγ(σ) - V*nV*σ~ί. Thus keτγ(σp) = kery(σ). Thus
Mσp = Mσ . On the one hand

I fa(x*)fP(x*y)φ(.x*ypn)μσ{dT)

where

\Pn Pn]

is the matrix of p. Next

Tσpφ (0) = / fσp(x*)φ(x*γPu)μσP (dx*).

Now

fσp(x*) = fσ(x*)fp(x*V)
since σ -+(σ, fσ) is a homomoφhism. From this the result follows.

(iii) One checks directly from the matrix representation (3.6) of σ,
that γ(pσ) = pγ(σ). Thus the map x* —> x* p takes kery(/?(j) to
kery(σ). Thus the map

p: x* + kcvγ(pσ) —> x* •/? + kery(σ)

maps Mσ/7 onto M σ . Now

On the other hand

T,
pσφ (0) = / fpσ(χ*)φ(χ*py)μσP

From the homomoφhism property of σ -+ (σ, fσ) we have

fpσ(x*) = fp(x*)fσ(x*P) = /σ(^ p) -

Thus

τ>σί> (0) = / fσ{χ*p)φ(χ*py)μPσ {dx*).
JMPO

Comparing the formulas for Tpσφ (0) and TpTσφ- (0) one gets

|deg(p|K ) Γ 1 / 2 / Ψ(χ)μσ(dχ)= ί ψ(y-p)μPσ(dy).
JMO JMPO

This completes the proof. D

The following lemma makes it possible to make consistent choices
of μσ.
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LEMMA 3.4. Let σ e Sρ(X) be arbitrary. Suppose p\, p2 £ P are
such that p\op2 = σ. Then px maps Mσ onto itself and

Proof. Our first step is the observation that if the lemma is true
for σ it is also true for a1 e PσP. In fact suppose σ' = m\am2

and suppose p[σfpι

2 = σf. Then Piσ/?2 = <? where pi = m\xp'xm\,
Pi =

On the other hand we have the commuting diagram

t " l e o n e hand since the lemma is true for σ,

Mσ

where the map of Mσ> to Mσ is the map
V* Π V*a~l. From this it follows that

x*m\ +

so that the lemma is valid for σ'. To prove the lemma it is thus
sufficient to prove it when σ = τ$ for some S. Now F*τ^ = Vs+V£ ,
Sf being the complement of S. Note V*τs = V*τ~ι. Let Po =
P Π PF*σ . If PiTsPi = ?s 9 then p\, p2 G Po Now the matrix for τ^
in the decomposition

is
/

0
0
0

0
0
τ
0

0
τ
0
0

0
0
0
/

Here we have simply written τ, rather than (τ|f£), (τ|^*) etc. If
p,p' eP0, then they leave the flag X D VS + F* D F* D Ĵ *, invariant,
so that their matrices in the above decomposition are upper triangular.
Thus if p τ$ = τ^ p', and suppose ^ = (α ί ;), /?' = (Z?/7), then both
the matrices are upper triangular. The equation pτ$ = tsPf gives
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Now

det(/?|F*){det(p'|F*)}~* = det a33 det α 4 4 det bx{ det 622.

From the symplectic property of p, /?' we have fti 1(^44) = id; thus
det644detail = 1, while det622 = det 033, since τ~ιa^τ = 622 - Thus
we have

det(p\V*){det(p'\V*)}-1 = (detα 3 3 ) 2 .

Now F* n F * τ s = J^*,. From this it follows that

This completes the proof.

The following is the main theorem of this section.

THEOREM 3.5. There exists a unique choice of unitary operators
r(σ), σ e Sp(X) with the following properties:

(1) r(σ)~ιU(w)r(σ) = fσ(w)U(w-σ) for all w e X, or σ -+ r(σ)
is a Weil (projective) representation

(2) r(p)φ: x -• \a\ιl2fp(x)φ(xa), when peP.
(3) r(p\σp2) = r{pχ)r{σ)r{p2) for all P\,Pi^P and σ arbitrary.
(4) r(σ\σ2) = r ( σ i ) r ( σ 2 ) whenever o\, σι G W or r\W is a repre-

sentation of the finite group W.
(5) r(σ)ψ- (0) > 0 for all σ € W, when ψ is of the form φ * φ~,

where φ~ — φ{—x) and φ e ^ ( F ) . Here * denotes the convolution
operation.

