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ON A BASIC PROBLEM FOR A SECOND ORDER  
DIFFERENTIAL EQUATION W ITH A DISCONTINUOUS 
COEFFICIENT AND A SPECTRAL PARAMETER  
IN THE BOUNDARY CONDITIONS

KHANLAR R. MAMEDOV

Department o f Mathematics. Mersin University. Turkey

Abstract, In the present paper we investigate the completeness, minimal
ity and basic properties of the eigenfunctions of one discontinuous Sturm- 
Liouville problem with a spectral parameter in boundary conditions and trans
mission conditions.

1. Introduction

We consider the discontinuous boundary value problem with a spectral parameter 
in the boundary conditions for a second order ordinary differential equation:

l(u) =  —p(x)u" +  q(x)ii =  Xu, x E [a, c) U (c, b] (1)
a 'nit(a) — ai2it'(a) =  A (aoiu(a) — a'22U?(a)) (2)
■3llU(b) -  .'*12u'ib) = A (,.%iu(b) -  ;'W (& )) (3)

u(c +  0) — u(c — 0) =  0 (4)
ii, (c+  0) — u'(c — 0) =  — X5iii(c) (5)

where p(x)  =  \  for x  E [a, c) and p(x)  =  \  for x  E (c, 6], q(x)  is a real’ Pi ' ' P 2 v V .

valued continuous function on the intervals [a, c) and (c, 6] and has a finite limits 
q(c ±  0) =  lim q(x)\ pi, ay,, .% ( i , j  =  1,2) are real constants. We assume

also that Ji > 0 and

Pi
a n  a  12 

a*2i a*22 P2
i -412 

fhl  $22

la  the present work we investigate the completeness, the minimality and the basic 
properties of the system of eigenfunctions of the discontinuous boundary value 
problem (l)-(5). Note that the spectral properties of the boundary-value problem
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with a discontinuous coefficient have been investigated earlier in [8], [11], [12] 
and [13]. This problem with physical applications has been discussed in [9]. In [3] 
the properties of eigenvalues and eigenfunctions of the problem (1)—(5) have been 
investigated, and asymptotic formulas for the eigenvalues and eigenfunctions have 
been obtained. We will use these results in our work.
For the ordinary differential equation in the continuous case, the boundary prob
lems regarding the subject of our work with a spectral parameter in the boundary 
condition have been investigated in many other works (see e.g. [2,4-7,10,14]).

2. Main Results

To investigate the basic property of the problem (1)—(5) we define a special Hilbert 
space. We denote by i f  =  L 2 [a, b] © C3, the Hilbert space of all elements u =  
(u(x), ui, U2, m )  with a scalar product defined by

/•c ____ j-b ____ 1 1 1
(u , v) =  p\  /  u(x)v(x)dx  +  /  u(x)v(x)dx  -|-----u\W[ H----- U2V2 +  —U3U3

Ja Jc pi p2 01
(6)

where u(x) e  L2[a, c) U 1)2(0, b] and « i, «2, u3 e  C. We assume that pi > 0, 
p2 > 0. Regarding the problem (1)—(5), let A  be a operator defined by the formula

Ay = ( -p (x )u"  +  q(x)u, anu(a )  — a±2u (a),
(7)

0 n u (a ) — 0 i 2ti (a), u'(c +  0) — u'(c — 0))

on the domain

D(A)  =  {u e  i f ;  u = (u(x) ,ui ,U2 , u3), u(x) £ AC[a, b],

u{x )  £ AC[a, c), u (x) £ AC(c,b], u?( c ± 0 )  =  lim «(a:),

l(u) £ L2[a,b), u\  =  Q'nu(a) — a i 2u?(a),

U2 = 0\\u(a) — 012u'(a), u3 = — Siu(c)}

where AC[a, b] denotes the space of all absolutely continuous functions on the 
interval [a, b).
In [3] it has been shown that the eigenvalues of the boundary-value problem (1)- 
(5) coincide with the zeros of an entire function and form at most countable and 
bounded below set which is convergent to the infinity at the infinity. We may 
renumber this set as Ao < Ai < A2 < • • • counted according to their multiplicity. 
In the other cases, from the properties of the operator A  and a -/-indefinite metric, 
the operator A  has infinitely many non-real eigenvalues [1],
It is clear that the spectral problem (1)—(5) is equivalent to the eigenvalues problem

Au  =  Xu (8)
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for the operator A, and the following lemma regarding this is proved.

Lemma 1. The eigenvalues o f the spectral problem (1)—(5) with multiplicity coin
cide with the eigenvalues o f the operator A. For every one chain o f the eigenfunc
tions yo ,y i , - - - ,yh  corresponding to the eigenvalue Xq o f the problem (1)—(5) is 
coincide with the eigenfunctions yo,yi, ■ ■ ■ ,Vh corresponding to the same eigen
value Xq o f the operator A, where

Uk =  (Uk(x); 021 u(a) — a.22u(a) ,  02iu(b) — 022u(b), —Siu(c) ) , k = 0 , 1 , . . . ,  h.

