

ALGEBRAIC APPROACH TO THE MORSE OSCILLATORS

MOHAMMAD R. SETARE

Department of Physics, University of Kurdistan, Sanandaj, Iran

Abstract

In this paper we obtain the ladder operators for the $1 D$ and $3 D$ Morse potential. Then we show that these operators satisfy $\mathrm{SU}(2)$ commutation relation. Finally we obtain the Hamiltonian in terms of the $\mathfrak{s u}(2)$ algebra.

1. Introduction

In the recent years, Lie algebraic methods have been the subject of interest in many of fields of physics. For example the algebraic methods provide a way to obtain wave functions of polyatomic molecules [15, 16, 18, 20-22]. These methods provide a description to Dunham-type expansions and to force-field variational methods [17]. It is clear that systems displaying a dynamical symmetry can be treated by algebraic methods [1,2, 19, 23]. For details concerning the ladder operators of quantum systems with some important potentials such as Morse potential the Pöschel-Teller one, the pseudo harmonic one, the infinitely square-well one and other quantum systems we refer to [3-13].
The Morse potential is a solvable potential, hence the interest to deal with it using different approaches, in particular factorization approach $[1,4,19]$. According to these methods as $\mathfrak{s u}(1,1)$ algebra has been found in $[4,9,19]$. The Morse potential has been studied in terms of $\mathrm{SO}(2,1)$ and $\mathrm{SU}(2)$ groups [8, 13]. In fact $\mathrm{SU}(2)$ is the symmetry group associated with the bounded region of the spectrum [12].
In this paper we study the dynamical symmetry for the one and three-dimensional Morse oscillator by another algebraic approach. We establish the creation and annihilation operators directly from the eigenfunctions for this system, and that the ladders operators construct the dynamical algebra $\mathfrak{s u}(2)$.

2. Algebraic Method in One-Dimensional Potential

We consider the Schrödinger equation with the Morse potential

$$
\begin{equation*}
\left(-\frac{\hbar^{2}}{2 M} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}+V_{D}(x)\right) \psi_{n}(x)=E_{n} \psi_{n}(x) \tag{1}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
V_{D}=V_{0}(1-\exp (-a x))^{2} \tag{2}
\end{equation*}
$$

and where V_{0} and a are constants. By considering the following change of coordinates

$$
\begin{equation*}
r=2 \exp (-a x) \tag{3}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} r^{2}}+\frac{1}{r} \frac{\mathrm{~d}}{\mathrm{~d} r}-\left(\frac{1}{4}-\frac{1}{r}-\frac{\varepsilon_{n}}{r^{2}}\right)\right) \phi_{n}(r)=0 \tag{4}
\end{equation*}
$$

where $\varepsilon_{n}=\frac{E_{n}}{V_{0}}$ and $a^{2}=\frac{2 M V_{0}}{\hbar^{2}}$. From the behavior of the wave functions at the origin and at infinity, we can consider the following ansatz for $\phi_{n}(r)$

$$
\begin{equation*}
\phi_{n}(r)=N r^{s} \exp \left(-\frac{r}{2}\right)_{1} F_{1}\left(-n+\frac{1}{2}, 2 n, r\right) \tag{5}
\end{equation*}
$$

in which

$$
\begin{equation*}
s=\sqrt{-\varepsilon_{n}}:=n, \quad \varepsilon_{n}=-n^{2} \tag{6}
\end{equation*}
$$

${ }_{1} F_{1}\left(-n+\frac{1}{2}, 2 n, r\right)$ is the hypergeometric function, and N is the normalization factor. From consideration of the finiteness of the wave function (5), it is shown that equation (6) that the general quantum condition is

$$
\begin{equation*}
-s+\frac{1}{2}=-m \tag{7}
\end{equation*}
$$

and therefore we can write the wave function as

$$
\begin{equation*}
\phi_{m}(r)=N_{m} r^{s} \exp \left(-\frac{r}{2}\right) L_{m}^{2 s}(r) \tag{8}
\end{equation*}
$$

where the $L_{m}^{2 s}(r)$ are the associated Laguerre polynomials. Here we have used the following relation between hypergeometric functions and Laguerre polynomials

$$
\begin{equation*}
L_{m}^{2 s}=\frac{\Gamma(2 s+m+1)}{m!\Gamma(2 s+1)}{ }_{1} F_{1}(-m, 2 s+1, r) \tag{9}
\end{equation*}
$$

and in this way we can obtain the normalization factor N_{m} that is given by the formula

$$
\begin{equation*}
N_{m}=\sqrt{\frac{m!}{\Gamma(m+2 s+1)}} \tag{10}
\end{equation*}
$$

