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EIGENVALUE BOUNDS AND GIRTHS OF GRAPHS OF
FINITE, UPPER HALF-PLANES

NANCY CELNIKER

For each odd prime power q = pr we will investigate q — 2
different Cayley graphs called finite, upper half planes
over Fq. We define a finite, upper half-plane by

Hq = {x + yy/d\x,yeFq,yφ0}

where Fq is the finite field with q elements and d is not
a square in Fq. We define a distance k between points z
and w G Hq by

N(z- w)

where Nz = zz and z = x—yvd and Re z — x and Imz = y.

We define a graph, Xq(d, α), by letting the elements of Hq

be the vertices of the graph and defining an edge between
z and w where &(z, w) = a for a fixed a £ Fq — {0}. We con-
sider the origin to be the point y/d. We call Hq(d,a), the
finite upper half-plane depending on a fixed a and d. We
first concern ourselves with whether the eigenvalues, A, of
the adjacency matrices of the graphs satisfy the Ramanu-
jan bound |λ| < yjq. Since the graphs are of degree q -f 1,
the paper shows a method to use the representations for
the additive and multiplicative groups of each Fq to find
the smaller associated isospectral matrices. We then find
the eigenvalues of the isospectral matrices. A computer
program has verified the Ramanujan bound for most of
the graphs up to the prime power 35. We next concern
ourselves with the girth of the graphs. This paper shows
that the girths are either 3 or 4 and shows that the girth
is 3 if a = 2d and q = 3(mod4) or if a and a — 3d are squares
in Fq. The girth is 4 if a = 2c? and q = I(mocί4).

Nicholas M Katz [7] has proven that the eigenvalues of the graphs
do satisfy the Ramanujan bound in the paper "Estimates for Soto-
Andrade Sums-1". Graphs whose eigenvalues satisfy the Ramanujan
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bound are of interest in communications theory as are graphs with
certain girths. See Lubotsky [9], Bien [2], Klawe [8] and Chung [5]
for applications and more discussion. These graphs are discussed in
Terras [12], Celniker et al [4], Poulos [11] and Angel [1].

1. Preliminary Results. Graphs of finite, upper half planes
have been defined similarly in other papers. [4], [13]. The graphs
in those papers were defined by vertices from the set

Hp = {x + yy/d\x,y G Fp,y φ 0}

with an analogous definition for the distance between vertices. The
initial results about the graphs described here are analogous to the
previous results and are included for the reader's convenience.

LEMMA 1.1 (TERRAS [12]).
(1) The points z = x + y\fd and \fd are adjacent in

Xq(d, a) <£> x2 = ay + d(y - I) 2 .

(2) Xq is a regular graph of degree q + 1 provided that d is a
non-square in Fq and a φ 0 or Ad.

Proof.
(1) Clear from the proof of (2).

(2) We can rewrite the equation in part 1 of the lemma as a norm
equation in the finite field Fq(y/d) : N(z + c) = n, where

n n a aίid — a)
z = x + j/V«, c = yd (—- — 1), and n = . But

2α Ad
now the norm in Fq{y/d) is given by Nz = zz = zzq = zq+1.
Therefore we are solving the equation wq^1 = n, for w = z+c.
Since we are in a finite field, there are exactly q + 1 solutions
as long as r φ 0, which is the case when a φ Ad.

We notice we can find all the different Xq(d,a) by fixing d and
letting ae Fq-{0},aφAd. D

From now on we will write Hq(d,a) to denote the finite upper
half-plane depending on a fixed d and a as defined earlier.
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We recall the definition of the affine group,

So we associate the vertices of Xq(d, a) with the elements of AfF(2,</).
We will denote elements of Aff(2,#) by (y x). We now define

Aff(2, q) : x2 = ay = d(y - I ) 2 } .

The affine group acts on z G Hq by the linear transformation

gz = az + be Hq,ge Aff(2,ςr).

We notice that fc(z,to) = k(gz,gw) since

- gw) = N(a(z - w)) = N(a)N(z - w) = α2JV(* -

and Im(gz) = alrn(z).

THEOREM 1.2 (ANGEL [1] AND POULOS [11]). For all odd
primes p, Sq(d,a) generates Aff(2,ςr).

