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ON SOME EXPLICIT FORMULAS
IN THE THEORY OF WEIL REPRESENTATION

R. RANGA RAO

The object of this paper is to derive some explicit formulae con-
cerning the Weil representation that allow us to define this projective
representation in a unique manner for each choice of symplectic basis.

Let F be a self-dual locally compact field of char # 2 and X a
symplectic vector space over F. Let V', IV* be two transversal La-
grangian subspaces. Then a classical construction due to Shale-Segal-
Weil gives a projective representation of the symplectic group Sp(X)
in the Schwartz-space of V. The operators £(o) corresponding to
each o € Sp(X) are determined uniquely only up to a scalar multi-
ple. The starting point of this paper is an explicit integral formula for
these operators &(o), valid for all o € Sp(X). In fact (see Lemma
3.2) we have for each o € Sp(X)

$(o)p: x — Jo(x, x")o(xa+ x*y)dus
V*/kery

where u, is a Haar measure on V*/kery, and f, is the charac-
ter of second degree on X, associated to o. Here o = [‘;‘ A1 is
the matrix representation of o in the decomposition X = V + V*,
This formula is known and already present in Weil’s paper when
y = 0 or when y is an isomorphism. The extension of its valid-
ity for all o enables us to show that it is possible to define the
projective representation in a unique way for each choice of sym-
plectic basis. Let e;,...,e,, €], ..., e, be a symplectic basis of
X such that e,...,e, (ef,...,e;) is a basis of V' (V*). Let
W be the finite subgroup of Sp(X) consisting of all ¢ such that
{ei, e;}o C {*e;, xe;} for each i. Then one has the well-known
Bruhat decomposition Sp(X) = PW P, where P is the stabilizer of
V*. Then it is shown that it is possible to make consistent choices
of the Haar measures u, so that (1) &(pyopy) = E(p1)E(0)E(p,) for
all py,p; € P and (2) &(0107) = &(01)¢(0,) for all ay,09 € W.
Moreover all such are determined. Among these there is one choice
o — r(o) called the standard model which in addition satisfies non-
negativity properties similar to those of the Fourier Transform. All
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this is done in §3 and the main result is stated in Theorem 3.6. For
the standard model the multiplier or the 2-cocycle c¢(a;, g3) is explic-
itly described in §4, Theorem 4 in terms of the Leray invariant, i.e.
c(o1, 0;) is the Weil index of the Leray invariant of the Lagrangian
subspaces V*, V*a; 1 V*g,. This formula generalizes one given
by Weil when ¢, g,, 0,0, belongs to the big Bruhat cell. Finally
we find normalizing constants m(o) such that r~(g) = m(o)r(o) is
metaplectic, i.e. the associated multiplier is +1 valued. An explicit
formula for the multiplier ¢~(o;, ,) of r is given in Theorem 5.1.
This generalizes a result of Kubota. In fact the formula given reduces
to that of Kubota when dimX = 2. Although Moore [18] has de-
scribed the cohomology groups, the explicit formula for the multiplier
given here appears to be new.

Preliminaries on symplectic geometry are discussed in §2. Here
the Leray invariant (= an isometry class of a certain inner product
space) of an ordered triplet of Lagrangian subspaces is defined. The
main result here is Theorem 1 which shows that the Sp(X)-orbits of
an ordered triplet of Lagrangian subspaces are parametrized by the
various dimensions and the Leray invariant. Theorem 2 gives an ap-
plication of this to the structure of Sp(.X). This theorem is used in the
computation of the multipliers. Weil in his paper [16], introduced a
constant p(f) for each nondegenerate character of second degree. We
call this constant the Weil index of f. The definition and properties
of the Weil index, its relation to the Hilbert and Hasse symbols and
various known computations of the Weil index are collected together
in the appendix.

There is a large literature on the subject. For further references see
the recent books of Guillemin and Sternberg [6] and Wallach [17] for
the real case and Gelbart [4] for SL, and p-adic case and Gerardin
[5] for the case of finite fields. Part of the results of the paper were
obtained when the author was visiting Tata Institute, Bombay, the
Indian Statistical Institute, New Delhi, and the Forschungsinstitut of
E. T. H., Zurich during 1977-78. The author would like to express his
thanks for their hospitality and support. The author is also indebted
to C. Moreno for many stimulating conversations.

Postscript: This paper was written in 1978 and widely circulated
at that time. For various reasons it has not been published. Since
this paper is referred to in many published papers, it was felt that its
publication is still desirable. No attempt has been made to update the
references since they are too numerous. Instead we refer the reader
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to the books of G. Folland [19] and G. Lion and M. Vergne, [20] and
also [21].

2. Preliminaries on symplectic geometry.

2.1. Let k be a field and X a symplectic vector space over k, i.e.
X is a finite dimensional k-vector space with a non-degenerate bilin-
ear form x,y — (x, y), which is symplectic, or {x, x) = 0 for all
xe X.If X and Y are symplectic vector spaces, a k-linear isomor-
phism of X and Y which preserves the symplectic structures is called
a symplectomorphism. Let Sp(X) denote the group of symplectomor-
phisms of X onto itself. A subspace L of X is said to be isotropic
if LN Lt # {0}, nonisotropic if LN L+ = {0}. A nonisotropic sub-
space is also called a symplectic subspace, since the restriction of the
symplectic form to it is nondegenerate. If X; C X is a symplectic
subspace, so is X, = Xj and X = X; + X, direct sum. A subspace
L is totally isotropic if L c L+ and maximal totally isotropic or La-
grangian if L = L+ . Two subspaces L, L, are said to be transversal
if LynL, = {0}. An ordered basis {v;, ..., v3,} of X issaid to be
a symplectic basis if the following relations hold:

(v;, 'Uj> = (Vitn, 'Uj+n> =0; (vi » 'Uj+n> = 51’]

for all i, j with 1 <, j < n. The following lemma and its conse-
quence will repeatedly be used in this section (for proof see Bourbaki

).

LemMA 2.1. (i) Let vy, ..., vy be linearly independent vectors of
X, satisfying (v;,v;) = 0 for all i, j. Then there exist vectors
Wy, o0y
Wy, in X such that

<'w,', UJj) =0 foralli, ] and (’Ui, ’LUj) =5ij~

(ii) If L is a Lagrangian subspace, then dim X = 2dim L and
there exists a Lagrangian subspace transversal to L.

(iii) If Ly, L, are two transversal Lagrangian subspaces, and
Ui,..., Uy is a basis of Ly, there exists a basis Vpi1, ...,V Of
L, such that vy, ..., vy, is a symplectic basis of X .

(iv) Let X and Y be symplectic vector spaces and Ly, L, (M;, M;)
be Lagrangian subspaces of X (of Y). If dimX =dimY, and o is
an arbitrary k-linear map of L, onto M, then ¢ can be extended as
a symplectomorphism of X onto Y, mapping L; on M;, i=1,2.
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2.2. Following Weil, we write the action of the group Sp(X) on X
on the right. Let A(X) denote the set of all Lagrangian subspaces of
X . It is clear that Sp(X) acts transitively on A(X). For L € A(X),
let P; denote the isotropy subgroup at L for the action of Sp(X),
i.e.

Py ={c€Sp(X)|L-a=L}.
Also write
Ny ={oceSp(X)lvoc=v forallvel}.

In the rest of the section we develop some results (needed later) on
the orbits of P, on A(X) and on A(X) x A(X).

LEMMA 2.2. Let Ly, L, € A(X). Then there exists a decomposition
X = X+ X, into a direct sum of orthogonal symplectic subspaces X,
X, such that

(1) Ly, Ly commute with the decomposition, i.e. L; = LN X +
LinX;, i=1,2 and LiN X, are Lagrangian subspaces of X;.

(2) On Xy, Li=Ly,ie LinX;=LNnX;.

(3) On X,, Ly, L, aretransversal, i.e. (LiNnX,)N(L,NX3) = {0}.

Proof. Let M =L, NL,. Then M is a totally isotropic subspace.
From Lemma 1, it follows that there exists a totally isotropic subspace
F,such that X = M+ + F direct sum. Let X; = M+ F, X, = Xi-.
Then X;, X, are symplectic subspaces. Now M C M1 so we have
MtNnXy =M,and M+ = M+ X,. Since M C L; C M* it
follows that L; =M+ L;N X, = L;,NX; + L;NX,. From dimension
considerations it follows that L;N.X; are Lagrangian subspaces of X .
It is clear that Ly N X; = M = L, N X;. This clearly implies (2) and
(3). O

LEMMA 2.3. Let Ly, Ly, L € A(X) be arbitrary. Then

(1) there exists o € Ny such that Lya = L, ifand only if LinL =
LynNL. The element o is unique if L, and L, are both transversal
to L.

(2) There exists 0 € P; such that Lo = L, ifand only if dimL;N
L=dimL,NL.