Now we introduce the ladder operators in the form

$$
\begin{equation*}
\hat{L}_{ \pm} \phi_{m}(r)=l_{ \pm} \phi_{m \pm 1}(r) . \tag{11}
\end{equation*}
$$

By considering the following ansatz for ladder operator

$$
\begin{equation*}
\hat{L}_{ \pm}=A_{ \pm}(r) \frac{\mathrm{d}}{\mathrm{~d} r}+B_{ \pm} \tag{12}
\end{equation*}
$$

we have

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} r} \phi_{m}(r)=\frac{s}{r} \phi_{m}(r)-\frac{1}{2} \phi_{m}(r)+\frac{m}{r} \phi_{m}(r)-\frac{m+2 s}{r} \frac{N_{m}}{N_{m-1}} \phi_{m-1}(r) \tag{13}
\end{equation*}
$$

Further on, we can rewrite the above equation as

$$
\begin{equation*}
\left(-r \frac{\mathrm{~d}}{\mathrm{~d} r}+(s+m)-\frac{r}{2}\right) \phi_{m}(r)=(m+2 s) \frac{N_{m}}{N_{m-1}} \phi_{m-1}(r) \tag{14}
\end{equation*}
$$

in order to obtain the operator

$$
\begin{equation*}
\hat{L}_{-}=-r \frac{\mathrm{~d}}{\mathrm{~d} r}+(s+m)-\frac{r}{2} \tag{15}
\end{equation*}
$$

with eigenvalues

$$
\begin{equation*}
l_{-}=\sqrt{m(m+2 s)} \tag{16}
\end{equation*}
$$

Similarly one can obtain

$$
\begin{equation*}
\hat{L}_{+}=r \frac{\mathrm{~d}}{\mathrm{~d} r}+(s+m+1)-\frac{r}{2}, \quad l_{+}=\sqrt{(m+1)(m+2 s+1)} \tag{17}
\end{equation*}
$$

Now, using relation (7) we have for the ladder operators

$$
\begin{equation*}
\hat{L}_{-}=-r \frac{\mathrm{~d}}{\mathrm{~d} r}+\left(2 m+\frac{1}{2}\right)-\frac{r}{2}, \quad \hat{L}_{+}=r \frac{\mathrm{~d}}{\mathrm{~d} r}+\left(2 m+\frac{3}{2}\right)-\frac{r}{2} \tag{18}
\end{equation*}
$$

with eigenvalues

$$
\begin{equation*}
l_{-}=\sqrt{m(3 m+1)}, \quad l_{+}=\sqrt{(m+1)(3 m+2)} \tag{19}
\end{equation*}
$$

Now, we obtain the algebra associated with the operators \hat{L}_{-}, \hat{L}_{+}. Using equation $(11,16,17)$ we can calculate their commutator

$$
\begin{equation*}
\left[\hat{L}_{-}, \hat{L}_{+}\right] \phi_{m}=2\left(m+s+\frac{1}{2}\right) \tag{20}
\end{equation*}
$$

Now, we define the operator \hat{L}_{0} as

$$
\begin{equation*}
\hat{L}_{0}=2\left(\hat{m}+s+\frac{1}{2}\right) \tag{21}
\end{equation*}
$$

where the operator \hat{m} is defined by the following relations

$$
\begin{equation*}
\hat{m} \phi_{m}(r)=m \phi_{m}(r) \tag{22}
\end{equation*}
$$

and therefore one can rewrite the eigenvalues of \hat{L}_{0} as

$$
\begin{equation*}
l_{0}=2\left(m+s+\frac{1}{2}\right) \tag{23}
\end{equation*}
$$

The operators $\hat{L}_{ \pm}, \hat{L}_{0}$ satisfy the commutation relations of the Lie algebra of $\mathfrak{s u}(2)$

$$
\begin{equation*}
\left[\hat{L}_{-}, \hat{L}_{+}\right]=2 \hat{L}_{0}, \quad\left[\hat{L}_{0}, \hat{L}_{-}\right]=-\hat{L}_{-}, \quad\left[\hat{L}_{0}, \hat{L}_{+}\right]=\hat{L}_{+} \tag{24}
\end{equation*}
$$

