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Abstract. Here we use an extension of Rodrigues’ vector parameter con-
struction for pseudo-rotations in order to obtain explicit formulae for the
generalized Euler decomposition with arbitrary axes for the structure groups
in the classical models of hyperbolic geometry. Although the construction
is projected from the universal cover SU(1, 1) ≃ SL(2,R), most attention is
paid to the 2+1 Minkowski space model, following the close analogy with the
Euclidean case, and various decompositions of the restricted Lorentz group
SO+(2, 1) are investigated in detail. At the end we propose some possible
applications in special relativity and scattering theory.
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List of Symbols and Notations

ĉ1, ĉ2, ĉ3, n̂ normalized vectors in R2,1

ex, ey, ez unit vectors along the coordinate axes

ek, ẽk bases in su(1, 1) and sl(2,R)
zk, α, β, αk, βk complex numbers

ℜ(z), ℑ(z) real and imaginary part of a complex number

ξ, ζ, ξ̃, ζ̃ pseudo-quaternions

c, c̃, c1, c2, c3 vector parameters of pseudo-rotations

x⊗ (η z)t dyadic product of vectors in R2,1

×, f cross product of vectors in R3 and R2,1

(x, z), x· z dot product of vectors in R3 and R2,1

εijk the Levi-Civita symbol

c×, cf the Hodge dual in R3 and R2,1

I, η the identity matrix and the flat metric in R2,1

A(x) = xf an element of the Lie algebra so(2, 1)

Rh(c), Rh(ck) pseudo-rotations in R2,1

ϵ = sgn(c·c) sign of the pseudo-norm
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τ, τ̃, τk scalar parameters

φ, θ, ϕ, γ, ψk angles and rapidities

κij = ĉi · ĉj , ϵi = κii elements of the Gramm matrix

σij = ĉi · Rh(c)ĉj matrix entries of Rh(c)

ρk = n̂· ĉk, εijkρ̃k = ĉifĉj · n̂ some useful scalar products

ω = ĉ1 · ĉ2 f ĉ3 a volume element

1. Introduction

Vector decompositions of arbitrary rotations in R3 into pairs or triplets of ortog-
onal transformations have been studied repeatedly since the time of Euler, who
was the first to propose a parametrization of SO(3) with three angles, later named
after him. We can distinguish two powerful algebraic methods to deal with the
more general case of nonorthogonal axes. The first one, explicitly relying on Ro-
drigues’ formula, was proposed by Davenport [9] and recently exploited by Piovan
and Bullo [27] in a more consistent framework. The second one is based on the
vector parameter construction, proposed by Rodrigues [29] and developed in the
works of Gibbs [11], who used to call it “vector semitangent of version” (now it is
commonly known as Gibbs’ or Rodrigues’ vector) and Fedorov [10], while two of
the present authors are among the first to utilize it in classical mechanics [23, 24]
and certain quantum mechanical problems [19, 20, 22]. To our knowledge it was
first exploited in the context of Euler decomposition by Wohlhart [34], but the idea
was fully developed only recently in [5,21], where analytic solutions based on this
construction are presented.
Apart from its merits in terms of clarity and simplicity, vector parameter represen-
tation appears to provide most natural parametrization of SO(3), as it is given by
a projection from the universal cover, which has not been sufficiently emphasized
by Gibbs and Fedorov. Here we use analogous construction to obtain the general-
ized Euler parameters for a decomposition of an arbitrary element of the restricted
Lorentz group1 SO+(2, 1) projecting from its spin cover SU(1, 1). We also write
the corresponding expressions in the SL(2,R) case and thus provide explicit solu-
tions for the classical models of hyperbolic geometry - the Poincaré disk ∆, the
upper half-plane H2 and the flat three-dimensional Minkowski space R2,1.
In the following section we introduce pseudo-quaternions [8, 32] (also known as
split quaternions) and construct the hyperbolic vector parameter with their help.
In Section 3 we derive a simple method to obtain the Euler parameters in the de-
composition of a generic pseudo-orthogonal transformation in 2 + 1 dimensions

1This is just the connected component of unity in SO(2, 1), also called orthochronous, since its
elements preserve the direction of time in 2 + 1 dimensional special relativity.
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with respect to two or three almost arbitrary axes, paying special attention to more
specific cases, such as degenerate solutions and divergent parameters. Next we in-
vestigate into more detail how parabolic elements and pure rotations behave within
the group and finally provide a relevant physical example in Section 5.

