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DEHN FILLING HYPERBOLIC 3-MANIFOLDS

COLIN ADAMS

Define a complete family of parent (ancestor) manifolds
to be a set of compact 3-manifolds such that every closed
orient able 3-manifold can be obtained by one (or more)
Dehn fillings of the manifolds in the family. In 1983,
R. Myers proved that the set of 1-cusped hyperbolic 3-
manifolds is a complete family of parent manifolds. We
prove this result in a new way and then go on to prove:

THEOREM 1.1. (a) Let VQ be any positive real number. Then the
set of 1-cusped hyperbolic S-manifolds of volume greater than VQ
is a complete family of parent manifolds.
(b) Let V\ be any positive real number. Then the set of 1-cusped
hyperbolic S-manifolds of cusp volume greater than V\ is a com-
plete family of parent manifolds.
(c) The set of 2-cusped hyperbolic 3-manifolds containing embedded
totally geodesic surfaces is a complete family of ancestor {actually
grandparent) manifolds.
(d) For any positive integer N, the set of hyperbolic 3-manifolds,
each of which shares its volume with N or more other hyperbolic
3-manifolds, is a complete family of ancestor manifolds.
As a corollary to Theorem l{b), we prove that there exists a com-
plete family of parent manifolds such that at most one Dehn filling
on each manifold in the family yields a manifold of finite funda-
mental group.

1. Introduction. A Dehn filling of a 3-manifold with a torus

boundary component is the procedure of gluing a solid torus to the

3-manifold along the torus boundary. If a manifold M is obtained

from a manifold Mf by a single Dehn filling, we will call Mf a parent

of M. If M is obtained from M1 by some number of Dehn fillings, we

will call M' an ancestor of M. We will define a set of 3-manifolds to
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be a complete family of parent (ancestor) manifolds if every closed
orientable 3-manifold has a parent (ancestor) in the set.

In [14] and [21], Lickorish and Wallace independently proved that
the set of link exteriors in the 3-sphere is a complete family of ances-
tor manifolds. (A link exterior is the complement of an open regular
neighborhood of the link.) It follows that if M is any compact ori-
entable 3-manifold without boundary, the set of all link exteriors in
M is a complete family of ancestor manifolds.

In [20] (see also [2]) the set of hyperbolic link exteriors in S3 was
shown to be a complete family of ancestor manifolds. Alexander [3]
proved that compact orientable surface bundles over S1 with torus
boundary components form a complete family of ancestor manifolds.
Myers [15] and Gonzalez-Acuna [7] showed that in fact compact
orientable surface bundles over S1 with a single torus boundary
component form a complete family of parent manifolds.

In 1983, Myers [16] proved that the set of 1-cusped orientable
hyperbolic 3-manifolds is a complete family of parent manifolds.
Note that this is equivalent to showing that any closed orientable
manifold contains a knot with hyperbolic complement. (Recently,
Myers has extended his result to also hold for closed nonorientable
3-manifolds, see [17]). Myer's proof is similar in spirit to the origi-
nal proof of Bing's Theorem. Bing's Theorem states that if M is a
closed orientable 3-manifold and every simple closed curve in M is
contained in a 3-ball in M, then M is homeomorphic to the 3-sphere
(cf. [4] or [18]). In both proofs, the dual 1-skeleton of a triangu-
lation of the manifold is approximated by a simple closed curve,
where the vertices are replaced by appropriately chosen tangles.

In this paper, we will reprove Myer's result from a completely
different point of view. This point of view will also allow us to
prove the following:

THEOREM 1.1.

(a) Let Vo be any positive real number. Then the set of 1-cusped
hyperbolic 3-manifolds of volume greater than VQ is a complete
family of parent manifolds.

(b) The Vι be any positive real number. Then the set of 1-cusped
hyperbolic 3-manifolds of cusp volume greater than V\ is a
complete family of parent manifolds.
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(c) The set of 2-cusped hyperbolic 3-manifolds containing embed-
ded totally geodesic surfaces is a complete family of ancestor
(actually grandparent) manifolds.

(d) For any positive integer N, the set of hyperbolic 3-manifolds,
each of which shares its volume with N or more other hyper-
bolic 3-manifolds, is a complete family of ancestor manifolds.

In order to prove these results, we will first prove that for any
joint pair of nontrivial boundary curves φ\ and Φ2 in a compact ori-
entable 3-manifold M with finite volume hyperbolic interior, there

o

exists a knot g in M such that M — N(g) has hyperbolic interior
and contains an essential pair of pants with φ\ and Φ2 as two bound-
ary components. This will be the contents of §2. The results listed
above will then follow from results in [1] and [2].

In addition to proving these results in §3, we include several corol-
laries. In particular, we obtain a topological corollary to Theorem
Lib). There is a complete family of parent manifolds such that at
most one Dehn filling on each manifold yields a closed manifold of
finite fundamental group. We also see that any closed 3-manifold is
obtained from Dehn filling a one-cusped hyperbolic 3-manifold such
that the Dehn filling is along the shortest curve in a cusp boundary.