Ifσ -»^(σ) is a choice of unitary operators having properties (1), (3)
and (4), then there exists a character η of FX/(FX)2 and a complex
number ε such that η(-l) = ε2 and for σ e Ω 7,

(3.10) ξ(σ) = ^ (

x(σ) is defined by x{p\τsp2) = det(pip2 |^*) {see Lemma 5.1)
Ω7 w the P-double coset defined in Lemma 2.14.

Proof. We use the notation of the lemmas and our first observation
is that if the Haar measure μσ was chosen, then μPισp2 can be defined
as follows:

(3.11) βp.σp^

To see this gives a consistent definition suppose P\σpι — p'γOp^. Then

pap1 = a where p — p[~ιp\, p' = Pip'^1 Now we have to show that
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or
<β) μσ = \det(pp'\V*)\ι'2μσ.

Now p leaves Mσ invariant and so

p-μσ = \det(p\Mσ)\μσ.

The consistency Lemma 3.4 now shows that μPχσp2 is well defined
by (3.10). It is thus sufficient to choose μσ for each double coset of
P. Let

μi = δo> μτs = dv*,

where we have the isomorphism of Vg with V*/V*,, to identify MTs

with Vg. The Haar measures dF* were defined in 3.1. With this
choice of Haar measures μσ , define

(3.12) r(σ)φ:x-+ / fσ(x + x*)φ(x-a +x*γ)μσ (dx*).
Jλfσ

Then from Lemma 3.3 it is clear that the properties (1), (2) and (3)
hold. It is clear that r(τ^) is the partial Fourier transform given by
formula (3.9). Since the Fourier transform operator on V is the tensor
product of those corresponding to V\, V2, when V = V\ + V2 it is
easy to see that r(τs\js) = r(τsι)

r(τs2) when *SΊ and £2 are disjoint.
On the other hand since the Haar measures dys, dv* are dual to each
other, it follows that

r(τs)
2 = r(as)

where τ | = as £ P. These two properties now imply (see Lemma 2.13
on the structure of W) that r(σισ2) = r(σι)r(σ2) for all σ\, σ2 e W.
To verify the property (5), note

s2)ψ (0) = r{aSχ)r(τSi)ψ -(0) =

and so it is sufficient to verify for τs. Let ψ\ e ^(VSχ), φ2 e
and φ = φι®φ2. If ^ = ^*^?^ then

I
Jv

svs,
Thus we have shown r(σ) has all the properties (1) to (5). To prove
uniqueness suppose σ —• ξ(σ) is a choice of unitary operators satis-
fying (1), (3) and (4). Let the constants c(σ) be defined by ζ(σ) =
c(σ)r(σ). Then c(pχσp2) = c(p\)c(σ)c(p2) for all P\,p2 £ P and
c{σ\σ2) = c(σi)c(σ2) for all σ\, σ2 e JV. In particular c is a char-
acter of P. Since char/7 ^ 2, it is not difficult to show that the
commutator subgroup [P, P] of P is = {σ e P|det(/?|F*) = 1}.
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Thus there exists a character η of the multiplicative group Fx, such
that c(p) = η(det(p\V*)), for all p G P. If S\, S2 are two subsets of
{1, 2, . . . , n} having the same number of elements, then there exists
a permutation a of {1, 2, . . . , n} such that a(S\) = S2. If p E P
is defined as et -p = ea{ί), e\ -p = e*{i), then τSl = P~xτSχP. Thus
c(τs) = c(τ$ ) , whenever 5Ί , S2 have the same number of elements.
Since c( ) on W is a character of W, it follows that c(τs) = e 7',
where j = \S\. Thus ε2J = c(τ2

s) = ^/(det(τ||F*)) = ι/((-l>0,
y = |5Ί. From this it follows that e2 = η(—l). Suppose P\%sPi — τs',
then c(p\)c(p2) = 1 or η(det(p\P2\V*)) = 1. From Lemma 3.5, it
follows that η(a2) = 1, where a = det(pi\MTs). By choosing /?i
to be a suitable diagonal matrix, it follows that η(a2) = 1 for all
a G Fx. This proves the formula (3.10). Conversely if ξ(σ) is de-
fined by (3.10), it is clear that ξ has properties (1), (3) and (4), since
all the above arguments are reversible. To prove uniqueness of r( ),
suppose £(•) has all the properties (1) to (5). Then since ξ is a ho-
momorphism on P, η is a trivial character of F * . Thus e2 = 1 and
£(σ) = ε̂ V(σ ), for σ e Ω 7 . Now the non-negativity condition (5)
implies that ε = 1. This completes the proof.

