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ISOPERIMETRIC INEQUALITIES FOR AUTOMORPHISM
GROUPS OF FREE GROUPS

ALLEN HATCHER AND KAREN VOGTMANN

In this paper we show that the groups of automorphisms
and outer automorphisms of a finitely generated free group
have isoperimetric functions which are bounded above by ex-
ponential functions. This exponential bound is best possible if
the free group has rank three, but the best bound remains un-
known in higher rank. Our techniques show more generally
that n-dimensional isoperimetric functions for these groups
are at most exponential for all n. A variation of the technique
gives an asynchronous bounded combing of the mapping class
group of a bounded surface.

1. Introduction.

The geometric notion of an isoperimetric inequality can be imitated combi-
natorially in a simply-connected cell complex X as follows. For any loop in
the one-skeleton of X, its length is the number of times it passes over one-
cells, and its area is the minimum number of times it passes over two-cells
during any null-homotopy. The isoperimetric function §(n) measures the
maximum area of loops of length n in the one-skeleton. By an isoperimetric
inequality we mean an upper bound for §(n) in terms of some other function
f(n).

This idea can be transferred to finitely presented groups G by taking X
to be the universal cover of the standard two-complex associated to a finite
presentation of G. Different finite presentations of G' give rise to quasi-
isometric complexes, and there is an equivalence relation on functions so
that quasi-isometric complexes have equivalent isoperimetric functions §(n);
see [A]. This equivalence relation identifies all polynomials of a fixed de-
gree, all exponential functions a”, all double exponentials a®", etc. Gro-
mov’s hyperbolic groups are characterized by the fact that their isoperi-
metric functions are equivalent to linear functions [Gr]. Automatic groups
and semi-hyperbolic groups satisfy quadratic isoperimetric inequalities (see
[ECHLPT)] and [AB]). A group has a solvable word problem if and only if
its isoperimetric function is recursive [ECHLPT).

The main result in this paper is the following:
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Theorem 1.1. The groups Aut(F,) and Out(F,) of automorphisms and
outer automorphisms of a finitely generated free group F, satisfy erponen-
tial isoperimetric inequalities, i.e. their isoperimetric functions are at most
exponential.

It is interesting to compare our result on the isoperimetric functions for
Out(F,) and Aut(F,) with the situation for GL(n,Z). The group GL(n,Z)
is related to Aut(F,) and Out(F;,) by the natural map which sends an auto-
morphism of a free group to the induced automorphism on the free abelian
group. For n = 2, Out(F;) is isomorphic to GL(2,Z) and satisfies a linear
isoperimetric inequality; this follows from the well-known cocompact action
of GL(2,Z) on a tree [S]. It is known that Aut(F3) is automatic but not
hyperbolic, so has a quadratic isoperimetric function (see [Ge]). For n = 3,
[ECHLPT] show that the isoperimetric function for GL(3,Z) is at least
exponential; this implies the same fact for Aut(F3) and Out(F3), since there
is a loop in GL(3,Z) which is exponentially hard to fill and which lifts to a
loop in Aut(F3) [BV]. For n > 4, the group GL(n,Z) satisfies a quadratic
isoperimetric inequality, according to Thurston (see [Gr2]), while the best
upper bound for Aut(F,) and Out(F,) is unknown.

In [ECHLPT] the notion of higher-dimensional isoperimetric function
is introduced. Our techniques show that the groups Aut(F,) and Out(F,)
also satisfy exponential higher-dimensional isoperimetric inequalities. The
(n—1)-dimensional isoperimetric function for GL(n, Z) is at least exponential
[ECHLPT], but for n > 4 the analogous result for Aut(¥,) and Out(F,)
remains unknown.

Our methods extend easily to show that mapping class groups of punc-
tured surfaces, which are subgroups of Out(F,), also satisfy exponential
isoperimetric inequalities in all dimensions. Recently L. Mosher [M1], [M2]
has shown that mapping class groups of surfaces (with or without punctures)
are actually automatic, so in fact satisfy quadratic isoperimetric inequalities.

In [Ge2] Gersten showed that Aut(F),) and Out(F,) satisfy a double expo-
nential isoperimetric inequality. Since then, he has independently obtained
exponential isoperimetric inequalities for these groups [private communica-
tion).