All hyperbolic 3-manifolds under consideration will be orientable
finite volume noncompact complete hyperbolic 3-manifolds. This
implies that each such is the interior of a compact 3-manifold with
nonempty boundary, all components of which are tori. (See [19]).
The cusp volume of a hyperbolic 3-manifold with a single cusp is
the largest possible volume that can be put in an embedded cusp.
It corresponds to the volume of the cusp obtained as the projection
of a set of horoballs in ϋf3, with disjoint interiors but with points of
tangency.

A Dehn surgery with surgery coefficients (p, q) along a link com-
ponent L will mean the removal of a regular neighborhood of the
link and then a Dehn filling of the result along the torus boundary
introduced, such that a meridian of the solid torus is glued to a
simple closed curve in the homotopy class [pm + ql] where m i s a
meridian and / is a longitude.

Definitions of incompressible, boundary incompressible, irredu-
cible, boundary irreducible and Haken 3-manifold can be found in
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[10] and [13]. Thanks to Joel Hass, Alan Reid and the referee for
conversations, comments and suggestions.

2 Essential Arcs. Let M be a compact 3-manifold with nonempty
boundary. A surface properly embedded in M is said to be essential
if it is incompressible and boundary-incompressible. An arc α that
is properly embedded in M is said to be essential in M if it cannot
be homotoped into dM. We will call a compact planar surface with
three boundary components a pair of pants. If an arc a is properly
embedded in a pair of pants P and a is not isotopic in P into dP,
then we say that a is essential in P. We will utilize the following
theorem.

THEOREM 2.1. [2, Theorem 3Λ]Let M be a compact orientable
o

3-manifold with non-empty boundary such that M is a finite volume
o

hyperbolic 3-manifold. Let K be a knot in M such that
(1) There does not exist S1xS1xI CM such that K C Sι x S1 X /

where S1 x S1 x {0} C dM.
(2) There exists an essential pair of pants P properly embedded

o

in M — N(K) such that exactly one component β of dP is
contained in dN(K).

o

(3) K is not a torus knot in a solid torus V C M such that dV is
o

incompressible in M ~-V.
o

(4) There does not exist an essential torus in Mf = M — N(K)
which bounds a knot exterior in M1.

o

Then Mf = M — N(K) has a hyperbolic interior.

We will use this theorem to prove the following.

THEOREM 2.2. Let M be a compact 3-manifold with boundary
o

such that M is a finite volume hyperbolic 3-manifold. Let a be an arc
that is properly embedded in M. Let φ\ and Φ2 be non-intersecting
nontrivial simple closed curves in dM such that φ\ begins and ends
at one endpoint of a and Φ2 begins and ends at the other endpoint
of a. Suppose also that:
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(i) a is essential in M.
o

(ii) There does not exist a knot exterior in M — N(a) such that
its boundary torus is incompressible.

Then there exists a simple closed curve g in M such that M —
o

N(g) is a finite volume hyperbolic 3-manifold and a is essential in
o

an essential pair of pants in M — N(g) with two of its boundary
components being φ\ and <f>2.

Proof We will begin by demonstrating that there is a choice of
simple closed curve μ in M that will allow the existence of an essen-

o

tial pair of pants P in M — N(μ) such that P contains α essentially
and such that φ\ and φ2 are two of its boundary components. Note
that in the case both of the endpoints of a begin and end on the
same torus boundary component of M, φ\ and φi will be parallel
curves on this torus.

Let 5 be the boundary of a regular neighborhood of dM U α.
Define a simple closed curve μ in S that is parallel to φ\ and φ2 when
in d(N(dM)) and that is two parallel copies of a when in d(N(a)).
Note that by allowing the two strands of μ to twist around a as we
move along <9(iV(α)), we actually have an infinite family of possible
choices for μ.

Note also that for any choice of //, there is a pair of pants P
o

properly embedded in M — N(μ) with boundary components φ\, Φ2
and a simple closed curve σ in dN(μ). We can and do choose P
to contain a. We will first prove that P is an essential surface in
M-N(μ).

If P compresses, one of the three boundary components of P
must be trivial in M. Since dM is incompressible, it must be that
σ is trivial in M. However, we can then glue a disk onto σ in
order to obtain from P an annulus A in M. Since the annulus
is incompressible in M, it must be boundary compressible in M.
Since M is irreducible, A must in fact be boundary-parallel in M.
However, A contains α, contradicting the fact that a cannot be
homotoped into dM. Thus, P is incompressible.

Suppose now that P is boundary compressible. This means that
there exists an arc j properly embedded in P such that it does not
cut a disk from P and such that it forms half of the boundary of
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a disk D in M, the other half being in dM. Since a cannot be
homotoped into dM, j cannot run from φ\ to ^2 Nor can j begin
and end on a single one of these boundary components as then we
would be able to form an annulus in M containing c*. The annulus
would again be boundary-parallel, contradicting the fact a cannot
be homotoped into the boundary.