DEFINITION 3.6. The map σ -• r(σ) is called the standard Segal-
Shale-Weil (projective) representation. Note its construction depends
only on the character χ of F and the symplectic basis e\, . . . , e*
of X. Note that r{σ), for σ G W is given by the partial Fourier
transform formula (3.9).

Good behaviour of the Weil representation for direct sums of sym-
plectic vector spaces has been noted from the beginning. In terms of
the standard model a —• r(σ), this can be formalized as follows.

PROPOSITION 3.7. For any arbitrary subset S of {1,2, ... , n} let

rs{ ) denote the standard Weil representation of Sρ(X) corresponding

to the data Xs = Vs + Vg, the symplectic basis being {e,, e*, j eS}.

Let S\, . . . , Sm be a partition of {1,2, ... , n} and let βj G Sρ(Jf),

7 = 1,2, . . . , m . / /

σ = diag(σ!, . . . , σm) e Sp(ΛΓ)

then

Proof. Let Wj denote the finite subgroup of Sp(X) introduced in
§2.5 for the symplectic basis {ej, ej : j G Sj} of X$ . then it is easy
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to see that

W = {diagfo, .. . , σm)\σj e Wj for all j).

From the definition of Fourier transform it is clear that the statement
of the proposition is true when σ e W and σ7 e Wj for all j. It
is clear that the proposition is valid when Oj e Pγs , for all j. The
general case now follows from properties (3) and (4) of Theorem 3.5,
valid for each of the rs( ).

4. Calculation of the multiplier. For the standard Weil representa-
tion σ —> r{σ) introduced earlier, let c(σχ, σ2) denote the multiplier,
i.e. c(σ\, σ2) is a complex number of absolute value one, defined by
the relation

(4.1) r(σχ )r(σ2) = c(σ{, σ2)r{σχ σ2).

The following theorem gives an explicit formula for the multiplier in
terms of the Leray invariant constructed in §2. The reader should
note that the crucial computation (the part (4) in Theorem 4.1 below)
is carried out already in Weil ([16], see Theorem 3, p. 163). For the
definition and various properties of the Weil index of the character of
second degree see the Appendix.

THEOREM 4.1. The multiplier c{p\, σ2) can be explicitly computed
from the following properties:

(1) c{pχθXp, p~ισ2p2) = c(σx, σ2) for all p,pΪ9p2 e P and σλ,
σ2 arbitrary.

(2) c(σuσ2) = l ifσuσ2eW.
(3) If Si, S2, . . . ,Sm is a partition of {1, 2, . . . , n) and cs{- , •)

denotes the multiplier of the standard Weil representation rs, then

where σ = diag(σi ,...,σm), σ' = diag(σ{, . . . , σ'm).
(4) c(τup, τ) = Weil index ofχ{\(x,x p)) = γ(fUβ).
(5) In general for any σ\, σ2 e Sp(X),

c{σx, σ2) = Weil index ofχ{\{x,x-p))

where the isometry class of p is given by the Leray invariant

Proof. The property r(pxσp2) = r{pχ)r(σ)r(p2) gives c{pχσx, σ2p2)
= c(σ\, σ2) and c{pχp, p~ισ2) = c(σχ, σ2). This proves (1). Since
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r( ) restricted to W is a representation (see Theorem 3.6 for the
defining properties of r( )), it follows that c(σ\9 Gi) = 1 for all
G\, σ2 € W. The statement (3) follows from the tensor product prop-
erty of r(.) stated in Proposition 3.8. The computation of C(TM^ , τ)
is carried out in Weil (Theorem 3,p. 164). Actually since the formu-
las for r(τ), r(τup) and r(τupτ) are explicitly known the identity
r(τ)r(up)r(τ) = c(τup, τ)r(τupτ) leads quickly to a Fourier transform
relation—which is the defining property of the Weil index. (See the
Appendix, Theorem A.I.) Now suppose G\9 OΊ are arbitrary. Then
by Theorem 2, G\ = p\K\p~ι, σ^ = PK2P2 where