Our approach to these problems is to consider 2-spheres in an appropriate
3-manifold M. In the case of Out(F,), M is the connected sum of n copies
of S' x S%, and in the case of Aut(F,), M is the same connected sum
“punctured” by removing the interior of a 3-ball. Associated to M is a
simplicial complex X = X (M) whose vertices are isotopy classes of certain
systems S of disjointly embedded 2-spheres in M. The complex X is a
subcomplex of the barycentric subdivision of the sphere complex S(M) of
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[H]. In the case of Out(F,), X can be identified with the complex of minimal
free actions of F), on simplicial trees, as defined in [CV] (also known as the
spine of Outer space).

The mapping class group 7o (Diff , (M)) of isotopy classes of orientation-
preserving diffeomorphisms of M acts on X. The normal subgroup generated
by “Dehn twists” along 2-spheres acts trivially, so there is an induced action
of the quotient group I' on X. By a theorem of Laudenbach [L], this quo-
tient group is Aut(F,) or Out(F;,) in the punctured and unpunctured cases
respectively. The complex X is contractible and locally finite, the action of
I’ on X has finite simplex-stabilizers, and X/T" is a finite complex. Thus
X 1is quasi-isometric to I', and we can use X to compute an isoperimetric
inequality for T'.

In [H] a contraction of the sphere complex S(M) was constructed by
joining each sphere system S to a fixed system ¥ by a canonical path in
S(M). In case S and X are vertices of X, a combinatorial version of this
construction gives a canonical edgepath in X from S to X. This path should
be viewed as oriented since the canonical path from S to ¥ is usually different
from the path from ¥ to S. By fixing ¥ and letting S vary we then obtain
a combing of X, i.e. a choice of an edgepath from each vertex S to the
basepoint vertex Y. Similarly, by fixing S and letting ¥ vary we obtain a
second combing of X. We call these two combings the inward and outward
combings, respectively.

Only the inward combing was studied in [H], but it turns out that the
outward combing has some technical advantages over the inward combing.
The outward combing leads to an exponential isoperimetric inequality by
letting X, %,,... , %, be the successive vertices in a loop in X at the base-
point S, and then analyzing how to fill in a homotopy between the canonical
paths to adjacent vertices 3;, X;,; along this loop. The homotopies between
successive canonical paths then combine to give a contraction of the given
loop, and we obtain the exponential isoperimetric inequality by counting
simplices in this contraction. Higher-dimensional isoperimetric inequalities
are obtained in a similar way.

As a bonus, the outward combing gives a proof of the contractibility of
X which seems simpler than the one in [H], which was based on inward
combing. With this simpler proof, the dependence of the present paper on
[H] is reduced to just the existence and uniqueness of “normal forms” for
2-spheres in M.

These techniques also apply to mapping class groups of punctured sur-
faces, using the outward combing for certain sphere systems which corre-
spond to arc systems on the surfaces. A variation of the inward combing,
which involves ordering and orienting the base arc system, gives a bounded
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asynchronous combing, i.e. the combing lines starting at adjacent vertices
remain a bounded distance apart, when suitably parametrized. Mosher’s
proof of the automaticity of mapping class groups can be viewed as refining
and elaborating on this inward combing. In the case of punctured surfaces
he shows that the failure of the combing to be synchronous can be analyzed
and then finessed away by cleverly rechoosing generators.

2. Sphere complexes and normal form.

As in the introduction, let M be the connected sum of n copies of S* x S2,
with perhaps a puncture.

Definition. A sphere set in M is a finite set of disjointly embedded 2-
spheres in M. A sphere set S is simple if every connected component of
M — S is simply-connected. A sphere system is a sphere set S such that no
two spheres of S are isotopic and no sphere in S is trivial, i.e. bounds a ball
or is isotopic to the boundary sphere.

We define complexes X and X as the geometric realizations of the par-
tially ordered sets of isotopy classes of simple sphere sets in M and simple
sphere systems in M, respectively. We have X C X , and there is a natural
projection from X onto X given by deleting from a sphere set all but one
sphere in each isotopy class, as well as all trivial spheres.

Sphere sets Sy ... , S, are said to be compatible if their union is a sphere
set, i.e. if they are disjoint except for common spheres. In this case there is a
canonical simplicial map of the barycentric subdivision of a p-simplex AP into
X , taking the vertices of A? to the S;’s and the barycenter corresponding to a
subset of the vertices to the sphere set which is the union of the corresponding
S;’s. For example, two compatible sphere sets S and S’ give rise to the path
S C(SUS') DS of length two in X.