2. Projective Construction

In this section we introduce the basic machinery needed for our work - Rodrigues’
formula and the vector parameter representation in the hyperbolic case. The start-
ing point is the universal cover SU(1, 1), built in a quaternion fashion, in complete
analogy with the Euclidean case. Then, following this analogy further, we project
onto SO+(2, 1) where most of the work is being done. We also comment on the
corresponding construction on SL(2,R) using the well-known isomorphism of the
Lie groups (see [12, 13]).

2.1. The Poincaré Disk and Pseudo-quaternions

We may choose a basis in su(1, 1) in the form

e1 =

(
0 1
1 0

)
, e2 =

(
0 i

−i 0

)
, e3 =

(
i 0
0 −i

)
· (1)

Then, adding the identity element

e0 =

(
1 0
0 1

)
we easily obtain a realization of the group SU(1, 1) as a submanifold of R4. More
precisely, each vector ζ ∈ R4 can be expanded as ζ = ζi ei, i = 0 . . . 3 in the
above basis (summation over repeated indices is always assumed in the text, if not
pointed otherwise). Using complex coordinates α = ζ0 + iζ3 and β = ζ1 + iζ2 we
may write

ζ =

(
α β
β̄ ᾱ

)
(2)

which is invertible as long as |α|2 − |β|2 ̸= 0 (i.e., for any non-isotropic vector
ζ ∈ R2,2) and if we choose |α|2−|β|2 = 1, we obtain an element of SU(1, 1) with
inverse, equal to

ζ−1 =

(
ᾱ −β

−β̄ α

)
·

In this way we easily identify SU(1, 1) with the hyperboloid (or quasi-sphere)

ζ20 − ζ21 − ζ22 + ζ23 = 1. (3)
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For more details on the subject of quaternions and hypercomplex numbers we refer
to [8, 17, 32] and [33] for some of their application in mechanics.

2.2. The Upper Half Plane Model

It is well known that SL(2,R) acts as a structure group in the upper half-plane
H2 = {z ∈ C ; ℑz > 0} via linear fractional transformations

SL(2,R) ∋ A =

(
a b
c d

)
: z −→ A(z) =

az + b

cz + d
∈ H2

and since the action is only determined up to a scalar factor, we think of it as a
representation of the projective group PSL(2,R), also called the Möbius group of
H2. Its Lie algebra is certainly the same - we may choose a basis in the space of
2× 2 traceless real matrices sl(2,R) in the form

ẽ1 =

(
0 1
1 0

)
, ẽ2 =

(
1 0
0 −1

)
, ẽ3 =

(
0 1

−1 0

)
(4)

and use it to expand vectors in R2,1 as we did before. Moreover, we may add the
identity element

ẽ0 =

(
1 0
0 1

)
and thus represent the group itself. Actually, instead of rebuilding the whole con-
struction from scratch, we give an explicit morphism between the two groups
which will help us adapt the results obtained above without any trouble. We use
the well-known geometric correspondence

U : H2 → ∆, z → U(z) := i
z − i

z + i
(5)

that maps the upper half-plane to the unit disk and which can be extended to their
groups of isometries. Its matrix