Proof. (1) Suppose LiNL = LyNL = M. Choose an isotropic
subspace F such that M+ 4+ F = X direct sum. Let X; = M + F
and X, = Xj-. Then the decomposition X = X; + X, has all the
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properties of Lemma 2.2, for both the pairs L,, L and L,, L. Thus
on X;, Ly=Ly,=L andon X,, L; and L, are both transversal to
L. Let o = diag(ay, 02), where g; is the identity element of Sp(X,)
and o, is any element of Sp(X;) such that (L, N X3)0, = LN X,
and o, = identity on L N X,. The existence of such a g, can be
seen by considering symplectic bases associated to the decompositions
Xo=LNXa+LinX, =LNX,+LyNX;,. Itis then clear that ¢ € N
and L0 = L,. It remains to check uniqueness when L;, L, are
both transversal to L. Suppose Lig = Ly, = L;o’. Let u = go'~!.
Then ue Ny and Liu=L,.If xe€ L; and y € L, then

(xu—x,y)=(x-u,y)—(x,y) = {xu, yu) — (x, y) =0.

Thus xu—x€ L+ =L. But xu—x€L;. Thus x-u=x and u =1id
on L; also. Since L; + L = X, it follows that u# = id.

Proof of (2). Let X = X; + X, = Y; + Y, be the decompositions
of Lemma 2 for the pairs L;, L and L,, L respectively. Now
dimX; =2dimLNL; =2dimLN L, = dimY;. Thus there exists a
symplectomorphism ¢; of X; into Y; which takes LNX; to LNY;.
Let o, be a symplectomorphism of X, onto Y, which takes LN X,
to LNY,. If o =diag(ay, 02),then 6 € PL and LicNnL=L,NL.
The result now follows from the first part. O

2.3. Let L;, L,, L3 be Lagrangian subspaces which are pairwise
transversal. Then by Lemma 3 there exists a unique u € N, such
that L,-u = Lj3. Let u be represented by the matrix

_|L»r
o=l 7]
in the decomposition X = L, + L;. Since u is symplectic one has
that, for x,y € L,,

Qx,y)=(x,y-u)=(x,y-p)=(y, x-p)

is a symmetric bilinear form on L,. Since Ly ={x+x-p:x € L,},
the transversality of L, and L; implies that p is injective or the
symmetric bilinear form is nondegenerate.

DEFINITION 2.4. For any three pairwise transversal Lagrangian sub-
spaces Ly,L,, L3 of X,let g(L,, L,, L3) denote the isometry class
of the inner product space {L,, Q(-, -)} introduced above. We call
q(Ly, Ly, L3) the Leray invariant of L;, L,, L3 (see Leray [8]).
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LEMMA 2.5. Let X and Y be symplectic vector spaces of the same
dimension. Let Ly, L,, Ly € A(X), L, L, Ly € A(Y) be two
triplets of pairwise transversal Lagrangian subspaces. Then there exists
a symplectomorphism o of X onto Y such that

Li-o=L;,, j=1,2,3,

if and only if
q(Ly, Ly, L3) = q(Ly, Ly, L3).

Proof . Suppose first Lo = L;- , j=1,2,3, for a symplectomor-
phism o. Let u € N be such that Ly-u = L3. Let «' = o luo.
Then it is clear that &' € N, ., = NL; and L, -4 = Ly-ou' = Lyuo =
L3o = L. Thus, for x,y € L,

Q(x-0,y-0)=(x-0,y-0u) = (x,y-u) = Ox, y).

Thus Q and Q' are isometric. Conversely suppose q(L;, Ly, L3) =
q(Ly, Ly, LY). Let ue NLl , W eN j% be the unique elements such
that

Ly-u=Ly, Ly-u'=Lj.

Let Q'(x',y) = (x',y ), X',y € L). Similarly Q(x,y) =
(x,y-u), x,y € L. Since Q and Q' are isometric, there exists a
k-linear isomorphism ¢ of L, onto L) such that Q'(x-0,y-0) =
Q(x,y) forall x,y. Now X =L, +L; and Y = L} + L. By
using symplectic bases, it is clear o can be extended to a symplecto-
morphism of X onto Y such that L;.0 =L|. Let Ly =L3-0. We
have only to show that L} = L;. Now L} = Lyu-0 = Lyo(o~'uo) =
L,-u" where ' =0~ 'us € Ny . Now, forall x,y € L,,

(x,yu) =Q(x,y)=0Q'(x0,y0)=(x-0,y-0-u').
On the other hand
(x-0,y-0-U')=(x-0,y-uc)=(x, yu).

Thus (x',y"-u") = (x',y'-u) forall X' = x.0, ¥y =y.-0 € L).
Since both u’, u” € Ny, it follows that «’ = u”. But Lj-u' = Lj.
Thus Ly =LY =L;3-0. O

For the sake of clarifying the nature of the invariant q(L;, Ly, L3)
we note the following.
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LEMMA 2.6. If Ly, L,, L; is any triplet of pairwise transversal
Lagrangian subspaces, then

q(Ly, Ly, L3)=q(Ly, L3, Ly) =q(Ls, Ly, Ly)

and
q(Ll , Lz, L3) = —Q(Ll , L3, Lz) .
Here —q is the isometry class of the symmetric bilinear form (—Q),
if q is the isometry class of Q.

Proof. Let uj € N, j =1,2,3, be defined by L,-u; = L3,
Ly-up =Ly, Li-u3s = L,. In the decomposition X = L, + L;, let
the matrix of u; be

a=o 1]
'=1lo 1]

Then L3 = {x;+ x-p: x, € L,}. Then it may be checked that

Uy = I 0 = 21 p
2= _p-t |0 MBT|_p1 o

From this it follows that usu;uy = —(u;)~3. In particular uzu u; €
NLI . Similarly ujuu; = —(uz)—3 € ]VL2 etc. Now g(L;, L,, L3) 1is
the isometry class of Qy(x>, ¥2) = (X2, y2-u1), X2, ¥2 € L. Note
that L;-u3 =L, and

Ox(xy1-u3, y1-us) = (xXy-u3, y1 - Usy) = (X1 - Uy, ¥y - Uzl )
= (x1-u3, =y1) = (¥1, X1-u3).

Here in the last step we have used that (—uzu uy) € NLl , and
U € N, . Since g(L3, Ly, L) is the isometry class of the form
{{x1,y1-u3), x1,y1 € L}, it follows that q(L3, Ly, L;) =
q(Ly, Ly, L3). The other relations are proved similarly.

REMARK. When k is the field of real numbers Leray in [8] intro-
duced the inertia of three pairwise transversal Lagrangian subspaces
Ly, L, L3 asfollows: Consider x; € L; such that x;+x;+x3 =0.
Note given one of the Xx;’s, the other are uniquely determined, thus
given Xx;, x, is the unique element of L, such that x; +x, € L3 etc.
Let p be the map L, — L; defined by x, — x1, when x; + x; € L3
etc. Then p is symmetric and it is clear that L3 = {x,+Xx3p: x, € L}.
Thus the u; € Ny such that L,-u; = L3 introduced earlier is given

by
1
= [0 f]
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etc. The index of inertia (or the number of negative eigenvalues of p)
is called by Leray the inertia of the triplet. Since the index of inertia
of a real quadratic form of a given degree, determines its isometry
class, it seems appropriate to call this the Leray invariant (see also the
book [6]).

2.4, We have just seen that the isometry class q(L;, Ly, L3) de-
scribes the Sp(X) orbit of the triple L;, L, L3, when they are
pairwise transversal. Our next object is to classify the general orbit.
This requires some preparation.

LEMMA 2.7. Let L, L,, Ly € A(X). Then for the pair L;, L,,
there exists a decomposition X = X; + X, with properties stated in
Lemma 2, such that Ls also commutes with the decomposition, i.e.
Ly=LinX;+ L3N X;.

Proof. First consider the case when Ly N L, N Ly = {0}. Then
L, + L, + Ly = X. Thus there exists a subspace F C L3 such that
X =(LiNLy)+ +F directsum. If M =L, NLy,let X; =M+ F,
Xo =X ll; then the decomposition X = X; + X, has the required
properties. It is only necessary to check that L; commutes with the
decomposition. In fact F1 = F + X, and since F C Ly C F*, it
follows that Ly = F + L3N X, = L3N X; + L3N X, . Now consider the
general case. Let My =L NL,NL3. Let Fy be a totally isotropic
subspace such that M3 +Fy =X . Let Y = My+Fy, Y, =Y. Then
it is easy to see that L;, L,, L3 commute with the decomposition
X=Y1+Y,.0n Y, L =L, = Lj3 so the lemma is valid. On Y;,
LinL,nL3={0} so that the first case discussed above applies. This
completes the proof. O

LEMMA 2.8. Let Ly, L, L3y € A(X). Then there exist pairwise
orthogonal symplectic subspaces X;, j =0, 1, ..., 4, such that the
following hold:

() X=Xo+ -+ X;4.

(2) L; (i =1,2,3) commute with the decomposition, i.e. L; =
Zj L;n Xj .

(3) On Xo, Ll =1L, =L3.

(4)On Xy, Ly=L; and L, L, are transversal.

(5)On X,, Ly=L, and Ly, L; are transversal.

(6)On X3, Ly =L, and L3, L, are transversal.