The mapping class group o (Diff ;. (M)) acts on X preserving X. A “Dehn
twist” along an S? C M is a diffeomorphism supported in a tubular neigh-
borhood S? x [0, 1], taking the slice S? x {t} to itself by a rotation through
angle 2t with respect to some chosen axis of S?. The effect of such a twist
on a sphere set is to produce a new sphere set homotopic to the old one. By
a theorem of Laudenbach [L], homotopic sphere sets are isotopic, so Dehn
twists act trivially on X and there is an induced action of the quotient group
I of mo(Diff . (M)) by the subgroup generated by Dehn twists, which is a nor-
mal subgroup. Laudenbach also proved that I' is isomorphic to Aut(F,).or
Out(F,) in the punctured and unpunctured cases, respectively, via the nat-
ural map associating to a diffeomorphism of M its induced automorphism
of m(M)=F,.

In [H], a simplicial complex S(M) was defined by taking a simplex of
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dimension k for each isotopy class of sphere systems with k + 1 spheres,
with face relations given by omitting spheres from the system. The complex
X (M) is the full subcomplex of the barycentric subdivision of S(M) spanned
by sphere systems which are simple. A key ingredient for the study of the
sphere complex S(M) was the notion of “normal form” for a sphere system
S with respect to a maximal sphere system ¥. We need to extend this idea
to the case of simple systems ¥. (Maximal systems are necessarily simple.)

Definition. Let ¥ be a simple sphere system. A sphere system S is in
normal form with respect to X if for each sphere s of S, one of three possi-
bilities holds: (a) s coincides with a sphere of ¥; (b) s is disjoint from ¥ and
not isotopic to any sphere of ¥; (c) s has non-empty transverse intersection
with ¥ and, for each component P of M — &,
(i) each component of s N P has at most one boundary circle on each
boundary sphere of P and

(i) no component of sN P is a trivial disk, isotopic in P to a disk in the
boundary of P.
Note that (b) can occur only if ¥ is not a maximal system.

Proposition 2.1. Let ¥ be a simple sphere system. Every sphere system
S is isotopic to a sphere system which is in normal form with respect to .

Proof. This was shown in [H] for maximal systems ¥. The general case
follows since a given ¥ can always be enlarged to a maximal system ¥', and
if § is in normal form with respect to ¥’ it is in normal form with respect

to . O

Two sphere systems S and S’ in normal form with respect to X are equiv-
alent if there is a homotopy S; from Sy = S to S; = S which is fixed on the
common spheres of S and ¥ and which on the others is transverse to X at
all times, with the circles of S; N ¥ varying only by isotopy in X.

Proposition 2.2. Tuwo isotopic sphere systems S and S’ in normal form
with respect to a simple system ¥ are equivalent.

Proof. 1t suffices to show that S is equivalent to a system in normal form
with respect to a maximal ¥’ D X, and likewise for S’, since the case of
maximal ¥ was proved in [H]. The procedure in [H] for putting systems
into normal form has the property that if S is already in normal form with
respect to X, then putting it into normal form with respect to X' O ¥ does
not change its equivalence class with respect to 3. Namely, one looks in each
component P of M — ¥’ to see whether conditions (i) and (ii) are satisfied.
If either condition fails, one is able to decrease the number of circles of
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SNX' by certain moves which are of three sorts: ambient isotopy of the pair
(M,%"); homotopy of S taking place in the complement of ¥’; and isotopy
of S supported in a neighborhood of the boundary sphere of P for which (i)
or (ii) fails. It is only the third move which decreases the number of circles
of SN Y¥'. The first two moves do not affect the equivalence class of S with
respect to either ¥ or ¥'. Moves of the third type can only involve spheres
of X' — ¥ if S is already in normal form with respect to X, so these moves
also do not change the equivalence class of S with respect to X. (|

3. Innermost surgery and combing paths.

Let ¥ be a simple sphere system, and S a sphere set intersecting ¥ trans-
versely except for common spheres. We describe a procedure for producing
a new sphere set which intersects ¥ in fewer circles. Let C be a circle com-
ponent of S NY which is innermost in ¥, i.e. C bounds a disk D C ¥ with
DNS =C. If s is the sphere of S containing C, take a parallel disjoint copy
of s which intersects D, then perform surgery on this copy to obtain two
new spheres s' and s” which do not intersect D (see Figure 1). Replacing s
by s’ Us", we obtain a new sphere set S’ which is compatible with S.