Proof. From part (2) of Lemma 1.1, we know there are q + 1
elements of the set Sq defined by the equation in part 1. Since y φ
0,there must be at least one (y x) G Sq with x φ 0. Since Sq is
symmetric, for (y x) G 5 g , (y -x), (j/"1 ί/~1x) must also lie in Sq.
Thus (y x) (y-1 y^x) = (1 2z) G G. Then (1 2x)n = (1 2nx) G G
for all integers n.

The element (1 δ), b φ 0, has order p, since by induction it can be
shown that the nth power of (1 b) is (1 nb). Next, the order of the
element (α 6) where a φ 1 is the same as the order of a. If b = 0,
then it is obvious this is true. If 6 φ 0, then conjugate (α b) by the
element (δ~1(l — a~ι) α"1) and the resulting element is (a 0). Since
conjugate elements have the same order, the order of (α b) is the
same as the order of α.

Next, we see that Aff(2,#) can be generated by any element of
order p and any element of order q — 1.

Now any element of order p must be of the form (1 b). Let (α
b) be an element of order p. If a φ 1, then the order of (α b) is
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the same as the order of a in the field of q elements. This order
must divide q — 1, and so can't be p, as p doesn't divide q — 1. So
a must be 1, and any element of order p has the form (16), where
b φ 0. And any element of order q — 1 has the form (α c) where
the order of a is q — 1. Let H be the subgroup generated by these
two elements. Notice that (α c){l b)(a c)~ι = (1 α&), so repetition
of this conjugation will give us elements of the form (1 (an)b) for all
powers of n. Each one of these elements is of order p, and we have
q — 1 of them since the order of a is q — 1. Now, since the order
of Aff(2,g) is q(q — 1), Sylow theory tells us that Aff(2,ςr) has one
p-Sylow subgroup of order q, containing every element of order p.
Since H contains every element of order p (there are at most q — 1
of them, and H contains q — 1 of them), H contains the p-Sylow
subgroup. So, H contains a subgroup of order #, and as H contains
an element of order q — l,H contains a subgroup of order q — 1. Since
q and q — 1 are relatively prime, the product of these two subgroups
will have order q(q — 1), and so we must have H=Aff(2,q). Now, to
show that the graphs are connected, we need to show that the set
Sq(d^a) generates Aff(2,<?). From the above, it is sufficient to show
that S=Sq(d,a) can generate an element of order p and of order
q — 1. Let g be a generator of Fq. Let T — {y\(y x) £ S}. Then
\/y G T7, y = gaχ for some i. Let c be the gcd of all the a%. Since for
each distinct y G T, there are at most two x s.t. (y x) £ 5, then

)m 2 ( 0 1 ) - . ( 9 I )
T contains at most elements, as there are at most

c c
elements of the form (ga) where c divides α, and a is between 0 and
q — 2. Since the cardinality of T is q + 1 including repetitions, we
must have c — I. Hence the subgroup generated by S contains an
element of order q — 1.

Since S has cardinality q + 1 and the multiplicative group of Fq

has order q — 1, there is some element in Γ, ?/, s.t. (y x\), (y X2) G S\
with X\ φ X2 Take any other (c d) G S. Consider the element

( c d) ( y X l ) ( c d y 1 (y X l ) ~ l = ( l X l ( c - l ) + d ( l - y ) ) .

If xi (c — 1) + G?(1 — y)φθ (which can only happen if x\ φ (y — l)d*
(c — I ) " 1 ) , we are done as this element has order p. If this is zero,
then X2 is not x\, so doing the same with (y X2) instead of (y x\)
will give us an element of order p. So, the subgroup generated by 5
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has an element of order p and an element of order q — 1, and thus
S generates Aff(2,#). D

THEOREM 1.3. The graphs Xq(d, a) are Cayley graphs.

Proof. We think of the elements of Aff(2, q) as being the vertices
and Sq(d^a) as being the symmetric set or rather that

This is because

(yχ\ _ (ι/y-χ/y\

and x2 = ay + dy — I 2 is equivalent to (—x/y) = a(l/y) +
d(l/y — I ) 2 . Consider w,z £ Aff(2, g). We need to show

(«;, 2:) G JET =^ u; = 2:5 where 5 G ̂ ( d , α).