U =
1√
2

(
1 −i

−i 1

)
(6)

is unitary (with this particular normalization) and it is not hard to see that it maps
the basis {ẽk} to {ek} and vice versa via conjugation

ek = U ẽk U †, ẽk = U † ek U (7)

which means that the Lie algebras are isomorphic and the same holds for the groups
as well. Hence, all results for SU(1, 1) can be directly applied to SL(2,R) and vice
versa. For a more advanced study on hyperbolic geometry we refer to [30, 31].
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There are three classes of elements in PSL(2,R) and we have an elementary crite-
rion to distinguish between them: for each matrix ζ ∈ SL(2,R) the corresponding
linear-fractional transformation is

1. hyperbolic if |Tr ζ| > 2

2. elliptic if |Tr ζ| < 2

3. parabolic if |Tr ζ| = 2

so if we expand the vector part of ζ over the basis specified in (4) we end up with

ζ =

(
ζ0 + ζ2 ζ1 + ζ3
ζ1 − ζ3 ζ0 − ζ2

)
(8)

and by this construction it becomes evident that the above conditions concern only
its scalar part. In the parabolic case for example, we have ζ0 = 1 and since
det ζ = 1 this yields the equation of the light cone

ζ21 + ζ22 − ζ23 = 0.

Similarly hyperbolic transformations are associated with space-like vectors and the
elliptic ones - with time-like vectors, the above quadratic form being positive in the
former while negative in the latter case. It is easy to see for example, that Möbius
transformations, corresponding to translations z → z + α

Tp(α) =
(
1 α
0 1

)
are parabolic and direct comparison with (8) gives ζ2 = 0 and ζ1 = ζ3 =

α

2
·

As for the elliptic and hyperbolic transformations, by the exponential map, we have
two typical representatives in the form

Te(φ) =
(

cosφ sinφ
− sinφ cosφ

)
, Th(τ) =

(
eτ 0
0 e−τ

)
·

Moreover, each element T of PSL(2,R) can be written as (see [1])

T = TeThTp.
Note that if we restrict our considerations to integer coordinates on the light cone,
the components of ζ form a Pythagorean triple, and thus we obtain a representation
of the Pythagorean triples in the modular group (see [16] for details).

2.3. Rodrigues’ Formula and Vector Parametrization

Any vector x ∈ R2,1 expanded in the basis (1) can be mapped in the algebra
su(1, 1) as follows

x → X =

(
ix3 x1 + ix2

x1 − ix2 −ix3

)
(9)
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while its pseudo-Euclidean norm is given by

x· x = −detX = x21 + x22 − x23. (10)

Then we may easily construct a norm preserving automorphism, using the adjoint
action of the group in its algebra

Ad ζ : X → ζX ζ−1.

The Cartesian coordinates of x are then being transformed by a pseudo-orthogonal
matrix Rh(ζ) which is easily shown to have the form

Rh(ζ) =

 1− 2 ζ21 −2(ζ1 ζ2 + ζ0 ζ3) 2(ζ1 ζ3 + ζ0 ζ2)
2(ζ0 ζ3 − ζ1 ζ2) 1− 2 ζ22 2(ζ2 ζ3 − ζ0 ζ1)
2(ζ0 ζ2 − ζ1 ζ3) −2(ζ2 ζ3 + ζ0 ζ1) 1− 2 ζ23

 · (11)

Then we may separate the scalar and vector part of the pseudo-quaternion

ζ = (ζ0, ζ), ζ ∈ R2,1

which allows to write down the above matrix invariantly

Rh(ζ) = I − 2 ζ ⊗ (η ζ)t + 2ζ0 ζ
f. (12)

In the above formula I is the 3 × 3 identity operator, η = diag(1, 1,−1) is the
flat metric tensor in R2,1, Pζ = ζ ⊗ (η ζ)t, which can be explicitly written as
Pζ

i
j = ηjkζ

iζk, is a quasi-projector along ζ, obtained by the usual tensor or dyadic

product of vectors and ζf = η ζ× (written in components as ζfi
j = ηikεklj ζ

l) is
the tensor, associated with ζ by the Hodge duality

ζfξ = ζ f ξ = η ζ × ξ.