Figure 1.

Lemma 3.1. If S’ is obtained from a simple sphere set S by surgery along
a disk D, then S' is simple.

Proof. The effect on the complementary components of M — S of surgery
along the disk D is that the component containing D is split along D into
two components, and the component of M — S on the other side of S from
D is changed by the attachment of a 2-handle. Neither operation introduces
non-trivial fundamental group. O

Thus, for simple S, the sphere sets obtained by first adding s’ and s” to S
and then by deleting s describe a path of length two starting from S in the
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complex X. The endpoint S’ of this path has one fewer circle of intersection
with ¥ than S does.

We would like to make this surgery process canonical by performing
surgery using all of the innermost circles of SN Y at once. This presents no
problem when all the innermost circles in each sphere s of S have their disks
D lying on the same side of s: we perform all of the surgeries on a single
parallel copy of s which intersects all of the disks. We add the resulting
spheres to S and then delete the original spheres s to obtain a new system
S’ which is compatible with S. We say S’ is obtained from S by innermost
surgery.

A problem occurs if two of the surgery disks lie on opposite sides of some
sphere s, so that a parallel copy of s will not intersect all of the disks.
One might try to fix this by using two parallel copies of s, one on each
side. Surgery on both of these will produce a sphere set compatible with
S; however, the total number of intersection circles may increase instead of
decreasing after surgery, since the non-innermost circles of S N ¥ have also
been duplicated. (One could also try to do surgery on the original sphere s
from both sides, but this produces at least one sphere which is not compatible
with s.) Another problem occurs when S intersects a sphere of ¥ in a single
circle, since there is then an ambiguity in the choice of the disk D. We say
S is X-oriented if neither of these two problems occurs, i.e. all surgery disks
lie on the same side of each sphere of S, and S intersects no sphere of ¥ in
a single circle.

There is a trick which insures X-orientation: instead of starting at S, add
a parallel copy of each sphere in S which is not in ¥ to obtain a sphere set
S. Then we have the following:

Proposition 3.2. Let ¥ be a simple sphere system, and S a sphere set
transverse to ¥ except for common spheres. Then S is Y-oriented, and
any sphere set obtained from S by a sequence of innermost surgeries is X-
oriented.

Proof. Let T'(S) be the finite graph whose vertices are the components of
¥ — S, and whose edges are the circle components of ¥ N S. Then T(S)
is a disjoint union of trees, one for each sphere of ¥ which meets S trans-
versely, and T'(S) is the barycentric subdivision of T'(S). Assign a transverse
orientation to each sphere of S pointing away from its twin. This induces
orientations on the edges of T'(S). The circles of §N ¥ which we would like
to surger in the first innermost surgery correspond to the extremal edges of
T(§) These edges are all oriented outward, toward the extremal vertices
of T(S), and the surgery disks are all on the positive side of 5. So § is -
oriented and the innermost surgery is defined, yielding a sphere set S; with
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T(S,) obtained from T(S) by pruning off all extremal edges. In T'(S,), all
of the extremal edges are oriented inward, away from the extremal vertices,
and the surgery disks are all on the negative side of S;; in particular, S;
is ¥-oriented and we can do innermost surgery to produce a sphere set S,.
This pattern continues: passing from S; to S;;;, the extremal edges pruned
off are all oriented in the same way, outward or inward depending on the
parity of ¢. This means that all surgeries on S; are performed using disks D
on the same side of S; with respect to the transverse orientation. O

If S is a simple sphere system in normal form with respect to X, the
sequence of sphere sets S =S,,851,5,,... obtained by successive innermost
surgeries determines a path in X. The number of intersection circles of S;
with ¥ decreases at each step, so that the path terminates at a set Sy which
is compatible with ¥. Thus S; U X is a sphere set, and S, C (S, UX) D X
completes a path in X from S to 3, called the canonical path. We define the
combing path in X from S to ¥ to be the projection of the canonical path.

Proposition 3.3. If S and S’ are equivalent sphere systems, the combing
path from S to ¥ in X is the same as the combing path from S' to X.

Proof. An equivalence of S involves only isotopy of S N ¥ and homotopy
of S within each component of M — ¥, so the surgeries on equivalent sets
correspond bijectively and produce equivalent sets. O

The following proposition compares the lengths of the canonical paths to
adjacent vertices of X.