— (r, V5) G £T. We prove the statement by recalling
that k(z,w) = k(gz,gw) and letting 5 = z" 1 . Then (gz,gw) G -EΓ
and ^r"1^ G Sq(d,a). D

2. Are these graphs good expanders? We now try to de-
termine if the graphs are good expander graphs as graphs of this
type are of interest in communications theory. See Lubotsky [9],
Bien [2], Klawe [8] and Chung [5] for applications and more discus-
sion. Lubotsky, Phillips and Sarnak [9] show that a regular graph
of degree k is a good expander if it satisfies the Ramanujan bound,
meaning that the second largest eigenvalue of the adjacency matrix,
λ < y/k — 1. So we need to find the eigenvalues of the adjacency
matrix. Unfortunately the adjacency matrices are of degree q2 — 1,
which makes it difficult to find the eigenvalues even on a computer.
So we will use representation theory and take a Fourier transform
to find eigenvalues of isospectral matrices of smaller dimension that
the adjacency matrices.
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3. Representation Theory for the Prime Power Case. We
wish to mimic what Terras [12] did in the prime case. However we
are not dealing with a cyclic additive group so the representation
theory in this case involves taking traces. Also as all the elements of
Fq are not integers, we cannot talk about taking powers of matrices
for arbitrary elements. Thus most of the material in this section
is unique to the prime power case. However the definitions in this
section allow us to use the same proof in Section 4 that Terras [12]
uses in the prime case. Some elementary proofs about traces will be
given to help the reader unfamiliar with this material. For informa-
tion on representation theory, we refer the reader to Diaconis [6],
Mackey [10], and Terras [13].

Since Fq - {0} is a cyclic multiplicative group with primitive el-
ement g, we can find the one-dimensional eigenvalues in a similar
way to the prime case. Let

ί(2πzjk)\ . f k

V q - l J '

where 0 < j < q - 1.
This leads to a representation we will also call χj\

( yx\ , N

0 1 1 =xλy)
For the q-l dimensional eigenvalues, we would like to define the

representation as we did earlier but we notice that Fq is not a cyclic
additive group. We think of it as the cross product Fq — Fp x Fv x
... x Fp r times. So we need to consider the Galois group of order r.

n-l

Let cr(x) = xp. Then Tr(x) = ^ σι(x).
i=0

LEMMA 3.1. Ύτ(x + y) = Ύτ(x) + Tτ(y).

LEMMA 3.2. For p odd, Ύτ(g(-x)) = -Ύτ(gx).

Then as in the prime case, we can define the additive character
oΐFp,

for x G Fn,
p )
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and define
Φ(s) = Φ(Tr(a:)).

LEMMA 3.3.

We need a representation for the additive group of Fq. We will

( ΊJ x\
I. Then we define the induced

representation, p —

where N = < ( ' !, j : δ G Fq

and G = Affine group = < ί V

Q ̂  J : y φ 0, x, y G Fq L

Φ gives a 1-dimensional representation of N via

* ( ί ? ) = * w

The matrix /?(t), t G G, is obtained from right translation of func-
tions in the space

Vφ = {/ : G -> C\f(nx) = Φ(n)/(x) for all n G Λ/" and all x G

Define (p(g)f)(x) = f(zg)Vx,g e G.

This is a group representation since

(p(9i)p(92)f)(x) =

Choose the basis of V^ given by

Λ (yx) = Φ(x)ί(ij) if y = g\0<q-2.

And define δ(i,j) = 1 if i=j and 0 otherwise.
We now notice that (a b) = (1 b)(a 0). Since representations

are homomorphisms, if we wish to see what happens to an element



NANCY CELNIKER

(α b) G Aff(2, q) we can consider what happens to (a 0) under the
induced representation and what happens to (1 b) under the induced
representation. So p(a b) = p(l b)p(a 0). Then (ρ(l b)fj)(y x) =
/, ((y x){\ b)). And (p(o 0)Λ)(y x) = /,((,, χ)(α 0)).

LEMMA 3.4.

