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PARTIALLY MEASURABLE SETS IN MEASUR SPACES

MAX SHIFFMAN

1. Introduction. This article is concerned with any sets, whe-
ther measurable or not, in a general measure space (a general mea-
sure space is briefly defined in the article). A set 5 has an interior
measure πii(S) and an exterior measure rae(5), where 0 < rrii(S) <
me(S). Consider two disjoint sets Si and 52, i e. 5Ί Π 5 2 — 0, and
their union set S\ U 52. There are the six non-negative quantities
mi(S) and τne(S)J for 5 = 5 i ? 52, and Si U 52. It is well-known that
rae(5) is subadditive, i.e. me(5iU52) < me(5i)+rae(52), and rrii(S)
is superadditive, i.e. mt (5iUS2) > mί (5i)+m t (52). The present ar-
ticle obtains more inequalities on the six quantities rrii(S) and me(S)
for 5 = 5i, 52, and Si U 52 and indeed obtains a specific collection
of six linear inequalities. One of these six inequalities states that
the average measure |(ra;(5)-f me(5)) is subadditive. Also, average
measure is countably subadditive. Further, if the general measure
space satisfies a certain two conditions, it is shown that these six
inequalities form a complete collection of independent inequalities,
valid for every pair of disjoint sets 5i,52 These two condition on
the measure space do hold for the usual measure spaces.

Previous articles of the author considered the same matters for
Lebesgue measure on the real number line or in Euclidean ra-dimen-
sional space. These are listed as [1] and [2] in the References at the
end of the present article. The present article extends these results
to a general measure space, subject to some limitations.

The inequalities on me(S) and rot (5), for 5 = 5i,5 2, and (Si U
52), where 5χ Π 52 = 0, are stated in Theorems 2 and 4 below, in
§3. Furthermore, if the measure space satisfies two conditions, the
partitionable condition and the basis condition, these inequalities
are shown to be a complete collection of inequalities which are valid
for every pair of disjoint sets contained in a measurable set M.
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This is stated in Theorem 8 in §6. The partitionable condition on
a measure space is discussed in §4, and the basis condition in §5.
These conditions do hold for Lebesgue or Borel measure, and in the
usual measure spaces. The above results, without specifying the
two conditions, were obtained in the author's previous articles cited
above when the measure space is Lebesgue or Borel measure on the
real number line or in Euclidean n-dimensional space.

A set S for which rrii(S) < me(S) has been called a non-measu-
rable set. In the introduction to my previous article [2] in Pa-
cific Journal of Mathematics, it is stated that a non-measurable set
S might be more appropriately called a partially measurable set
since one does have some information concerning the measure of 5,
namely that its "measure" is something between rrii(S) and me(S)
inclusive. In the present article, I am indeed calling such a set par-
tially measurable, as indicated in the title of the present article. In a
broad sense of measure, if one is thinking of applications, not only in
mathematics, an exact measurement might not be available for some
process or subject. But a lower value and an upper value might be
available, like interior measure and exterior measure. Or one might
be concerned with estimates rather than measurements. Finding
properties of the lower and upper values would be of interest.

Further results concerning partially measurable sets are obtained
in the present article, including some interesting partially measur-
able sets. These latter are obtained in §5 and §7, and in particular
in Theorems 7 and 9. Also, if one has two disjoint sets contained
in a partially measurable set 5, instead of in a measurable set Λf, a
complete collection of inequalities is obtained in §3 and §7, stated
in Theorems 4 and 10. These hold as well for Lebesgue or Borel
measure on the real number line or in Euclidean space, and is a
supplement to the previous articles cited above. It should also be
stated that the present article, as well as the previous articles cited
above, makes use of transfinite induction and the axiom of choice
in set theory, but does not make use of the continuum hypothesis
of set theory (which is that 2Xo = χι).

2. Measure Spaces. The definition and properties of set the-
ory and of measure spaces are fairly standard. For the sake of def-
initeness and generality, the definition and properties of a general
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measure space, as used in the present article, will be stated briefly
here.

A general measure space, written (X, ΛΊ,ra), is a non-empty set
X of elements, which are called "points"; and a non-empty collection
M of sets of points in X which form a countable ring of sets; and a
measure function ra(M) defined for every set M in the collection Λ4,
where m(M) is a non-negative real number or oc, and the measure
function m is required to be countably additive, and m(0) = 0 where
0 is the empty set.

The terms countable ring and countably additive are defined im-
mediately below. A non-empty collection M of subsets of X is
called a ring if, whenever Mx and M2 are both members of the col-
lection M , written Mx £ M and M2 £ M, then (M2 U M2) £ M
and {Mi — M2) £ ΛΊ, where U is the symbol for the set-theoretic
sum (or union) of sets, and — in Mi — M2 is the symbol for the
set-theoretic difference of sets. Note that the empty set 0 is in M,
since 0 = M — M for any M in M. It follows that (Mi Π M2) £ M,
where Π is the symbol for set-theoretic product (or intersection) of
sets, since (Mi Π M2) = Mi - (Mi - M2), noting that Mi - M2 =

n n

Mi - (Mi Π M2). Consequently, ( [J Mj) £ M and ( f ) M,) £ M
3=1 3=1

if Mj £ M for every j = 1,2,..., n. A non-empty collection M
of subsets of X is called a countable ring if Λί is a ring and if,
whenever a countable infinity Mj,j = 1,2,..., n , . . . , of sets are all

00 00

in M, then ( ( J M, ) £ ΛΊ . It follows that (P) M, ) £ Λ4 , since
i j

j j

The non-negative set function ra(M), defined for all sets M in
Λ4, is said to be additive if, whenever Mi £ ΛΊ, M2 £ Λ4, and
(Mi Π M2) = 0 (which is described by the words "Mi and M2 are
disjoint sets"), then ra(Mi U M2) = τn(Mι) + m(M2). The non-
negative set function ττi(M), defined over the countable ring Λ4, is
said to be countably additive if it is additive and if, whenever Mj for
j = 1, 2, . . . , n , . . . , are a countable infinity of mutually disjoint sets
in Λί, i.e., (M^ Π Mj2) = 0 for every jι and j 2 with j i ^ j 2 ? then
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raf (J Mjj = Σm(Mj). Note that the values of m(M) for all M

in Λ4 lie in the extended non-negative real number system, i.e., all
non-negative real numbers and oo. Incidentally, note that if Mi, M2

are both in M and Mi C M2 (C is the symbol for set-theoretic
inclusion, and D is the symbol for set-theoretic containment), then
m(Mi) < ra(M2), since M2 = M1 U (M2 - Mx) and Mx Π (M2 -
Mi) = 0, so that m(M2) = m(M1) + m(M2 - Mi) > m(Mi); and if
ra(Mi) < 00 then m[M2 — Mλ) = m(M2) — ra(Mi). It also follows
that if there is a set M G Λ4 with m(M) < 00, then ra(0) = 0 since
0 = M — M and m(0) = ra(M) — m(M) = 0. Even if there is no
such M G Λΐ, it is supposed that m(0) = 0.

The above gives the definition of a measure space (X,λd,m) as
used in this article. Note that the above definition of a general
measure space does not assume that the set X is in Λ4. If X 0
ΛΊ, the measure space (X, Λd^m) can be extended, if it is desired,
to a measure space (X, Λ4*,ra*) in which the countable ring Λi*
includes the set X as well as all of Λ4, and m*(M) = m(M) for
all M G Λ4. This is discussed near the end of §6 herein. Also
note that the definition of a general measure space does not assume
the "countability condition for a measure space", which is stated
and discussed in the latter part of §6 herein, and this matter does
not enter prior to that, nor in §7. And the definition of a general
measure space does not assume that it is a complete measure space,
i.e. that every subset of a set M in ΛΛ with m(M) = 0 also is in
Λ4 and has m-measure 0. The measure space can be extended, if
desired, by completing it.

Consider a general measure space (X,Λ4,ra). For any set S of
points in X, the interior measure rrii(S) and exterior measure me(S)
can be defined (for me(S), it is required that there be a set M G Λ4
for which S C M). The interior measure of S (also called inner
measure of 5), written m t (5), is defined as usual by

(2.1) rπi(S) = sup ra(M), for all M G M with M C 5,
Mcs

where s u p M c 5 m(M) is the supremum, or least upper bound, of all
the numbers m(M) with M G M and M C S. There is at least one
such M, namely 0 for which m(0) = 0. As is well-known, shown
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from (2.1),

> 0; and if Si C S2, then m, (Sj) < mi(S2);

and if S β M, then m;(S) = m(S);

i f 5 " -̂  = 1 ; 2 ' * t o n o τ

(2.2)
to oo, are mutually disjoint, then

The last in (2.2) states that the set function m is superadditiυe, and
indeed is countably superadditiυe, for disjoint sets. Also,

(2.3) there is a set A C S for which

A G M and m(A) = m, (S).

For the exterior measure me(S) of a set 5 (also called outer mea-
sure of 5), suppose that there is a set M 6 Λ4 for which S C Λf. (If
X G M , this is satisfied for every S.) The exterior measure me(S)
is defined as usual by

(2.4) me(S) = inf m{M),for all M G Λ4 with M D 5,

where infjvfD5 is the infimum, or greatest lower bound, of all the
numbers m(M) with M D S and MG^Vί. As is well-known, shown
from (2.4)

me(S) > rrii(S) > 0;

and if SΊ C 5 2 , then rae(SΊ) < ^26(^2);

and if S G Λί, then me(S) = m(S);
(2.5) and if 5j, j = 1,2,..., to n

or to 00, are a countable

aumber of sets, then me \\J SΛ ^^2 me(Sj).

The last in (2.5) states that the set function me(S) is subadditive,
and indeed is countably subadditive. Also,

(2.6) there is a set B G M for which S C B C M and

m(B) = me(S)
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The above in (2.4), (2.5), (2.6) assumed that there was a set M £ Λ4
such that the sets S and SΊ, 52, and Sj are all contained in M,

Note that, in the general measure space (X, A^ra) , the interior
measure rrii(S) is defined for every set S in X, but the exterior
measure me(S) is defined for a set 5 only if there is a set M in ΛΛ
for which S C M. Whenever me(S) is used in the present article
it is assumed that there is a set M £ ΛΛ with 5 C M. lί X $ M,
there are sets 5 with no such M, for example the set X itself. If
X 0 ΛΛ, the measure space (X, Λ4, m) can be extended if desired to
a measure space (JΓ, λΛ*,m*) in which X £ ΛΊ*, as discussed near
the end of §6 herein.

An example of a measure space (X, ΛΊ, m) is Lebesgue measure on
the real number line or in Euclidean n-dimensional space (or Borel
measure). In this case, X is the set of points on the real number
line or in Euclidean space, and ΛΛ is the collection of Lebesgue
(or Borel) measurable sets, and the measure function m(M) is the
Lebesgue (or Borel) measure of M. Then for any set S the interior
measure rrii(S) and exterior measure me(S) are the usual Lebesgue
interior and exterior measures of 5.

Consider now a general measure space (X,Λ4,ra). There are
some lemmas concerning the interior and exterior measures, rrii(S)
and me(S).

LEMMA 1. Suppose M 7 6 ΛΛ,j = 1,2,... to n or oo, are a

countable number of mutually disjoint sets in Λ4. Then for any set

s,

ii(M3 nS) + miΠX-\JM3) (Ί 5 ,

(2.7) ] * ) ' \
me(S) = ^ m e ( M 3 n 5 ) + me (X -{jM3)nS\,

3 \ 3 '

where in the second line of (2.7), S C M for some M £ ΛΛ.