Proposition 3.4. Fiz a vertezx S of X and let ¥ C ¥’ be adjacent sphere
systems in X. Let k and k' be the number of surgery steps in the canonical
paths in X from S to ¥ and X' respectively. Then k < k' < 2nk + 2n — 3.

Proof. The number k' is equal to one-half of the maximal length of a chain
of nested circles of SN X' on any sphere in ¥'. Let Cj,... ,Cy be such a
maximal chain of circles, lying on the sphere o' of ¥'. If ¢’ is a sphere of ¥,
then k' = k. If o' is not in ¥ then o' lies in one component P of M — %,
which is a punctured 3-ball.

We assign to each circle C; the component Q); of Snp containing C;. If
Q; does not intersect the boundary of P, then @; is one of the spheres of S ;
since it intersects o', it partitions the spheres of the boundary of P into two
sets, each with at least two elements. The length of a nested chain of such
spheres is at most 2(p — 3), where p is the number of boundary components
of P, since no two spheres of S are isotopic. For each sphere o € 9P, the
sequence o N Q; is a chain of nested circles in o N §, so has length at most
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2k. Therefore the length 2k’ of the chain {C;} is at most 2pk + 2p — 6. Since
p < 2n, we get the desired inequality &' < 2nk + 2n — 3. a

Remark. The linear estimate for £' in terms of k£ given in Proposition 3.4
can be improved by more careful analysis, to approximately k' < (1.7)k +
2n — 3. This still results in an exponential isoperimetric inequality for the

group.
4. Isoperimetric inequalities.

In this section we prove our main theorem, that the complex X and the
groups Out(F,) and Aut(F,) satisfy exponential isoperimetric inequalities
in all dimensions. The notion of higher-dimensional isoperimetric functions
was introduced in [ECHLPT], and generalizes the standard isoperimetric
function in dimension two. Given a simplicial map of a (p — 1)-sphere into a
(p—1)-connected simplicial complex K, we define its area to be the number of
(p —1)-simplices in the domain, and its volume to be the minimal number of
p-simplices in the domain of a simplicial null-homotopy. The p-dimensional
isoperimetric function d,(n) measures the maximum volume of (p—1)-spheres
with area at most n.

We will construct null-homotopies by a coning operation. We begin by
coning off a simplex. In the case p = 2, the construction is illustrated in
Figure 2.

Let ¥; C --- C X, be a simplex in X and let S be a fixed vertex of X.
Our objective is to construct a map f : A? — X of the standard p-simplex
AP = [vg, ... ,v,] into X, such that:

(i) f is simplicial with respect to some subdivision of A?

(i) f(vo) =S5, f(v;) =%;fori >0
(iii) the edge [vo,v;] maps to the combing path from S to ¥;, and
(iv) f is linear on the face [vy,... ,v,).
The construction will be canonical, so that the restriction of f to a face
[vo,.-. ,Us,... ,v,] with ¢ > O will be the f constructed for the (p — 1)-
simplex , C--- C &, C -+ C ¥,. Hence the f’s will fit together to give a
contraction of X to the vertex S.

Let X; denote the sphere set ¥; — ¥, ;, with ¥} = 3;. From the sphere
set S we construct a sphere set Sj, .. ;, by performing the first j; innermost
surgeries on S with respect to X}, for s = 1,... ,p. We can regard j; as
varying from 0 to oo by letting Sj, . ;, be independent of j; once all the
circles of §OE§ have been surgered away. Placing Sj, .. ;, at the lattice point
(41, --- »Jp) in RP, we would like to make these lattice points the vertices of
a triangulation of the first orthant of R so that the sphere sets S;, . ; at

P
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the vertices of each simplex are all compatible.

K'K

Sk+1 Jk+1

kk

33
s43

22
s42

11
S41

n>

S1o S20 Sao S40 Sko 2;1

Figure 2.

Consider first the cube C of side length 2 and corners (ji,... ,Jp), with
each j; = 0 or 2. At the center of C is S;.. 1. We can do a sequence of
p innermost surgeries of S; . ; along the sphere sets Xj in any of the p!
possible orderings of the indices 7 = 1,... ,p, producing sphere sets S;,.. 1 =
So,S1,...,8p, = 82, 2 at lattice points in the cube. All these surgeries use
disjoint surgery disks on the negative side of S, 1, so the sphere sets S
are all compatible. The corresponding lattice points span a p-simplex in the
unit subcube of C' with main diagonal joining S; .. ; and S;, . 2, and the p!
simplices of this type form a triangulation of this subcube.