Proof: The proof of the lemma is obtained by directly replacing the values of .4 it 
and it in the equality (8). Specially, it can be obtained from the general Lemma 1.4 
in [14]. □
Lemma 2. The operator A  is self adjoint in the domain D(A) o f the Hilbert space 
H.

Proof: Lemma 1.5 in [14] says that the domain D(A)  is everywhere dense in the 
Hilbert space in more general case. According to [13] the operator A  is symmetric 
and has a discrete spectrum. Thus, there exists a number A such that R(A  — XI) = 
H.  Hence, the operator A  is selfadjoint in H.  □
Theorem 1. The eigenfunctions o f the operator A  form a orthonormal basis in the 
space I f  L 2 [a, 6] © C3.

Proof: According to [3], the operator A  has countable many eigenvalues {Afe}g° 
each one of them convergent to the infinity at the infinity. Therefore, the operator 
A — XI has an inverse in the Hilbert space H  except for the isolated eigenvalue 
Afc. Specially, taking A =  0, the bounded operator A-1 is defined in H. The 
selfadjoint operator A-1 has at most countable many eigenvalues and each one of 
them converges to zero at the infinity. So, the operator A-1 is a compact operator. 
By the Hilbert-Schmidt theorem regarding compact operators, we have that the 
eigenfunctions of the operator A form an orthonormal basis in H. □

Now we investigate the cases pi > 0, p2 =  0 or pi =  0, p2 > 0. In these cases, 
only one of these boundary conditions depends on the spectral parameter A. We 
consider the case pi > 0, p2 =  0. In the Hilbert space H  =  L 2 [a, b} © C2 we 
define the operator .41 by the formula

Afu, = (—p(x)u"  +  q(x)u, anu(a )  — a i 2u ( a ) , u ( c  +  0) — u ( c  — 0)) (9)

and its domain

D(Ai) =  {u £ H ; u =  (u(x) ,ui ,U2), u(x) £ AC[a, b],

u'(x) £ AC[a,c), u ' (x )£AC(c ,b] ,  u?( c ± 0 ) =  lim u(x),
x—*ci0

l(u) £ L 2[a, 6], ui  =  au 'u (a) — a i 2u(a),  112 =  — Siu(c)}.
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In the Hilbert space H  =  £2 [a, b] © C2 we define a scalar product by the formula

for the elements u = (u(x), ui, uf) 6 H  and v =  (v(x), v\, V2) 6 H.  In these 
cases too, Lemma 1 and Lemma 2 concerning the equality of the eigenvalues prob
lem (8) and the boundary problem

are proved. Repeating the idea of the proof of Theorem 1 we prove the following 
theorem.

Theorem 2. The eigenfunctions o f the operator A \ form an orthonormal basis in 
the Hilbert space H  = L 2 [a, b] ® C2.

In the case pi =  0, p2 > 0 we have the boundary-value problem

—p(x)u  -)- q(x)u = Xu, x  6 [a, c) U (c, b] 

au 'u (a) — a \2  u' (a) =  0 

0nu(b)  — 0i2u(b) =  A (02iu(a) — 022u(a)) 
u(c +  0) — u(c — 0) =  0 

u ( c  +  0) — u ( c  — 0) =  — X5iu(c).

Corollary 1. For the case pi > 0, p2 > 0, the remainder system o f eigenfunctions 
{un (a:)}“  o f the boundary problem (1)—(5) obtained by omitting three elements 
from them is a complete and minimal system in L 2[a, b].

Proof: By Theorem 1, the system of all eigenfunctions vf (x )  =  {uk(x), a, b, c} 
(a, b, c e  C) of the boundary problem (1)—(5) forms a basis in H  = L 2 [a, b] ® C3. 
Hence, the system of the eigenfunctions {2n(:c)}“  is complete and minimal in 
H.  We denote by P  the orthogonal projection defined by the formula Pu,k(x) =  
un(x). Then, of course, codim P  =  3. According to Lemma 2.1 in [14], the 
complementary system in {Pu,k(a:)}^0 =  {jin(r)} “  obtained by omitting three 
elements from (u n (x )}“  is a complete and minimal system in L 2 [a,b\. Hence, the 
complementary system of eigenfunctions {«n(a:)}“  of the boundary problem (1)—
(5) obtained by omitting three elements from {«n(a:)}“  is a complete and minimal 
system in L 2 [a, b]. □

—p(x)u"  +  q(x)u =  Xu, x  6 [a, c) U (c, b] ( 10)

( 1 1 )

(12)

(13)
(14)

au 'u (a) — a i 2u(a)  =  A (021 u(a) — CX22U (a)) 

0nu(b) — 0 i2 u(b)  =  0 

u(c +  0) — u(c — 0) =  0 

u ( c  +  0) — u ( c  — 0) =  — X5iu(c)
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In the similar way we obtain the following result.

Corollary 2. In the cases pi > 0, p2 =  0 or pi = 0, p2 > 0, the complementary 
systems o f eigenfunctions o f the boundary problem (10)—(14) obtained
by omitting two elements from them are complete and minimal systems in L 2 [a, b}.