Proof. Select a set A £ ΛΛ with A C S and m(A) = rrii(S). Then
(ΛP Π A) C {Mj Π S) so that m(MJ Π A) < m t (AP Π 5); and

- (JM' ') Π A = (A - \J{Mj Π A)) £ ΛΛ, and
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f (X - (J Mj) Π A j C ( (X - U AP)nSJ so that

mi A- \j(Mj IΊ /i) ) < m, Π Λ" - (J M J ) Π 5 j . Since

A = ({J(Mj Π Λ)) u (A - U(MJ' ΓΊ A)), one has
i i

πii(S) = m{A) = (*Γ™i{Mj ΠA))+m(A- \J{Mj n
3 3

mi(Mj n S)) + mi (x - [J(Mj n sj).

But interior measure rat is countably superadditive for disjoint sets,
as in (2.2), which is the reverse inequality for m t (5), so that the
first equality of (2.7) is established.

Select a set B 6 M with S C B C M and m(B) = me(S).
Then (Mj Π S) C (Mj Π £) so that m(Mj ΠB)> rne(Mj Π 5); and

)

( ) ( )

((χ-{jMj)ns\ c ((x-

so that m(B - \J(Mj Π 5)) > mβ( (X - U M ' ) n 5 ) S i n c e

£ = |J(M j Π 5) U (5 - U(M j Π B)) one has
i ά

rne(S) = m(B) = (£m(M3 Πΰ))+m(fi- U ( M ' n

> i^me{Mj n S)) + m e ( ( X - \ j M j ) Π S j .
3 V j /

But exterior measure m e is countably subadditive, as in (2.5), which
is the reverse inequality for me(S), so that the second equality of
(2.7) is established. Lemma 1 is proved. D

Lemma 1 is an extension to a general measure space of Lemma 1 in
the author's article, Measure-theoretic Properties of Non-measurable
Sets, Pacific J. Math. 138(1989), 357-389, which is listed in the
Bibliography at the end of the present article as [2]. This lemma
is on p.359, proof on p.360, of [2]; and Lemma 1 above, where
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5 = [j£j/, *s a n e χtension to (AT,Λ4,ra) since X need not be in

ΛA. The article Lemma 1 concerns Lebesgue measure on the real
number line or in Euclidean n-dimensional space.

Also, Lemmas 2 and 3 and their proofs, on pages 360, 361 of
[2], hold in a general measure space (AT,Λ4,ra). Just replace the
word "measurable" and words "measurable set" by the words "in
Λ4" and "set in ΛΊ" respectively. For the statements and proofs
use only the countable ring and countable additivity properties of
Lebesgue measure, and these hold in (X,ΛΊ,ra). Also, formulas
(2.1) on the page 360 of [2] hold; just replace the sentence after
formulas (2.1) by the sentence: This is by Lemma 1, since for the
second formula of (2.1) 5 is contained in the set (M — (L Π M)),
which is in M and is disjoint from JL, where S C M 6 Λ4. Note
again that throughout the present article, if me(S) is used, then it
is supposed that there is a set M in ΛΛ such that S C M. Lemma 2
is stated below, as Lemma 2, since it is used frequently in later
sections of the present article; its proof is on pages 360,361 of [2].

LEMMA 2. Suppose that (Si U S2) is in Λ4, where Si and S2 are
disjoint sets, Si Π S2 = 0. Then

m(Sι U S2) = rrii(Sι) + me(S2) = me(Sι)

Theorem 4 on page 372 of [2] also holds in a general measure
space (X, Λ4,m). The inequalities for me(5χ U S )̂ in that theorem
are proved in the first paragraph of the proof on page 372 of [2],
where L and J?i are in Λ4. The inequalities for m t (SΊ U £2) in that
theorem can be proved similarly, instead of the proof that is given
on pages 372, 373 of [2] (which involves the functionals d{ and de

and di < de, to be taken up later in the present article), as follows.
Pick a set K G M with K C (Si U S2) and m(K) = m, (5i U 52),
and a set A2 G Λ4 with A2 D S2 and m(A2) = me(S2). Then
(K — (KΠA2)) C 5Ί, since a point in (K — (KΓ\A2)) is in K and not
in A2, and so not in 52, and therefore is in SΊ since K C (5χ U S2).
Thus, m(K - (K Π A2)) < m f(5i); also m(K Π A2) < m(A2) =
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Now

K = (K - (K Π A2)) U (K Π A2) so that

U S2) = m(ϋΓ) = m(K - (K Π Λ2)) + m(K Π A2)

This is one of the inequalities for mt (5i U 6*2) in theorem 4 of [2],
and the other inequality is obtained by interchanging the roles of SΊ
and S2 Theorem 4 on page 372 of [2] is thus proved for a general
measure space (X, Λ4, m). ^

It will be important to consider those sets M in Λ4 for which

(2.8)

either m{M) < 00
^ ^ 00

or ra(M) = 00 and M = (J M 7 where
i=i

Mj G Λ̂ ί and m(Mj) < 00 for all j .

In (2.8), it suffices that M C ((J Af») since then M = \J (MnMj).

oo oo

In case ra(M) = oo and M = \J Mj as in (2.8), then M = (J (Mj -

j - i 0 _

), where for j = 1, (J M* means 0. The sets AP' =
k=l

[J Mk for all j = 1,2,... to oo are mutually disjoint since
A : = l

f-UΛd

and M J £ Λί with m(M^) < m(M^) < oo, and unite alljhe M 7

for which m(Mj) — 0 together with an Mj for which m(AP) > 0;
and renumber the resulting j's from 1 to oo. Thus, a set M which
satisfies (2.8) and has ra(Λf) = oo can be expressed as

(2.9)

M = [J MJ where Mj £ Λ4 and

0 < m(M^) < 00 for all j , and

Mjl Π AP2 = 0 for all juj2 with ji φ j 2 .
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The collection of all sets M in M which satisfy (2.8), will be desig-
nated by Λ4:

(2.10) Λ4 = collection of all sets M in Λ4which

satisfy (2.8), or the sentence below (2.8).

Concerning the collection Λ4, it is easily seen to be accountable
ring. Also, (M Π M) G M for every MjE λΛJM G M. Indeed,
using the same measure ra(M) for all M G Λ4 as in (X, Λ^ra),
one seesjλhat (JΓ, Λ4,m) is ajneasure space also. And note that
if S C Mi for some Mi G ΛΊ, then rrii(S) and me(S) obtained
in (X, Λί,m) have the same values as rat (S) and me(S) obtained
in (X,M,m^ For,_if M e M and M C S then M C Mi and
M = (M Π Mi) G M, so that m;(S) is the same. Andjf M G M
and M D 5, then (MnM) D 5 for every M e M with M D 5 , and
m(M) > m(M Π M) so that in. taking the infimumĵ f m(M) one
can limit oneself to sets M Π M,^and these are in λΛ\ thus rne(S)
is the same. Also, concerning Λ4, there is Lemma 6 stated and
proved in §7 of the present article. And in §6 of the present article,
a condition is stated when Λ4 = M.

3. Functionals and Inequalities for Two Disjoint Sets.
Consider a general measure space (X, Λ4, m), and consider any sub-
sets S of X. For two disjoint sets S\ and S2, several functionals of
the pair Si, S2 will be defined. The notation and definitions of these
functionals are the same as in the author's article, Measure-theoretic
Properties of Non-measurable Sets, Pacific J. Math. 138(1989), 357-
389, which is listed in the Bibliography at the end of the present
article as [2]. Article [2] concerns Lebesgue measure on the real
number line or in Euclidean n-dimensional space, and the results in
[2] are being generalized to a general measure space (X,A4,m) in
the present article. The definitions will first be given immediately
below for the case that

(3.1) me(S1 U S2) < 00, where (Si Π S2) = 0.

The functionals are written as ^(Si,S2), ^ ( S i , ^ ) , #i(SΊ,S2),
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), and h(Sι,S2). Their definitions in the case (3.1) are:

di(Sχ,S2) = πii(Sι U S2) — rrii(Sι) — rrii(S2)^

de(Sι, S2) = m€(S1) + me(S2) - me(S1 U 52),

gi(Si,S2) = me(S\ U S2) — πii(Sι) — me(S2),

g2(SijS2) = m e ( 5 i U S2) — rrii(S2) — m e (SΊ) ,

h(SuS2) = m t (5i) + m e(5i) + m {(S 2) + m e (5 2 )

- m f ( 5 i U 52) - mβ(SΊ U S2).

Another form for the last equation in (3.2) is

(3.3) h{SuS2) = de(SuS2) - di(SuS2),

which follows from the first two equations in (3.2). These functionals
will be shown to be non-negative in value, as in [2]. That the first
two functionals in (3.2), i.e. di(Sι,S2) and de(5i,S2), a r e ^ 0 is
well-known, expressing the superadditivity of interior measure and
subadditivity of exterior measure. Note that also Λ(5i, S2) is stated
to be > 0, where Λ(SΊ, £2) is given in (3.3).

Let /(5i ,5 2 ) be any one of the functionals d;(Si, 52), de(Sι, 52),

9ι{S\<) £2)5^2(^1, £2), M5i, £2). There is the following theorem.

THEOREM \. Consider^two disjoint sets^ S\ and S2 which are
contained in M for some M in Λ4, where Λ4 is defined in (2.10):

(3.4) (Si U 5 2 ) C M for some M G M, where (S1 Π S2) = 0.

Let f(SjS2) be any one of the functionals ^(SΊ, S2),de(Sι, 52),
gi(Sι,S2),g2(SuS2), h(Sι,S2). Suppose that Lk, for k = 1,2,...
to n or to oo; are a countable number of mutually disjoint sets in
M. Then

(3.5)
k

+f((x -[jLk) n 5X, (x - \jLk) n s\
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(Note that (X — (JZfc) in (3.5) can be replaced by (M —
k k

and also if (Si U S2) C ([JZ^J then the last term in (3.5) is 0 since

Proof The theorem will first be proved when me(Sι U S2) < 00.
Given any two disjoint sets 5χ and 52 such that rae(SΊ U S2) < 00,
there is a set M in Λ4 such^that (SiUS2) C M and m(M) = rne(5iU
52) < 00, so that M G λi by (2.8), and (3.4) holds. Consider any
particular case for /(5i, S2), for example /(SΊ, S2) = ^i(5χ, ^2). By
(3.2) applied to the disjoint sets I,*; Π Si, L^ Π S2 one has

g t i u LkΠS2) - m e ( Z ( 2 ) ) , ( ) ( )

since (L^ Π Si) U (Lk Π S 2) = L^ Π (Si U S 2 ), and summing for fc
going from 1 t o n gives

(3.6) Σ 9i(Lk Π 5i, L* n 5 2 ) = έ m e (L f c ΓΊ (Si U S 2))
A ; = l A r = l

k=l

-£> e (/, f c ns 2 ).