K\ = diag(τs , tsup) > K2 z

Here the decomposition of X is = Xs>+X$, S* being the complement
of S, 5Ί c S " , S2CS'. Also /? is nondegenerate on ^ and the isom-
etry class of p is that of the Leray invariant q(V*, F*σ 2

- 1, F*σi). It
then follows that

C(G\ , σ2) = c(κi, κ2) = ̂ ' ( τ ^ , τs2)cs(τup, τ)

= Cs(τup9 τ) = Weil index of ^( j (x , x-p)).

This completes the proof.

COROLLARY 4.2. For any σ, c(σ, σ" 1) = 1.

Proof. In this case the isometry class q(F*, F*σ, F*σ) is the trivial
class. Thus c(σ, σ" 1) = 1 for all σ.

COROLLARY 4.3. Suppose dimX = 2 and

σ j = \ a

c { b A , j = l , 2 .

Then

ί 1 if &i 9 ^2 or ϋ\θι G P,
Φ i , σ2) = < j

I yF\jC\C2{c\a2 + d\C2)χ) otherwise.

Here we have used the notation from the appendix, JF^) denoting the
Weil index of x -> η(x2).

Proof. The formula for C(G\ , CΓ2) follows from the calculation of
the Leray invariant given in §2.6. The reader may note there are a
large number of papers on the Weil representation of SL(2, F)—see
Gelbart [4] and also the references cited there.
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5. Normalization. It is known that the projective representation
r(σ) defines an ordinary representation for the two-fold cover of the
group Sp(X). This is equivalent to the statement that one can find
normalizing constants m(σ), so that the multiplier for r~(σ) =
m(σ)r(σ) is ±1 valued. The object of this section is to construct
such a normalization and also compute the multiplier explicitly. The
reader may note that previously the existence of such a representation
was deduced by an indirect argument (see Weil [16], §§42-43). An
explicit formula for the multiplier given here agrees with that given
by Kubota for the case SL(2, F). We begin with some preparation.

LEMMA 5.1. There exists a unique map a -> x(σ) of Sρ(X) into
FX/(FX)2 such that the following properties hold:

(i) x(p\σp2) = x(P\)x(σ)x(p2), for all PuP2eP.
(ii) x(τs) = 1 for all subsets S c {1, 2, . . . , n}.

(iii) x(p) = det(p\V*)(Fx)2, for all peP.
Moreover such a function is uniquely defined by

Proof, It is only necessary to show that if S\, S2 are two subsets and
PιτSιP2 = P[τs2p'2> then d e t ^ l F * ) = ( d e t p ^ | F * ) ( ^ ) 2 . Now
τsx > τs2 determine the same double coset if and only if S\, S2 have
the same number of elements. Then there exists a permutation ξ of
the indices {1, 2, . . . , /ι} such ξ(S\) = S2. If a is the element of
P defined by eι? a = eξ^ , e* a = et(,, then it is easy to check that

τ$2 = a~ι τ ^ a. Thus P\τSχp2 = p\crx -τSι-a-p'2. The lemma now
follows from the consistency of Lemma 3.4.

DEFINITION 5.2. Define the normalizing constants

for σ eΩj = PτsP, with j = \S\. The quantities γF(a, η), γF(η),
for ae Fx , and 17 a character of (F, +) are defined in the Appendix,
§A.3.

Now define r~(σ) = m{σ)r(σ) and let c"( , •) be the correspond-
ing multiplier, i.e.

Then it follows that

(5.1) c~(σi, σ2) =
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THEOREM 5.3. The normalized projective representation r~( ) is
metaplectic, i.e. the corresponding multiplier is ±1 valued. In fact we
have the explicit formula

c~(σi, σ2) = (x(σι), x(σ2))F(-x(σx)x(σ2), x(σxσ2))F

x ((-l)ι,detp)F{(-l,-l)F}
ι«+1V2hF{p)

where p is the Leray invariant —q{V*, V*σ\, V*σ^x) (see §2.3),
hp{p) is theHasseinvariant (seeAppendix§A.3) and 21 = j\+ji-j-
dimp, where σ\ € Ωy , σ2 € Ωj2, σ\σ2E Ωj.

