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ALGEBRAIC APPROACH TO THE MORSE OSCILLATORS
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Abstract. In this paper we obtain the ladder operators for the 1D and 3D
Morse potential. Then we show that these operators satisfy SU(2) commuta-
tion relation. Finally we obtain the Hamiltonian in terms of the su(2) algebra.

1. Introduction

In the recent years, Lie algebraic methods have been the subject of interest in many
of fields of physics. For example the algebraic methods provide a way to obtain
wave functions of polyatomic molecules [15, 16, 18, 20–22]. These methods pro-
vide a description to Dunham-type expansions and to force-field variational meth-
ods [17]. It is clear that systems displaying a dynamical symmetry can be treated
by algebraic methods [1, 2, 19, 23]. For details concerning the ladder operators
of quantum systems with some important potentials such as Morse potential the
Pöschel-Teller one, the pseudo harmonic one, the infinitely square-well one and
other quantum systems we refer to [3–13].

The Morse potential is a solvable potential, hence the interest to deal with it using
different approaches, in particular factorization approach [1, 4, 19]. According to
these methods as su(1, 1) algebra has been found in [4,9,19]. The Morse potential
has been studied in terms of SO(2, 1) and SU(2) groups [8, 13]. In fact SU(2) is
the symmetry group associated with the bounded region of the spectrum [12].

In this paper we study the dynamical symmetry for the one and three-dimensional
Morse oscillator by another algebraic approach. We establish the creation and
annihilation operators directly from the eigenfunctions for this system, and that
the ladders operators construct the dynamical algebra su(2).
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2. Algebraic Method in One-Dimensional Potential

We consider the Schrödinger equation with the Morse potential(
− ~2

2M

d2

dx2
+ VD(x)

)
ψn(x) = Enψn(x) (1)

i.e.,
VD = V0(1− exp(−ax))2 (2)

and where V0 and a are constants. By considering the following change of coordi-
nates

r = 2 exp(−ax) (3)
we obtain (

d2

dr2
+

1

r

d

dr
− (

1

4
− 1

r
− εn
r2

)

)
ϕn(r) = 0 (4)

where εn = En
V0

and a2 = 2M V0
~2 . From the behavior of the wave functions at the

origin and at infinity, we can consider the following ansatz for ϕn(r)

ϕn(r) = Nrs exp(−r
2
) 1F1(−n+

1

2
, 2n, r) (5)

in which
s =

√
−εn := n, εn = −n2 (6)

1F1(−n + 1
2 , 2n, r) is the hypergeometric function, and N is the normalization

factor. From consideration of the finiteness of the wave function (5), it is shown
that equation (6) that the general quantum condition is

−s+ 1

2
= −m (7)

and therefore we can write the wave function as

ϕm(r) = Nmr
s exp(−r

2
)L2s

m(r) (8)

where the L2s
m(r) are the associated Laguerre polynomials. Here we have used the

following relation between hypergeometric functions and Laguerre polynomials

L2s
m =

Γ(2s+m+ 1)

m! Γ(2s+ 1)
1F1(−m, 2s+ 1, r) (9)

and in this way we can obtain the normalization factor Nm that is given by the
formula

Nm =

√
m!

Γ(m+ 2s+ 1)
· (10)

Now we introduce the ladder operators in the form

L̂±ϕm(r) = l±ϕm±1(r). (11)
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By considering the following ansatz for ladder operator

L̂± = A±(r)
d

dr
+B± (12)

we have
d

dr
ϕm(r) =

s

r
ϕm(r)− 1

2
ϕm(r) +

m

r
ϕm(r)− m+ 2s

r

Nm

Nm−1
ϕm−1(r). (13)

Further on, we can rewrite the above equation as(
−r d

dr
+ (s+m)− r

2

)
ϕm(r) = (m+ 2s)

Nm

Nm−1
ϕm−1(r) (14)

in order to obtain the operator

L̂− = −r d

dr
+ (s+m)− r

2
(15)

with eigenvalues
l− =

√
m(m+ 2s). (16)

Similarly one can obtain

L̂+ = r
d

dr
+ (s+m+ 1)− r

2
, l+ =

√
(m+ 1)(m+ 2s+ 1). (17)

Now, using relation (7) we have for the ladder operators

L̂− = −r d

dr
+ (2m+

1

2
)− r

2
, L̂+ = r

d

dr
+ (2m+

3

2
)− r

2
(18)

with eigenvalues

l− =
√
m(3m+ 1), l+ =

√
(m+ 1)(3m+ 2). (19)

Now, we obtain the algebra associated with the operators L̂−, L̂+. Using equation
(11, 16, 17) we can calculate their commutator

[L̂−, L̂+]ϕm = 2(m+ s+
1

2
). (20)

Now, we define the operator L̂0 as

L̂0 = 2(m̂+ s+
1

2
) (21)

where the operator m̂ is defined by the following relations

m̂ϕm(r) = mϕm(r) (22)

and therefore one can rewrite the eigenvalues of L̂0 as

l0 = 2(m+ s+
1

2
) (23)
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The operators L̂±, L̂0 satisfy the commutation relations of the Lie algebra of su(2)

[L̂−, L̂+] = 2L̂0, [L̂0, L̂−] = −L̂−, [L̂0, L̂+] = L̂+. (24)

Then we notice that in terms of the su(2) algebra the hamiltonian has following
form

Ĥ = −V0
16
L̂2
0 (25)

with eigenvalues

En = −V0
4
(2m+ 1)2. (26)

Using equations (6), (7) we can rewrite the eigenvalues as

En = −V0
4
(2s)2 = −V0n2 (27)

which is consistent with the definition of En in equation (1), where εn = En
V0

, and
εn given by equation (6).