If the index k in Theorem 1 runs from 1 to oo, let n —»• oo in (3.6),
giving

(3.7) J2 gι(Lk Π Si, Lk n S2) = V me(£fc n (Sx U 52))

since the quantities on the right-hand side are less than or equal to
me(Sι U S2), ^t(Si),m e (S 2 ) respectively, by Lemma 1. There is
also

(3.8) gι(YnSuYΠ S2) = me(Yn (St U S2))

-mi(Yns1)-me(Yns2),
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where Y = X — (J Lk or Y = X — [J L&, according as A: runs

from 1 to n or 1 to oo in Theorem 1. Adding (3.8) to (3.6) or (3.7)
accordingly yields, for the right-hand side of (3.5) when /(Si, S2) is
<7i(Si, S2), the value

(3.9) me(Si U S2) - mf (Si) - roe(S2),

by Lemma 1. The expression (3.9) is equal to <7i(Si,S2) by (3.2).
Thus, (3.5) is established when /(Si,S 2 ) is <7i(Si,S2).

A similar proof holds for any of the other functionals ^(S i , S2),
de(Si,S2),5^2(^1,52), h(Sι,S2) in (3.2). Theorem 1 is therefore
proved for the case that me(Sι U S2) < 00. D

Incidentally, Theorem 1 above, for the case that rae(SΊ US2) < 00
and /(Si,S 2 ) is dt (Si,S2) and de(Si,S2), is stated and proved in
[2], on page 362 of [2], as Lemma 4 on page 362, where Si =
USf, S2 = US f, and (Sf U Sf) C £-, the L- being disjoint mea-
surable sets.ίThere is a misprint on page 365 of [2], in formula (3.5)

there; it should read ^ , not ] P . J It is stated in later pages of [2]
v_ μ

that a similar proof holds for #i(Si, S2), <72(Si, S2) and Λ(Si, S2).
Still for the case that me(Si U S2) < 00, the quantities c^(Si, S2)

and c?e(Si,S2) are non-negative, since they state the superadditiv-
ity of interior measure respectively. And also #i(Si,S2) > 0 and
^ ( S i , S2) > 0, by Theorem 4 on page 372 of [2] (using the inequal-
ities for me(Si U S2) in that Theorem 4), which holds in a general
measure space (Λ",ΛΊ,m), as stated and proved in the preceding
section, §2 of the present article.

Also, the functional Λ(Si,S2) is non-negative, stated in the form

(3.10) ^ • ( S 1 , S 2 ) < 4 ( S 1 , S 2 ) ,

The inequality (3.10) is stated as a theorem on page 367 of [2],
and proved on pages 367-369. The same proof holds in the general
measure space (X,Λ4,m), when me(Si U S2) < 00, replacing the
words "measurable set" by "set in Λ4", and "(the entire space -
BΎγ and "(the entire space - B2f by "(M - 5 α ) " and "(M - B2)

n

respectively, where M G M and (Si U S2) C M with m(M) =
rae(SiUS2) < 00; and also "bounded set" by "set with finite exterior
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measure". Note that Lemma 4 in [2], referred to in the proof on
page 367 of [2], is included in Theorem 1 of the present article, as
stated two paragraphs above. Thus (3.10) holds, so that h(SuS2)
in (3.3) and (3.2) is non-negative.

Thus, all thefunctionals di(Sι,S2),de(Sι, S2),gι(Sι, S2)^g2(Sι^S2)
and Λ(Si,S2), defined in (3.2) (and also (3.3)), for the case that
me(Sι U S2) < °°? a r e non-negative. Their definitions will now be
given for two disjoint sets 61,6^, when

(3.11) me(S1 U S2) = 00 and

(Si US2)CM for some M eM

where Λ4 is defined in (2.10). Then m(M) == 00, and the set M can
be expressed, by (2.9) as

M = | J M 7, where Mj G M and m(Mj) < oo

for all j , and M 7'1 Π M h = 0

for all j i , j 2 with jΊ ^ j 2 .

Let /(SΊ,5 2 ) be any one of the functionals dt (£i, 52),c?e(5i, 52),
52) or /ι(5i,52), and define /(5i ,5 2 ) by

(3.13) /(5 1 ?5 2) - Σ / ( M J Π 5!,M^' Π 52).
i=i

One has that me((Mj Π 5iO U ( M j Π 52)) < m(M ?) < 00, and the
formula in (3.2) can be applied to obtain f(M3; Π5i, M3 ΠS2), which
is finite and non-negative, and (3.13) yields /(5i, S2). Note that 00
is a possible value of /(SΊ,5 2 ) . The values of /(5 i ,5 2 ) are in the
extended non-negative real number system, including 00 as well as
non-negative real numbers.

Concerning f(SuS2) as defined in (3.12) and (3.13), if M =
00

(J Nj, where Nk G M and m(Nk) < 00 and the Nk are mutu-

ally disjoint, is another expression for M as in (3.12), then

00

f(Nk nS1,N
knS2) = Σ f(MJ n (Nk n 5 i ) 5

 M i n ( ^ * n ^2))
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by Theorem 1 already proved for the finite case since me((Nk (ΊSi)U
(NkΠS1)) < m(Nk) < oo and ((W*nSi)U(JV*nSΊ)) C (SiUS 2) C

oo

M = (J M 7. Summing for all A; gives

oo oo

n 5i,ΛΓ* n 5χ) = Σ Σ / ( M i n ΛΓ* n s ^ M ' n W* n S2)

oo oo

= Σ Σ
by Theorem 1 since me((ΛP Π Si) U (Mj Π 52)) < m(Mj) < oo and

oo

((Mj Π Si) U ( M j n 52)) C (5i U 52) C ( U 7V^), the interchange

of the order of summation being legitimate since all terms are non-
oo

negative. This shows that ] Γ f(Nk Π 5i,iVfe Π S2) is equal to the
k=i

right-hand side of (3.13), so that the definition (3.13) of /(Si, S2) is
independent of which division of M as in (3.12) is used.

Also, the definition (3.13) of /(Si, S2) is independent o£which M
as in (3.11) is used. If rae(Si, S2) = oo and (Si U S2) C N for some
_ ^ oo

NeM,andN=(jNk with Nk G M and m(Nk) < oo for all k
J b = l

and the TV̂  are mutually disjoint, then

^. ^_ . , ^_ , , °° o o o o

M = (M-N)υ(MnN) =

so that using M one has

since ( M j - N) Π Si = 0, ( M j - TV) Π S2 = 0 and /(0, 0) = 0.

Likewise, using TV for the definition of /(Si,S 2 ), the same double
sum expression is obtained for /(Si, S2). This shows that the value
of /(Si,S 2 ) is independent of which M is used in (3.11). Inciden-
tally, note that if (Si U S2) C M and me(Sι U S2) < oo, then the
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formulas (3.13) and (3.12) are correct formulas, by Theorem 1 al-
oo

ready proved when rae(£i U £2) < 00, since [X — [J M M Π Si =
i=i

0, (X - (J M3) Π S2 = 0, and /(0,0) = 0.

The following theorem has been proved above.

THEOREM ̂ 2. Consider twojiisjoint sets SΊ and S2 which are
contained in M for some M 6 M, where λd is defined in (2.10) and
(2.8). Then there are non-negative functionals of Sι,S2, namely
di(S1,S2),d€(Sι,S2)igi(Sι,S2),g2(SiiS2) and h(Sι,S2), i.e.,

( f(Sι,S2) > 0, where /(5Ί,52) is any one of

di(SuS2),de(SuS2),gi(SuS2),

92(SuS2)9h(SuS2).

These are defined in (3.2) when rae(SΊ U S2) < oo; and in (3.12),
(3.13) when me(SΊ U S2) — °°

Returning to Theorem 1, it has been proved above, after its
statement, when rae(SΊ U S2) < 00. Consider now the case that
me(5i U S2) = 00. Then f(S1,S2) is given by (3.12), (3.13). Since
me((Mj Π Si) U (Mj Π S2)) < m(Mj) < 00, one has by (3.5) that

f(M3 nS1,M
3ns2) = Σf(LknMJn5bLtnMJn S2)

k

+/ f (x - U LΛ) n M̂  n sx, (x - U I*) n M3 n s 2).
V k k J

Summing for all j from 1 to 00, one obtains

00 00

Σf(Mj n S1,M
j n s2) = ΣΣf(Lkn^ n Si,Lk n M̂  n S2)

3=1 k j=l
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having interchanged the order of summation, since all terms are
non-negative. From (3.13), this is

+f({x -

which is (3.5). Theorem 1 is completely proved.
Incidentally, formulas (3.2) and (3.3) can be written in a form

which is valid even iί me(Sι U S2) = oo. Namely, transpose all the
negative terms in these formulas to the other side of the equations,
resulting in

(3.15)

S2) + rrii(Sι) + rπi(S2) = m t (SΊ U S2),

S2) + me(S1 U S2) = me(S1) + me(S2),

S2) + mt (5i) + rne(S2) = me(S1 U S2),

,S2) + rrii(S2) + m e(5i) = me{S1 U 52),

h(SuS2) + mt (5i U S2) + me(S1 U S2)

= rrii(Sι) + me(S1) + πii(S2) + m e (5 2 ),

and

(3.16)

These are true when m^(SιUS2) < oo, and also when me(SιUS2) =
oo and (Si U S2) C M G M, by writing (3.15), (3.16) for the sets
M 7 Π 5χ, M 7 Π S2 and then summing over all j from 1 to oo, using
(3.12), (3.13) and Lemma 1 for the sums involving rrii and m e.

The inequality dt (5i,S 2) < de(Sι,S2), or Λ(SΊ,52) > 0, can be
stated in an interesting form. For any set S define the average
measure of 5, written ma(S), by

it being supposed that there is an M G ΛΊ with S C M. Note that
^me(S) < ma(S) < me(S). Consider two disjoint sets SΊ,5 2 for
which me(Sι) < oo,mα(S'2) < oo. The statement that Λ(5Ί,52) > 0
can be written in the form

(3.18) U S2) < ma(S2).
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This follows from the formula for &(SΊ, S2) in (3.2). If me(Sj) = 00
for j = 1 or 2 or both, formula (3.18) is still true since then
ma(Sj) — 00. Thus, ma(S) is subadditive; and it is also non-
negative and monotone increasing. Incidentally, the subadditivity
(3.18) also holds if S\ and 52 are not disjoint, since

ma(Sι U S2) = ma{S1 U (S2 - 5i)) < nia^) + rna(S2 - Si)

< rria(Sι) + ma(S2)

Indeed, ma(S) is countably subadditive, as in the following theorem.

THEOREM 3. The average measure ma(S) of a set S, defined in
(3.17), is subadditive and indeed is countably subadditive. That is,if
Sj, for j = 1,2,... to n or to 00, is a countable number of sets such

that Π) Sj) C M for some M £ ΛA, then
j

Proof The subadditivity of ma(S) for two sets has been proved

above, in (3.18). The proof for any countable number n or 00 of

sets Sj is given in [2], in the last paragraph on page 370 and on

page 371 of [2]. (There is a misprint in the middle of page 371

of [2], in formula (5.1) there. The right-hand side of (5.1) should
00

be ^2τna(SE) + e.J The same proof holds for the general measure

space (X,ΛΊ,ra), replacing the words "measurable set" by "set in
M\ D

Also, the complementation and other properties of m α (5), as in
the lower part of page 371 and the top paragraph of page 372 of [2],
hold in the general measure space (X,Λ4,rn).