Proof. First we compute (here η = \

(5.2)

m(σϊ)m(σ2){m(σισ2)} ι

= {yF(x(σι), η)γF(x(σ2), η)Yx

Now

(5.3) ΪF(x(σι), η)γF(x(σ2), η)

= (x(σx), x(σ2))FyF(x(σι)x(σ2), η).

Now from Theorem 2.16 (of §2.5) we have

σ\=P\K\P~x, σ2=pκ2p2

where

Kx = diag(τ5 i, τsup), κ2 = diag(τs2, τs)
and 7i = | 5 | + | ^ | , j 2 = \S\ + \S2\, j = \S\ + \SX\ + \S2\ - 2\S{ nS2\
and dim/) = \S\. Thus / = |5Ί Π ^ l . From the definition of x( ), it
is clear that x(κx) = 1, x(κ2) = 1, and

x(σι) = x(pι)x(p), x(σ2) = x(ρ2)x(p),

x(σλσ2) = x(p\)x(p2)x(κxκ2) = x(σι)x(σ2)x(κiκ2).

Thus

(5.4) {7F(x(σ\)x(σ2), η)}~ιγF(x(σiσ2), η)

= (-x(σι)x(σ2), x(σισ2)){γF(x(κικ2), 1

Next x(κ\K2) = x(τsτs)x(τsupτs) = (-l)'det/?. That detp =
x(τsupτs) follows from the decomposition

* *1 ΓO -71 \I *
0 p\ [I θ j [ θ I
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and similar decompositions when τ is replaced by τ$. Thus

(5.5) γF(x(8kιK2), η) = γF((-l)ιdetp, η)

= ((-l)ί,dctp)γF((-l)ί,η)γF(dctp, η).

Next

(5.6) γF{{-\)1, ηTxyF{η)21 = yF{{-\)1, η)

Here we have used Corollary A.5 of the Appendix. Note that j -j\
j 2 = - dim/) + 2/. Thus we get from (5.2)-(5.6) that

(5.7) m(σ1)m(σ2){m(σ1σ2)}"1

= (x(σι), x{σ2)){-x(σi)x(σ2), x(σισ2))

where / = dim/?. Finally using the formula for c(σ\, σi) — γ(fp)
(see Theorem 3.6) we have

(5.8) c{σx, <72){Mdet, p, η)}-χ{γF(η)}-n = hF(p)

from the definition of the Hasse invariant (see §A.3 of the Appendix).
The theorem now follows from (5.7) and (5.8).

COROLLARY 5.4. For any σ e Ωj

c~(σ, σ~ι) = (x(σ),(-iyx(σ))F{(-l,-l)Fyy+^2.

Proof. Let σ G Ω 7 , then σ — Px^sPi w i t n 1̂ 1 = J • Then σ~ι =
l l l X 2 l • Thus

In this case the Leray invariant is trivial. Thus

and this simplifies to the statement of the lemma.

COROLLARY 5.5. (1) c~(τ 5 ,τs) = { ( - 1 , - l ) } / ( / + 1 ) / 2 where I

\Sins2\.
(2) <r{pι, pi) = (x(pι), x{pi))F > for all pι,p2eP.
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(3)

= (x(P\),

x {(*(p

(4) c~(σxp-1, Jpσ2){c-(σ1, σ 2)}" 1 = ( φ ) , -

Proof, Note

= (x(p), x(σ))m{p)m{σ),

= (x(σ), x(σ))m(σ)m(p),

m(p-ι) = m{p) and m(p)2 = (x(p), -l)F.

The results then follow by straightforward computation from (5.1).

COROLLARY 5.6. For any swfoeί S c {1, 2, . . . , n}, let nts( ),
c£( , •) te defined analogously for Sρ(X^). ΓΛ̂ /ί (/" 5Ί, S2 is a
partition of {1, 2, . . . , n}, then

σ/, σj E Sp(JΪ5.)

σ = diag(σ!, σ 2), σ' = diag(σί, σι

2).

Proof. It is easy to check that

The result then follows easily from this and the fact that c(σ, <τ7) =
csx(σ\, cτj)ciS'2(cr2, σ£) (see Theorem 4.1).