Note that a covariant definition of the tensor entities we work with allows for using
× instead of f and ζ⊗ζ for ζ⊗(η ζ)t - switching from upper to lower indices and
vice versa then naturally involves the metric η. However, we chose to make our
expressions as explicit as possible here and in order to avoid confusion, introduce
the unnecessary otherwise notation f and ζ ⊗ (η ζ)t.
Now, since from (3) and (10) we have ζ20 − ζ2 = 1, where ζ2 = ζ · ζ, as long as ζ
is space-like (ζ2 > 0) we may introduce a unit vector

n̂ ∈ R2,1, n̂ · n̂ = 1

to parameterize Rh(ζ) by writing

ζ0 = cosh
φ

2
, ζ = sinh

φ

2
n̂, φ ∈ R

and then with the help of some basic hyperbolic trigonometry (12) becomes

Rh(n̂, φ) = coshφ I + (1− coshφ) n̂⊗ (η n̂)t + sinhφ n̂f (13)
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which we may refer to as the hyperbolic Rodrigues’ formula and the pseudo-
angular parameter φ is usually called rapidity. Furthermore, we may introduce
the hyperbolic vector parameter c ∈ RP3 in a projective manner

c =
ζ

ζ0
= tanh

φ

2
n̂ = τ n̂ (14)

where the τ ∈ R is referred to as the scalar parameter of the pseudo-rotation.
Hyperbolic Euler substitution then leads to the alternative representation

Rh(c) =
(1 + c2)I − 2 c⊗ (η c)t + 2 cf

1− c2
· (15)

Note that our hyperbolic metric allows to have vectors with negative scalar squares,
called time-like vectors. If ζ is such a vector (ζ2 < 0), it obviously cannot be
proportional to a unit one (at least not with a real coefficient), but we may introduce
a quasi-unit time-like vector

n̂ ∈ R2,1, n̂ · n̂ = −1

and then the natural parametrization is

c =
ζ

ζ0
= tan

φ

2
n̂ = τ n̂ (16)

or
ζ0 = cos

φ

2
, ζ = sin

φ

2
n̂, φ ∈ R

which leads to another form of Rodrigues’ formula, that is valid for time-like vec-
tors

Rh(n̂, φ) = cosφ I − (1− cosφ) n̂⊗ (η n̂)t + sinφ n̂f. (17)
The so-called null or isotropic case ζ2 = 0 is discussed separately in Section 4.

Note that the vector parameter c can be projected using either SU(1, 1) or SL(2,R)
quaternion construction. In both cases we divide by ζ0 =

1

2
Tr ζ and the compo-

nents are given respectively by

c =
1

Tr ζ

 z12 + z21
iz21 − iz12
iz22 − iz11


ζ∈SU(1,1)

c =
1

Tr ζ

 z12 + z21
z11 − z22
z12 − z21


ζ∈SL(2,R)

(18)

where zij stand for the components of the quaternion ζ, written as a 2× 2 matrix.

On the other hand, we may easily determine ζ from those of c, using the fact that
ζ is unit, which means ζ20 − ζ2 = 1 and thus

c2 =
ζ20 − 1

ζ20
=⇒ ζ1,20 = ±(1− c2)−

1
2 , ζ1,2 = ζ1,20 c (19)

where the two signs correspond to the two sheets of the cover.
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2.4. Composition Law for the Vector Parameters

Due to the multiplication table of the matrices in (1)

e1e2 = −e3, e2e3 = e1, e3e1 = e2, e21 = e22 = −e23 = e0

(20)
ei ej + ej ei = 0, i, j = 1, 2, 3

we have a rather simple composition law for two pseudo-quaternions ξ = (ξ0, ξ)
and ζ = (ζ0, ζ), namely

ζ ξ = (ζ0 ξ0 + ζ · ξ, ζ0 ξ + ξ0 ζ + ζ f ξ). (21)