Then we notice that in terms of the $\mathfrak{s u}(2)$ algebra the hamiltonian has following form

$$
\begin{equation*}
\hat{\mathcal{H}}=-\frac{V_{0}}{16} \hat{L}_{0}^{2} \tag{25}
\end{equation*}
$$

with eigenvalues

$$
\begin{equation*}
E_{n}=-\frac{V_{0}}{4}(2 m+1)^{2} \tag{26}
\end{equation*}
$$

Using equations (6), (7) we can rewrite the eigenvalues as

$$
\begin{equation*}
E_{n}=-\frac{V_{0}}{4}(2 s)^{2}=-V_{0} n^{2} \tag{27}
\end{equation*}
$$

which is consistent with the definition of E_{n} in equation (1), where $\varepsilon_{n}=\frac{E_{n}}{V_{0}}$, and ε_{n} given by equation (6).

3. Three-Dimensional Morse Potential

In this section we extend the algebraic approach of previous section to the threedimensional Morse potential. The Morse potential in three-dimension is

$$
\begin{equation*}
V(r)=V_{0}(\exp (-2 a r)-2 \exp (-a r)) \tag{28}
\end{equation*}
$$

and therefore the radial part of the Hamiltonian given by

$$
\begin{equation*}
H=-\frac{\hbar^{2}}{2 M}\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}\right)+V_{0}(\exp (-2 a r)-2 \exp (-a r)) \tag{29}
\end{equation*}
$$

Now by using $x=a r$ the above equation can be rewriten in the dimensionless form

$$
\begin{equation*}
H=-\frac{\hbar^{2} a^{2}}{2 M}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{2}{x} \frac{\partial}{\partial x}\right)+V_{0}(\exp (-2 x)-2 \exp (-x)) \tag{30}
\end{equation*}
$$

If in the Schrödinger equation

$$
\begin{equation*}
\hat{H} \Psi_{m}(x)=E_{m} \Psi_{m}(x) \tag{31}
\end{equation*}
$$

we take $\frac{\hbar^{2} a^{2}}{2 M}=V_{0}, \frac{E_{m}}{V_{0}}=\varepsilon_{m}$, then we have

$$
\begin{equation*}
\left(-\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{2}{x} \frac{\partial}{\partial x}\right)+(\exp (-2 x)-2 \exp (-x))\right) \Psi_{m}(x)=\varepsilon_{m} \Psi_{m}(x) \tag{32}
\end{equation*}
$$

Introducing

$$
\begin{equation*}
\Psi_{m}(x):=\frac{\Phi_{m}(x)}{x} \tag{33}
\end{equation*}
$$

we can rewrite equation (32) as

$$
\begin{equation*}
\left(-\frac{\partial^{2}}{\partial x^{2}}+(\exp (-2 x)-2 \exp (-x)) \Phi_{m}(x)=\varepsilon_{m} \Phi_{m}(x)\right. \tag{34}
\end{equation*}
$$

which is the one-dimensional Morse potential problem from the previous section. The solutions of the above equation are

$$
\begin{equation*}
\Phi_{m}(\rho)=N_{m} \rho^{s} \exp \left(-\frac{\rho}{2}\right) L_{m}^{2 s}(\rho) \tag{35}
\end{equation*}
$$

in which $\rho:=2 \exp (-x)$ and N_{m} is again the normalization factor. Then we obtain the following relation for the functions $\Psi_{m}(\rho)$

$$
\begin{equation*}
\Psi_{m}(\rho)=N_{m} \frac{\rho^{s} \mathrm{e}^{-\frac{\rho}{2}}}{\ln \frac{2}{\rho}} L_{m}^{2 s}(\rho) \tag{36}
\end{equation*}
$$

Since $0 \leq x \leq+\infty$, then, $0 \leq \rho \leq 2$, we obtain the normalization factor from the formula

$$
\begin{equation*}
N_{m}^{2} \int_{0}^{2}\left(\frac{\rho^{s} \mathrm{e}^{-\frac{\rho}{2}}}{\ln \frac{2}{\rho}} L_{m}^{2 s}(\rho)\right)^{2} \mathrm{~d} \rho=1 \tag{37}
\end{equation*}
$$