The only remaining possibility is that j begins and ends on σ,
o

separating φ\ from <j>2. Let k be the complement of j in dD. Since
k will only intersect one component of N(P) — P, k intersects only
one component of N(σ) — σ on d(N(μ)). Hence, k can be isotoped
into σ in d(N(μ)). However, we can then form a disk in M with
boundary one of φ\ or ^2, a, contradiction to the fact M must be
boundary-irreducible.

o

Thus, P is an essential pair of pants in M — N(μ) that contains
o

a essentially. However, it is not necessarily the case that M — N(μ)
has hyperbolic interior. We may have to exchange μ for a different
curve in M. Theorem 2.1 will direct us toward an appropriate curve.

If we replace K in Theorem 2.1 with our curve μ, we have already
shown that condition (b) of the hypotheses is satisfied. However,
condition (a) may not be satisfied. We will show that by choos-
ing a μ that twists appropriately about α, we can make sure that
condition (a) is satisfied.

Suppose that our first choice of μ does not satisfy condition (a),
that is to say that μ lies in an S1 x S1 x /, where S1 x S1 x {0}
is a boundary component of M. Utilizing the hyperbolic structure
on the interior of M, we realize the fundamental group of M as a
discrete group of isometries on hyperbolic 3-space H3. Since μ is
homotopic into 5M, it lifts to a parabolic isometry of H3. However,
since each of φ\ and Φ2 lifts to parabolic isometries of H3', we have
the parabolic isometry corresponding to μ that is the product of the
two parabolic isometries corresponding to φ\ and φ^. In particular,
this implies that φ\ and Φ2 generate a Fuchsian subgroup of the fun-
damental group, that Fuchsian subgroup corresponding to a totally
geodesic possibly immersed thrice-punctured sphere (see [1]).

However, since the isometry corresponding to φ\ o φ^λ in the
fundamental group of a thrice-punctured sphere is never parabolic,
but rather is a non-rotating loxodromic isometry, any loop homo-
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topic to φι o φΐ1 cannot be contained in an S1 x 5 1 x / such that
S1 x S1 x {0} C dM. Taking any new choice for μ that twists
an odd number of half-twists about a relative to the current μ will
insure that this is the case.

It may be the case that μ does not satisfy condition (c) of Theorem
2.1. However, if μ is a torus knot in a solid torus V such that dV

o

is incompressible in M - V, we will replace μ by the simple closed
curve g that is the core curve of the solid torus. We will take N(g)
to be the regular neighborhood of g such that μ is a (p, q)-cmve
slightly inside dV, where q > 1. We will examine the intersection
curves in P Π dV.

Suppose that there exists an intersection curve on P concentric
with φi, where iI = 1 or 2. Then φi is one boundary component of
an annulus A in M, such that the other boundary is a nontrivial
(r, θ)-curve φ on dV. The curve φ cannot be a meridian on dV as if
it were, φi would compress in M. If R is the boundary component
of dM that contains ^ ,then V U N(A) U N(R) is a solid torus such
that the regular neighborhood of an (r, θ)-curve inside it has been
removed. Let Y be the outer boundary of this solid torus. If s — 1,
then V U N(A) U N(R) is homeomorphic to S1 x S1 x /. Since it
contains μ, this would be a contradiction.

If s > 2, then Y is both incompressible and not boundary-parallel
to the V U N(A) U N(R) side. If Y compresses to the other side, it
must bound a solid torus in M to that side. Let (u, υ) be the com-
pressing curve on Y. Assuming that (r, s) φ (u, r) , we easily obtain
a Seifert fibering of M (or an essential annulus), a contradiction. If
(r, s) = {u,v), then φi compresses in M, again a contradiction.

If Y is incompressible to the other side, it must be boundary-
parallel to this side. Hence, M is homeomorphic to VuN(A)UN(R).
However, M would then again be Seifert fibered, a contradiction.

Thus, all intersection curves on P must be concentric with σ.
Since σ lies in a distinct component of M — dV from φ\ and <̂>2,
there must be an odd number of intersection curves concentric with
σ. We will replace P by the pair of pants within P bounded by φ\,
φ2 and the intersection curve on P furthest from σ. This new pair
of pants, which we will continue to denote by P, will be properly

o o

embedded in M — V. If g is the core curve of V, we think of M — V
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o

as M — N(g). It is not hard to check that P remains essential in
o

M — N(g), and conditions (a) and (b) are still satisfied.
We also need to check that condition (c) is now satisfied, namely

that g itself cannot be a (w, ϋ)-curve on a solid torus W such that
o

dW is incompressible in M - W. If g were a (u, t;)-curve on a
solid torus, then σ would be a nontrivial cable on a torus knot.
Hence, we could isotope σ so that it was a nontrivial cable on a
torus knot inside W. We can again prove that there cannot be an
intersection curve concentric with φι or φ2 on P. Thus there must
be an intersection curve concentric with σ on P. But then σ is
isotopic to dW in W, contradicting the fact it is a nontrivial cable
on a torus knot.