The following corollary is well known.

COROLLARY 5.7. When F is a finite field or the field of complex
numbers, c~(σi, σ2) = 1 for all θ\, σ2. /π particular r~(σ) is a
representation in this case.

Proof. This follows from the observation that both the Hubert sym-
bol and the Hasse invariant are equal to 1 in this case.
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REMARK. We note here that when dim X = 2, we have

c~{σx, σ2) = (x(σι), x(σ2))F(-x(σι)x{σ2), *(<xiσ2))F.

In fact in this case n = 1, so the Hasse invariant is always one and
when dim/? Φ 0, / = 0. Also the definition of x(σ) reduces to

. !a b\ [ d{Fx)2 whenc =
x . •Hd) \ c(Fx)2 when c φθ.

Thus the multiplier agrees with that given by Kubota. In this connec-
tion see Kubota [7], or the exposition in Gelbart [4].

Finally we end this with a proposition due to Weil ([16], see §44).
The proof given will be based on formula (3.10) of Theorem 3.5 and
is different from that of Weil.

PROPOSITION 5.8. The projective representation σ —• r{σ) is equiv-
alent to an ordinary representation {or the cohomology class of the
multiplier c( , ) is trivial) if and only if F is either a finite field or
is the field of complex numbers.

Proof. In view of Corollary 5.5 we have only to show the necessity
of the condition. If the representation is equivalent to an ordinary
representation there exist constants c(σ) such that if ξ(σ) = c(σ)r(σ),
then ξ(σ\σ2) = ζ(θ\)ζ(σ2) for all σ\, #2. From Theorem 3.6, it
follows that c(σ) = η(x(σ))ej for σ G Ω 7 , where ε2 = η{-l) and η
is a character of FX/(FX)2. Since ξ is a homomorphism it follows
that

^ j c ( σ ι , σ 2 ) = η ( x ( σ { σ 2 ) ) ε j

where a\ G Ω 7 j , σ2 E Ω;2, σ\σ2 £ Ω 7 . Here c(σ\, σ2) is the multi-
plier of r( ). Let σ\ —τsup, σ2 = τ$ then it follows that

c(τsup, τs) = y{fP) = η(dctp)ε-j

where j = |5 | (see Theorem 3.6 for c(τsup, τ^)). Taking j = 1, we
get

From this it follows that γp(a, j / ) = η(a) for all aeFx . Since f/ is
a character of F * , it follows that (a, δ)/r = 1 for all a, b e Fx . This
can happen only if i 7 is either a finite field or, the field of complex
numbers.
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Appendix. The Weil index of a character of second degree.

A.I. Let G, G* be locally compact abelian groups ad χ a nonde-
generate bicharacter pairing of G and G*. Let S^{G), ^(G*) de-
note the Bruhat-Schwartz spaces of functions on G, G* respectively.
Write

x*^ I χ{x,x*)φ{x)dGx,

where dG, d^* denote Haar measures on G, G* respectively, and
φ e S^{G), ψ e S*(G*). Then there exists a pairing of the Haar
measures, called the Plancherel pairing, such that

^9-ψ = (</σ, dG*)χ φ°, ^*ψ = (dG, d σ \ . y/0,

where ^°(x) = φ(—x)9 ψ°(x*) = ^ ( - x * ) . The Haar measures dg,
dG* are said to be dual to each other relative to the pairing χ, if
(dG, dG*)χ = 1. If u is a tempered distribution on G, i.e. u is
a complex valued continuous linear functional on S?{G), then its
Fourier transform ^u is a tempered distribution on G* defined as
follows:

9Ή\ ψ -+ u^ψ).
Fourier transforms of tempered distributions on G* are denoted by
^ * . If / is a function on G, fdg is the distribution φ -^ J fφdG.

A.2. A character of the second degree / on G is a continuous
map of G into T such that f(x + y){f(x)f(y)}~1 is a bicharacter
in x and y. In particular there exists a continuous homomorphism
p = p(f) of G into G* such that

/(* + y){f{χ)f{y)}'1 =x(χ,y-P) = x(y,χ p)
for all x , y e G. Then / is said to be nondegenerate if p is an
isomorphism of G with G*. For the following theorem see Weil [16]
(see also Cartier [3], for another exposition). Note the definition of
the Fourier transform depends on the pairing χ .