Returning to the non-negative functionals of two disjoint sets it
will be shown in a later section of the present article that the four
functionals G?i(5Ί, 52),^i(SΊ, ̂ 2), ^2(5Ί,52), and ^ ( S Ί , ^ ) are inde-
pendent functionals, while <ίe(SΊ, $2) is expressible in terms of them
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by (3.16). To simplify the writing, place

(3 19) < * = m ' ( l S l ) ' a<1 = mi(S2)'a = ™>i(sι u

\

and

(3 20) <
[9 9(SS) g2 =g2(SuS2),h =

all of which are non-negative real numbers or 00. For the case
that me(Sι,S2) < 00, the four formulas in (3.2) for di,g\,g2 and
h (omitting the de) can be solved for the four quantities a,bι,b2,b
with the result given in (3.23) shortly below, and also de = d{ + h.
This is easily done, and is done on pages 374, 375 of [2], which use
the same letters as above. Thus, the quantities b\,b2,a,b can be
expressed in terms of the six quantities a>\,a2,di,h,g\,g2 by (3.23),
and so can a\ and a2 by a\ — αi, a2 = a2. The formulas (3.22) below
follow from (3.23), since by (3.23) one has

OΊ + Q>2 + d{ — a = rrii(Sι U 52) < rrii(S)

and

αi + α2 + di + h + gλ + g2 = b = me(Sι U S2) < me(S).

The following theorem has been obtained above.

THEOREM 4. Suppose that Si and S2 are two disjoint sets,
S1Π S2 = 0; in a measure space (X,ΛA,m), and that

(5i U S2) C 5, where S C M for some M C M,

where λi is defined in (2.8) and (2.10). Then there are 6 set func-
tions, whose values are non-negative real numbers or 00, namely

(3.21) m, (5 1),m ί ( 5 2 ) , ^ ( 5 1 , 5 2 ) ,

9i(Su 52), g2(Su 52), h(SuS2),

all > 0, which satisfy

(3 22) \ai + a2 + di<mi(S), and
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where the letters in (3.22) have the meaning given in (3.19) and
(3.20). The 6 quantities rrii(S) and me(S), for S = Si ,S 2 ; and
(Si U S2), can be expressed in terms of the six quantities in (3.21)
by the formulas:

n o — n~ -J- n Λ- n

(3.23) ' _

b = aι -f Q>2

and also αi = αχ,α2 = α2.

It will be shown in a later section of the present article that
if the measure space (X,ΛΊ,ra) satisfies some conditions, which
are satisfied in the usual measure spaces, then the 6 set functions
ai,a2,d;,<7i,#2, h are a complete collection of independent non-ne-
gative set functions.

Incidentally, concerning the set functions /(Si, S2), a consequence
of Theorem j^is the following. For given disjoint sets Si,S 2 with
(Si U S2) C M G M, consider the functional f(M Π Si, M Π S2) as
a functional of the set M G Λ4. If M — [J Mk, and Mk G Λ4 for all

A: and the Mk are mutually disjoint, then

(3.24) f(M n Si, M Π S2) = £ / ( M , n 5 2 , Mk Π 52).

For, in Theorem 1,replace 5 X ,5 2 bv M Π 5Ί,M Π 5 2 respectively,
and note that MfcnM = Mfc and (X - (JAf*) n M = | . Formula

AA;

(3.24) and Theorem 1 state that the non-negative functional f(MΠ
5 i , M Π 52), when considered as a functional of the set M 6 Λi,
is countably additive for disjoint sets M £ Λ4. This is like m(M),
and also rrii(M Π S) and me(M Π 5) by Lemma 1. And also note
that, if A and B are two sets G M with A C B, then

/(A n Si, An s2) < /(£ n Si,s n s2),

since

by (3.24) for two sets
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4. Partitionable Sets. Consider a general measure space
(X,M,m), and a set M G M with m(M) > 0. The set M will
be called a partitionable set if, for each set B in ΛΛ with B C M
and m(B) > 0, there is a set A G Λ4, where A depends on JB, with

(4.1) ACB and 0 < m(A) < m(B).

Note that if M is partitionable, then every set B C M with JB G Λ4
and m(B) > 0 is also partitionable. A measure space (X,A4,m) for
which every set M G M, with m(M) > 0, is partitionable will be
called a partitίonable measure space. The following lemma will first
be proved.

LEMMA 3. Suppose that M G Λ4 is a partitionable set with
m(M) >0f in a measure space (X,λΛ,m). Then for any positive
real number r, there is a set

(4.2) Ae M,ACM, andO < m(A) < r.

Proof Consider first the case that m(M) < oo. There is a set
B G ΛΊ, B C M with 0 < m(B) < m(M), since M is a partitionable
set. Then m(M) = m(B) + m(M — 5), and at least one of the sets
B or M — B has its m-measure < |ra(M). If r > ±m(M), then this
set can be taken for the set A. For any positive r, let n be a positive
integer such that ^m(M) < r. There is a set A\ G Λ4,A2 C J4I,
with 0 < m(A2) < \m(Aι) < ^m(M); etc., etc.; at the n-th step,
there is a set An G -M, An G M, with 0 < m(An) < ψm{M) < r.
The set An is a set A of the lemma. If m(M) = oo, there is a set
B C M, B G M with 0 < m(B) < oo, by the partitionability of
M. Pick a set A C 5, A G Λ4 with 0 < m(A) < r. Lemma 3 is
proved. D

THEOREM 5. Suppose that M G M is a partitionable set, with
m(M) > 0; in a measure space (X, ΛΊ, m). TΛen; z/c zs any positive
real number or oojvith c < m(M)} there is a set C G Λi,C C Λf,

m(C) = c. (Λ4 is defined in (2.10) and (2.8)). If m(M) = oo
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and c = oo, there is a set C £ Λ4,C C M with m(C) = oo and
m(M-C) = 00.

Proof. (If c = 0, the setJ5 will do, and consider c > 0.) There is
by Lemma 3, a set C\ £ ΛΊ,d C M with 0 < ra(CΊ) < min(c, 1),
where min(c, 1) is the minimum of c and 1. Then m(M — d ) —
m(M) - rn(Ci) > c - m ( d ) > 0. If c - m ( d ) = 0, pick C2 = 0. If
c — m(Cι) > 0, there is by Lemma 2 a set C2 € Λ4, C2 C (M — Ci)
with 0 < m(C2) < min(c — m(Ci), 1); then

m(M - ( d U C2)) = m((M - d ) - C2)

= m{M - Cx) - m(C2)

> c - m(Cι) - m(C2) > 0.

If c-m(CΊ)^m(C 2) = 0, pick C3 = 0; if c - m ( C - 1 ) - m ( C 2 ) > 0,
pick C3 G M , C 3 C ( M - ( d U C2)) with 0 < m(C3) < min(c -
m(Ci) — m(C2), 1). Continue by transfinite induction over countable
ordinal numbers. For any countable ordinal number 7, suppose that
sets Cg_ £ M^COL C M, have been selected for all ordinals a < 7,
such that for every ordinal α < 7:

C 2 L C ( M -

(4.3)
and if Y^ rn(Cβ) = c then Cα = 0,

while if ^ m(Cβ) < c then 0 < m(Ca)

β_<a

The sets d ? d ? d have been obtained above, and satisfy (4.3) for
7 = 1,2,3. If 5 ^ m ( C J = c, select Cχ = 0 . If 5 3 m ( C α ) < c,

then ( [J Cα) £ A^ since 7 is a countable ordinal number, and

m(M - (J Ca) = m(M) - m( | J C j > c - m( | J Ca) > 0, and
QL<Ί
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select CΊ G M,CΊ C (M - | J C^j with 0 < m(CΊ) < mini c -

L I. Then (4.3) holds for a = 7 also.

By the principle of transfinite induction, the mutually disjoint
sets Ca_ G M and C^ C M have been selected for all countable
ordinal numbers, with (4.3) being satisfied for all these ordinals α.
And for every countable ordinal α, either Cg_ = 0 or 0 < rn(C^) < 1.:
For any given positive integer n, there are only a countable number

of Ca_ with m\Cg_ > — ) • For, if there are an infinity of them, as

C&1, Ca2,..., Cg_ , . . . where ax < a2 < . . . < aΰ < α^+ 1 < . . . for all
00 00

integral j from 1 to 00. Then rnf [̂ J C& J = J ^ ^ ( C » ) = 00 since

1
m(Ca ) > — for every j . If 7 is any countable ordinal > a^ for all

ZJ

0 0

j , i.e. 7 > lim a^ then my | J Cgλ > m([J C^J = 00, and c = 00,

so that CΊ = 0 by (4.3). In any case, there are at most a countable

infinity of C^ for which m(Ca) > 0. Since the number of countable

ordinals is uncountably infinite, there are countable ordinals larger

than all these. Let 7 be the smallest countable ordinal such that

m(C 1) = 0, so that £ m(Cβ) = cby (4.3).

Place C = | J C>, which G Λ? by (2.8) and (2.10) since 7 is

countable ordinal number. Theorem 5, up to the last sentence,
is proved. For the last sentence of Theorem 5, which is the case
m(M) = 00 and c = 00, one has C £ M , C C M, with m(C) =

00

00 = m(M). Now, by (2.9), C = [J ΛfJ", where the M J are mutually
i=i

disjoint and m(MJ) < 00 for all j . By the first part of Theorem 5
already proved, there is Aj G M, Aj C Mj with m(Aj) = ^

and therefore m(Mj - Aj) = | m ( M j ) . Then, the set A = [J A j G

M and A C C C M and has
3=1
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-m(C) = oo. Also, (C - A) = \J(Mj - Aj) and m(C - A) =
-t

oo oo -j

^2rn(M3 — A*7) = ] P - r a ( M J ) = oo. Theorem 5 is proved, with
• -| -j Δl

the set A as the C of the last sentence of the theorem. D

One easily shows from Theorem 5 that, for a partitionable set
M £ M with m(M) > 0, if Cj > 0, j = 1,2,... to n or to oo, are
a countable number of non-negative real numbers or oo such that
y^c ? < m(M), then there are mutually disjoint sets Cj G Λ4 with

Cj C M and m(Cj) = Cj, for all j = 1,2,... to n or to oo. A proof
is given on page 384 of the Pacific Journal of Mahtematics article
[2], Lemma 8.

There is also the following lemma.

LEMMA 4. A partitionable set M £ ΛA with m(M) > 0 contains
an uncountable infinity of points. If the partitionable set M E Λ4,
then any point x in M is contained in a set Mo G ΛA,MQ C M,
with ra(Mo) = 0.

Proof Considering the second sentence of Lemma 4, suppose first
that 0 < m(M) < oo. (If m(M) = 0, then Mo can be taken
as M.) There is by Theorem 5 a set C G M with C C M and
m(C) = | m ( M ) , and then m(M — C) — | m ( M ) also. One of the
sets C or M — C contains the point #, and designating this one
by Ai one has A\ G Λί,Aχ C Λf,x G Λi, and m(A\) = | m ( M ) .

Then there is A2 G M,A2 C Aχ,x G A2, and m(A2) = -m(Λi) =
ill

1

—m(Λί); and there is A3 G ΛΛ^As C A2,x G A3, and m(A3) =

-m(A2) = — m(M). Continuing for all possible integers n, there

are An G -M,An C An_i,α: G An, and m(An) = —ra(Λf). Placing
OO

Mo = ( p i An) C M, then MQ e M,x E Mo, and m(M 0) = 0,
7 1 = 1 _

which is a desired Mo If m(M) = 00, then since M £ M. one
00

has M = [J M 7 by (2.9), where the M 7 are mutually disjoint sets
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G M with 0 < m(Mj) < oo, so that x G Mjl for some j τ . By
the preceding there is Mo G M with Mo C Mj- C M, # G Mo, and
m(M0) = 0. The second sentence of Lemma 4 is proved.