Finally, we check that Condition (d) holds, namely that there does
o

not exist an essential torus T in M' = M — N(g) which bounds a
knot exterior Q in M'. If this were the case, then T would either be
compressible or boundary-parallel in M. By condition (a) above,
T cannot be boundary-parallel. Hence, T compresses in M. Let
D be any compressing disk. Surgering T along D yields a 2-sphere
5. By irreducibility of M, S must bound a 3-ball to one side. If
the 3-ball does not contain D, then T bounds a solid torus in M.
However, since T must bound a knot exterior in M', there would be
no boundary components of M to either side of Γ, a contradiction.
Hence the 3-ball contains D. In fact, the 3-ball is obtained by gluing
a 2-handle that is a neighborhood of D to the knot exterior Q.

We will try to eliminate all intersection curves between T and P.
Trivial intersection curves on T and P are easily removed. We will
assume that we have isotoped T and P to minimize the number of
intersection curves.

Suppose first that there is an intersection curve concentric with φ\
or φ<ι on P. Then there exists an annulus A on P with one boundary
component a nontrivial curve on T and the other boundary com-
ponent a nontrivial curve on dM. Surgering T along A yields an
annulus properly embedded in M that must be boundary-parallel.
Hence T must be boundary-parallel in M. However, g then lies in
an S1 x Sι x /, one boundary component of which is T and the
other boundary component of which is in dM, contradicting condi-
tion (a). Hence, neither φ\ nor Φ2 can have concentric intersection
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curves on P.
Thus, all the intersection curves on P are concentric with σ. Sup-

pose that there are intersection curves. Choose two adjacent curves
on T. On P, replace the annulus that they bound with the annulus
on T that they bound. The resultant pair of pants intersects T in
fewer curves and still contains a. Repeating this process results in a
pair of pants P' that has the same boundary as P, does not intersect
T and contains a.

The pair of pants P must intersect the compressing disk D since
g must intersect D in order that T be incompressible in M'. We
can remove all simple closed curves in P Π D. Suppose there is
an arc in the intersection. The arc must run to and from σ on P.
Suppose that the arc can be isotoped into σ in P. Then we can
isotope P to intersect D fewer times. Repeating this process, we
can eliminate all intersection arcs on P which are isotopic into σ.
Since P must intersect D, there must be at least one intersection
arc on P which is not isotopic into σ. This intersection arc will
intersect a. Hence a intersects D. Therefore, T is incompressible

o

in M — iV(α), contradicting our hypothesis.
Thus, conditions (a), (b), (c) and (d) of the hypotheses of Theo-

rem 2.1 are satisfied when we take the curve g to be the knot K in
o

M. Therefore, M — N(g) does have a hyperbolic structure, as we
wished to show. D

It is not difficult to come up with examples where the curve that
we remove in order to introduce an appropriate pair of pants must
be modified in order to satisfy conditions (a) and (c) as described
in the proof of the above theorem.

o

Let M be a compact 3-manifold such that M is a noncompact
finite volume hyperbolic 3-manifold. Let C be a set of disjoint

o o o

cusps in M. Then M — C is homeomorphic to M. Therefore, if p
o

is the projection map from H3 to Λf, then we can also think of p as
o

a map from H3 — p~ι(C) onto M.

o

LEMMA 2.3. Let M be a compact 3-manifold such that M is
a noncompact finite volume hyperbolic 3-manifold. Choose a set

o

of cusps for M which do not intersect. Lift to hyperbolic 3-space.
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Choose a particular pair of horoballs in the cover of the cusps. Take
the arc af which is the shortest path between them. If it projects to

o

a simple arc a in M, then a is essential in M and M — N(a) does
not contain a knot exterior with incompressible boundary.

Proof. If a were homotopic to an arc β in c?M, then both a and
β could be lifted to a pair of arcs in H3 which begin and end at the
same pair of points. However, β will lift to an arc which stays in the
same horosphere, while a1 was chosen to begin and end on distinct
horospheres.

o

Suppose that M — N(a) contained a knot exterior R with incom-
o

pressible boundary. We can isotope R to avoid the cusps in M.
o

Since M is hyperbolic, the boundary torus T of the knot exterior
must either be boundary-parallel or compressible in M. If T were
boundary-parallel, then a would be homotopic into Λf, contradict-
ing the above paragraph.