In the spirit of projective geometry, we may think of ξ1, ξ2 and ξ3 as the homoge-
neous coordinates of the RP3 - points c1, c2 and c3 respectively. In other words

we have 2 (ξ̊i, ξi) ∼ (1, ci) or ci =
ξi

ξ̊i
, so the composition of two vector param-

eters may be obtained by projection of the composition in SU(1, 1), i.e., the ratio
between its vector and scalar part

⟨c2, c1⟩ =
c2 + c1 + c2 f c1

1 + c2 · c1
· (22)

Then we naturally have

Rh(c2)Rh(c1) = Rh(⟨c2, c1⟩), Rh(−c) = Rh(c)
−1, Rh(0) = I

as in the Euclidean case. From the above it becomes clear why we arrange the
indices in the backwards direction - this is because operator composition takes
place from right to left.
If we want to decompose into three pseudo-rotations, first we need to notice that
the scalar part of the product ξ3 ξ2 ξ1 is given by

(ξ3 ξ2 ξ1)0 = ξ̊3 ξ̊2 ξ̊1 + ξ̊3 ξ2 · ξ1 + ξ̊2 ξ3 · ξ1 + ξ̊1 ξ3 · ξ2 + (ξ3, ξ2, ξ1)

where
(ξ3, ξ2, ξ1) = ξ3 f ξ2 · ξ1

denotes the triple product, i.e., the volume, spanned by ξ3, ξ2 and ξ1. As for the
vector part, we have respectively

vec(ξ3 ξ2 ξ1) = ξ̊3 ξ̊2 ξ1 + ξ̊3 ξ̊1 ξ2 + ξ̊2 ξ̊1 ξ3 + (ξ3 · ξ2)ξ1
+ ξ̊3 ξ2 f ξ1 + ξ̊2 ξ3 f ξ1 + ξ̊1 ξ3 f ξ2 + (ξ3 f ξ2)f ξ1

which can be projected to the composition c = ⟨c3, c2, c1⟩ given as

c=
c3 + c2 + c1 + (c3 · c2) c1 + c3 f c2 + c3 f c1 + c2 f c1 + (c3 f c2)f c1

1 + c3 · c2 + c3 · c1 + c2 · c1 + (c3, c2, c1)
·

2For simplicity of notations we use ξ̊i instead of (ξi)0 for the scalar component of ξi
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Note that by construction we have for the double cross product signs, opposite to
those in the Euclidean case

(c3 f c2)f c1 = (c1 · c2) c3 − (c1 · c3) c2
(23)

c3 f (c2 f c1) = (c2 · c3) c1 − (c1 · c3) c2.
The sign difference is explained by the fact that in the flat Minkowski space we
have a non-trivial metric η to switch from upper to lower indices and vice versa.
For example, the cross product of two vectors ck = (a×b)k = εjkla

jbl is defined
exactly as in the Euclidean case for the covariant (lower) indices, but the compo-
nents of the expansion in the corresponding basis are ci = ηijcj . Therefore, we
use special notations for these operations to make the differences more apparent.

3. Generalized Euler Decomposition

Here we utilize the expressions derived in the previous section for obtaining the
vector decomposition of a generic pseudo-orthogonal transformation into two or
three transformations of the same kind. We focus mostly on the Minkowski space
model due to the close analogy with the Euclidean case. The results for SU(1, 1)
and SL(2,R) may be written using directly the explicit correspondence between
pseudo-quaternions and vector parameters built in the previous section.