(7) On X4, Ly, L,, L3 are pairwise transversal.
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Proof. Note first that the statement (2) above implies that L; N X;
is a Lagrangian subspace of X; and a property is said to hold for L;’s
on X;, if the same holds for L; N X;. Now to prove the lemma, let
X =Y, + Y, be the decomposition of the previous Lemma 5. Then
L,, L,, L; commute with the decomposition and on Y, L; = L,
andon Y,, LinL; = {0}. On Y;, apply Lemma 5 again to the triple
Ly, Ly, Li. Then Y; = Xy + X3, and on Xy, Ly = L3 and on
X3, L, and L3 are transversal. Buton Y;, L; = L,. Thus on Xj,
Li=L,=L3z andon X3, L =L, and L, and L3 are transversal.
Proceeding in the same way and applying Lemma 5 to Y, repeatedly
we get the result. O

Our next object is to show that the isometry class

q(LiNXy, LyN Xy, L3N Xy)

is invariantly defined. For this we recall the technique of passing to the
quotient Xj,s (see Leray [8], or Guillemin and Sternberg [6]). Let M
be a totally isotropic subspace of X and let Xp; = M*/M . Then Xy,
becomes a symplectic vector space with the symplectic form defined
as
(x+M,y+M)=(x,y), x,yeM".

For any L € A(X), let the subspace Ly, of Xjs be defined as
Ly = (LNMY)/M. Ly is clearly a totally isotropic subspace of
Xy . By dimension considerations one verifies that Lj, is actually a
Lagrangian subspace of X, (see one of the above cited references).

LeEMMA 29. Let Ly, Ly, Ly € A(X). Let
M=(LNnL)+(LyNnL3)+(LsNLy).

Them M is a totally isotropic subspace and moreover the images (L;)
in Xy are pairwise transversal. Moreover

q((L)m s (L2)ars (L3)ur) = a(Ly N Xy, LyN Xy, L3N Xy)
where the symplectic subspace X4 is the one introduced in Lemma 2.8.

Proof. Since M+ = (Ly + Ly) N (Ly + L3) N (L3 + Ly), it is clear
that M c ML or M is totally isotropic. Using Lemma 6 and the
notation there, it is clear that M and ML both commute with the
decomposition X = Y X; and M+t = M + X4, M n X, = {0}.
Thus the symplectic vector space X, is isomorphic to X, and the
isomorphism takes L; N Xy onto (L;)y, i = 1,2,3. The lemma
follows from this and Lemma 4. O
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The above lemma enables us to introduce the following definition.

DEFINITION 2.10. For any three Lagrangian subspaces L,, L,,Ls,
we define

q(Ly, Ly, L3) = q((L1)m > (L2)ar > (L3)ar)

and refer to it as the Leray invariant of L, L,, Lj.

THEOREM 2.11. Let L;, L}, i = 1,2,3, be two triplets of La-
grangian subspaces of X . Then there exists a o € Sp(X), such that

Li-o=L;, fori=1,2,3

if and only if the following relations are satisfied:
(1) dim(L; N L, N L3) = dim(L{ N L, N LY).
(2) dim(L; N Lj) = dim(L} N L)), for all i, ;.
(3) q(Ly, Ly, L3) = q(L}, Ly, L3).

Proof. The necessity of the conditions being clear we consider suf-
ficiency. Let X =Y X; =Y X j’ be the decompositions of X asso-
ciated by Lemma 6 to the triples L; and L] respectively. Then it is
easy to see that

dim Xy = 2dim(L; N Ly, N L3),

dim X; = 2dim(L, N L3) — dim Xj,

dim X, = 2dim(L; N L;) — dim Xj,

dim X3 = 2dim(L; N L) — dim Xj.
From this it is clear that dim X; = dim X ]’ for 0 < j < 4. It is easy
to see from the defining properties of the decomposition in Lemma 6,
that there exists a symplectomorphism g;: X; — X ]’ ,Jj=0,1,2,3,
such that

(L,—ﬂXj)aj=(L§-an’-), i=1,2,3,

foreach j=0,1, 2, 3. From Lemmas 4 and 7, it follows that there
exists a symplectomorphism a4: X4 — X} such that

(LiﬂX4)O'4=L;ﬂX£, i=1,2,3.

Let the map o: X — X, be defined by o|X; = g;. Then ¢ € Sp(X)
and Lo = L} for i =1, 2, 3. This completes the proof. O

From the above theorem the following corollary is immediate.
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COROLLARY 2.12. Let Ly, Ly, Ly € A(X) and let X = ) X; =
X ; be two decompositions with the properties stated in Lemma 6,
for the triple L;. Then there exists ¢ € PL NP, NP such that
Xj-o=X; forall j.

2.5. The group W . We fix two transversal Lagrangian subspaces

V,V* of X and bases e;,...,e, of V and e}, ¢e;5,...,¢; of V*
such that (e;, e}) =0;;j. Thus e, ..., e, is a symplectic basis of X .
Let

W = {o €Sp(X){e;, ef}o C {te;, te;} for all i}.
Then clearly W is a finite subgroup. Define the elements 7, 7g,
ag € Sp(X) as follows:

*

ei-1=—ef, et=¢ foralli.
For a subset S c{l,2,..., n}, let
€i~Ts={ -ef, I1€S, e*.rsz{ei’ iesS,
e, 1¢S5, ’ ef, 1¢S;
-, I1€S, . -ef, 1€S,
e"’asz{e,-, i¢S; e,..as={ er, ¢S,

LEMMA 2.13. Any element w of W can be written uniquely in the

form
w = aSl ‘L'SZ

for some subsets Sy, S, of {1,2,...,n}. Moreover the following
relations hold: 1% = as and tsys, = 1s,-Ts, if S, Sy are disjoint.
In particular W is a commutative group of order 2*" . Every element
of W is of order at most 4 and the set of elements of order 2 is precisely
the set {as}.

Proof. Let ¢ € W . Then it is clear that ¢ is of the form
. {——sie;‘, I€S, . {ej-ei, I€B,
icg = . eé; g = .
! gei, i¢S; ! e,er, i¢B.
The condition that ¢ is symplectic now gives that S = B and ¢; = ¢

for all i. It is then clear that o = a5 75 where S =5 and §) = {i:
¢; = —1}. The rest of the statements follow easily from this.

REMARK. If Wy is the subgroup of Sp(Xg) corresponding to the
data, Xg = Vs + V¢ and the symplectic basis {e;, e, i € S} then

i

Ws is just the group obtained by restricting W to the subspace Xg.
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2.6. The P-double cosets. From now on we write
P=P V*s N =N, | a0

Thus in the decomposition X = V + V'*, the elements of P and N
have the matrix representations of the form

a f I p

0 0]’ 0 I
respectively. The following lemma is known. It describes the P dou-
ble cosets in Sp(X).

LEMMA 2.14. Let
Qj={oeSpX)|dimV*NnV*ec=n-j}, 0<j<n.
Then Sp(X) = Q). Each Q; is a single double coset of P. Moreover

Q= {a = [‘;‘ g] € Sp(X)|dimkery = n —j} .

Proof. Since P is the stabilizer of V*, it is clear that PQ;P = Q;.
Now suppose 0y, 0, € Q. Then from Lemma 2.3, it follows that
V*o1p = V*o, for some p € P. Thus gipo; ! stabilizes ¥* and also
in P. Thus o; € Po,P, i.e. Q; is a single P-double coset. For the
last part note that dim V*N V*s = dimV*NV*s~! and

* * =1 __ : _ (¢ ﬂ
V*nV*e~ =kery, 1fa—[y 6]'

This completes the proof.

LEMMA 2.15. (i) V*NV*ts=V*nV*ag! = V§, where S' is the
complement of S .

(ii) 15 €Q;, where j is the number of elements in S . In particular
Sp(X) = PWP.

(iii) If w; = a4,7B, j=1,2, then w;, w, belong to the same
P-double coset if and only if the number of elements in the sets B, B,
are the same.

The proof is straightforward and is omitted.
The following theorem plays a central role in the description of the
multiplier of the Segal-Shale-Weil representation.
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THEOREM 2.16. Let 0y, 0, € Sp(X). Then there exist suitable
D1, D2, P € P such that

-1
gy =pikK\p , g = PDKaD3,
k1 = diag(ts , TsUp) = Tsus - Up,

Kk, = diag(ts,, Ts) = Ts,us >

where S| and S, are contained in the complement S’ of S and the
diag(-, -) is relative to the decomposition X = X¢ + Xs. Here p is
a nondegenerate symmetric map of Vs onto V¢, whose isometry class
is that given by the Leray invariant —q(V*, V*a,, Vo, .