Proof. We use Lemma 3.2, the fact that y = ̂  for g a primitive
root and the fact that δ(i,j) = 0 for i φ j .

b)fi)(y x) = / ,

= φ(gib)φ(x)δ(ij) = φ (gjb) φ(x)S(i,j)

= Φ(9ib)fi(yx).

Π

LEMMA 3.5.

(p(aO)fJ)(yx) =

Proof. We use that a = gι, y = g\

(p(a 0)fj)(y x) = fj ((y x)(a 0)) x)

LEMMA 3.6. Forg = (a b) G Aff(2,q), p(g) = DWlo*a

β
where D —

V(g°b) 0 0 . . . 0 ^

0 Φ(a1b)0... 0

0

0 0 * .

0 0 . . .

0
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and where W =

ίθ 1 0 ..
00 1..

: 00 '•
0 0 0 . .
1 0 0 . .

.(Λ

. 0

. 0

. 1

\
. 0

Proof. We have already determined that p(a b) — p{\ b)p{a 0).
So we see the representation is a product of two matrices which we
can call D and U. By Lemma 3.4 we get that

ifi=j
otherwise.

We see that D is a diagonal matrix with jth entry φ(g^b). By
Lemma 3.5 we get that

1 if log a + i = j

0 otherwise.

We see that U is an log α-shift from the identity matrix and thus
U = Wι°za. D

4. Fourier Transform. To mimic the prime case as much as
we can, we apply the Fourier transform to the adjacency operator
which we define to be

Σ /(y)
y adjacent to x

We then see that

because y = sx is true for s G S as shown earlier. We recall the
definition of the Fourier transform T : L2(G) \-+ L2(G) by

= KP) = Σ f(9)p(g)
geG
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We define convolution between f and g to be

y€G

It is known that

THEOREM 4.1. Let A be the adjacency matrix of Hq. Now, as
in the prime case if we take the Fourier Transform to diagonalize
the adjacency matrix, we get

-(R°Λ
~ Vo M)

where R is a q x q diagonal matrix with diagonal entries Rj com-
ing from the one-dimensional representations of the Affine Group.
(Thus the eigenvalue q+1 would occur here as it occurs only once.)
Then

Rj = Σ x;(y)
(x,y)eSq(d,a)

for Xj(y) defined earlier and O < j < q — 2. Then M is a block
diagonal matrix with (q — l) identical blocks down the diagonal where
each block is

M = ΣP(S)= Σ DWlo*y

(χ,y)eSq(d,a)

where p is the q — l dimensional representation of Aff(2,g) over Fq

and D and W are as defined in Lemma 3.6.

Proof. We will mimic Terras's [12] proof of the prime case.
We define for x G G

j i n x e s

0 otherwise.

Then we notice that

ses

= Is* f{x).
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Then

TAT'xkp = T(AT~xk)p = Γ(ls * T~λk)p

= (Tlsp)(^-1kp)=( £ ls(g)p(g))kp.
geAfΐ(2,q)

If we choose first for k to be those elements of the basis of L2(G)
which correspond to the one-dimensional representations of Aff(2,(/),
then we see we get a diagonal matrix with jth entry of Xj(y).

If we choose next for k those elements of the basis of L2(G) which
correspond to the q-1 dimensional representation of Aff(g). We then
notice that the basis elements look like

Then we see that MX = (Mx,Mx,Mx,...,Mx) if we look at it
in columns. Thus this corresponds to q-1 copies of the M matrix
running diagonally down. D

5. Graphs with similar spectra in the prime power case.
We will now talk about different graphs which have similar spec-
tra. We will denote the two graphs Xq{d^a\) and Xq(d, a2) since
the graphs will be over the same field, use the same non-square and
will differ only in the "α-distance" between vertices. Then the cor-
responding M submatrices described in Theorem 4.1 will be called
Mi and M2. And the matrix W is as defined in Lemma 3.6.

PROPOSITION 5.1. If aλ + a2 = 4d(mod q) then M2 = MλW^~.