THEOREM A.I. Let f be a nondegenerate character of the second
degree on G, and let p = ρ(f) be the associated symmetric homo-
morphism. Then there exists a complex constant γ(f) of modulus
one, such that3

3Here p dG is the measure on G* defined by the identity p dG(φ o p) = dG{φ), for all
e <9>(G).
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where f is a character of second degree on G* defined by the formula
f'(x*) = {/(x*/?"1)}"1. The constant γ(f) is independent of the
pairing χ or the Haar measures used in its definition. We call y{f)
the Weil index of f.

The next theorem summarizes elementary properties of the Weil
index. They are deduced easily from the definition.

THEOREM A.2. (1) γ(f o a) = γ(f), for any continuous automor-
phism a of G.

(2) γ(f) = γ{f), f denoting the complex conjugate of f.
(3) //(? = (?! x(?2, and f\, f2 are nondegenerate characters of

second degree on G\, Gι respectively and f = f\ x/2, then γ(f) =

(4) For any x* eG*, let x*f denote the function x-+χ(x, x*)f(x)t

then

(5) If G is a finite groupf γ(f) is a Gauss sum, i.e.

xeG

where \G\ is the number of elements of G.

In the next theorem, the first part is due to Weil ([16], see Theorem
5), and he bases his proof of the quadratic reciprocity law on this
theorem. The second part is the main technique by which evaluation
of the Weil index is reduced to that of Gauss sums. This is implicit
in Weil but explicitly stated and proved in Cartier [3].

THEOREM A. 3. Let Γ be a closed subgroup of G and Γ* its anni-
hilator in G. Let f be a nondegenerate character of second degree on
G.

( 1 ) / / / | Γ = 1 and Γp = Γ*, then y ( / ) = l .
(2) If f\T = 1, then Tp c Γ* and the function g(x+Γ) = f{χ), x e

Γ*p~ι is a well-defined nondegenerate character of second degree on
H = Γ*p~ι/Γ, and the Weil index of f is equal to the Weil index of
g, i.e. γ(f) = γ(g).

A. 3. For the remainder of the Appendix, let F be a self-dual locally
compact field with chari 7 Φ 2, i.e. F is either a finite field or a local
field. For the material of this part see Weil [16], Saito [12], Rallis and
Schiffman [11].



THE WEIL REPRESENTATION 367

Let η be a nontrivial continuous character of (F, + ) . For any
flEf,we write aη for the character aη: x ^ η(ax). Define

y/τ(f/) = Weil index of: x -> ^/(x2),

(η), aeFx.

The main theorem on the γF(a, f/) is the following (see Weil [16], p.
176).

THEOREM A.4. γF(ac2, η) = γF(a, */) and the function a-+γF(a, η)
is a character of second degree on FX/(FX) and moreover

γF(ab, η)γF(a, η)~ιγF(b, η)~ι = (a, b)F

where (a, b)F is the Hubert symbol of F i.e.

i x ί +1 ifa is a norm in F(y/b),
α , 6)ir = <

{ - 1 otherwise.

The following corollary is immediate.

COROLLARY A.5. (1) γF(a, cη) = (a, c)FγF(a, η).
(2) 2

(3)

(4)

Explicit evaluation of γF(a, η) will be given in the next section.

DEFINITION A. 6. Let Q be a nondegenerate quadratic form of de-
gree n over F. Then the Hasse invariant Ap(Q) is defined as follows:

M<2) = 7(>7 o Q){γF(η)Γn{γF(detQ, η)}~1.

Here y(ι/ o Q) is the Weil index of the character of second degree
x -• ί/(Q(x)) and it will be shown below that the expression on the
right is independent of η.

LEMMA A.7. (1) / / n = 1, hF(Q) = 1.

(2) If n = 2, and Q = axx\ + a1x\i a\, a2 e Fx, then hF(Q) =

Mfl) =
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In particular

hF((aιχ} +
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)) —

Proof. The parts (1) and (2) are obvious. The part (3) is proved by
induction on m and using the Theorem A.2 (see [11]).

COROLLARY A. 8. If Q is hyperbolic of degree 2m, then

hF(Q) = {(-1, - 1 ) F } 7 , where l = m(m- l)/2.