Proof.Let Ly =V*, Ly =V*g;!, Ly=V*0;. Let j; =dim¥V*n
V*ay, jo=dimV*NV*0, and j=dimV*NV*0,0,, jo=dimV*N
V*aiNV*o;!. Choose a partition By, ..., By of {1, 3, ..., n} with
Jos J=Jos Ji—Jo, J2—Jo, n+2jo—(j1+Jj2+J) elements respectively.
Let X; =Xp and Vi = Vg, V= ng. Let p be a nondegenerate
symmetric map of ¥, onto V}*. In the decomposition X =} X;, let

K1, Ky be defined as follows:
Ky =diag(I, 7,1, 1, 1u,), Ky =diag(l,7,7,1, 1)

where the diagonal components belong to Sp(X;) respectively and 7
as a diagonal component is to be understood as 7 restricted to the
appropriate Sp(X;). Let L) = V*, L, = V*k;!, L} = V*k;. Then
it is clear that dimL;NLyNL3 =dimLiNL5NL; and dimL;NL; =
dim LN L} , for all i, j. If we now choose the map p such that the
isometry class of (x, x.p) on V, isequalto g(L,, L, L3), then by
Theorem 1, there exists p € P, such that

Veylp=V*k;!, Viep=V"k.
Thus
o;'pk, e P, apx;leP.
If S =BiUB;, S =B,UB; and S = By, then k;, k; have the
form stated in the theorem and this completes the proof.

REMARK. From the above theorem it is easy to check that
Q;Q; = U Q;.
J<i+,

In particular QF = Sp(X). Also note Q;' =Q;.
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2.7. An example. Let dim X = 2 and suppose e;, e, is a sym-
plectic basis, so that (a e, + azez, bie; + byep) = ayb, — axby. Let
V =k-e;, V* = k-e,. Now Lagrangian subspaces are just lines in
X and we shall get an expression for the Leray invariant of three lines
L,, L,, Ls. Since the Leray invariant is trivial when two of them co-
incide, we assume that they are all distinct. Let x; € L; be non-zero
points. Then there exist scalars a, b such that x; = ax; + abx;. If
p: Ly — Ly, defined as p: tx; — thxy,then Ly={x+xp:x € Ly}.
Thus the associated quadratic form t — (tx;, tx,- p) = t2b(x;, x1).
One gets from this that g(L;, L,, L3) is the isometry class of the
form (pt?) where

p= —<x1 ’ x2)<x2 ) X3>(X3 ’ x1>(kX)2 .

Now suppose a;, g, € Sp(X, k) and
_|a b
W= [Cj dj]
for j =1, 2. Then the above calculation leads to the following result:

trivial if g, 0 or 10, € P,

Ve, Vet v ={ ,
4 2 ) cica(cray +dicy) - (k¥)?,  otherwise;

here one has identified the nontrivial isometry classes with k*/(k*)2.
3. The standard form for the Segal-Shale-Weil representation.

3.1. Throughout the rest of the paper we assume that (1) F is a self-
dual locally compact field, i.e. F is either a finite field or a nondiscrete
locally compact field, (2) char F # 2. It should be noted that in §2,
the field F was allowed to have characteristic 2. It is possible to
generalize the results of this section also to the case of chark = 2,
although the representation obtained is not of the symplectic group,
but of the pseudosymplectic group. For simplicity of presentation we
shall assume however that char F # 2.

We fix the following notation: X is a symplectic vector space over
F, V, V* two transversal Lagrangian subspaces of X, e, ..., e}, is
a symplectic basis of X such that e;, ..., e, (ef, ..., e;) isa basis
of V (V*); x is a nontrivial continuous unitary character of the
additive group of F; dfx denotes the Haar measure of the additive
group of F which is self-dual relative to the pairing a, b — x(ab)
of F with itself. Let Vs, Vg denote the subspaces spanned by {e;,
j €S} and {e;, j € S} respectively. Here S is an arbitrary subset
of {1,2,...,n}. Then Vg, V¢ are locally compact groups which
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may be considered as character groups of each other, via the pairing
v,v* — x({v,v*)). Let dy ,dy: denote the Haar measure on Vs,
V¢ respectively defined as the product Haar measures. For instance

/ f(v)dyv =/f <ijej) I d7x;.
Vs jes jes
Then the Haar measures dy, and st' are dual to each other relative
to the pairing y introduced above. Let .#(V), ¥ (Vs) etc. denote the
space of Bruhat-Schwartz functions on V', Vs etc. Then it is known
and easy to check that y(VSI) ®<7(VSZ) = Y(Kglusz) if NS, =2
(see for instance Bruhat [2]). The Fourier transforms Fs: . (Vs) —
F Ve, FF: F (V) — F(Vs) are defined as:

Fop:x e [ x(lr, x)ox) digix.

Fryix— /V x((x, XNy (x*) dy: x*

for all ¢ € F(Vs), v € F(Vg). The Haar measures dy , dy:
being dual to each other is equivalent to saying that 559 = ¢°,
FsFsw = y° where 9°(x) = p(—x), y° being defined similarly.

3.2. We next recall the definition of the projective representation
of symplectic groups known as the Segal-Shale-Weil representation.!
(The basic references are Weil [16], Shale [15], Segal [13]; see Mackey
[10], for a historical survey and also Gelbart [4], for further refer-
ences.) Let U = Uy - denote the projective unitary representation
of X in L%(V) defined as follows:

(3.1) Uv+v*)g: x— x({x, v))e(x +v).
If w,—:v;—&v;‘eX, j=1,2, then
(3.2) U(w)U(wy) = x({v1, v3)U(w; + wy).

Let H= H(V,V*, x) denote the Heisenberg group defined as H =
X x T with group law '

(3.3) (wy, t1) o (wy, 1) = (wy +wa, L1t x({v1, v3)))-
If
(3.4) Uw, ) = tU(w)

1t is also referred to in the literature as the Weil representation, or Shale-Weil representation,
the oscillator representation or the metaplectic representation. We follow Weil’s paper rather
closely.
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then U is an irreducible, unitary representation of H with central
character y . According to Stone-von Neumann there is only one such
unitary representation of H up to unitary equivalence. Now let Ps(H)
denote the pseudosymplectic group of H , i.e. the set of all continuous
automorphisms of H which leave the center element-wise fixed. Let
US: (w,t) - U(w,t)-s), s € Ps(H). Then it follows from the
Stone-von Neumann Theorem that there exists a unitary operator &,
such that

(3.5) EloUol =U".

The operators &; satisfying (3.5) are unique up to a scalar multiple.
Thus any choice s — & of such operators gives rise to a Weil (projec-
tive) representation of the group Ps(H). Let s € Ps(H), and suppose
(w, 1)s = (w-o, f(w)); then (g, f) parametrize Ps(H) and are
characterized by the properties

(i) o is a continuous automorphism of the additive group of X,
which leaves the form *(-, -) invariant;

(i1) f: X — T is a continuous map, such that

Sy +w){f (wy)} " {f(w2)} " = x((vig > V3:){x (1, v3))} !
for all w; =v;+v; €X, where w;-0 =0, +vj,, j=1, 2.
The subgroup

Ps(H, F) = {(a, f) € Ps(H)|o is F-linear}

is called the linear pseudosymplectic group. When F =R or @, it
coincides with Ps(H) and is smaller for all other F. If X* denotes
the character group of X, then the subgroup {(1, f) € Ps(H)} may
be identified with X* and the sequence

0—-X*—>Ps(H,F)—Sp(X)—0

is exact (see [16], p. 150). Moreover since we have assumed that
char F # 2, the exact sequence splits. In fact when charF # 2,
the following lemma gives a splitting homomorphism of Sp(X) into
Ps(H, F) (see Weil [16], p. 150).

LEMMA 3.1. Assume charF # 2. Let o € Sp(X) have the matrix
representation

(3.6) o= [a ﬂ]
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in the decomposition X =V + V*. Let

do(v +v*) = J{va, vB) + L(v*y, v*6) + (v*y, V),
Jo(v+v*) = x(gs(v +v%)).

Then o — (o, f;) is a homomorphism of Sp(X) into Ps(H, F).
In particular a mapping o — &; of Sp(X) into unitary operators in
L2(V) is a Weil (projective) representation if

(3.7) U@ +v%)es = fo(v +v9)U((v +v¥) - 0)
forall v+v*eX.

3.3. Our next object is to present an explicit integral formula for
the operators &, satisfying (3.6). This is essentially known and in
fact Weil himself has given this when the matrix entry y of o in
(3.6) is either an isomorphism or 0. However for our purposes it is
important to do it for all o . After this work was done, the author came
across the paper of Lions [9], where a related formula for intertwining
operators of unitary representations of a real nilpotent group is given.
We shall present a proof based on Bruhat decomposition of Sp(X)
(see Lemma 2.14) and it would appear that this was the way Weil
derived his general formula also. For the meaning of the symbols
P=Py., N= Ny, 1, 15 €tc. see §2.5.

LEMMA 3.2. (1) Let p € P. Then the operator &; satisfying (3.6)
is a scalar multiple of r(p), where

(3.8) r(p)p: x — |of'/2 fo(x)p(xa).

(2) Let S be an arbitrary subset of {1, 2, ..., n}; the operator &;,
for o = 1g, is a scalar multiple of r(ts), where r(ts) is the partial
Fourier transform

(3.9) r(1s)p: x — /V 2, xsT)p(xs +¥)dyy

where S’ is the complement of S in {1,2,...,n} and x = xg+ xg
in the decomposition V = Vg + Vg .