3.1. The Case of Three Axes

This is an analogue of the classical Euler decomposition for arbitrary axes in flat
hyperbolic space

Rh(τ n̂) = Rh(τ3ĉ3)Rh(τ2ĉ2)Rh(τ1ĉ1) (24)

where c = τ n̂ and ck = τk ĉk are the vector parameters of the pseudo-rotations
in the decomposition and n̂, ĉk - the corresponding quasi-unit vectors along the
oriented axes. What we mean here by quasi-unit i s the following: since the hy-
perbolic flat metric in Minkowski space allows non-zero vectors to have positive,
negative and vanishing scalar square, it is not always possible to normalize to unit
“length”. Instead, we have ϵ = n̂· n̂ = ±1 in the space-like, respectively time-like
case and ϵ = 0 in the isotropic one. Similarly, we use the notation ϵk = ĉk· ĉk.
In order to normalize an isotropic vector, we resort to a trick, known in Physics
as Wick rotation - that is basically taking Euclidean rather than hyperbolic scalar
product, or equivalently, multiplying the third component of the vector by a factor
of

√
−1 (i.e., if ϵ = 0, we write c = τ n̂, where n̂ is unit in the Euclidean metric

(n̂ , n̂) = n̂21 + n̂22 + n̂23 = 1).
Note that Euler’s invariant axis theorem holds in the hyperbolic case as well (we
comment on this fact into more detail in the next section) and from (13) it can be
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derived that ĉ1 and ĉ3 are eigenvectors of Rh(τ1ĉ1) and Rh(τ3ĉ3) respectively,
with eigenvalue, equal to one. Thus we have

ĉ3 · Rh(τ n̂) ĉ1 = ĉ3 · Rh(τ2ĉ2) ĉ1 (25)

and if we introduce the notations

σij = ĉi · Rh(τ n̂) ĉj , κij = ĉi · ĉj , ω = ĉ1 · ĉ2 f ĉ3

and take into account (15), the above leads to a quadratic equation for the unknown
middle scalar parameter τ2

[ϵ2(σ31 + κ31)− 2κ12κ23] τ
2
2 − 2ωτ2 + κ31 − σ31 = 0. (26)

which has real roots whenever

∆ = ω2 + [ϵ2(σ31 + κ31)− 2κ12κ23] (σ31 − κ31) ≥ 0. (27)

These solution, explicitly given by

τ±2 =
ω ±

√
∆

ϵ2(σ31 + κ31)− 2κ12κ23
(28)

will be used as parameters in the equations, determining τ1 and τ3.

For the derivation of the latter, one may consider for example ĉ1 · Rh(τ n̂) ĉ1 and
ĉ3 ·Rh(τ n̂) ĉ3 in order to obtain the corresponding quadratic equations for the
unknown scalar parameters with the help of (15).

However, this approach has the inconvenience of generating pseudo-solutions, that
further need to be excluded, so we prefer to use another algorithm, which is linear.
It is based on the vector parameter composition law, derived in the previous section.
From (24) we may write

c1 = ⟨−c2,−c3, c⟩, c2 = ⟨−c3, c,−c1⟩, c3 = ⟨c,−c1,−c2⟩ (29)

and consider two successive projections - first we premultiply the kth equality
above with ĉfk and then take (hyperbolic) dot product with n̂. Note that since n̂
is not allowed to be collinear with any of the ĉk’s (otherwise the decomposition
would be trivial), the result is well defined and this trick allows for isolating one
of the unknowns, thus obtaining explicit expressions for each pair of parameters
as functions of the remaining one and the parameter of the compound pseudo-
rotation. In particular we can express τ1 and τ3 in terms of τ and τ±2 as

τ±1 =
(ϵκ23 − ρ2ρ3)ττ

±
2 + ρ̃1τ±2

(ρ1ρ̃1 + ρ2ρ̃2)ττ
±
2 + (κ23ρ1 − κ13ρ2)τ

±
2 + (ρ1ρ3 − ϵκ13)τ + ρ̃2

(30)

and

τ±3 =
(ϵκ12 − ρ1ρ2)ττ

±
2 + ρ̃3τ±2

(ρ2ρ̃2 + ρ3ρ̃3)ττ
±
2 + (κ12ρ3 − κ13ρ2)τ

±
2 + (ρ1ρ3 − ϵκ13)τ + ρ̃2

(31)
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where we have used the notations

ρk = ĉk · n̂, εijkρ̃
k = (ĉi, ĉj , n̂)

or to be more explicit

ρ̃1 = (ĉ2, ĉ3, n̂) , ρ̃2 = (ĉ3, ĉ1, n̂) , ρ̃3 = (ĉ1, ê2, n̂) .