We can therefore assume that T compresses along a disk D in
o

M — R. We can isotope D to miss the cusps. Since it is bounded
by a sphere and it is contained in a cusped hyperbolic 3-manifold,
the manifold R U N(D) must be a 3-ball B in M. The 3-ball B
lifts to a disjoint set of 3-balls in H3. Let B1 be a particular one
of these 3-balls in if3. Then B' must contain a homeomorphic
copy of i?, call it Rf. The boundary of Rf must be incompressible
in H3 - {p~λ{C) U p'1(N(a))). Note that B is a finite volume
submanifold of M and therefore B' is also finite volume. Hence, we

o

can choose a 3-ball E in H3—p~ι(C) that contains B' and such that
any arc in p~1(α) that is intersected by E is isotopic into dE in E.

o

Then the fundamental group of E — p~1(N(a)) is a free group on a
finite number of generators. R1 is a knot exterior contained within it
with incompressible boundary. Hence the fundamental group of R'
must be a subgroup of a free group and hence be a free group itself by
the Nielsen-Schreier Subgroup Theorem. However nontrivial knot
exterior groups are never free, a contradiction. D

THEOREM 2.4. Let M be compact orientable 3-manifold with
interior a noncompact finite volume hyperbolic 3-manifold. Choose
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any two nontrivial disjoint simple closed curves φ\ and φ2 on its
o '

boundary. Then M has a parent manifold M1 such that M is hy-
o '

perbolic and M contains a totally geodesic thrice-punctured sphere,
two punctures of which correspond to φ\ and φ2.

Proof. Let C\ and C2 be the two cusps corresponding to the torus
boundary components in which φ\ and φ2 lie. It may be the case
that C\ and C2 are the same cusp. Lift them to the corresponding
set of disjoint horospheres in H3. Choose a geodesic arc that has the
shortest length among all geodesic arcs that pass from the boundary
of a horoball covering C\ to the boundary of a horoball covering C2.
This arc must project to a simple arc in M. We can apply Theorem
2.2 and Lemma 2.3, to obtain a simple closed curve g such that the

o o

interior of M—N(g) is hyperbolic and M—N(g) contains an essential
pair of pants with two of its boundary components corresponding

o

to φ2 and φ2. The interior of M — N(g) then contains an essential
thrice-punctured sphere, which, by the results of [1], must be totally
geodesic. D

From the algebraic point of view, we have:

COROLLARY 2.5. Every torsion free finite volume noncompact
Kleinian group can be obtained by adding one relator to a non-
elementary Kleinian group that contains a Fuchsian subgroup.

3. Proofs. We now reprove Myer's result from [16] utilizing our
approach.

THEOREM 3.1. Every closed orientable 3-manifold contains a
knot with hyperbolic complement.

Proof. In the proof of Theorem B of [20] (or see [11] and remove
a neighborhood of the branching set), Thurston proved that every
closed 3-manifold can be obtained by surgery on a finite volume hy-
perbolic 3-manifold. In fact, he proved that every closed 3-manifold
can be obtained by surgery on a hyperbolic link in S3. (An alter-
native proof of this fact appears in [2, p. 126].)
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Therefore, if Mo is a given closed 3-manifold, we can choose a
3-manifold Mi with hyperbolic interior from which MQ can be ob-
tained by Dehn filling. Suppose that Mi has n boundary compo-
nents, where n > 1. We will prove that Mo can be obtained by
Dehn filling a 3-manifold with only n — 1 boundary components and
hyperbolic interior.

Choose any two boundary components T\ and T2 of Mi. Lemma
2.3 allows us to choose an essential arc a in Mi running from T\
to T2 that satisfies the hypotheses of Theorem 2.2. Note that by
choosing a as the shortest arc running between the two cusps, we
are assured that it is a simple arc.

Choose φι and φ<ι parallel to the surgery curves on Tι and T2

respectively. Form the curve g as in the proof of Theorem 2.2 from
α, φι and φ2. Remove the curve g from Mi to obtain a hyperbolic
parental manifold M2 of Mi containing a pair of pants P with two
boundary components φι and φ2.

o o

In the hyperbolic structure on M2, P can be isotoped to a totally
geodesic thrice-punctured sphere (cf. [1]). Cut the manifold M 2

open along JP, turn one copy of P a half-twist, switching the φι
and φ2 boundary components, and reglue, noting that the resulting

o

manifold M3 has one fewer cusp. By Theorem 4.1 of [1], M3 is
o

hyperbolic with the same volume as M 2 .
Suppose that the boundary component of P that lies in dN(g) is

a (u,ϋ)-curve on N(g). Define MZ(a,b) to be the manifold obtained
by doing an (α, 6)-surgery on the boundary component of M3 corre-
sponding to g. We will choose (α, b) so that the (α, δ)-curve crosses
the (tx, v)'C\iTve exactly once. We will show that Mo can then be
obtained by Dehn filling the manifold M3(α?6).