(3) For a general o € Sp(X), let My =V*/kery, and u, denote a
Haar measure on M, . Let

Ta¢:x—>/ fo(x +x")p(xa + X*y) 1o (dX™)
M(I
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where X* is the coset x* +kery. Then for ¢ € A (V), the integral
is absolutely convergent and T,p € .~ (V). Moreover T, satisfies the
identity

T,Uw+v")e = fo(v+v")U((v+v%)0)T,9
Sforall o € (V). In particular for a suitable choice of Haar measures
Ug, the map o — T, is a Weil (projective) representation.

Proof. The statement (i) and (2) are straightforward to verify. In
fact (i) and (ii) when 75 = 7 is already present in [16]. For a general
subset S, note that X = Xg + Xy and 15 = diag(r, I) and the
formula follows from that for 7. From Bruhat decomposition Lemma
2.14 it follows that operators satisfying the identity (3.6) will leave the
Schwartz space invariant.

To prove (3), note the integrand is a well-defined function of the
coset x* + kery. For this one has only to check f;(x + x* + z*) =
Jo(x+x*) if z* € kery. In fact this is clear from the formula for f;
given in Lemma 3.1. Since y is F-linear, the image of y is a linear
subspace E, of V' and is thus isomorphic to M, . From this we have
the estimate

Ty (x)] < /E lo(x + )| dgy

where dr y is a Haar measure on E;. Thus 7,¢ is a continuous
function of x . The verification of the identity (3.7) is straightforward
and so is omitted. If therefore A, = T,&; !, where &, is a unitary
operator leaving the space .%(V') invariant and satisfying (3.7), then
Ag: F(V) — C(V) is a linear operator which commutes with U .
From standard arguments it now follows that A4, is a scalar. This
completes the proof. 0

LeEMMA 3.3. With the notation of the above lemma, we have

(1) If p € P, then M, = {0} and T, = r(p), provided u,{0} =
| deg(p|V*)|7!/2.

(2) Myp =My, and T4, = Tor(p) if

top = | deg(p|V*)| " P ps .
(3) The map x* — x*p of V* onto V* factors down to a map
X* > XD of My, onto M,. Then T,, = r(p)T, if and only if >
lpe = |deg(p|V)|V 2P - g .

’Here for a measure v on M,,, ()"'-v is the measure on M > defined as the linear
form ¢ — v(p op) for functions ¢ on M.
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Proof. (i) This follows from r(p)g - (0) = | deg(p|V*)|~1/2¢(0) while

Tpr9-(0) = up{0}p(0).
(ii) Note kery(o) = V*NV*o~!. Thus kery(op) = kery(c). Thus
Msp = M. On the one hand

T,r(p)p-(0) = | deg(p|V"*)| /2 /M F () o (D)0 (7P )it (A7)

where
D11 Plz]

p__,[o D2

is the matrix of p. Next

T,pp-(0) = /M Fop (XD P01 o (dF7).

Now
Jop(X*) = fo(X™) fp(x™7)
since ¢ — (0, f;) is a homomorphism. From this the result follows.
(iii) One checks directly from the matrix representation (3.6) of o,
that y(po) = py(g). Thus the map x* — x*.p takes kery(po) to
kery(o). Thus the map

D:x*+kery(po) — x*-p +kery(o)
maps M,, onto M, . Now
r(p)T,9-(0) = |deg(p|V*)|""/*T,¢ - (0)
= 1dee@lV )2 [ ol ol g (d).
On the other hand a
Tpop-(0) = /M Joo(X*) (X" DY) top (dX7) .

From the homomorphism property of ¢ — (o, f;) we have

o) = fo () fo (D) = Jo(x"D).
Thus
Tyop-(0) = /M o (D) P (X" DY) s (AF)

Comparing the formulas for Tp,¢-(0) and T,7,¢-(0) one gets
des@l )2 [y @)= [ B (@),
This completes the proof. o

The following lemma makes it possible to make consistent choices
of us.
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LEMMA 3.4. Let o € Sp(X) be arbitrary. Suppose p,,p, € P are
such that piop, = 6. Then p, maps M, onto itself and

{det(D1|1Mq)}? = det(p1p2| V).

Proof. Our first step is the observation that if the lemma is true
for o it is also true for ¢’ € PoP. In fact suppose o’ = myom,
and suppose pjo’'p, = d’. Then p;op, = ¢ where p; = ml‘lp’lml ,
P2 = mapym; . On the one hand since the lemma is true for o,

{det(p,|M)}* = deg(p1p2|V*) = det(pip5|V*).

On the other hand we have the commuting diagram
M o_l —pl—> M al

m

1 1

|

M, - M,
1
where the map of M, to M, isthe map x*+V*NV*¢'~! — x*m; +
V*NV*s~!. From this it follows that

so that the lemma is valid for ¢’. To prove the lemma it is thus

sufficient to prove it when ¢ = 75 for some S. Now V*rg = Vg+ V3,

S’ being the complement of S. Note V*tg = V*rgl. Let P, =
PnPy.,. If pitsp, = tg, then p;, p, € Fy. Now the matrix for 75
in the decomposition

X=Vg+Vs+V5+Vg
is
I 000
1_0010
$71o0r 00
000171

Here we have simply written t, rather than (z|Vs), (7|Vy) etc. If
p,p' € By, then they leave the flag X D Vs+V* D V* D V¢, invariant,
so that their matrices in the above decomposition are upper triangular.
Thus if p.t5 = 75-p’, and suppose p = (a;;), p’' = (bi;), then both
the matrices are upper triangular. The equation ptg = Tgp’ gives

apy=bi, ant=1tby, ant=71tby, a4 =by.
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Now
det(p|V*){det(p'|V*)} ! = detas; detayq det by det by, .

From the symplectic property of p, p’ we have by(*bss) = id; thus
detbys detb;; = 1, while det by, = detass, since 7" 'as37 = by, . Thus
we have

det(p|V*){det(p'|V*)} ! = (detas3)*.
Now V*Nn¥V*tg =V . From this it follows that

det(p|Vg) = (detass).

This completes the proof.
The following is the main theorem of this section.

THEOREM 3.5. There exists a unique choice of unitary operators
r(c), o € Sp(X) with the following properties:

(1) r(e) " 'U(w)r(o) = fo(w)U(w -0) forall we X, or ¢ — r(o)
is a Weil (projective) representation

(2) r(p)p: x — |2 fp(x)@(xa), when p € P.

(3) r(p1op2) = r(py)r(o)r(py) for all py, p» € P and o arbitrary.

(4) r(o102) = r(oy)r(o,) whenever oy, 0, € W or r|W is a repre-
sentation of the finite group W .

(5) r(e)y-(0) >0 forall o € W, when y is of the form ¢ x ¢~
where ¢~ = ¢(—x) and ¢ € (V). Here * denotes the convolution
operation.

If 0 — &(o) is a choice of unitary operators having properties (1), (3)
and (4), then there exists a character n of F*/(F*)? and a complex
number ¢ such that n(—1) = &2 and for 6 € Q;,

(3.10) &(a) = n(x(0))e’r(0),

where x(o) is defined by x(p,tsp,) = det(p1p2|V*) (see Lemma 5.1)
and Q;j is the P-double coset defined in Lemma 2.14.

Proof. We use the notation of the lemmas and our first observation
is that if the Haar measure p, was chosen, then p, 5p, can be defined
as follows:

(3.11) MUpop, = |det(p1p2|V*)|“1/2ﬁ1 *HUo -

To see this gives a consistent definition suppose p;op, = pjop,. Then
pop' = where p=p|~'p;, p' = pop}' . Now we have to show that

| det(p1pa|V*)|7V2D; - o = | det(pi 05|V V?P) - o
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or
(P) - o = | det(pp’|V*)|' s .
Now p leaves M, invariant and so

Dl = | det(ﬁlMa)lﬂa .

The consistency Lemma 3.4 now shows that up sp, is well defined
by (3.10). It is thus sufficient to choose u, for each double coset of
P. Let

hr=20o, M =dy:,
where we have the isomorphism of Vg with V*/V¢ , to identify M;_
with V¢. The Haar measures dy: were defined in 3.1. With this
choice of Haar measures u,, define

(3.12) r(a)w:x—»/M Jo(x +X")o(x-a+ X*y)us (dXx™*).

Then from Lemma 3.3 it is clear that the properties (1), (2) and (3)
hold. It is clear that r(tg) is the partial Fourier transform given by
formula (3.9). Since the Fourier transform operator on V' is the tensor
product of those corresponding to V;, V3, when V =V + it is
easy to see that r(zs us,) = r(ts )r(ts,) when S, and S, are disjoint.
On the other hand since the Haar measures dy_, st: are dual to each
other, it follows that
r(ts)® = r(as)

where tg = ag € P. These two properties now imply (see Lemma 2.13
on the structure of W) that r(a,0,) = r(ay)r(o,) forall o,,0, € W.
To verify the property (5), note

r(as ts,)y - (0) = r(as,)r(ts,)v - (0) = r(ts,)w - (0)

and so it is sufficient to verify for 75. Let ¢ € S (Vs)), ¢, € F#(Vs)
and ¢ = ¢; ®¢,. If ¥y =¢p*p~ then

Hzs)y - (0) = |Fsp1 - (0) /V 929 dy, .