A. 4. In this section we note some of the explicit evaluations that
are known about YF(*I) and the Hasse invariant.

PROPOSITION A.9. Suppose F is a finite field of char ψ 2. Then

(1)
a \ Γ +1 if a is a square,

y η - l otherwise.
(2) a -» y/r(α, i/) w a homomorphism and {a, b)p = 1 for all

a,beFx.
(3) hF(Q) = I for any Q.
(4) 7/*Fp is the prime subfield of F, am/ [F : F] = n and η' = j/otr,

(5) If η denotes the character j —> exρ(2πjyf-ϊjp),

ifp = 1 mod 4,

^T otherwise.

Proof. These are all well-known results, see for instance Serre's book
on arithmetic. The part (5) is a famous result of Gauss and Landau's
book on elementary number theory has several proof of it. It may
be of some interest to mention that another proof of it (actually for
any odd integer n) can be given on the basis of (4) of Theorem A.2,
Theorem A.3 and the evaluation of γR(η) for reals.

PROPOSITION A. 10. (1) When F is the field of complex numbers,
VF(η)> (a,b)f , hp{Q) are all equal to 1.

(2) Suppose F is the field of real numbers. Then

f - 1 ifa<0, 6 < 0 ,
(α, b)p = <

I +1 otherwise.
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If η(t) = exp(2π/\/=:T), then

= η((signa)/S).

Also if Q is a quadratic form of signature (a, b), b being the number
of negative eigenvalues, then

hF(Q) = ( - l ) m , where m = b(b - l)/2.

For the rest of this section let F be a non archimedean local field
with charF φ2, R the ring of integers of F , π a generator of the
maximal ideal of R, F the residue field of F . Let 7/ be a nontrivial
character of ( F , +) and let ordτ/ denote the largest integer m such
that η = 1 on π~mR. Let α(f/) denote the parity of ordί/, i.e.
a(η) = 0 or 1 according as ord*/ is even or odd.

PROPOSITION A. 11. Suppose c h a r F ^ 2 . Let

Then η is a nontrivial character of F and

ΪF(η) = {ϊ¥(η)}a{η) •

Moreover
'ΰ

w/zere α = πoτάa -uy u being a unit of R.

Proof. These are all known. All the .other formulas can be deduced
once the relation between y/r(ι/) and yγ(η) is established. This can
be done as follows. Let m = ordτ/. Let f(x) = ^(x 2 ), Γ = π~rR,
where r is the integral part of m. Then Γ* = { x e F\η(xT) = 1}
= πr~mR. Now />(/): x ~> 2x, relative to the pairing of F
with itself defined by η. Since 2 is a unit in R, the subgroup H =
Γ*p-ι/Γ = πr~mR/π-rR. Thus J7 is trivial and ?(/) = 1 when
ordf/ is even (see Theorem A.3). Now suppose m = ord?/ is odd.
Then H = πr~m{R/R) = πr~mT. Now let η\x-^πR-> η{π-m-χx).
Then 7/ is a nontrivial character of F and γ(g) = yp-(f/). In this con-
nection see also Saito [12] and Serre's book.

Finally we assume that F is a dyadic local field of char Φ 2. For
any nontrivial character η on F let a(η) denote the parity of ordτ/
and β = β{η) = e + a(η). Here ^ = ord π 2. Let Aβ denote the
ring R/πPR. Let η: x + n#R -* η(π~P-mx), where m =
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Then η is a primitive character of Aβ , i.e. x , y —> ?/(xy) defines a
nondegenerate pairing of Aβ with itself. Let

Then gη is a character of second degree, satisfying

gη{χ + y)gη(χ)~ιgη(y)~ι = η(χy).

Now we apply Theorem A.4 to /^(x) = *?(.*2) with Γ = π~rR, where
r is the integral part of rn/2. One gets that γ(fη) = γ(gη). Thus

xeA

It is not clear whether this Gaussian sum can be simplified further, in
general. However this is possible when F = Q2.

PROPOSITION A. 12. Let F = Q2 and let η be a character with
ordτ/ = 0. Then

and

( N _

β\, 62 are homomorphisms of U defined by u — 1 + 2δχ H-
4ε2 mod 8 and ω(u) = εi + ε2
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