We can think of N(g) as a solid torus in Mo Since two of the
boundary components of P are parallel to surgery curves that yield
Mo, P can be capped off in Mo with a pair of disks Dι and D2 to
yield a disk D in Mo with boundary in dN(g). Let B be the 3-ball
in Mo given by N(D)UN(g). We will alter the surgery instructions
that yield Mo only within the 3-ball B. Starting with Mi, we will do
the prescribed Dehn fillings on all the boundary components except
for 7\ and Γ2. Each of Γi and T2 bound solid tori in Mo which
each cut through B once as unknotted 1-handles. Glue N(Dι) and
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to the boundary of this 3-manifold, where these two regular
neighborhoods are not as wide as N(D). Call the resulting manifold
Q. If we glued solid balls to the two spherical boundaries of ζ),
the result would be MQ. Instead, take two disjoint arcs properly
embedded in the manifold, such that they are contained in B and
properly embedded in Q and such that they criss cross in B as in
Figure 1 b). Define Q' to be the manifold obtained by removing a
regular neighborhood of the union of these two arcs from Q.

Then Dehn filling this single torus boundary in Q1 with a surgery
curve that is meridianal on one of the two arcs will yield Mo. The
same holds true if we twist the two arcs as in Figure lc).

However, the resulting manifold Q1 is homeomorphic to M3(α^),
where (α, b) is determined by the number of additional full twists
in the two arcs and the fact this curve crosses the (u, t>)-curve once.
Note that we can find arbitrarily large values of a and 6 that are
appropriate, as if an (αo, 6o)-curve intersects the (u, v)-curve once,
so does an (α0 + nu, b0 + nϋ)-curve for any integer n. For high

/ B

a)

b)

c)

FIGURE 1
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enough values of (α,δ), M3(α^) will be hyperbolic by Chapter 5 of
[19]. Hence, this demonstrates that if Mo comes from Dehn filling a
finite volume hyperbolic 3-manifold with n cusps, where n > 2, we
can in fact find a hyperbolic manifold with n — 1 cusps from which
it comes by Dehn filling. Iterating the process, we find a hyperbolic
manifold with one cusp from which Mo comes by a single Dehn
filling. This is equivalent to showing that there exists a knot in Mo
with hyperbolic complement, the knot corresponding to the core
curve of the solid torus that is glued on in the process of performing
the Dehn filling. D

In order to prove Theorem 1.1 (a), we will need the next lemma.

LEMMA 3.2. A link Lm in S3 with a projection as in Figure
2 has a hyperbolic complement with volume 2(ra — 1)(3.6638...) for
m > 2, where m is the number of components bounding twice-punc-
tured disks.

Proof Such a link complement can be obtained by cutting open
2(m — 1) Whitehead link complements along embedded twice-punc-
tured disks and gluing the results together in the appropriate way
along the twice-punctured disks as in Figure 3. Repeating the pro-
cess depicted there, and then cutting open along a single twice-
punctured disk and twisting a half-twist before regluing yields the
link depicted in Figure 2. D

FIGURE 2
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w,

FIGURE 3

Corollaries 5.1 and 5.2 of [1] imply that the result is hyperbolic
with volume 2(772 — 1) times the volume of the Whitehead link, where
the volume of the Whitehead link is given approximately by 3.6638.

We will now prove Theorem 1.1.

THEOREM 1.1 (a). Let Vo be any positive real number. Then
the set of 1-cusped hyperbolic 3-manifolds of volume greater than VQ
is a complete family of parent manifolds.

Proof of 1.1 (a). Given a closed orientable 3-manifold Mo, Theorem
3.1 allows us to find a 3-manifold M\ from which Mo comes by
a single Dehn filling, such that the interior of M\ is a 1-cusped
hyperbolic 3-manifold. We can realize M\ as a submanifold of Mo

o

given by Mo — N(K), where K is a knot in Mo. As in Lemma 2.3,
we can find a simple essential arc a in M\. Letting φ\ and φ2 be
parallel to the surgery curve on Mx, we can apply Theorem 2.4 to
obtain a manifold M2 from which Mo comes by two Dehn fillings.
The interior of M2 is a 2-cusped hyperbolic 3-manifold containing a
thrice-punctured sphere.

Let P be the pair of pants in M2 bounded by φ\, Φ2 and a curve in
dN(g). If we perform the Dehn filling on the boundary component
of Mi, P can be capped off along the two boundary components φι
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and Φ2 to obtain a disk D in Mo. Let B b e a regular neighborhood
of D U N(g) in Mo. Then B is a ball in Mo.

We note that we can modify the surgery instructions for Mo

within this ball as follows. Currently, K intersects B in two prop-
erly embedded unknotted arcs. We could replace K within B by a
rational tangle. If K' were the resultant new knot within Mo, then

o

Mo would come from Dehn filling Mo — N(K') such that the surgery
curve were still a meridian on Kι.

By Theorem 4.5 of [1] and Lemma 3.2, we can cut 5 3 — Lm open
along one of the twice-punctured disks, cut M2 open along P and
glue the two manifolds together along these surfaces. The resulting
manifold M3 will have volume equal to

vol(M2) + 2(ra - 1)(3.6638...).