For the first sentence of Lemma 4, therejs a set B G ΛΊ, 5 C M
with 0 < ra(5) < m(M). The set 5 G M since m(J5) < oo, and
each point x in B is contained in a set MQ G Λ"ί,Mo C 5 , with
x G Mo and rn(Mo) = 0. If there were only a countable number of
points x in ϋ?, then B would be a union of a countable number of
sets Mo with ra(M0) = 0, and one would have m(B) — 0 contrary
to m(B) > 0. Thus 5 , and therefore M, contains an uncountable
infinity of points. Lemma 4 is proved. D

Lemma 4 is stated since one could have a two-valued measure
space (X,ΛΊ,m) which doesn't contain an infinity of points. Two-
valued measure spaces are discussed in §6.

5. A Basis Condition for a Measure Space. Consider a gen-
eral measure space (X, Λ^ra). A measure basis of (X, Λ4,m) will
be defined as a collection C of sets C^ in Λ4 with m{C^) > 0, such
that every set M in Λ4 with m(M) > 0 contains a set Cg_ in C,
Co, C M (where C&_ depends on M). There is at least one such
collection C, namely all sets M in Λ4 with m(M) > 0. Consider
the cardinal number of all the different sets Cg_ in such collection
C, and let χv> be the least cardinal number for all such collections
C. Or, it suffices to let χ ^ be the cardinal number of one such
collection C. Let w^ be the least ordinal number with the cardi-
nality χ(f\ There is a collection C^ of cardinality χ^\ called a
basis collection, and let Ca denote all the sets Cg_ with m(Cg) > 0
in this collection C^\ where a runs over all the non-negative ordinal
numbers a < w^\

Consider the cardinal number of points in a set M G ΛΛ with
rn(M) > 0, and let x^ denote the least cardinal number of points
in such sets M, among all sets M G λΛ with m(M) > 0. Thus,
every set M G M with m(M) > 0 has at least x^ points.

The measure space (X,λΛ,m) will be said to satisfy the basis
condition if

(5.1) XW > XC>,
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i.e. if the number of points in every set M E ΛΛ with m(M) > 0 is
at least χ^\

For the usual measure spaces (X,ΛA,m), the cardinal numbers
χ(p) and χW are both 2X 0, the cardinal number of the continuum,
so that the usual measure spaces do satisfy the basis condition. For,
consider Borel or Lebesgue measure on the real number line or in
Euclidean space. There is a measure basis consisting of all bounded
closed sets of positive measure. Here χ ^ = 2X0 (since closed sets
are complements of open sets, and the number of these is 2X o). And
every measurable set M of positive measure contains a bounded
closed set of positive measure, and thus contains a continuum num-
ber 2X0 of points. So, χW = χ^ = 2X o, and the basis condition
(5.1) is satisfied.

Consider a general measure space (J*f, ΛΊ,m) and suppose that:

( there is at least one set M £ Λ4

with m(M) > 0; and every set M G M

with m(M) > 0 has an infinity of points.

This is stated since one could have a two-valued measure space with
a finite number of points. Two-valued measure spaces are discussed
in §6. The following theorem will be proved.

THEOREM 6. Suppose that (X,Λ4,m) is a measure space sat-

isfying the basis condition (5.1), and also (5.2). Then there are

χ(pϊ mutually disjoint sets Zβ C X, where β varies over all ordinal

numbers of cardinality < χ(p\ such that

(5.3) X = U Zβ, where Z^ n Z ^ - 0 for all β^ φ β2,
β

and

(5.4) mi(Zβ) = 0, rπi(X - Zβ) = 0 for all β.

Proof. Let w_^ be the smallest ordinal number of cardinality χ(p>
and ju/p) the smallest ordinal number of cardinality χW , where
a C) < wto) by (5.1). Since χ ( / ) χ ( p ) = χ ( p ), the set of all ordered
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pairs (α, β), for all non-negative ordinal numbers a and β_ for which

a < v£fi and β < w^p\ has the cardinality χ(p) and so can be

put into one-to-one correspondence with the set of all non-negative

ordinal numbers 7 < tv^p\ For any given 7 < w^p\ designate the

(α, β) of the associated pair (α, β) in this one-to-one correspondence

by ^(7), βij)- Thus, for any a < u O and any β_ < yλp\ there

is one and only one 7 < uλp>> for which ^(7) = α, /?(71) = β\

and if j_χ φ 7 2, then either α ^ ) φ α(7 2) or ^ ( 7 ^ ^ β_(η_2)
 OΓ-

both. D

Let C^\ consisting of sets C^ 6 Λ4 with m(Ca) > 0 where α
varies over all ordinal numbers a < ^ \ be a measure basis of the
measure space (X, Λί, m). Continuing with the proof of Theorem 6,
the following lemma will first be established.

LEMMA 5. There are points y^ and Xfaβ) z n X> for a^ ordinal

numbers a < wf^ and all ordinal numbers β_ < w!"p\ which are all

different points, and

(5.5) ya G C a , x^g) e Ca for all a < w(ί) and all £ < w
{p)

Proof. For 7 = 0, pick two different points 3/̂ (0) and ^(α(
C^(o). For 7 = 1 , pick two different points ya(i) and X(a(i),β(i)) in
Cα(i) ~" {ya(o)fχ(α(o),/?(o))} Continue by transfinite induction. Sup-
pose, for an ordinal number 7 < w^p\ that ya{s) and Z(a(δ),β(δ)) have
been selected for all ordinal numbers 8_ < 7 in such a way that they
are all different points, and

(5.6) ya(δ) € Ca(§),X(a{δ),β(Q) € Cα(έ) f o r ^ έ < 7

Since 7 < t£^p\ the total number of points j /^) and X(a(£),β(δ)) f° r

all ^ < 7 has cardinality < χ^p\ and so the set
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has cardinality > x^ and is therefore an infinite set. Select two

different points ya(Ί) and X(a(Ί),β(Ί)) in this set:

(5.7) yφ) and

where yφ) φ X(a(2)Si))' T i m s > V^iί) a n d x{*ίQ&Q) h a v e b e e n s e "
lected for all £ < 7, and are all different points, and satisfy (5.6) for

all S_ < 7. This can be done for all 7 < w^p\ and so by the principle

of transfinite induction, one has selected ya(<y) and #(c*(7),β(7)) f° r all

7 < tx M in such a way that they are all different points in X, and

(5.8) y^) G Cα(7)^(α(7),^(i)) £ ^ d ) f o r aU 7 < ™(p)

For any α < «i^) and β < w^p\ there is a single 7 < u^p^ such
that ^(7) = a and /?(7) = /?, and (5.8) is (5.5). Lemma 5 is
proved. D

Returning to the proof of Theorem 6, define the set Zβ by

for all a < w^f)}, for 0 < £ < ji W,

Then (5.3) is satisfied, and note that ZQ D {?/«; for all a < υλ^}. Let

M be a set 6 Λί with M C Zβ. If m(M) > 0, then there is a Ca_ G

CM with M D Ca, so that C« C Zβ. But for ^ > 0 , J / , G C £ and

ŷ _ 7̂  Zβ, so that C^ <£ Zβ] and for /? = 0, ^(«,i) G C^ and a:(^i) ^ Zo,

so that C^ (jL ZQ. These contradictions show that m(M) = 0, and

therefore rrii(Zβ) = 0. Concerning the complementary set X — Zβ,

let M be a sef G M with M C {X - Z/j). If m(M) > 0, theFe

is a set C« G C ( / ) with M D C a , so that C a C (X - Zβ). But for

^ > 0, a?(a,β) G C^ and X(a,β) $? (X~-Zβ) so that C^ ζί (X — Zβ); and

for ^ = 0 , ^ 6 C , and y« g (X - Zo) so that C a {ί (X - Zo)."These

contradictions show that m(M) = 0, and therefore rrii(X — Zβ) =

0. Thus, (5.4) holds, and Theorem 6 is proved. (Incidentally, the

different points y^ and X(a,β) m the above proof can be replaced by

mutually disjoint point sets of less than χ(p) points each.)
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For Lebesgue or Borel measure on the real number line or in
Euclidean space, in which case x^ — χW = 2X 0, Theorem 6 shows
that there are a continuum number of mutually disjoint sets Zβ as in
Theorem 6. This is an addition to a similar theorem in the author's
articles [1], [2], and in particular an addition to Theorem 7 on page
381 of [2]. Likewise for Theorem 7 below.

An immediate consequence of Theorem 6 is Theorem 7.

THEOREM 7. Suppose that (X,ΛA,m) is a measure space satis-

fying the basis condition (5.1), and also (5.2). Then, for any integer

N > 2, and also for any χ < χ^v\ there are N and also χ} mutu-

ally disjoint sets ZΊ for 7 = 0 , 1 , . . . , N — 1, or for η — all ordinal

numbers of cardinality < χ} such that X = [J ZΊ,rrii(ZΊ) — 0 and
Ί

nii(X - ZΊ) = 0 for all 7. For any M 6 M with m(M) > 0, one

has M = (J(M Π Zχ) and
1

(5.10) rrii(M ΠZ1) = 0 and

rrii(M - ( M i l ZΊ)) = 0 for all 7

and

(5.11) me(M ΓΊ ZΊ) = m{M),

me(M - (M Π ZΊ)) = m(M) for all 7.

Proof The first two sentences of Theorem 7 for the case that
X = χ(p) is Theorem 6. For the case that χ < χ(p\ replace ZQ
of Theorem 6 by Zo = ZQ U ί [J Zβ\ where w_ is the smallest

β>N OTW ~~

ordinal number of cardinality χ. Now, ZQΠZ\ = 0 so that ZQ C (X—
Z\) and mi(Zo) = 0 since rrii(X — Z\) = 0; and (X — ZQ) C (X — ZQ)
so that πii(X — ZQ) = 0 since rrii(X — Z\) = 0. This establishes the
first two sentences of Theorem 7.

Equation (5.10) is a consequence of (M ΓΊ ZΊ) C ZΊ and (M —
(M Π Zj)) C (X - Z 2 ). Also, by Lemma 2,

me(M n ZΊ) + rrii(M - ( M i l ZΊ)) = m(Af),
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and
rrn(M Π Zχ) + me(M - ( I n ZΊ)) = rn(M),

so that (5.11) follows from (5.10). Theorem 7 is proved. D

(Incidentally, §5 also holds if y^ is a finite number, which would
require that the measure space be a direct sum of a finite number
of 2-valued measure spaces and of a zero-measure space; and also
if the second line of (5.2) is not satisfied, so that x^ can be a
finite number > 2, as can be shown. Two-valued measure spaces
are discussed briefly in the latter part of §6.)

6 A Complete Set of Independent Inequalities. The fol-
lowing main theorem will now be proved.

THEOREM 8. Suppose that (J*f, Λi, m) is a partitionable measure
space^ satisfying thejmsis condition (5.1). For any set M in Λ4 with
m(M) > 0, where ΛΛ is defined in (2.10) and (2.8), and any six non-
negative real numbers or oc ; namely a\,a2,di,h,gι,g2) satisfying

OΊ + 0,2 + di + h + gι + g2 < m(M),

there are two disjoint sets 5χ, 52 in M, S\ C M, S2 C Λf, SiΓ) S2 =
0, such that (3.20) holds and

m;(Si) = au

me(Sι) = a\ -f di -f h + g\ ( which = &i),

rπi(S2) = a2j

(6.1) { rne(S2) = a2 + d{ + h + g2 ( which = b2),

rΠi{S\ U 52) = a\ + a2 + di ( which = α),

rne(S1 U S2)

— a\ + a2 + di + h + gι + g2 ( which = b).