Proof,

a\ + α2 = Ad(modq) <£>

j/i(αi + α2) = Ayιd(modq) <£>

dyi2 — 2dyι + d = —a2yι + dyλ

2 + 2dyχ + d(modq) <£>

a1y1 + d(y1 - I ) 2 = -a2y1 + d(-y1 - l)2(modq) <̂>

xι2 = x2

2 and j/i = — y2 <$

(xuVi) e Sq{aud) ^

(21,-yi) G Sq(a2ld).
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Then Mi = Σ DxWlosy,

M2 = -yϊ = Σ DxWlosy+aτί

(χ,-v)

Since W is a 1-shift from the identity matrix, we see that

D

PROPOSITION 5.2. The M's are block symmetric matrices.

Proof. Recall

and

D =
0

0

0 0... 0

^ ) 0 . . . 0

o o" . o
0 0 . . .

where
~, . {(2πiTr(x))\ ,
Φ(x) = exp I ̂  ^-^ I , for x € Fv.

Since the D's are diagonal and for every y term we get both an x
and an -x term the diagonal terms in the sum will be

P
{2πiTr(gjx)\

= exp y—L +exp

\ P J
= 2 cos

\ P
f 2πi - Tr(gjx)

V P
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Since g is a primitive root of q

Tr(gJ+^x)

=Tr((-l)gJx) = -Tr(gJx)

and thus

cos I —Tr(gi+ 2 #) ) = cos I Tr(giχ) I = cos I —Tr(g^x)
\P I \ P ) \P J

so we see the sum of the Dηs for opposite values of x leads to a block
symmetric matrix.

Now we notice that W is block symmetric. In the (p — l)/2 x
(p — l)/2 submatrix (call it 1) of W we have a single right shift of I
followed by a row of the zero matrix. Then the lower (p—1)/2 x (p —
l)/2 submatrix of W (call it 4) is identical as it does not include the

p- 1
row with the 1 entry in the \-1 place but includes all after it.

Then the submatrix to the right of 1 contains all zeros except for a
p — i

1 in the first column of the (last) row. Then the submatrix
to the left of 4 contains all zeros except for a 1 in the first column
of the last row. So W is block symmetric.

We also see that each Wι°sy is of block symmetric matrix form
as. we can see by induction.

Let W =

U2 + V2 UV + VUλ

Then W2 =

Now assume W3 = I p ^ I

™ π/i+i u/iw/ / ^ A + VBUB + VA\Then VκJ^ = VK 7^/ = I v ^ R ,. v/?) *

The previous proof also shows us that (Dx + JD"^) Wlogy is block
symmetric. An extremely simple induction shows us that

M = V DxWlo*y
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is also block symmetric. D

PROPOSITION 5.3. If aλ + α2 = 4:d(πιod q), then the eigenvalues
of the M 's are the same up to a factor of -1.

Proof Using Propositions 5.1 and 5.2 we see that

Then we take the Fourier transform to block diagonalize the matri-
ces.

Bu.then

COROLLARY 5.4. If a = 2d, the graph has at least zero

eigenvalues.

6. Computer Implementation. The two major differences in
computing this case versus the prime case is that first of all Fq unlike
Fp is not a cyclic additive group. Thus the software for computing
the elements in 5ρ(d,a) versus 5p(d,a) and the representations for
Aff(2,#) versus Aff(2,p) is quite different.

Since the elements of Fq are the elements of the splitting field
x<t — x = 0, one element is 0 and the others are the pr~1 roots of
unity. We can think of these elements as powers of the primitive root
(a multiplicative group) or as linear combinations of the primitive
root over the field Fp.
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In some cases using the additive properties is better and in other
using the multiplicative properties is better so in the computer im-
plementation this time, the program computes a logarithm table for
the powers of the primitive root. Then in calculating the solutions
to

the program switches back and forth in the log table depending on
the if the operation is better suited to the additive or multiplicative
properties. If x = 0 is a solution this is a special case as it is not
a power of the primitive root and does not belong in the log table.
This special case occurs if and only if (α — Ad)a is a square as will be
seen in the Lemma 8.3 so the program accounts for this situation.

The program then finds the one-dimensional and (g-l)-dimensional
eigenvalues as shown in Lemma 5.9 and compare them with the Ra-
manujan bound. The program uses the multiplicative properties to
find the trace and representation as it is easy to take exponents.
The program uses the result of Proposition 5.2 to cut the M matrix

from being q — 2xq — 2 dimensional to x dimensional.