Thus we have shown r(g) has all the properties (1) to (5). To prove
uniqueness suppose ¢ — &(o) is a choice of unitary operators satis-
fying (1), (3) and (4). Let the constants c(c) be defined by {(o) =
c(a)r(g). Then c(piop;) = c(py)c(o)c(p,) for all p;,p, € P and
c(a10;) = c(oy)c(ay) for all gy, 0, € W. In particular ¢ is a char-
acter of P. Since charF # 2, it is not difficult to show that the
commutator subgroup [P, P] of P is = {g € P|det(p|V*) = 1}.
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Thus there exists a character # of the multiplicative group F*, such
that c(p) = n(det(p|V*)), forall p e P. If S;, S, are two subsets of
{1, 2, ..., n} having the same number of elements, then there exists
a permutation a of {1, 2,..., n} such that o(S;)=S,. If pe P
is defined as e;-p = e,(;), € -p = e;(i) , then 75 = p‘lrslp. Thus
c(ts,) = c(ts,) , whenever S;, S, have the same number of elements.
Since ¢(-) on W is a character of W, it follows that c¢(tg) = &/,
where j = |S|. Thus & = c¢(12) = n(det(ti|V*) = n((-1))),
j =|S|. From this it follows that &2 = n(—1). Suppose p;tsp) = Ts;
then c(p;)c(p;) = 1 or n(det(p;p,|V*)) = 1. From Lemma 3.5, it
follows that n(a?) = 1, where a = det(p,|Mr,). By choosing p,
to be a suitable diagonal matrix, it follows that n(a?) = 1 for all
a € F*. This proves the formula (3.10). Conversely if &(o) is de-
fined by (3.10), it is clear that ¢ has properties (1), (3) and (4), since
all the above arguments are reversible. To prove uniqueness of r(-),
suppose &(-) has all the properties (1) to (5). Then since ¢ is a ho-
momorphism on P, 7 is a trivial character of F*. Thus &2 =1 and
&(o) = &lr(a), for o € Q;. Now the non-negativity condition (5)
implies that ¢ = 1. This completes the proof.

DEeFINITION 3.6. The map ¢ — r(o) is called the standard Segal-
Shale-Weil (projective) representation. Note its construction depends
only on the character ¥ of F and the symplectic basis ey, ..., e
of X. Note that r(g), for ¢ € W is given by the partial Fourier
transform formula (3.9).

Good behaviour of the Weil representation for direct sums of sym-
plectic vector spaces has been noted from the beginning. In terms of

the standard model o — r(o), this can be formalized as follows.

ProvrosITION 3.7. For any arbitrary subset S of {1,2,...,n} let
rs(-) denote the standard Weil representation of Sp(X) corresponding
to the data Xg = Vs+V§, the symplectic basis being {e;, e;, j € S}.

Let Sy, ..., Sm be a partition of {1,2,...,n} andlet o; € Sp(X),
j=1,2,...,m. If

o = diag(ay, ..., om) € Sp(X)
then

H0) =rs (61)® - ® s (om).-

Proof. Let W; denote the finite subgroup of Sp(X) introduced in
§2.5 for the symplectic basis {e;, er1j€ S} of XS]_ . then it is easy
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to see that
W = {diag(ay, ..., om)|lo; € W for all j}.

From the definition of Fourier transform it is clear that the statement
of the proposition is true when ¢ € W and g; € W; forall j. It
is clear that the proposition is valid when g; € Py_, for all j. The

J

general case now follows from properties (3) and (4) of Theorem 3.5,
valid for each of the rg(-).

4. Calculation of the multiplier. For the standard Weil representa-
tion ¢ — r(o) introduced earlier, let ¢(o;, 07) denote the multiplier,
1.e. ¢(oy, 0;) is a complex number of absolute value one, defined by
the relation

(4.1) r(o1)r(oz) = c(01, 02)r(0107).

The following theorem gives an explicit formula for the multiplier in
terms of the Leray invariant constructed in §2. The reader should
note that the crucial computation (the part (4) in Theorem 4.1 below)
is carried out already in Weil ([16], see Theorem 3, p. 163). For the
definition and various properties of the Weil index of the character of
second degree see the Appendix.

THEOREM 4.1. The multiplier c(o,, 0;) can be explicitly computed
from the following properties

(1) c(prowp, p~'oops) = (o1, 02) for all p,p;,p> € P and oy,
o, arbitrary.

(2) c(ay,mm)=1ifay,00€W.

3)If S$1,8>, ..., Sm isapartitionof {1,2,...,n} and cs(-, -)
denotes the multiplier of the standard Weil representation rg, then

c(o,d')= HCSJ(O’J‘, ;)
where o = diag(ay, ..., o), o’ =diag(ay, ..., 0y).

(4) c(tup, 1) = Weil index of x(5(x, x- p)) = v(fu,) -
(5) In general for any a,, o, € Sp(X),

(o1, 02) = Weil index of x(A(x, x- p))
where the isometry class of p is given by the Leray invariant
q(V*, V*a;l, V*ay).

Proof. The property r(pyop;) = r(p1)r(o)r(p2) gives c(p101, 02p2)
= ¢(01, 03) and c(o\p, p~'oy) = ¢(0y, 63). This proves (1). Since
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r(-) restricted to W is a representation (see Theorem 3.6 for the
defining properties of r(-)), it follows that c(o;, g;) = 1 for all
o1, 02 € W. The statement (3) follows from the tensor product prop-
erty of r(.) stated in Proposition 3.8. The computation of c(tu,, 1)
is carried out in Weil (Theorem 3,p. 164). Actually since the formu-
las for r(t), r(tu,) and r(tu,t) are explicitly known the identity
r(t)r(up)r(t) = c(tu,, 1)r(tu,t) leads quickly to a Fourier transform
relation—which is the defining property of the Weil index. (See the
Appendix, Theorem A.1.) Now suppose g, o, are arbitrary. Then
by Theorem 2, o, = p;x;p~!, 0y = pkop, where

ki = diag(ts , Tsup),  kp = diag(ts,, Ts).

Here the decomposition of X is = X¢+Xg, S’ being the complement
of §,8, ¢S, S, cS. Also p isnondegenerate on Vg and the isom-
etry class of p is that of the Leray invariant ¢(V*, Vo, L Vo). It
then follows that

c(oy, 02) = ¢k, K2) = g (Ts, , Ts,)Cs(TUp, T)
= cs(tu,, v) = Weil index of x(3(x, x-p)).

This completes the proof.
COROLLARY 4.2. Forany o, c(o,07!)=1.

Proof. In this case the isometry class g(V*, V*a, V*a) is the trivial
class. Thus c¢(o,0"!)=1 forall ¢.

COROLLARY 4.3. Suppose dim X =2 and
_ |4 b .
a’—[c’j d,-]’ J=12
Then
1 ifoy, 0, 0oroi0, € P,
yE(c1c2(craz + dica)x) otherwise.

c(o1, 03) = {

Here we have used the notation from the appendix, yr(n) denoting the
Weil index of x — n(x?).

Proof. The formula for c(oy, ;) follows from the calculation of
the Leray invariant given in §2.6. The reader may note there are a
large number of papers on the Weil representation of SL(2, F)—see
Gelbart [4] and also the references cited there.
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5. Normalization. It is known that the projective representation
r(o) defines an ordinary representation for the two-fold cover of the
group Sp(X). This is equivalent to the statement that one can find
normalizing constants m(c), so that the multiplier for r~(g) =
m(o)r(g) is +1 valued. The object of this section is to construct
such a normalization and also compute the multiplier explicitly. The
reader may note that previously the existence of such a representation
was deduced by an indirect argument (see Weil [16], §§42-43). An
explicit formula for the multiplier given here agrees with that given
by Kubota for the case SL(2, F). We begin with some preparation.

LEMMA 5.1. There exists a unique map o — x(o) of Sp(X) into
F*/(F*)? such that the following properties hold:
(1) x(p1op2) = x(p1)x(0)x(p2), for all py, p2 € P.
(i) x(ts) =1 for all subsets S Cc {1,2, ..., n}.
(iii) x(p) = det(p|V*)(F*)?, forall pe P.
Moreover such a function is uniquely defined by

x(p1Tspa) = det(p1p2|V*)(F¥)2.

Proof . It is only necessary to show that if .Sy, S, are two subsets and
P1Ts, P2 = piTs Dy, then det(pip|V*) = (detpipy|V*)(F¥)2. Now
Ts,, Ts, determine the same double coset if and only if Sy, S, have
the same number of elements. Then there exists a permutation & of
the indices {1, 2, ..., n} such &(S;) = S,. If a is the element of
P defined by e;-a = ey, €f-a= eg(i) , then it is easy to check that
s, =a '-15 -a. Thus p1Tsp2 =pia~' -1 -a-p,. The lemma now
follows from the consistency of Lemma 3.4.

DEFINITION 5.2. Define the normalizing constants

m(o) = yr(x(0), 30) " {rr(3x)} ™
for 0 € Q; = PtgP, with j =|S|. The quantities yr(a, n), yr(n),
for a € F*,and 7 acharacter of (F, +) are defined in the Appendix,
8A.3.