Now we want to obtain the ladder operators and for this purpose we use the relation given in [14]

$$
\begin{gather*}
\rho \frac{\mathrm{d}}{\mathrm{~d} \rho} L_{n}^{\alpha}(\rho)=n L_{n}^{\alpha}(\rho)-(n+\alpha) L_{n-1}^{\alpha}(\rho) \tag{38}\\
\rho \frac{\mathrm{d}}{\mathrm{~d} \rho} L_{n}^{\alpha}(\rho)=(n+1) L_{n+1}^{\alpha}(\rho)-(n+\alpha+1-\rho) L_{n}^{\alpha}(\rho) \tag{39}
\end{gather*}
$$

where $L_{n}^{\alpha}(\rho)$ are the associated Laguerre function. By the action of the differential operator $\frac{\mathrm{d}}{\mathrm{d} \rho}$ on the wave functions (36) and using equation (38)

$$
\begin{equation*}
\left(\rho \frac{\mathrm{d}}{\mathrm{~d} \rho}-(s+m)+\frac{\rho}{2}-\frac{1}{\ln \frac{2}{\rho}}\right) \Psi_{m}(\rho)=-(m+2 s) \frac{N_{m}}{N_{m-1}} \Psi_{m-1}(\rho) \tag{40}
\end{equation*}
$$

we can define the lowering operator

$$
\begin{equation*}
\hat{L_{-}}=-\rho \frac{\mathrm{d}}{\mathrm{~d} \rho}+(s+m)-\frac{\rho}{2}+\frac{1}{\ln \frac{2}{\rho}} \tag{41}
\end{equation*}
$$

with eigenvalues

$$
\begin{equation*}
l_{-}=(m+2 s) \frac{N_{m}}{N_{m-1}} \tag{42}
\end{equation*}
$$

Now we proceed to find the corresponding creation operators. Here we should make use of equation (39)

$$
\begin{equation*}
\left(\rho \frac{\mathrm{d}}{\mathrm{~d} \rho}+(s+m+1)-\frac{\rho}{2}-\frac{1}{\ln \frac{2}{\rho}}\right) \Psi_{m}(\rho)=(m+1) \frac{N_{m}}{N_{m+1}} \Psi_{m+1}(\rho) \tag{43}
\end{equation*}
$$

Then, we can define the operator

$$
\begin{equation*}
\hat{L_{+}}=\rho \frac{\mathrm{d}}{\mathrm{~d} \rho}+(s+m+1)-\frac{\rho}{2}-\frac{1}{\ln \frac{2}{\rho}} \tag{44}
\end{equation*}
$$

which has as eigenvalues

$$
\begin{equation*}
l_{+}=(m+1) \frac{N_{m}}{N_{m+1}} . \tag{45}
\end{equation*}
$$

Now we investigate the algebra associated with the operators \hat{L}_{+}, \hat{L}_{-}. Based on the equations $(40,42)$ and $(43,45)$ we can calculate their commutator $\left[\hat{L}_{-}, \hat{L}_{+}\right]$

$$
\begin{equation*}
\left[\hat{L}_{-}, \hat{L}_{+}\right] \Psi_{m}(\rho)=2\left(m+s+\frac{1}{2}\right) \Psi_{m}(\rho) \tag{46}
\end{equation*}
$$

suggesting to introduce the eigenvalues

$$
\begin{equation*}
l_{0}=2\left(m+s+\frac{1}{2}\right) . \tag{47}
\end{equation*}
$$

In this way, we can define the operator

$$
\begin{equation*}
\hat{L}_{0}=\left(\hat{m}+s+\frac{1}{2}\right) . \tag{48}
\end{equation*}
$$

The operators $\hat{L}_{+}, \hat{L}_{-}, \hat{L}_{0}$ satisfy the commutation relations

$$
\begin{equation*}
\left[\hat{L}_{-}, \hat{L}_{+}\right]=2 \hat{L}_{0}, \quad\left[\hat{L}_{0}, \hat{L}_{-}\right]=-\hat{L}_{-}, \quad\left[\hat{L}_{0}, \hat{L}_{+}\right]=\hat{L}_{+} . \tag{49}
\end{equation*}
$$

4. Conclusion

In this paper we have obtained the raising and lowering operators for the 1 D and 3D Morse potentials. We have shown that $\mathrm{SU}(2)$ is the dynamical group associated with the bounded region of the spectrum. Also we have obtained the Hamiltonian and eigenvalues of the Hamiltonian in terms of the $\mathfrak{s u}(2)$ algebra.