There are 27 — 1 other unit subcubes of C' with main diagonals joining
S1,..,1 to the other corners of C. Each of these subcubes is also triangu-
lated into p! p-simplices with vertices the sequences S;,.. 1 = Sp,S1,...,S5p
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obtained by choosing an ordering of ¥, ... , %, and for each X in turn, ei-
ther doing or undoing an innermost surgery. “Undoing” a surgery along a
disk is in fact doing a surgery along an arc. Again all these surgeries are
along disjoint disks and arcs on the negative side of S; ... 1, so the sphere sets
So, ... ,Sp are all compatible. Thus we have a triangulation of C into 27p!
p-simplices. Abstractly, it is obtained by coning off a triangulation of the
boundary of C to the center of C, where the triangulation of each (p — 1)-
dimensional cube face of C is triangulated inductively by the same coning
procedure.

The same argument provides a triangulation of each cube of side length
2 having corners at lattice points (ji,...,Jp) with each j; even and center
at a lattice point (j1,...,Jp) with all j; odd. These triangulations agree on
common faces and give a triangulation of the cubical lattice with vertices at
the points (ji, ... ,Jp)-

For a fixed integer k£ > 0, the simplices spanned by vertices Sj, .. ;, with
k > ji1 2 --- 2 jp fill up a large p-simplex A whose edges emanating from
the vertex .S’ So,... 0 are initial segments of the canonical paths from S to
the systems X;. Specifically, the sphere sets S;,,.. ;, where j; =... = j; and
Ji+1 = ... = Jp = 0 are the first, third, fifth, etc. vertlces in the canomcal
path from S’ to X;. Let k; be the number of surgery steps in the canonical
path from S to Y, 80k <--- < kpsince ¥, C --- C X,. Choosing k = ki,
the sphere sets S;, .. ;, With j1 = lc form the face of A, opposite the vertex
§, and all of the sphere sets in this face are disjoint from ;.

We embed A linearly in A?, taking Sp,... o to vo and Sk, ... ,,..,0 With ¢ k's
to the midpoint m; of the edge [vg, v;]. The complement of A in AP is a prism
P = P(vy,... ,v,), which we triangulate by coning off to v, the triangulation
on AN P coming from the constructed triangulation of A, together with the
triangulation of PN [vg,v2, ... ,v,] obtained by induction on p, applying the
present construction to the (p — 2)-simplex ¥, C --- C X,.

Now we have a triangulation T" of AP with the property that the vertices
of each simplex correspond to compatible sphere systems, either S;, . ;s
or ¥;’s. The barycentric subdivision of T therefore maps to X. The face

[v1,... ,vp] corresponds to £;- C --- C X, which is already a simplex of X, so
barycentrically subdividing [vy,... ,v,] is not necessary. Thus we subdivide
T by starring at barycenters of all simplices not in [V1,... ,0p) , and we still

have a simplicial map to X. Composing with the projection X — X gives
the desired map f.

Remark 4.1. It is clear that the maps f constructed in this way for
varying ¥; C --- C %, and fixed S fit together on common faces to give a
retraction of the cone on X to X, hence a contraction of X to the vertex S.
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Contractibility of X was first proved in [C-V] in the case of no puncture.
In either case, it is an easy consequence of the fact proved in [H] that the
complex of all sphere systems is contractible.

In order to estimate the isoperimetric function for X, we now count the
number of simplices in T'.

Lemma 4.2. T has k¥ + k5" +--- + k, + 1 p-simplices.

Proof. We count using induction on p. The simplex A is contained in a cube
of side length k;. Each unit cube in this larger cube is subdivided into p!
p-simplices, so the large cube contains kPp! p-simplices. It is also subdivided
into p! large p-simplices like A, so A contains k¥ p-simplices of T. The prism
P(vy,...,v,) was triangulated by coning off to the vertex v,, so the number
of p-simplices in it equals the number of (p — 1)-simplices in the link of v;,
which equals the number of (p — 1)-simplices in the restriction of T to the
face [vo,v2, ... ,v,]. By induction, this number is A R ky,+1, so that
T has kY + k5" +--- + k, + 1 p-simplices. O

Theorem 4.3. The p-dimensional isoperimetric function for the complex
X s at most exponential.