To investigate the cases pi > 0, p2 < 0 or pi < 0, p2 > 0 we assume that the 
operator A  is defined by the formula (7) on the domain D(A)  and introduce the 
operator J

n o o o\
0 sgn pi 0 0
0 0 sgn p2 0

\0 0 0 1/
which is selfadjoint and has a bounded inverse operator in I f  L-> [a, b] ® C3. In 
this case, the boundary problem (l)-(5) is equivalent to the eigenvalue problem (8) 
or the eigenvalue problem for the operators pencil

(.B  -  A J)u  = 0 (15)

in the space H.  In fact, the operator G =  B  — XJ  is bounded and has an inverse 
operator. Applying J  to the self side of (8) we obtain that (8) is equivalent to (15). 
In the case pi >  0, p2 < 0 the scalar product in H  =  L 2 [a, 6] © C3 is defined by 
the equality

rc  ____ rb ____ 1 1 1

(u,v)  =  p\  /  u(x)v(x)  dx + P2 /  u(x)v(x)  da: H-----ufU j------U2V2 +  Tii3W-
J a J c pl p2

where u{x) 6 L 2[a, c) U L 2(c, b} and u\,U 2 , u% 6 C.
(16)

Lemma 3. The operator A  is J-selfadjoint in the space H.

Proof: In [14] by Lemma 1.5, in more general case it has shown that the domain 
D(A)  is everywhere dense in space H.  From the equalities (7) and (16) and ap
plying two times the integration by parts as in Theorem 1, we have that

{Bf , g)  = (f , B g )

for f , g E  D(A)  and B  =  JA.  Then the operator A  is ./-symmetric in the space 
I f.  It has been obtained in Section IV of [3], that the eigenvalues of the boundary 
problem (l)-(5) are zeros of an entire function and form a bounded set. In the con
sidered case in the similar way it can be proved that the operator A  has a discrete 
spectrum. Taking into consideration that the operator B  is symmetric we have that 
the operator JA  is selfadjoint. □

Theorem 3. The eigenfunctions o f the operator A  form a Riesz basis in the Hilbert 
space I f  L 2 [a, b] © C3.
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Proof: According to Lemma 3 the operator A = J  1B  is J-selfadjoint in H. 
Taking into consideration the ideas of Theorem 1 and according to the Azizov- 
Iokhvidov theorem in Section IV of [1], we obtain that the eigenfunctions of the 
operator A  form a Riesz basis in the Hilbert space H  =  L2[a, b] © C3. □

Following the similar method one can prove the same result for the case pi <  0, 
p2 > 0. Corollary 1 is true for these cases, too.
Now we consider the cases pi < 0, p2 =  0 or pi =  0, p2 < 0. For the case pi < 0, 
p2 =  0 the scalar product in H  =  L 2 [a, b] © C2 is defined by the equality

rc  ____ rb ____ 2 2
(u, v) =  p\ / u(x)v(x)  dx + P2 /  u(x)v(x)  d x ------ufUi +  — U2V2

J a Jc pi $1

and we assume that the operator Ai  is defined by the equality (9) in the domain
D(Ai) .  Let the operator Ji be

(1  0 ox
J i =  0 Sgn pi 0

Vo 0 1 /
which is selfadjoint and has a bounded inverse operator in H  L-> [a, b] ® C2. In 
this case, too, it can be shown that Lemma 1 and Lemma 3 regarding the equality 
of the eigenvalues problem (8) and the boundary problem (10)—(14) are proved. 
Repeating the proof of Theorem 3 for this case we have the next theorem.

Theorem 4. The eigenfunctions o f the operator A i forms a Riesz basis in the space 
H  =  L2[a, b] © C2.

By analogy, the same result can be obtained for the case pi =  0, p2 < 0.
For the cases pi < 0, p2 =  0 and pi =  0, p2 < 0 Corollary 2 proves.
In the case pi < 0, p2 < 0 we define the scalar product in H  L2 [a,b] © C3 by
the equality

rc ____ rh ____ 1 1 1
(u,v)  = p\ / u(x)v(x)  dx +  P2 / u ( x ) v ( x ) d x ----- u f U i ------U2V2 +  —  U3V3

J a Jc pi p2 $1

and we assume that the operator A  is defined in the domain D(A).  Let the operator 
J 2 be

n o  0 ox
p  - i  0 0 

j 2 ~  0 0 - 1 0  
Vo 0 0 1 /

which is selfadjoint and has a bounded inverse operator in H  L2 [a, b] © C3. In 
the considered case, the boundary problem (1)—(5) is equivalent to the eigenvalues 
problem (8) or the eigenvalues problem for the operators pencil (15) in the space
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H,  where B  =  J^A. In the similar way of the other cases we obtain the following 
results.

Theorem 5. In the case pi < 0, p2 < 0 the eigenfunctions o f the operator A form 
a Riesz basis in the Hilbert space H  = £2 [a, b] ® C3.

Using this theorem and the proof of Corollary 1 we have the next result.

Corollary 3. In the case pi < 0, p2 < 0, the complementary system o f eigen
functions o f the boundary problem (1)—(5) obtained by omitting two elements from 
them is a complete and minimal system in L 2[a, b}.
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