For each of the trivial loops in L m , we can do a (l,p) surgery for
p very high in order to ensure that the resulting manifold M4 is
hyperbolic and has volume arbitrarily close to M3 (cf. Chapters 5
and 6 of [19]). By choosing m large enough, we can be assured that
M 4 has volume as large as we would like. However, M4 is given
by Mo — N(Kf) where K1 is identical to K outside of B and has a
rational tangle inside B. Hence Mo can be obtained by Dehn filling
M4, where the interior of M4 is a hyperbolic 3-manifold of one cusp
with arbitrarily high volume. D

Note that the above argument did not rely on the fact that Mo
was a closed manifold. Hence we have the following corollary.

COROLLARY 3.3. Given a finite volume hyperbolic 3-manifold
M, there is no bound on | vol(M') — vol(M)| ; where Mf is a hyper-
bolic parent of M.

THEOREM 1.1 (b). LetVi be any positive real number. Then the
set of 1-cusped hyperbolic 3-manifolds of cusp volume greater than
V\ is a complete family of parent manifolds.

Proof of 1.1 (b). Let Mo be an arbitrary closed hyperbolic 3-manifold.
We repeat the construction in the proof of Theorem 1.1 (a), and see
what we can say about the cusp volume of the resulting manifold.
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Choose the cusp C\ corresponding to K in M2 to be a maximal
cusp. Let C2 be the remaining cusp in M2. Lifting to hyperbolic
space, choose a geodesic plane P that covers the thrice-punctured
sphere P in M2. If there exist horoballs covering CΊ or C2 that
are not centered on the boundary of P but that intersect P, shrink
all of the horoballs covering either cusp equivariantly until no such
intersections occur. Let C\ and C2 now denote the resulting cusps
in M2.

Let P ' be a particular choice of one of the totally geodesic twice-
punctured disks in S3 — Lm. Let C2 be the cusp that corresponds
to its boundary and let C[ be the cusp that punctures it twice.
Let P' be a geodesic plane in H3 that covers P'. Since S3 — Lm is
constructed from a set of copies of the Whitehead link complement,
the only horoballs covering cusps of S3 — Lm that intersect P1 are
those horoballs centered on the boundary of P' .

Cutting M2 open along P, cutting 5 3 — Lm open along P ' and
then gluing each copy of P to a copy of P' so that the cusps C\ and
C[ are matched, and the cusps C2 and C2 are matched, we obtain
the manifold M3. Let C" and C% represent the corresponding cusps
in M3.

We would like to obtain a valid horoball covering for C". Since
we have already eliminated the horoballs that poke through the
corresponding geodesic plane, we need only fit together the horoballs
centered on the boundary of the geodesic planes. However, any two
horoballs covering the cusp C\ in M2 with centers on the boundary
of P are identified by the subgroup of isometries fixing P. Similarly,
a pair of horoballs covering C[ in 5 3 — Lm with centers on the
boundary of P ' are identified by the subgroup of isometries fixing
P'. When we glue the two manifolds together along the twice-punc-
tured disks, we identify the subgroup of isometries fixing P with the
subgroup of isometries fixing P'. Hence, it is enough to make sure
that one horoball covering C\ with center on the boundary of P is
the same size as the horoball that it is identified to that covers C[
and that has center on the boundary of P'. By either shrinking the
horoballs covering Cλ in M2 or shrinking the horoballs in S3 — Lm

covering C{, we can be assured that the horoballs will fit together.
We obtain a cusp of some finite volume in M3. It is not necessarily
a maximal cusp, but its volume does give a lower bound to the
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maximal cusp volume of this cusp in M3.
Once the cusp in S3 — Lm has been shrunk to the appropriate size

for gluing to the cusp in M2, no additional shrinkage of the cusp is
necessary as m increases. Each additional copy of a Whitehead link
complement that has been cut open along a twice-punctured disk
and that we glue in contributes the same fixed amount to this par-
ticular cusp. Hence, the volume in this cusp increases linearly with
m. In particular, as m approaches 00, the volume in the maximal
cusp approaches 00.

Now, we repeat the end of the construction in the proof of Theo-
rem 1.1 (a). Performing high enough (l,p)-Dehn fillings on all the
cusps except for C" in M3 yields a hyperbolic manifold M4 such
that the maximal cusp volume of its one cusp is arbitrarily close to
the maximal cusp volume of C" in M3. This follows from the fact
that the hyperbolic structures on a sequence of manifolds obtained
by Dehn filling cusps of a hyperbolic 3-manifold geometrically con-
verge to the hyperbolic structure on the surgered manifold. (See
[19] or [6].) Thus, M4 is a one-cusped hyperbolic 3-manifold of
arbitrarily high cusp volume from which MQ can be obtained by a
single Dehn filling. D

We have the following topological corollary.