Proof. Let g : SP~! — X be simplicial with respect to a triangulation of
SP~1 into N (p — 1)-simplices, and fix a vertex S of the image of g. The
contraction of X to S restricts to a contraction of the image of g to S. Every
vertex of SP~! can be joined to the base vertex by an edge-path in SP~! of
length less than N, so by Proposition 3.4, the numbers k; for the various
simplices in the image of g are bounded by a number of the form a", where
a is a constant which depends only on n. By Lemma 4.2, the number of
p-simplices necessary to cone off a single simplex is at most a?", so that the
contraction of g takes place in a subcomplex of X containing at most Na?"
p-simplices. O

Corollary 4.4. The p-dimensional isoperimetric functions for the groups
Aut(F,) and Out(F,) are at most ezponential, for n > 3.

Proof. The p-dimensional isoperimetric function for a group I' may be com-
puted by computing the corresponding function for any (p — 1)-connected
CW-complex quasi-isometric to I'. ([A], [Gr2]). Thus it suffices to check
that X is contractible, locally finite and the action of I' on X has finite
simplex-stabilizers and finite quotient X/T" (see [Gh], Prop. 1.1).

We have already seen (see Remark 4.1) that X is contractible. Local
finiteness of X follows from the fact that the complementary regions of a
simple sphere system S are punctured balls, and in a punctured ball there
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are only finitely many isotopy classes of embedded 2-spheres, determined by
how they separate the punctures.

If T, is the stabilizer of a simplex 0 = S, C S; C ... C Si, then T, is
contained in the stabilizer of the system S;. By passing to a finite-index
subgroup of I's, we may assume each component of M — S} is taken to
itself by a diffeomorphism which fixes each of its boundary spheres. Such
diffeomorphisms are isotopic to the identity modulo twists along the spheres
of S, since the complementary regions are punctured 3-balls. This shows
that the stabilizer I's,, and hence I',, is finite.

Minimal simple sphere systems S have M — S connected and simply-
connected, and it is a standard 3-manifold fact that any two such systems
are equivalent under a diffeomorphism of M. Since M —S is a punctured ball,
a minimal simple system is contained in only finitely many larger systems,
and finiteness of X/T" follows. O

5. Mapping class groups.

Given any punctured orientable surface with fundamental group F;, the
mapping class group I' of the surface is the subgroup of Out(F,) which
stabilizes the set of cyclic words in F;, represented by simple loops around
the punctures. There is a natural subcomplex of the sphere complex X for
Out(F,,) which is stabilized by I', and which can be described in terms of
the surface as follows. Enlarge each of the punctures to a circle to form a
compact surface N with boundary. By an arc in N we mean an imbedded
arc with endpoints in the boundary of N. An arc system is a set of disjoint
arcs, with no two parallel, i.e. isotopic by an isotopy of the pair (N,dN),
and none trivial, i.e. isotopic to an arc in the boundary. Isotopy classes of
arc systems form a simplicial complex A(N), where a k-simplex is an arc
system with k + 1 arcs; again, isotopy is required to preserve, but not fix,
the boundary.

An arc system A is simple if each component of N — A is a disk. The
complex X (N) is defined to be the geometric realization of the partially
ordered set of isotopy classes of simple arc systems, so is a subcomplex
of the barycentric subdivision of A(N). Contractibility of both A(N) and
X(N) follows from work of Harer [Hal, Ha2]. See [H2] for a proof in the
spirit of the present paper that A(N) is contractible; this proof can easily
be modified to show that the subcomplex X (N) is also contractible.

Alternatively, we now describe a natural embedding of X (/N) in a sphere
complex X = X (M) for a suitable M, such that the contraction of X con-
structed in the previous section restricts to a contraction of X(N). If we
“fatten up” N to a handlebody N x I, then double it by gluing two copies
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together by the identity on the boundary d(IV x I), we obtain a closed 3-
manifold M which is a connected sum of S* x S?’s. Associating to each arc
o in N the 2-sphere (o x I) Ug: (a X I) in M defines a simplicial map from
A(N) to the sphere complex S(M) which takes X (N) to X = X(M). This
“spherification” map o : X(N) — X is injective since the injective map
assigning to each arc complex the dual simplicial R-tree factors through
S(M).