7. Computer Results. The program was run on a Solbourne
5/804. This machine is a four CPU system with 64 MB of mem-
ory. Each processor is rated at about 13.5 SPEC marks, for a total
processing capacity equal to 68 DEC VAXll/780s. The proces-
sors implement SUN's SPARC architecture. The operating system
software is OS/MP, which is derived from SunOS which is an im-
plementation of UNIX. Computer results show that for q up to I I 2 ,
the Ramanujan bound does hold for all values of a. For values of a
up to 42, the bound holds for q = 132. For values of a up to 19, the
bound hold for q = 35. The computer account ran out of processor
time before more values of a could be checked.

Interestingly, for even powers of the primes 3,5,7,11 and 13, some
of the eigenvalues are equal to the Ramanujan bound in the one-
dimensional and sometimes (/-dimensional eigenvalues as we see in
Table 3. We recall that the one-dimensional eigenvalues from The-
orem 4.1 to look like

^ 2πj log y
ΣJ C O S — — γ ~

(x,y)£Sq{d,a) "
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because the sin terms will cancel out since sin is an odd func-
tion and by an explanation given in Theorem 1.3, both (y x) and
(t/"1 — xy~ι) G Sq(d, a). We now notice that these one-dimensional
eigenvalues will be integers for appropriate values of y and j as will
each term in the summation. Also for even powers of primes, the
Ramanujan bounds will be integers. The Ramanujan bounds are
not integers for odd powers of primes.

The table shows the prime power, the a values where the bound-
ary eigenvalues occur, the eigenvalue and the j values as described
above and in Theorem 4.1. The a values are given as powers of the
primitive root of Fq which was used also as d.

8. Girths of the Xq. We now turn to the second purpose of
this paper which is to explore the girths of these graphs. We define
the girth to be the length of the shortest circuit in a graph. Except
for the proof of Theorem 8.4 which shows the girth to be 4 if it is
not 3, the proofs only prove the graphs to have girth 3.

LEMMA 8.1. The girth of a graph of Hq is either 3 or 4

Proof We use a result of Tutte's [3] that the number of vertices
in a graph of valency k and odd girth is at least

1 + k + k(k - 1) + ... + k(k -

So we assume the girth is 5. Then the number of vertices is at least

This is a contradiction since the number of vertices is q(q-l) and
n> q(q-l). D

LEMMA 8.2. If the number of origin neighbors who are neighbors
is at least one, the girth is 3. Otherwise the girth is 4-

Proof. If (o, θi), (o,Sj), (θχ,θj) G ϋT, clearly the girth is 3.
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TABLE 3. Values of g, a and j For Boundary Eigenvalues
q
3

2

5
2

5
2

5
2

7
2

7
2

7
2

7
2

7
2

3
4

II
2

II
2

II
2

II
2

II
2

II
2

II
2

II
2

II
2

13
2

13
2

13
2

5

1

7

9

1

6

9

17

36

41

13

25

37

53
61

85

93
97

109

15

24

33

Eigenvalue

-6

-10

-10

-10

-14

14

-14

-14

14

18

22

22

22

22
22

-22

22
-22

22

26

26

26

j
4

12

6,8,16,18

12

24

16,32

24

8,12,24,36,40

16,32

10,16,30,32,40,48,50,64,70

60

40,80

12,20,36,40,60,80,84,100,108

60
40,80

30,90

60
30,90

60

14,24,42,48,70,96,98,120,126,144,154

84

84

Now assume Γ has girth 3. Then for some Wι,w2,w3 G VT

(wu w2), (w2, w3), (w3, wi) G ET.

Since k(w\,W2) = k(gw\,gw2),

(gwugw2) e ET,(gw2,gw3) G £Γ,(ιgiϋ3,sm;i) G ET.

Now letting g = wΐ1,

(gwugw2) = (o,gw2) => gw2 £ S

{gw3,gwι) = {gw3,o) =» gw3 G S.

So there is at least one pair of origin neighbors who are neigh-

bors. D

LEMMA 8.3.