References

[1] Arima A. and Iachello F., Interacting Boson Model of Collective States. I-The Vibrational Limit, Ann. Phys. 99 (1976) 253-317.
[2] Cooper I., An Iintegrated Approach to Ladder and Shift Operators for the Morse Oscillator, Radial Coulomb and Radial Oscillator Potentials, J. Phys. A: Math. \& Gen. 26 (1993) 1601-1623.
[3] Dong S., Algebraic Approach to the Morse Potential and Its Coherent States, Z. Phys. Chem. 216 (2002) 103-108.
[4] Dong S., The SU(2) Realization for the Morse Potential and Its Coherent States, Can. J. Phys. 80 (2002) 129-139.
[5] Dong S. H., The Realization of Dynamic Group for the Pseudoharmonic Oscillator, Appl. Math. Lett. 16 (2003) 199-203.
[6] Dong S. H., Realization of the Dynamical Group for the Generalized Laguerre Functions, Computer and Mathematics with Application 47 (2004) 1035-1039.
[7] Dong S. and Dong S. H., A Realization of Dynamic Group for an Electron in a Uniform Magnetic Field, Int. J. Mod. Phys. E 11 (2002) 265-271.
[8] Dong S. and Dong S. H., An Alternative Approach to Study the Dynamical Group for the Modified Poschl-Teller Potential, Czech. J. Phys. 52 (2002) 753-764.
[9] Dong S., Lemus R. and Frank A., Ladder Operators for the Morse Potential, Int. J. Quan. Chem. 86 (2002) 433-439.
[10] Dong S. H and Lemus R., Ladder Operators for the Modified Pöschl-Teller Potential, Int. J. Quan. Chem. 86 (2002) 265-272.
[11] Dong S. and Ma Z., The Hidden Symmetry for a Quantum System with an Infinitely Deep Square-Well Potential, Am. J. Phys. 70 (2001) 520-521.
[12] Dong S. and Ma Z., Algebraic Approach to the Pseudoharmonic Oscillator in 2D, Int. J. Mod. Phys. E 11 (2002) 155-160.
[13] Dong S. H., Sun G. and Tang Y., The Hidden Symmetry for a Quantum System with a Poschl-Teller-Like Potential, Int. J. Mod. Phys. E 12 (2003) 809-816.
[14] Gradshteyn I. and Ryzhik I., Tables of Integrals, Series and Products, $5^{\text {th }}$ Edn., Academic Press, New York 1994.
[15] Iachello F. and Ibrahim M., Analytic and Algebraic Evaluation of Franck-Condon Overlap Integrals, J. Phys. Chem. A 102 (1998) 9427-9432.
[16] Iachello F. and Levine R., Algebraic Theory of Molecules, Oxford Univ. Press, New York 1995.
[17] Iachello F. and Oss S., Algebraic Approach to Molecular Spectra: Two-Dimensional Problems, J. Chem. Phys. 104 (1996) 6956-6963.
[18] Iachello F. and Oss S., Model of N Coupled Anharmonic Oscillators and Applications to Octahedral Molecules, Phys. Rev. Lett. 66 (1991) 2976-2979.
[19] Perelomov A., Generalized Coherent States and their Applications, Springer, New York 1985.
[20] Roosmalen O., Benjamin I. and Levine R., A Unified Algebraic Model Description for Interacting Vibrational Modes in ABA Molecules, J. Chem. Phys. 81 (1984) 59865997.
[21] Roosmalen O., Dieperink A. and Iachello F., A Dynamic Algebra for Molecular Rotation-Vibraion Spectra of Complex Molecules, Chem. Phys. Lett. 85 (1982) 3236.
[22] Roosmalen O., Iachello F., Levine R. and Dieperink A., Algebraic Approach to Molecular Rotation-Vibration Spectra. II. Triatomic Molecules, J. Chem. Phys. 79 (1983) 2515-2536.
[23] Wybourne R., Classical Groups for Physicists, Wiley, New York 1974.