The contractions of X and X(N) depend on normal form, which for arc
systems is a classical notion considerably less subtle than for sphere systems:
an arc system A is in normal form with respect to an arc system B if it has
first been isotoped to minimize the number of points of AN B, and then arcs
of A isotopic to arcs of B have been isotoped to coincide with these arcs.
Such a normal form is unique up to isotopy through normal form systems,
in contrast with the weaker notion of equivalence for normal forms of sphere
systems. It is not hard to check that the spherification map o : X(N) —» X
takes normal form arc systems to normal form sphere systems.

We claim that the combing/contraction of X constructed in the previous
section restricts to a combing/contraction of the subcomplex X (IN), i.e. the
cones constructed in X on simplices of X (V) are entirely contained in X (V).
To see this, let A and B be arc systems and consider the innermost-circle
surgery process applied to the sphere systems S = 6(A) and ¥ = o(B). The
surgery has the same effect as pushing arcs of A “across the ends” of B, then
applying o to the resulting arc system. This process of surgering arcs is very
much like the one in [H2], the only difference being that in [H2] one pushes
arcs of A across only one end of each arc of B, whereas the surgery process
for spheres dictates pruning all ends of the trees of T'(0(A)) simultaneously.
Note that for spherifications of arc systems these trees are homeomorphic to
intervals, with no branching.

The mapping class group I' acts naturally on the contractible complex
X (N) with finite stabilizers and finite quotient, so X (V) is quasi-isometric
to I'. The proof in the previous section that Out(F,) satisfies exponential
isoperimetric inequalities in all dimensions therefore restricts to a proof for
T.

However, for I" one can get more information by combing in the opposite
direction, from an arbitrary simple arc system A towards the fixed simple
arc system B as follows. We first fix an ordering (3, 5;,... on the arcs of B
and choose an endpoint z; for each ;. Assuming A is in normal form with
respect to B, let i be the smallest index such that A meets (; transversely
in at least one point. Then surger A by sliding the point of AN g; closest to
z; along (; to z;, then separating the arc of A which now meets z; into two
disjoint arcs which do not intersect 5; near z;. In terms of spherifications this
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is surgering o(A), using the innermost circle of 0(A) No(B) which bounds a
disk containing o(z;). Any trivial or duplicate arcs produced by the surgery
are discarded. The resulting arc system can be perturbed to be disjoint
from A, so A is joined to this new system by a path of length at most two
in X(N). This is the first segment of the combing of A toward B, and the
process is then repeated until an arc system is produced which is disjoint
from B except for arcs they have in common. This system is then joined to
B by a path of length at most two in X (N), completing the combing path
for A. This combing is a combinatorial analog of the contraction process of
[H2].

Proposition 5.1. The combing of X(N) described above is asynchronously
bounded, and induces an asynchronous bounded combing of I.

Proof. Fix the simple arc system B, and let A C A’ be two simple arc systems
which form an edge in X(N). We claim that the combing paths from A to
B and from A’ to B stay within distance two of each other in X (N).

Ordering and orienting the arcs of B has the effect of ordering the points of
transverse intersection of A’ with B and the subset of transverse intersection
points of A and B. The surgeries which produce the combing paths eliminate
these intersection points in order.

Several surgeries on arcs of A’ may be required before we get to the first
point in ANB. Each of these surgeries produces an arc system which contains
A. The next surgery, eliminating a point of A N B, produces an arc system
A} which is compatible with A and contains the system A; obtained by
surgering A to eliminate this point. The surgery process then proceeds from
A; C Al

The edge paths of A(N) produced by these surgeries are related by a
simplicial homotopy as shown in Figure 3. The edge path for A’ runs hor-
izontally across the top, while that for A runs across the bottom. After
barycentric subdivision we have a simplicial homotopy in X (N) between the
combing paths for A and A’, in which the paths remain at most two edges
apart.

The complex X(N) is quasi-isometric to I', and existence of an asyn-
chronous bounded combing is a quasi-isometry invariant. O

The difficulty with extending this proof to Aut(F},) is that the component
trees of a graph T'(S) can have branching, so one cannot always prune them-
from a fixed endpoint. One is more or less forced to prune all free ends
simultaneously, if the process is to be at all canonical. But for a pair S C ',
the trees of T'(S) need not look much like the trees of 7'(S’), so the sequence of
canonical prunings for 7'(S) may not be very closely related to the sequence
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for T(S").
’ ’
A A,
oo e B
A A,
Figure 3.

This proposition gives an alternative proof that I' satisfies an exponential
isoperimetric inequality, since this is true for any group with an asynchronous
bounded combing ((ECHLPT], p. 154).
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