COROLLARY 3.4. There exists a complete family of parent man-
ifolds consisting of one-cusped hyperbolic 3-manifolds such that at
most one Dehn filling on each manifold yields a manifold with finite
fundamental group.

Proof The Thurston-Gromov "2τr" Theorem states that a Dehn
filling of a cusped hyperbolic 3-manifold along a curve of length at
least 2π in a cusp boundary of a finite volume hyperbolic 3-manifold
yields a closed manifold of negative curvature.(See [5] and [8].) Such
a manifold cannot have finite fundamental group. However, the
volume V in a cusp is equal to (dic/2 sin </>)/2, where d\ is the length
of the shortest nontrivial curve in the cusp boundary, 2̂ is the length
of the shortest nontrivial curve that is not a multiple of the shortest
curve, and φ is the angle between the translation directions of the
two parabolic isometries that are generated by these two curves.
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Assuming that there exists a curve in the cusp boundary of a
one-cusped hyperbolic 3-manifold for which the corresponding Dehn
filling yields finite fundamental group, it must be that 1 < d\ < 2τr.
Thus, d2 > V/π. If V is chosen to be greater than 2τr2, d2 will be
greater than 2τr. Thus, it suffices to take all one-cusped orientable
hyperbolic 3-manifolds with cusp volumes of at least 20 in order to
obtain a complete family of 3-manifolds such that at most one Dehn
filling on each yields a finite fundamental group. D

In particular, if M is a counterexample to the Poincare conjec-
ture, it comes from Dehn filling a hyperbolic 3-manifold with one
cusp, such that every other Dehn filling of that cusp yields infinite
fundamental group.

Note that one way of stating the conjectured Property P for knots
in S3 is that at most one Dehn filling on any given knot exterior
in S3 yields a trivial fundamental group. Corollary 3.5 gives us a
complete family of parent manifolds that satisfy this statement of
Property P.

We also note that in proving Theorem 1.1 (b), we proved the
additional fact that any closed 3-manifold M contains a knot such
that the knot is hyperbolic and such that the Dehn filling that cor-
responds to filling the knot back in to obtain M is a Dehn filling
along the shortest nontrivial curve in the cusp boundary. This fol-
lows from the fact that as we increase m by adding in additional
copies of the Whitehead link complement, we extend the lengths of
all of the simple closed curves in the cusp that are linearly indepen-
dent from the Dehn filling curve without affecting the length of the
Dehn filling curve. This is of interest, in light of the fact that Craig
Hodgson and Jeff Weeks (c.f.[12] ) have discovered an example of
a hyperbolic knot in S3 such that the meridian curve is not the
shortest curve in a cusp boundary.

THEOREM 1.1 (c). The set of 2-cusped hyperbolic 3-manifolds
containing embedded totally geodesic surfaces is a complete family
of ancestor (actually grandparent) manifolds.

Proof of 1.1 (c). This result follows immediately from Theorems 2.4
and 3.1. D
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The following algebraic corollary is immediate.

COROLLARY 3.5. Any fundamental group of a closed oriented
3-manifold can be obtained by adding at most 2 relators to a non-
elementary Kleinian group that contains a Fuchsian subgroup.

THEOREM 1.1 (d). For any positive integer N, the set of hyper-
bolic 3-manifolds, each of which shares its volume with N or more
other hyperbolic 3-manifolds, is a complete family of ancestor man-
ifolds.

Proof of 1.1 (d). Given TV, let MQ be a closed orientable 3-manifold.
Then Mo can be obtained by Dehn filling a 3-manifold Mi such that
its interior is a 1-cusped hyperbolic 3-manifold. Theorem 2.2 allows

o

us to find a knot g in Mi such that M\ — N{g) has hyperbolic interior
o

and such that there is an essential pair of pants P in Mi — N(g)
o

so that P is totally geodesic in the hyperbolic interior and so that
two boundary components of P are parallel to the surgery curve on
dMi that yields Mo. Let M2 = Mx - N(g).
Let Ln be the link appearing in Figure 4. Then Ln is an augmented
alternating link and hence, S3 — Ln is hyperbolic by [2]. Cut M2
open along P, yielding two copies of P, denoted Pi and P2. Cut
S3 — Ln open along the twice-punctured disk D, yielding two copies
of JD, denoted Dι and Z)2. Let M3 be a manifold obtained by gluing
these two manifolds together along Pi and Dι and also along P2 and
Z?2 The original manifold Mo can be obtained from Dehn filling the
resulting manifold M3.

FIGURE 4
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However, by cutting open along twice-punctured disks in Ms cor-
responding to the twice-punctured disks in S3 — Ln, twisting a half-
twist and then regluing, we can obtain numerous manifolds, all of
which are hyperbolic and all of which have the same volume by
Theorem 4.1 of [1]. However, they cannot be homeomorphic as
they have different numbers of cusps. By choosing n large enough
we are assured of any desired number of manifolds, all having the
same volume as M3. D
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