Proof. (A partitionable measure space is defined in the first para-
graph of §4.) The theorem and proof are exactly the same as in
[2]. The theorem and proof appears on pages 382-385 of that arti-
cle, with the symbol X in the article replaced by M for Theorem 8
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above, and the words "measurable set" replaced by "set in Λ4".
Lemma 7 in that proof appears in the present article as Theorem 5,
and Lemma 1 is the same as Lemma 1 in the present article; and the
sets Z\ and Z2 in that proof are the sets Z\ and Z2 in Theorem 7
for N = 3, since Zx U Z2 = X - Zo so that m t (Zi U Z2) = 0 and
πii(X — (Zi U Z2)) = 0. A misprint appears in the cited article [2]
on page 385, line 3; it should read: Z\ (Ί Z2 = 0, not Z\Γ\ Z2 φ 0.
Theorem 8 is proved. D

A proof of Theorem 8 is also contained in the proof of the more
general Theorem 10 in §7 of the present article. Theorem lOj on-
cerns two disjoint sets contained in any set 5, where S C M for
some M in Λ4. Theorem 8 is the case of Theorem 10 when S = M.
Then rrii(S) = me(S) = ra(M), and the second line of (7.11) is a
consequence of the first line of (7.11), and the sets K and L appear-
ing in the proof of Theorem 10 are also = M.

Theorems 2 and 8 are the main theorems concerning the quan-
tities πii(S) and me(S) for S = Si, £2? and SiJJ £2, wherej?i and
£2 are disjoint sets contained in a set M in Λ4 with m(M) > 0.
They state that the six quantities αi, 61, α2, b2, α, b defined in (3.19)
are subject to six independent inequalities, that a,ι,a2jdi,h,gι,g2

are each > 0, and the inequality a\ + a2 + dt + h + g\ + g2 < m(M),
where 61,62? <*>•> b and αi, α2 are expressible in terms of them by (6.1).
These are valid for every pair of disjoint sets Sχ,S2 contained in
M ,^and any other numerical relation involving αi, bι,a2χb2,α, 6 and
m(M) which is valid for every pair of disjoint sets C M is a con-
sequence of these. For, Theorem 8 states that the six non-negative
quantities αi, a2, ά{, h,gι,g2 can have any values independently sub-
ject merely to their sum being < m(M). In any particular case or
cases of two disjoint sets Si, S2 in a set M £ Λ4, there may be more
information applicable to the particular case or cases.

Without the use of the symbols d;, Λ,#i,#2, the inequalities are

ai ^ 0, a2 > 0, a > d\ + a2j

/ΩOΛ I a + b>a1 + b1 + a2 + 62,

b < m(M).

In other words, the non-negativeness of interior measure, and the
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superadditivity of interior measure for disjoint sets and subadditiv-
ity of average measure for disjoint sets, and the inequalities on the
third line of (6.2), and the monotone increasing property of exterior
measure, form a complete set of conditions on the quantities mi(S)
and me(S) for S = Si, S^and j?i US2, valid for every pair of disjoint
sets Si, S2 contained in M G λΛ.

In Theorem 8 above, consideration was given to partitionable
measure spaces. If the measure space (J*f, Λ4,m) is not partition-
able, then from §4 there would be a set M G λΛ with m(M) > 0
which is not a partitionable set, which means there is a set B C M,
with B G λΛ and m(B) > 0, for which there is no set A G λΛ
satisfying (4.1). Thus, for this set B, every set A G λΛ with A C B
has m(A) — m(B) or m(A) = 0. The subset of M consisting of all
sets A G λΛ for which A c δ , which could be designated by λΛ Π B
and includes the set 2?, forms a countable ring, and the measure m
defined for λΛ ΠB is countably additive. Thus (JB, λΛ ΠI?, m) is also
a measure space which is a 2-valued measure space, having only the
values 0 and m(B) for the measures m{A) of all sets A G {λΛ Π B).
This measure space is a part of (X, Λ4,ra).

If one considers all the sets M G M for which M c ( I - B ) , then
these form a countable ring λΛ Π (X — B) with a countably additive
set function ra, and so one has a measure space (X — J9, λΛ Π (X —
5 ) , m ) , which is also part of (X, .M,m). And the original measure
space (X, ΛΊ, rn) is a direct sum of the two measure spaces ( 5 , ΛΊ Π
J9, m) and (X—J5, Λ/ίίΊ(X—β), m). Consideration can now be given
to the measure space (X — B, λΛ Π (X — f?), m), breaking off another
2-valued measure space, if this is not a partitionable measure space,
etc.. Suppose now that the original measure (X, ΛΊ, m) satisfies the
following countability condition for a measure space:

If Ma_ G λΛ with m(Ma) > 0, are a collection of mutually disjoint
sets G Λ4 with positive measure, then there are at most a countable
infinity of Λfa.

If (X,Λΐ,rn) satisfies this countability condition for a measure
space, then one easily shows that (X,λΛ,m) is a direct sum of
a countable number of mutually disjoint 2-valued measure spaces
and of a partitionable measure space. Indicating this countable
number of disjoint 2-valued measure spaces by the index j , where
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j = 1,2,..., to n or to oo, one has that

(6.3) (X,M,m) =

where Bj £ M and m{Bj) > 0, and (Bj,Λ4 Π Bj,m) is a 2-valued
measure space, and Bjλ Π £?j2 = 0 for all ji,J2 with j i 7̂  j'2,j

(X — [^Bj^Ad Π (X — [jBj),m\ is a partitionable measure space
3 3 /

(which may be a 0-measure space in which every M in I Λ4 Π ίX —

U ^ i ) ) h a s ™(M) = 0). For any set 5 in X, one has 5 = (J(5 Π
j / i

Bj) U 5 n ( l - | j5 j) ), and by Lemma 1,

mi(S) = X] m, (5 Π Bj) + mt ί 5 Π ( x - |J J5, ) J

and

me(S) = Y]me(S Π Bj) + me[S Π ( x -
i V i '/

For πii(SΠBj) and me(SΠBj) one has only the two possible values
0 and m(Bj), since (Bj,Λί Π Bj,m) is 2-valued measure space.

Thus, in considering rrii(S) and me(S) for any set 5, it is best to
decompose the measure space as in (6.3), and treat the first part

φ ( 5 ? , Λ4Γ\Bj, m) separately from the second part I ̂ — ( J Bj, Λ4Π
j V j

[X — \\Bj),m j which is a partitionable measure space. This lat-
j 1

ter partitionable measure space also satisfies the countability con-
dition for a measure space. Furthermore, it is easily shown that: If
{X, λΛ,m) is a partitionable measure space and satisfies the count-
ability condition for a measure space, than every set M which £ Λ4
also £ M, so that Λ4 = Λ4.
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An example of a 2-valued measure space (X,ΛA,m) is one in
which ΛA consists of the two sets 0 and X, and ra(0) = 0 and
m{X) > 0. Then for any set S in X, other than 0 and X, one
has rrii(S) = 0 and me(S) = m(X). The set X could have any
number of points, including a finite number. Another example of a
two-valued measure space (X,ΛA,m) is one in which X consists of
an uncountable infinity of points, and ΛA consists of all subsets of
X, and m(M) = oc if M contains an uncountable infinity of points
while m(M) = 0 if the number of points in M is countable. For
this 2-valued measure space, every set is measurable. Still another
example of a two-valued measure space is to take any measure space
(X, ΛA, m) and form a new measure space (X, ΛA, m) with the same
X and ΛA but with a different m, where rh(M) = 0 if m(M) = 0
and rh(M) = oo if m(M) > 0.

Incidentally, in connection with Theorem 8 for disjoint sets in a
given M G ΛA, one need only have thej>asis condition (5.1) with the
χ θ and χ^ for the measure space (M,ΛA Π M,m) instead of the
containing measure space (X,Λΐ,m), if these are different. Note
that the measure space (M,A"inM,ra) in which 5χ and S2 lie does
satisfy the countability condition for a measure space.

In the definition of a general measure space (X,Λΐ,m), it was
not assumed that X & ΛA. If X $. ΛA, one can extend the measure
space (X, Λl, m), if it is desired, to a measure space (X, Λΐ*, m*) in
which the extended countable ring ΛA* includes the set X as well
as all of ΛA, and the extended measure function m* coincides with
m over all of ΛA. The smallest such countable ring ΛA* is:

(6.4) M* - M and the sets X - M for all M e M.

Indeed, one easily shows that ΛA* in (6.4) is a countable ring. Note
that the two parts of ΛA* in (6.4) have no sets in common, because
X -MxφM2 for all Mx G M, M2 G M since X <£ M. Define the
measure function m* by:

m*(M) = m(M) for all M G Λ < ,

m*(X -M) = rπi(X - M) for all M G ΛΊ.

One can show that ra* is countably additive for disjoint sets in ΛA*,
This uses (X - Mx) Π (X - M2) = X - (Mj U M2) ^ 0, so that two
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sets of the form X — M are not disjoint. Thus, (X, Λ4*,m*) is a
measure space, an extension of (X, Λ4,rn).

In the extended measure space (X, Λ4*,ra*) , any set 5 has an
interior measure m*(S) and an exterior measure m*(S). One can
prove that:

(6 6) / r o i ( 5 ) = ro ( 5 ) for all 5, and,

' \™:(S) ™(s) f o r a i l s s u c h t h a t 5 c M e

The measure space (X,Λί*,ra*) is thus not only an extension of
(X, Λί, m) but it also gives the same interior measure for every set
S in X and it is an extension of the exterior measure applicable now
to every set 5 in X. ^

Concerning the countable ring ΛA defined in (2.10) and (2.8), one
obtains a similar countable ring Λ4* in the measure space
(X, wM*,m*), and this includes ΛΛ. Also, it is easy to show that
if (Jf, M,m) is a partitionable measure space, so is (X, ΛΊ*,ra*) a
partitionable measure space. And the measure spaces (X,Λί,m)
and (X, Λί*,m*) have the same value for χ^\ and the same χ^p\
And if (X,ΛA,m) satisfies the countability condition for a measure
space, so does (X, ΛΊ*,™*).

It might be desirable to have a complete measure space, i.e. one
in which every subset of a set of measure 0 is also measurable and
has measure 0. The measure space (X, Λ4*, ra*), if it isn't complete,
can be extended to a complete measure space by the usual process
of completion. The above extensions can be made beforehand, if it
is desired, and have X as measurable also, (incidentally, if there
are points of X not contained in any M 6 JM, one can limit con-
sideration to the point set (J M, and replace X in the above by

MeM

[J M, or consider (J Mas X.)
MeM MeM

If one has any extension (X, Λ4*,rh) of (X, Λ4,m) to the count-
able ring Λ4*, one can prove that m is given by

(6.7) m = m(M), m{X - M) = rrn(X - M) + c

for all MeM,

where c is a non-negative constant, c > 0. Indeed, for any c > 0,
(6.7) does furnish a countably additive measure function m. If there
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is a set Mi £ Λ4 for which nii(X — M\) < oo, in which case there is a
set Mi G Λ4 for which nrii(X — M2) — 0, then for c > 0 the extension
{X, A4*,rh) is different from (X,.M*,ra*). It might be desired to
have such an extension, to represent some unknown measure. But
note that rhi(X-Mι) = m(X-Mι) = πii(X—M)+c > πii(X-Mι),
and rat does not agree with m t for all sets 5, as in (6.6). Thus, the
extension (X,Λ4*,m*) is the only extension of (X,Λ4,m) to the
countably ring ΛΊ*which satisfies (6.6).