Now define r~ (o) = m(o)r(c) and let ¢~(-, -) be the correspond-

ing multiplier, i.e.

r~(a))r~(oz) = ¢~ (a1, 02)r~(0102) .
Then it follows that

(5.1) (01, 62) = m(a1)m(a2){m(0102)} 'c(ay, 02) .
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THEOREM 5.3. The normalized projective representation r~(-) is
metaplectic, i.e. the corresponding multiplier is +1 valued. In fact we
have the explicit formula

c™(01, 02) = (x(01) , X(02))F(—x(01)x(02) , X(6102))F
x ((-1)', det p)p{(=1, =1)r YV 2hp (p)
where p is the Leray invariant —q(V*, V*ay, V*ay 1) (see §2.3),

hr(p) is the Hasse invariant (see Appendix §A.3) and 2l = ji+ j,—j—
dim p, where 0, € Q; , 0, €Q; , 0102 € Q;.

Proof . First we compute (here = 1yx)
(5.2)
m(o1)m(a2){m(g10,)} ™" -
= {yr(x(01), Myr(x(a2), M)} 'vr(x(0102), M{vr(m)} 7.

Now

(5.3) Yr(x(01), n)yF(x(02), 1)
= (x(01), x(02))r7F(x(01)x(02), 1) -
Now from Theorem 2.16 (of §2.5) we have

g1 =p11€1p_1, gy = PKaD)
where
K1 = diag(ts, , Tsuy), Ky = diag(ts,, s)

and ji = |S|+|S1], j2 = IS|+S2], J = I|S]+1S1| +1S2] = 2|S1 NSy
and dim p = |S|. Thus / = |S;N.S;|. From the definition of x(.), it
is clear that x(x;) =1, x(k;) =1, and

x(01) = x(p1)x(p), x(02) = x(p2)x(P),
x(0102) = x(p1)x(p2)x(K1K2) = x(01)x(02)X(K1K2) .
Thus
(5.4)  {rr(x(o1)x(02), M)} 'yr(x(0102), M)
= (—x(01)x(02) , x(0102)){yr(x(K1%2), M)}~".

Next x(kix2) = x(1575)x(TsUpTs) = (-1)/detp. That detp =
x(tsu,ts) follows from the decomposition

=[5 10 3106 7]
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and similar decompositions when 7 is replaced by tg. Thus
(5.5) vr(x(gkikz), n) = yr((—1) detp, )
= (1), detp)yr((—1)', m)yr(detp, n).
Next
(5.6)  yr((—=1)', m) e = ye((=1)', m)"Hyr(-1, )}~
= {(=1, =Dyv2,

Here we have used Corollary A.5 of the Appendix. Note that j — j; —
J2 = —dim p + 2/. Thus we get from (5.2)-(5.6) that

(57 mem@)imaie)}
= (x(01), X(02))(~X(01)X(02) , X(0107)
X ((-1)', det p){(~1, ~DH+DP2

x {yr(detp, M}~ {rr(n)}~'

where j' = dimp. Finally using the formula for c(a;, 02) = y(f))
(see Theorem 3.6) we have

(5.8) c(or, a2){rr(det, p, M)} Hyr(m}™" = hr(p)

from the definition of the Hasse invariant (see §A.3 of the Appendix).
The theorem now follows from (5.7) and (5.8).

COROLLARY 5.4. For any o € Q;
CN(O. > 0.—1) = (x(O') s (—I)JX(O'))F{(—-I s —'l)F}j(j-H)/z .

Proof. Let o € Q;, then ¢ = p;tsp; with |S| = j. Then ¢! =

py'tglpr! = pylrgttspy!. Thus
x(e™!) = (=1)/x(0).

In this case the Leray invariant is trivial. Thus

(o, 07" = (x(0), x(67H))(=x(a)x(67"), 1) x {(—1, HPU+D/2
and this simplifies to the statement of the lemma.

COROLLARY 5.5. (1) ¢~(ts,, 7s,) = {(—1, =1)}}(*D/2 where [ =

IS1 NSy
(2) ¢™(p1, p2) = (x(P1), X(P2))F, for all py,p» € P.
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(3)
¢~ (p101, aapr){c™ (01, 32)} "
= (x(p1), x(01))(x(02) , x(P2))
X {(x(p1), x(p2))(x(p1D2) , X(0102))}"
(4) c~(ap™!, par){c~ (o1, 02)} ' = (x(p), —x(01)x(02)).
Proof. Note
m(po) = (x(p), x(g))m(p)m(o),
m(op) = (x(a), x(a))m(a)m(p),
m(p~') = m(p) and m(p)* = (x(p), —1)F .
The results then follow by straightforward computation from (5.1).
COROLLARY 5.6. For any subset S C {1,2,...,n}, let mg(-),

cs (-, +) be defined analogously for Sp(Xs). Then if Si, S isa
partition of {1,2, ..., n}, then

c™(0, a"){c§ (01, g7)c5.(02, 03)}

= (xs,(1), Xs,(62))(xs,(0}) , x5,(09)) (x5, (0107, Xs,(0203))
where aj, 0} € Sp(XS]_) and
g = diag(al s 02) s o = dlag(a; ’ U'é) .
Proof. 1t is easy to check that
x(0) = xs,(01)xs,(02) ,
m(a) = (xs,(01), xs,(02))ms (a1)ms,(02).

The result then follows easily from this and the fact that c(g, ¢’) =
cs (01, 07)cs, (02, 03) (see Theorem 4.1).

The following corollary is well known.

COROLLARY 5.7. When F is a finite field or the field of complex
numbers, c~(oy,07) = 1 for all oy, 0,. In particular r~(c) is a
representation in this case.

Proof. This follows from the observation that both the Hilbert sym-
bol and the Hasse invariant are equal to 1 in this case.
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REMARK. We note here that when dim X = 2, we have

¢~ (a1, 02) = (x(01), x(02))r(=x(01)x(02), X(0102))F -

In fact in this case n = 1, so the Hasse invariant is always one and
when dimp # 0, [ = 0. Also the definition of x(o) reduces to

. (a b) {d(F")2 when ¢ =0,
"\c d c(F¥)? whenc#0.

Thus the multiplier agrees with that given by Kubota. In this connec-
tion see Kubota [7], or the exposition in Gelbart [4].

Finally we end this with a proposition due to Weil ([16], see §44).
The proof given will be based on formula (3.10) of Theorem 3.5 and
is different from that of Weil.

PROPOSITION 5.8. The projective representation a — r(c) is equiv-
alent to an ordinary representation (or the cohomology class of the
multiplier c(-, -) is trivial) if and only if F is either a finite field or
is the field of complex numbers.

Proof. In view of Corollary 5.5 we have only to show the necessity
of the condition. If the representation is equivalent to an ordinary
representation there exist constants c¢(o) such thatif &(o) = c(o)r(a),
then &(oy07) = &(0,)é(0,) for all o, o,. From Theorem 3.6, it
follows that c(o) = n(x(0))e/ for o € Q;, where &> = n(-1) and 7
is a character of F*/(F*)?. Since ¢ is a homomorphism it follows
that

n(x(e1))e/in(x(02))e2c(oy , 02) = n(x(0102))e’

where g, € Qj] , 02 €Q;, 0102 € Q;. Here c(oy, 02) is the multi-
plier of r(-). Let 0, = t5u,, 0, = 7g; then it follows that

c(tsuy, ts) = 7(fy) = n(det p)e™/

where j =|S| (see Theorem 3.6 for c(tsu,, ts)). Taking j =1, we
get

yr(3ax) = ¢ 'n(a).

From this it follows that yr(a, %x) = n(a) forall a € F*. Since 7 is
a character of F* it follows that (a, b)r =1 forall a, b € F*. This
can happen only if F is either a finite field or, the field of complex
numbers.
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Appendix. The Weil index of a character of second degree.

A.l. Let G, G* be locally compact abelian groups ad ¥ a nonde-
generate bicharacter pairing of G and G*. Let .(G), #(G*) de-
note the Bruhat-Schwartz spaces of functions on G, G* respectively.
Write

Fpixt— / 206, x)p(x) dgx,

Ty x — /x(x, X"y (x*)dgx*

where dg, dg- denote Haar measures on G, G* respectively, and
p € F(G), y € F(G*). Then there exists a pairing of the Haar
measures, called the Plancherel pairing, such that
g*y¢=(dGadG’)x’¢oa %*Wz(dG’dG')X'WO,
where ¢°(x) = p(—x), w°(x*) = w(—x*). The Haar measures dg,
dg- are said to be dual to each other relative to the pairing x, if
(dg,dg)y = 1. If u is a tempered distribution on G, i.e. u is
a complex valued continuous linear functional on %(G), then its
Fourier transform # u is a tempered distribution on G* defined as
follows:
Fu:y —u(F*y).

Fourier transforms of tempered distributions on G* are denoted by
F*.If f isafunctionon G, fdg is the distribution ¢ — [ fod;.