(y 0) G S <$> a(a — Ad) is a square in Fq.
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Proof.
O = ay + d(y - I ) 2 &

0 = dy2 + (a - 2d)y -\-d <&

2d-a± J(a - 2d)2 -
y = Yd * •

There is a solution for j / £ F g ^ a(a — Ad) is a square.

THEOREM 8.4. Let Xq(d,2d) = Γ. Ifq = l(mod 4) ίΛe #zrί/> of

of the graph is 4- If<I = 3(mocί 4), ίΛe ^VίΛ of the graph is 3.

Proof Assume Γ has girth 3. Then by Lemma 8.2 for any θi 6 5,

there exists s2 G 5, where (θi,θ2)

Si = αt/α + d(y1 - I ) 2 = dy\ +

α;2 = αj/2 + rf(ί/2 ~ I) 2 = dyl +

(x2 - xx)
2 - d(y2 - yΎf

2/1Ϊ/2

x\ - 2xλx2 + x\ - dy\ + 2dyλy2 - dy\ = ayxy2 &

+ d- 2xxx2 + dy\ + d- dy\ + 2dyty2 - dy\ = ayxy2

2d - 2xxx2 = ayλy2 - 2dyτy2 <&

2(d - xtx2) = (α - 2d)y1y2 <»

= —2c/ + (a — 2d)yxy2 <fr xλx2 — d.

First we consider the case q = l(mod 4). We notice that -1 is a
square. By the above equations, we have

2 , - 1 2 / j J I 2
1/ I I ~~ T* / ft ~*-* fi I t*y1 -f i — Xi/a — a/x2

and

y\ + 1 = ^2/^ = ^/^i

We notice that for i G 1,2?/2 ^ — 1 since then α?f = 0 and #1X2 = 0.
Therefore

(yl + i)(2/l +1) = y\y\ + y\ + y\ +1 = 2/?(2/| +1) + y\ + 1 = l-
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But this implies that

But the right hand is a square, while the left hand is not (since it's
equal in Fq to x\/d, and d is not a square), so we have a contradic-
tion, and the girth must be 4.

Now we wish to show that for q = 3(mod 4), the girth is 3. We
will show that

V(?/i x\) 6 S3(y2 x2) £ S so xxx2 — d.

Given (yι Xι) £ S. Then

r 2 _ A r 2 _ J

xλ = αj/j + α ^> ?/j = — <Φ — is a square.
a d

Recall that d — g, the first primitive root in Fq. We notice that for

q = 3(mod 4), if g is the first primitive root in Fq, g 2 is a square.

2 =9 2 =
g 2

Thus —— is a square. Then, f is a square, and since we already
d d

i i i x\ — d

determined that — is a square,
d

a x{ a

d 2 d
— — 1 is a square => ήy2 where y2 = — — 1.

Thus y\ + 1 = —z =^ dy\ + d — —^ =^

ϊ/2 — j = (2/2 aj2) € S.
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LEMMA 8.5. (1 y/a) G S Φ> a is a square in Fq.

Proof. Since x2 = ay + d(y — l ) 2 , t / = l , j/ = — : — <=> x2 =
11 D

THEOREM 8.6. /n Xg(<f,α), i/α is α square in Fq and a — 3d is
a square in Fq then the girth is 3.

Proof. By Lemma 8.5, if a is a square in F g , (1 y/a) G 5. We see
that the neighbors of s t G S are of the form S{Sj for 1 < j < q + 1
since s t is a neighbor of the origin and we do a left multiplication
of the origin neighbors by st to get the neighbors of st .

(1 y/a)(yι Xi) = (yi xι + y/a).

By Lemma 8.2 Xq(d,a) has girth 3 whenever

a?/) G 5 such that (j// #j + \/α) G 5.

Since (y x) G 5 <=> x2 = ay + d(ϊ/ — I) 2 , and we notice that the right

hand side of the equation only depends on y, so both (yi a j), (yi x\ +

y/a) G S, if

Then (1 VS)(y, - ^ ) = ( w ^ )

Now (y / ^ ) G S &

4 =

0 =

ayι +

dyU

(2d-

d(yι -

-a)±

- I ) 2 &

2d)yι 4

Va2 - 3αci
yι Yd

And there is a solution for y\ Φ> a2 — 3ad is a square. D
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