It should be stated, in closing §6, that in all of the present ar-
ticle, and also in the author's articles [1] and [2], no hypothesis is
made concerning the continuum 2Xo; the continuum hypothesis of
set theory, which is that 2Xo = χi, is not used. Use has been made
of transfinite induction and of the axiom of choice.

7 Disjoint Sets in a Set S. In all of the preceding, consider-
ation was given to disjoint sets SΊ,52 contained in a set M £ Λ4.
Now, consider disjoint sets Si, £2 contained in any set S. First, for
any set S contained in M £ ΛΊ, there is rrii(S) and me(S) for which
0 < rrii(S) < m e (5), and the sets A and B in (2.3) and (2.6) will
be chosen more carefully in the following lemma.

LEMMAJ) . Suppose thatS^ is a set in a measure space (X, Λ4, rn)
and S C M G M, where M is jlefined in (2.10) and (2.8). Then
there are sets K G ΛΊ and L G M. such that

(7.1) K C S CL CM, with

m(K) = rrii(S), m(L) — m e (5),

( 7 2 )
1 ' } \me(S -K) = m(L - K), me(L - S) = m(L - K).

Further, considering M Π S for any M £ Λd, and using K3 L satis-
fying (7.1) and (7.2), then (7.1) and (7.2) also hold with MΓ\K,Mn
5, M (Ί L m p/ace 0/ if, 5, L respectively.

Proof Suppose first that me(S) < 00. Then sets A and B in (2.3)
and (2.6) can be selected as the sets K and L of Lemma 6, and
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(7.1) is satisfied. Let CΊ by any set G M with Cλ C (S - K). Then
CxnK = 0 and (CΊU/ί) C 5, so that m(C1)+m{K) = ra(CΊuA') <
rrii(S) = m(K). Transposing m(K) since m(K) < oo shows that
ro(Ci) < 0 and therefore m(CΊ) = 0, and so m2 (5 — /f) = 0. Let
C2 be any set 6 Λί with C2 C (L - S). Then C2 Π 5 = 0 so that
S C (L - C2), and m(L) = me(5) < m(L - C2) = m{L) - m(C2),
which gives ra(C2) < 0 since m(L) < oo and therefore ra(C2) = 0,
and so mz (L — S) = 0. Thus, the first line of (7.2) is established.
Also, (L - K) = (L-S)U{S- K) and (L-S)n(S- K) = 0, so
that by Lemma 2,

rrii(L -S) + me(S - K) = me(£ - S) + rrn(S - K) = m(X - /ί).

This gives, using the first line of (7.2), that rne(S — K) — me(L —
S) = m(L - K). Thus, (7.1) and (7.2) are established for me(S) <
oo. Note, when me(S) < oo, that (7.2) followed from (7.1) in the
above proof.

Consider now the case that me(S) = oo, so that rn(M) = oo.
oo

Write M = (J MJ as in (2.9), where the Mj are mutually disjoint
3=1

oo

and Mj e M and m(Mj) < oo for every j . Then 5 = (J (Mj n 5),

and for the set ΛP Π S there is by the preceding paragraph sets
Kj and Lj, both e ΛΪ, with Kj C (MJ' n 5) C V C Mj, and
formulas (7.1) and (7.2) hold with Kj,Mj n 5, L j replacing /ί, 5, X

OO OO

respectively. Now, place K = [J / i j , i = [J L j. Then if C 5 C

L C M, and since the ΛP are mutually disjoint, so are the K\ and
also so are the LJ'. One has

3=1 3=1

OO

by Lemma 1, formula (2.7), since (X — [J ΛfM Π5 = (5, and also
i

m(L) = Σmψ) = Σme(Mj Π S) = me(S)
3=1 3=1
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by Lemma 1, (2.7) again. So, (7.1) is established.
Also,

since MJΠK = K\ and then by Lemma 1, (7.1) and (7.2) for finite

rae,
oo oo

rπi(S - K) = ]Γm t ((ΛF n 5 ) - ^ ) = ^ 0 = 0,

oo oo

me(S - K) = ^ me((Mj Π 5) - iP) = £ m(Xj - Kj) - m(£ - if)

oo

since I - # = U (Lj - Kj). Likewise,

L-S=\J(Mjn(L- S)) = \J(Lj - (Mj Π S))

since M J Π l = JL 7, and then by Lemma 1, (7.1) and (7.2) for finite
m e,

oo oo

πii{L -S)^Σ mi(Lj - (Mj n S)) - ]Γ 0 = 0,

meίL - 5) = Σ ™e(LJ - (Mj nS)) = Σ m(LJ ~1<j) = m(L - κ)

Formulas (7.2) are established.
Concerning the last sentence of Lemma 6, one has that

rπi((M n S) - (M Π K)) = 0 and rm((M Π L) - (M Π S)) = 0,

which is the first line of (7.2) with M Π K, M Π S, M Π L in place
of A",5,£ respectively, since {MΠ S) - (MΠK) = MΠ(S- K) C
(S - K) and ro,-(S - if) = 0, and likewise ( M n ί ) - ( M n S ) =
M ( Ί ( ί - 5 ) c ( ί - 5 ) and m^L - S) = 0. By Lemma 1,

m, (M n 5) = m, (M Π AT) + m, ((Λf Π 5) - (M Π A'))

= rπi(M Π AT) +.0 = m(M Π
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and since (M Π L) = (M Π S)U (M Γi (L - S)), Lemma 2 gives

m(MΠL) = me(MnS)+mi(MΠ(L-S)) = me(MΠS)+Λ = me(M ΠS);

thus, (7.1) holds with MΠK, MΓ)S, MΠL in place of ϋf, 5, Z. Also,

(MnL)-(Mnί) = ((M
so that by Lemma 2,

m((M Π £) - (M Π

= me((M n i ) - ( M n S)) + ro,-((M Π 5 ) -

= me((M ΠL)-(MnS)) + 0 = me((M Π L) - (M Π S)), and

m((M Π L) - (M Π K))

= rot ((M n I ) - ( M n 5)) + me((M ΓΊ S) - (M Π

= 0 + me((M Π 5) - (Λf Π # ) ) = me((Λf Π 5 ) - ( M Π

So, the second line of (7.2) holds with M Π K, M Π 5, M Π L in place
of iί, 5, L; and also the first line of (7.2) holds. The last sentence of
Lemma 6 is therefore established, and Lemma 6 is proved. D

^Nowj:onsider disjoint sets SΊ, S2 contained in a set S where S C
M eM:

(7.3) Si Π S2 = 0, (Si US2)CS where S C M G ΛΪ.

By Theorem 4 and (3.19) and (3.20), there are the six non-negative
quantities αi,α2,<2t9 h,gχ,g2 satisfying (3.21) and (3.22). The con-
verse, as in Theorem 8, will now be discussed. Note that there is
the formula

(7.4) a1 + a2 + di < mt (S),

as well as a\ + a2 + d{ + h + g\ + g2 < me(S).
As in §5, consider the cardinal number of points in a set S for

which me(S) > 0, and let χ® denote the least cardinal number of
points in such sets S, among all sets S with me(S) > 0. This is
analogous to §5, in defining χ^v\ and note that χ ^ < χ^p\ The
measure space (X, M, m) will be said to satisfy the basis condition
for partially measurable sets if

(7.5) x® > χ<»
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where χ^ is defined in §5. And also suppose as in (5.2) the follow-
ing.

J Every set S with me(S) > 0 contains an

] infinity of points, besides the first sentence of (5.2).

Let υffl denote the smallest ordinal number of cardinality χ^\
There is the Theorem 9 below, analogous to Theorems 6 and 7.

THEOREM 9. Suppose that (X, A4,ra) is a measure space satis-
fying the basis condition (7.5) for partially measurable sets, and also
(7.6). Consider a set S in X with me(S) > 0 and S C M where
M G Λi, and let L be a set G Λ4 with

S C L and m(L) = rae(S), rrii(L — S) = 0,

as in Lemma 6. Then for any cardinal number < χ ® and > 2,
there are that number of mutually disjoint sets Zβ contained in S,
where β_ runs over all non-negative ordinal numbers of cardinality
< that cardinal number, such that

(7.7) S = U Zβ_ and mi(Zβ) = 0,
β

πii(L - Zβ) = 0 for all β.

Proof. Let C^ be a collection of sets Cη G M with m(Cη) > 0,

which form a measure basis for (X, ΛΊ, m ) , there being χ ^ number
of sets Cη in the collection C^\ Consider all those sets Cη in C ^ for
which me(Cη Π S) > 0; the totality of all such Cη forms a collection

C^\ where C^ is a part of C^J. Let χW denote the cardinal number
of sets Cη in C^\ so that χ(Λ < χ^\ and let υλJ) be the smallest

ordinal number of cardinality χ^\ The totality of all the Cη in C^
can be written as Cη , where a runs over all non-negative ordinal

—Ot

numbers < y£*\ and designate the Cη more simply as Ca. Thus,
_ ~a —

t h e collection C^ consists of the sets C« with

m e ( C α Π S) > 0, for all non-negative ordinals a < w}*';
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and the measure basis collection C^ consists of C^ and also all Cη

for which me(Cη Π S) = 0.

Now, proceed as in the proof of Theorem 6, with χ^ and wffl

(where υffl is the smallest ordinal number of cardinality χ ® ), and

χW and w_^\ replacing x^ and uλp\ and χW and υλ*\ respectively.

As in Lemma 5, but with C^Γ)S replacing C a , one proves that there

are points y^ and X(a,β) in 5, for all ordinals a < wfΉ and all

ordinals β_ < w^\ which are all different points, and

(7.8) i/«e(ζns),^^) G (ζns),

for all a < υP^ and all /? < w^K

The proof of this is the same as the proof of Lemma 5, with C^Π S

replacing C^ in the proof, noting that me(Ca_ΠS) > 0 so that Ca_C\S

contains at least χ ® points, and χ ® > χ(/> > χ ( ? ) by (7.5).

Proceeding as in the proof of Theorem 6 after the proof of Lemma 5,
define the set

(7.9) Zβ_ as in (5.9) for 0 < β_ < wi¥\

and ZQ — S — [J Zβ,

so that 5 = [JZβ as in (7.7). Let M be a set E M> with M C Zβ.
β

If m(M) > 0, there is a set C^ E C^) with ra(Cy > 0 and M D C^

so that Cη C Zp_C S. Since C , , n 5 = C^, Cη is a C a E C ^ , and
the same contradiction as in the proof of Theorem 6 shows that
ra(M) = 0. Thus, nii(Zβ) = 0 as in (7.7).

Concerning the set L—Zβ, let M be a set E -M with M C (L—Zβ).