A.2. A character of the second degree f on G is a continuous
map of G into T such that f(x + y){f(x)f(»)}~! is a bicharacter
in x and y. In particular there exists a continuous homomorphism
p=p(f) of G into G* such that

S+ O =x(x,y-p) =2, x-p)
for all x,y € G. Then f is said to be nondegenerate if p is an
isomorphism of G with G*. For the following theorem see Weil [16]
(see also Cartier [3], for another exposition). Note the definition of
the Fourier transform depends on the pairing y .

THEOREM A.l. Let f be a nondegenerate character of the second
degree on G, and let p = p(f) be the associated symmetric homo-
morphism. Then there exists a complex constant y(f) of modulus
one, such that®

F (fdg) =y(f){(dg, p-dg)y} 1 f'ds

3Here p+dg is the measure on G* defined by the identity p- dg(p o p) = dg(p) , for all
9 € F(G).
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where f' is a character of second degree on G* defined by the formula
f'(x*) = {f(x*p~H}~!. The constant y(f) is independent of the
pairing x or the Haar measures used in its definition. We call y(f)
the Weil index of f .

The next theorem summarizes elementary properties of the Weil
index. They are deduced easily from the definition.

THEOREM A.2. (1) y(foa) = y(f), for any continuous automor-
phism o of G.

(2) »(f) =2(f), f denoting the complex conjugate of f.

(3) If G = Gy x Gy, and f1, f, are nondegenerate characters of
second degree on G, G, respectively and f = fi X f,, then y(f) =
Y(N)7(f2)-

(4) For any x* € G*, let x*f denote the function x — y(x, x*)f(x),
then

y(x*f) =y )f 1 x*p7).
(5) If G is a finite group, y(f) is a Gauss sum, i.e.

y(f) =167 Y f(x)

x€eG
where |G| is the number of elements of G .

In the next theorem, the first part is due to Weil ([16], see Theorem
5), and he bases his proof of the quadratic reciprocity law on this
theorem. The second part is the main technique by which evaluation
of the Weil index is reduced to that of Gauss sums. This is implicit
in Weil but explicitly stated and proved in Cartier [3].

THEOREM A.3. Let T" be a closed subgroup of G and T, its anni-
hilator in G. Let f be a nondegenerate character of second degree on
G.

MWIffIl=1and Tp=T., then y(f)=1.

(2) If fIT =1, then T'p C T'x and the function g(x+T') = f(x), x €
T.p~! is a well-defined nondegenerate character of second degree on
H =T.p~YT', and the Weil index of f is equal to the Weil index of

g e y(f)=7r(g).

A.3. For the remainder of the Appendix, let F be a self-dual locally
compact field with char F # 2, i.e. F is either a finite field or a local
field. For the material of this part see Weil [16], Saito [12], Rallis and
Schiffman [11].
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Let n be a nontrivial continuous character of (F, +). For any
a € F, we write an for the character an: x — n(ax). Define

yr(n) = Weil index of: x — n(x?),
ye(a, n)=yr(an)/ye(n),  a€F~.
The main theorem on the yr(a, 1) is the following (see Weil [16], p.
176).

THEOREM A.4. yr(ac?, n) = yr(a, ) and the function a— yr(a, 1)
is a character of second degree on F*|(F*) and moreover
ve(ab, n)ye(a, n)"'ve(b, n)~' = (a, b)r
where (a, b)r is the Hilbert symbol of F i.e.

+1 ifaisanormin F(VD),
(@, b)r = { .
—1 otherwise.

The following corollary is immediate.

COROLLARY A.5. (1) yr(a, cn) =(a, ¢)ryr(a, n).
(2) yr(-1, n)=yp(n)‘2-

(){wv(an}2 (-1, a)F = (a, a)F.

(4) {rr(a, mM}*=1 and {yF(n} =1.

Explicit evaluation of yr(a, 1) will be given in the next section.

DEFINITION A.6. Let Q be a nondegenerate quadratic form of de-
gree n over F . Then the Hasse invariant 4z (Q) is defined as follows:

hr(Q) = y(no Q){yr(n)} "{rr(detQ, m)}~".

Here y(n o Q) is the Weil index of the character of second degree
x — n(Q(x)) and it will be shown below that the expression on the
right is independent of 7.

LeMMA A7. (1) Ifn=1, he(Q)=1.
(2)If n=2, and Q = ayx} + ayx3, a1, a; € F*, then hp(Q) =
(ai, a2)F.

BIfQ=01+0,+ -+ Qm, then
he(Q) = {] hr(2)} T](det 0;, detQ))r -

i<j
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In particular

he({ayx? + -+ anxp)) = [[ (@i, aj)F -
i<j
Proof. The parts (1) and (2) are obvious. The part (3) is proved by
induction on m and using the Theorem A.2 (see [11]).

COROLLARY A.8. If Q is hyperbolic of degree 2m, then
he(Q) = {(~1, ~)r}, wherel=m(m—1)/2.

A.4. In this section we note some of the explicit evaluations that
are known about yr(n) and the Hasse invariant.

PROPOSITION A.9. Suppose F is a finite field of char # 2. Then
(1)
@, n) = (a) _ { +1 ifais asquare,
VR =\F) T\ =1 otherwise.

(2) a — yr(a,n) is a homomorphism and (a,b)r = 1 for all
a,be F~.

(3) hr(Q) =1 forany Q.

(4) If ¥, is the prime subfield of F , and [F :F]l =n and n' = notr,
then

ye(n’) = {vr,(n)}".
(5) If n denotes the character j — exp(2njv/—1/p), then the Gauss

sum
()_{1 ifp=1 mod4,
vE, ) = V=1 otherwise.

Proof. These are all well-known results, see for instance Serre’s book
on arithmetic. The part (5) is a famous result of Gauss and Landau’s
book on elementary number theory has several proof of it. It may
be of some interest to mention that another proof of it (actually for
any odd integer n) can be given on the basis of (4) of Theorem A.2,
Theorem A.3 and the evaluation of yz(#n) for reals.

ProPOSITION A.10. (1) When F s the field of complex numbers,
yr(n), (a, b)r, hp(Q) are all equal to 1.
(2) Suppose F is the field of real numbers. Then
-1 ifa<0, b<O,
(@, b)r = { +1 otherwise.
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If n(t) = exp(2nt\/—1), then
yr(an) = n((signa)/8).

Also if Q is a quadratic form of signature (a, b), b being the number
of negative eigenvalues, then

hp(Q) = (=1)", where m =b(b-1)/2.

For the rest of this section let F be a non archimedean local field
with char F # 2, R the ring of integers of F, n a generator of the
maximal ideal of R, F the residue field of F. Let 1 be a nontrivial
character of (F, +) and let ordn denote the largest integer m such
that » = 1 on #=™R. Let «(n) denote the parity of ordn, i.e.
a(n) =0 or 1 according as ord#n is even or odd.

PROPOSITION A.11. Suppose charF # 2. Let

—m—lx) .

N:x+aR—-nn
Then 7 is a nontrivial character of F and

ye(n) = {y(@)}*".

ve(a, n) = {(%) }’f(ﬁ)}a(a)

where a = n°%.y, u being a unit of R.

Moreover

Proof. These are all known. All the other formulas can be deduced
once the relation between yp(n) and y5(7) is established. This can
be done as follows. Let m = ordy. Let f(x) = n(x?), T =n~"R,
where r is the integral part of m. Then I', = {x € F|n(xT") = 1}
= n"""™R. Now p(f): x — 2x, relative to the pairing of F
with itself defined by #. Since 2 is a unit in R, the subgroup H =
[.p~!/T = a"~mR/n~"R. Thus H is trivial and y(f) = 1 when
ordn is even (see Theorem A.3). Now suppose m = ord#n is odd.
Then H =n""™(R/R) = n"~™F . Nowlet 7]: x — R — p(n~""1x).
Then 7 is a nontrivial character of F and y(g) = »7(7) . In this con-
nection see also Saito [12] and Serre’s book.

Finally we assume that F is a dyadic local field of char # 2. For
any nontrivial character 1 on F let a(n) denote the parity of ordn
and B = B(n) = e+ a(n). Here e = ord;2. Let Ap denote the
ring R/nfR. Let 7: x + nPR — n(n~F-™x), where m = ordy.
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Then 7 is a primitive character of Ag, i.e. X,y — 7(Xy) defines a
nondegenerate pairing of A with itself. Let

gn(x + nPR) = n(n=B-m-ex2).
Then g, is a character of second degree, satisfying

&n(X +7)8(X) "' &y (7) ' = (ZP).
Now we apply Theorem A.4 to f,(x) = n(x?) with I'=z""R, where
r is the integral part of m/2. One gets that y(f;) = y(gy). Thus
yr(n) = |Ag|~1 Y " n(a=F-m=ex?).
xed
It is not clear whether this Gaussian sum can be simplified further, in
general. However this is possible when F = Q;.

PROPOSITION A.12. Let F = Q, and let n be a character with
ordn =0. Then

ye(n) =271+ n(})

@ m { {n(-3)}s® ifa=u,

a,n)= .

RET= (e fn(- 1) ifa=2u

Where &, & are homomorphisms of U defined by u = 1 + 2¢; +
4¢y) mod8 and w(u) =¢; +¢;.

and
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