3. Three-Dimensional Morse Potential

In this section we extend the algebraic approach of previous section to the three-
dimensional Morse potential. The Morse potential in three-dimension is

V (r) = V0(exp(−2ar)− 2 exp(−ar)) (28)

and therefore the radial part of the Hamiltonian given by

H = − ~2

2M
(
∂2

∂r2
+

2

r

∂

∂r
) + V0(exp(−2ar)− 2 exp(−ar)). (29)

Now by using x = a r the above equation can be rewriten in the dimensionless
form

H = −~2a2

2M
(
∂2

∂x2
+

2

x

∂

∂x
) + V0(exp(−2x)− 2 exp(−x)). (30)

If in the Schrödinger equation

ĤΨm(x) = EmΨm(x) (31)

we take ~2a2
2M = V0, Em

V0
= εm, then we have(

−
(
∂2

∂x2
+

2

x

∂

∂x

)
+
(
exp(−2x)− 2 exp(−x)

))
Ψm(x) = εmΨm(x). (32)

Introducing

Ψm(x) :=
Φm(x)

x
(33)

we can rewrite equation (32) as(
− ∂2

∂x2
+ (exp(−2x)− 2 exp(−x)

)
Φm(x) = εmΦm(x) (34)
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which is the one-dimensional Morse potential problem from the previous section.
The solutions of the above equation are

Φm(ρ) = Nmρ
s exp(−ρ

2
)L2s

m(ρ) (35)

in which ρ := 2 exp(−x) and Nm is again the normalization factor. Then we
obtain the following relation for the functions Ψm(ρ)

Ψm(ρ) = Nm
ρse−

ρ
2

ln 2
ρ

L2s
m(ρ). (36)

Since 0 ≤ x ≤ +∞, then, 0 ≤ ρ ≤ 2, we obtain the normalization factor from the
formula

N2
m

∫ 2

0

(
ρse−

ρ
2

ln 2
ρ

L2s
m(ρ)

)2

dρ = 1. (37)

Now we want to obtain the ladder operators and for this purpose we use the relation
given in [14]

ρ
d

dρ
Lα
n(ρ) = nLα

n(ρ)− (n+ α)Lα
n−1(ρ) (38)

ρ
d

dρ
Lα
n(ρ) = (n+ 1)Lα

n+1(ρ)− (n+ α+ 1− ρ)Lα
n(ρ) (39)

where Lα
n(ρ) are the associated Laguerre function. By the action of the differential

operator d
dρ on the wave functions (36) and using equation (38)(

ρ
d

dρ
− (s+m) +

ρ

2
− 1

ln 2
ρ

)
Ψm(ρ) = −(m+ 2s)

Nm

Nm−1
Ψm−1(ρ) (40)

we can define the lowering operator

L̂− = −ρ d

dρ
+ (s+m)− ρ

2
+

1

ln 2
ρ

(41)

with eigenvalues

l− = (m+ 2s)
Nm

Nm−1
· (42)

Now we proceed to find the corresponding creation operators. Here we should
make use of equation (39)(

ρ
d

dρ
+ (s+m+ 1)− ρ

2
− 1

ln 2
ρ

)
Ψm(ρ) = (m+ 1)

Nm

Nm+1
Ψm+1(ρ) (43)

Then, we can define the operator

L̂+ = ρ
d

dρ
+ (s+m+ 1)− ρ

2
− 1

ln 2
ρ

(44)
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which has as eigenvalues

l+ = (m+ 1)
Nm

Nm+1
· (45)

Now we investigate the algebra associated with the operators L̂+, L̂−. Based on
the equations (40, 42) and(43, 45) we can calculate their commutator [L̂−, L̂+]

[L̂−, L̂+]Ψm(ρ) = 2(m+ s+
1

2
)Ψm(ρ) (46)

suggesting to introduce the eigenvalues

l0 = 2(m+ s+
1

2
). (47)

In this way, we can define the operator

L̂0 = (m̂+ s+
1

2
). (48)

The operators L̂+, L̂−, L̂0 satisfy the commutation relations

[L̂−, L̂+] = 2L̂0, [L̂0, L̂−] = −L̂−, [L̂0, L̂+] = L̂+. (49)

4. Conclusion

In this paper we have obtained the raising and lowering operators for the 1D and
3D Morse potentials. We have shown that SU(2) is the dynamical group associated
with the bounded region of the spectrum. Also we have obtained the Hamiltonian
and eigenvalues of the Hamiltonian in terms of the su(2) algebra.
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