If m(M) > 0, there is a set Cη E C(Λ with m ^ ) > 0 and M D C^

so that Cηc(L- Zβ). If rne(C7? Π S) > 0, then C^ is a C^ G C ^ ,

and C^ C~(X - Z^) with m(Ca) > 0. But for β_ > 0,s ( α,£) G C^

and x ( α,^) 0 (L - Zβ) by (7.8) and (7.9) and (5.9), so that C^ (jL

(L - Zβ)] and for β_ = 0,y« G C^ by (7.8) but y^ G Zo by (7.9)

and (5.9), so that C^ ζ£ (Z — -Zo). These contradictions show that

me(C ! L ΓΊ 5) = 0. Let Q be a set G 7W with C ^ Q D ^ Π 5)

and m(Q) = me(Cη n 5) = 0. Then mίC^ - Q) = mίC,,) > 0, and
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(Cη — Q) ΓΊ 5 = 0; and (Cη — Q) C Cη C (L — Zβ) C £, so that
(Cj - Q) C (// - 5). Since m t (L - 5) =~0, one has m ^ - Q) = 0.
This contradicts that 771(6̂  — Q) > 0. Therefore the assumption
that m(M) > 0 is false, and so m(M) = 0. This is for every
M EM with M c ( i - Zβ), so that m t (L - Zp) = 0. Thus, (7.7) is
established, and Theorem 9 is proved for a cardinal number = χ^\

Theorem 9 for a cardinal number < χ^ and > 2 is proved as
in the proof of Theorem 7, using L — Z i , L — Zo, and (L — Zo) in
place of X — Zi,X — Zo, and (X — Zo) respectively. The proof of
Theorem 9 is completed. D

Incidentally, Theorem 9 shows that even if rτii(S) = 0,5 can be
decomposed as in (7.7). For example, any particular Zβ in (7.7) can
itself be decomposed as in (7.7).

Now, there is Theorem 4, and analogous to Theorem 8 there is
the following theorem.

THEOREM 10. Suppose that (X,AA,m) is a partitionable mea-
sure space (this is defined in the first paragraph o/§^) satisfying the
basis condition (7.5) for partially measurable sets. Let S be a set for
which

me(S) > 0 and S C M for some M E M.

Then, given any six non-negative real numbers or oo ; namely

αi, α2, di, h, gx, g2 all > 0, satisfying

I a\ + a2 + d{ + h + g\ + 52 ^ ί72e(5), and

I a\ + a2 -f d{ < mΛS),

there is a pair of disjoint sets Sι,S2 contained in S such that

(7.11) S2)-g2, h(SuS2) = h.

And formulas (6.1) hold.

Proof. Concerning the set S one has Lemma 6, including the sets
K and L in Λ4 satisfying (7.1) and (7.2). Consider first the case
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that me(S) < oo, so that αi,α2,d;, Λ,#i,</2 are all finite by (7.10).
Select three mutually disjoint sets

{ Λi, A2, and A , mutually disjoint and C K

and G M, with

m(Aχ) = au m(A2) = a2, m ( A ) = <£.

This is possible by the second formula of (7.10) and Theorem 5 and
the paragraph preceding Lemma 4 in §4. Place

ί
Έ=K-(A1UA2UDi),

L = L-(A1UA2UDi), and

S = S-(A1UA2UDi),

so that Z c S c ϊ c M . By Lemma 1,

πii(S) = mi(S) — (aι+a2+d>i) = m(K) — (aι+a2-\-di) = m(K), and

m e (5) = m e(5) - (αx + α2 + dt ) = m(L) - (ax + a2 + di) = m ( l ) ,

and S - Z = 5 - K, L-S = L-S,<ιndL-Έ=L-K.

These state that the sets K and L are the K and L of Lemma 6
for the set 5, satisfying (7.1). And (7.2) is satisfied for S and K, L
because (7.2) followed from (7.1) in the proof of Lemma 6. Since

(7.14) m(L) = me(S) - (α2 + a2 + d{) > h + gx + g2,

by the first of (7.10), select three mutually disjoint sets

{ /f,G i ? and G 2, mutually disjoint

and C Γ and G M, with

m{H) = h, m(G1) = gu m(G2) = g2.

This is possible by (7.14), and Theorem 5 and the paragraph pre-
ceding Lemma 4 in §4.

Now^applyJΓheorem 9 for the set S. If me(S) > 0, then since
S C M C Λ4, every such S contains an uncountable infinity of
points. For, a point of S is contained in a set Mo C M with Mo G
Λ4 and m(M0) = 0, by Lemma 4. If there are only a countable
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number of points in S, then S would be contained in a countable
union of such sets, which is a set in ΛA of m-measure 0, so that
me(S) = 0, contrary to me(S) > 0. Thus, the condition (7.6) is
satisfied, and apply Theorem 9 for 3 sets. There are three mutually
disjoint sets Zi, Z2, and Z3 in 5, with S = Z\ U Z 2 U Z3, satisfying
(7.7) using S and L for these three sets. If rae(S) = 0, choose any
three mutually disjoint sets in S, possibly including 0, whose union
is S, for Zi,Z 2 ,Z3. Also, by Theorem 9 for 2 sets, there are two
disjoint sets Z and A — Z in A with m, (Z) = 0 and ra( A — Z) = 0.
Place

(7.16)

The sets Ai, A2,
that by Lemma 1,

(7.17)

SΊ = Ax u Z u (H n Zi) u (Gx n Zi),

S2 = A2 u (A - Z) u (H n Z2) u (G2 n z 2 ),

so that S1US2 = AiUA2U D{

u(H n (Zi u z2)) u (Gi u Zi) u (G2 n z 2 ).

/f, Gi, G2 are mutually disjoint sets G Λ^, so

= m(Ai) + 0 + 0 + 0 = m(A1),

= m(A2) + 0 + 0 + 0 = m(Λ2),

= m(Λi) + m(Λ2) + m(A) + 0

+0 + 0 = m(Ax) + m(A2) +

m, (5i)

m, (52)

U

since ^ Π (Zi U Z2) = (H f)β_- Z3)) C (5 - Z3) C ( I - Z3) and
m, (L — Z3) = 0 by (7.7) for 5, L. Concerning exterior measures for
( 7.16 ), one has by Lemma 2

rm(H - (H n Zi)) + m e ( # nZi) = m(^),

and H-{HCiZx) = ( ^ - Z x ) C ( I - Z x ) so that m i ^ - ^ n Z i ) ) = 0
because m, (L — Zi) = 0. Therefore, me(H Π Z\) = m(H). Likewise
for the other terms in applying me to (7.16), including Z and Z), — Z
contained in A ; and me(ίf Π (ZΎ U Z2)) = m(iί) since (H ΓΊ Zi) C
( # Π (Zi U Z2)) C H. There results, by Lemma 1:

(7.18)

me(5χ) = m(Ax) +

me(52) = m(A2) + m(A)

me(Si U 52) = m(Λχ) + m(A2)

m(G 2 ),
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Concerning the functional of the disjoint pair SΊ, £2 for the case
that me(S) < 00, the quantities αi,α2,^ή h,gι,g2 are finite by
(7.10). One has from (3.2), (7.17), and (7.12) that

(7.19) di(SuS2) = m{Dι) = dt.

Also, from (3.2), (7.17), (7.18) and (7.12), (7.15), one has the first
two lines of (7.20):

(7.20)

gi(SuS2) = (αx +a2 + di + h+g1+ g2) ~ ax

~(a2 + di + h + g2) = g\ = m(G1),

S2) = (αi +a2 + di + h+ gτ+ g2) - a2

-(a2 + di + h + gx) = g2 = m{G2),

and h(Sι,S2) = h = m{H).

The third line of (7.20) follows similarly from (3.2), (7.17), (7.18)
and (7.12), (7.15). Thus, the equations (7.11) and (6.1) are estab-
lished, and Theorem 10 is jproved for the case that rrie(S) < 00.

If me(S) = 00, then m(M) = 00 since S C M 6 M, and express
^ 00

M as in (2.9): M = \J Mj with m(Mj) < oo for all j and the Mj

3=1

oo

are mutually disjoint. Then S = M Π S — {J (M3 Π 5), and apply
3=1

what has been proved above to the set M3 Π S, using Lemma 6. By
Lemma 6 with Mj Π K, Mj Π 5, Mj Π L in place of K, S, L, one has
by (7.1) that

m(M3 ΠK) = rm{M3 (Ί S), m(M3 ΓΊ L) = me(Mj Π 5),

and by (7.2),

mi{{M3 Π S) - (M3 Π if)) = 0, rm((Mj Π L) - (M3 Π S)) = 0,

me((Mj ΠS)- (M3 Π K))

= me({M3 n L) - (MJ' n S)) = m((MJ' Π L) - (M j n if)).

Using formulas (7.19) and (7.20), there is obtained

di(M3 n Sχ,M3 n S2) = m(Mj n A),
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gi(Mj Π Si, Mj Π S2) = m(Mj Π G2),

g2(Mj Π Su Mj ΓΊ S2) = m(Mj n G2),

' n S l 5 ΛP Π S2) = m(Mj Π # ) .
. 00

By Theorem 1, noting that [X - \J M3) Π (5χ U S2) = 0 since
ii

(7.21)

n A) =

Π

ΠG2) = m(G2) = g2,
3=1
oo

since all the sets involved are contained in M = [J Mj using (T.12)
3=1

and (7.15). Also, rrii(Si) = αx, rrii(S2) = «2 from (7.17). Theorem 10
is proved. D

Theorem 10 is analogous to Theorem 8, but for two disjoint sets
contained in any set 5 C M G M. (Note that in Theorems 10
and 8, one could also have me(S) = 0 or m(M) = 0 by selecting the
empty set 0 for both 5χ and 52.)

Incidentally, the proof of Theorem 10 above also gives a proof
of Theorem 8. Theorem 8 is the case jof Theorem 10 when S =
M G ΛA. Then rrii(S) = me(S) = m(M), and the second line of
(7.10)Js a consequence of the first line of (7.10), and also K = 5 =
L = M in the proof of Theorem 10. (Note that if one makes the
extension of (X, Λ4, m) to the measure space (X, Λ4*, m*) as in §6,
then the χ® for (X, ./Vί*, m*) may possibly be smaller than the χ ^
for (X,M,m).)

Consider Lebesgue or Borel measure on the real number line or in
Euclidean n-space as the measure space. Condition (7.6) is satisfied,
and if one assumes the continuum hypothesis of set theory, that
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2*° = χu then χ ® = χtf> = 2Xo and (7.5) is satisfied. The measure
space is also partitionable, so that the results of Theorems 9 and 10
hold for Lebesgue or Borel measure, if one assumes the continuum
hypothesis of set theory.

If one does not assume the continuum hypothesis, there is an
extension of Lebesgue measure, or it is Lebesgue measure itself, for
which χ ® = χW = 2X 0. Namely, consider the collection Λ4 of all
sets of the form (L U Rι) — R2 where L is Lebesgue measurable
and i?i, i?2 are both sets of fewer than a continuum number 2Xo

of points, and place rh((L U Rι) — R2) = m(L). One can show
that Λ4 is a countable ring, and that rh is uniquely defined in ΛΛ
and is countably additive, so that a measure space is formed. A
set R with fewer than 2Xo points has πii(R) = 0, and I believe
it is not known what me(R) might be if one does not assume the
continuum hypothesis; but R G Λi and rh(R) = 0 in the above
measure space. For this measure space χ® — 2Xo = χW and the
results of Theorems 9 andj.0 hold. Also, it is reasonable to consider
the measure space (X, ΛΊ,ra) since for a set R with fewer than
a continuum number 2Xo of points, on the real number line or in
Euclidean space, there are a continuum number of mutually disjoint
translations of R. It is reasonable to consider R to be of measure 0.
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