We consider as an example the standard Euler decomposition (successive rotations
about OZ, OX and OZ) of a SO+(2, 1) matrix in the form cψ3 −sψ3 0

sψ3 cψ3 0
0 0 1

 1 0 0
0 chψ2 −shψ2

0 −shψ2 chψ2

 cψ1 −sψ1 0
sψ1 cψ1 0
0 0 1


=

 cψ3cψ1 − sψ3chψ2sψ1 −cψ3sψ1 − sψ3chψ2cψ1 sψ3shψ2

sψ3cψ1 + cψ3chψ2sψ1 cψ3chψ2cψ1 − sψ3sψ1 −cψ3shψ2

−shψ2sψ1 −shψ2cψ1 chψ2

 .

In front of the Greek letters we use here the abbreviations s = sin, c = cos,
sh = sinh and ch = cosh.Using the notations

τ2 = tanh
ψ2

2
, τ1,3 = tan

ψ1,3

2
we easily obtain the (projective) compound vector parameter in the form

c =
1

1− τ1τ3

τ2(1 + τ1τ3)
τ2(τ3 − τ1)
τ1 + τ3


and hence by the sign of the expression

c2 ∼ τ22 (1 + τ21 )(1 + τ23 )− (τ1 + τ3)
2

determine whether it is time-like, space-like or null (respectively whether the trans-
formation thus obtained is elliptic, hyperbolic or parabolic).

We may also decompose using (28), (30) and (31). Note that in this particular
case we have κ12 = κ23 = 0, κ13 = −1, ρ1 = ρ3 = n̂3 = −n̂3, ρ2 = n̂1,
ρ̃3 = −ρ̃1 = n̂2, ρ̃2 = 0, ϵ1 = ϵ3 = −1, ϵ2 = 1 and σ31 = R33 = −R3

3, where
Rij and Ri

j are the components of Rh in the standard basis and the sign change is
due to the fact that we use the metric η to switch from lower to upper indices and
vice versa. The above explicit form of the matrix gives the Ri

j’s. With all this in
mind, we easily obtain

τ±2 = ±

√
R3

3 − 1

R3
3 + 1

(32)
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which gives τ±2 = ± tanh
ψ2

2
using elementary hyperbolic trigonometry and the

fact that R3
3 = chψ2. Furthermore we have

τ±1 =
(n̂1n̂3τ − n̂2)τ±2

(n̂1 + n̂2n̂3τ)τ±2 + (ϵ+ (n̂3)2)τ
, τ±3 =

(n̂1n̂3τ + n̂2)τ±2
(n̂1 − n̂2n̂3τ)τ±2 + (ϵ+ (n̂3)2)τ

·

Alternatively, we may consider the classical Bryan decomposition about the axes
OX , OY and OZ which can be written explicitly as cψ3 −sψ3 0

sψ3 cψ3 0
0 0 1

 chψ2 0 shψ2

0 1 0
shψ2 0 chψ2

 1 0 0
0 chψ1 −shψ1

0 −shψ1 chψ1


=

 cψ3chψ2 −sψ3chψ1 − cψ3shψ2shψ1 sψ3shψ1 + cψ3shψ2chψ1

sψ3chψ2 cψ3chψ1 − sψ3shψ2shψ1 sψ3shψ2chψ1 − cψ3shψ1

shψ2 −chψ2shψ1 chψ2chψ1


and for the vector parameter we have

c =
1

1− τ1τ2τ3

τ1 − τ2τ3
τ2 + τ1τ3
τ3 + τ1τ2

 .

If we denote τ = (τ1, τ2, τ3)
t and τ̃ = (−τ2τ3, τ1τ3, τ1τ2)t, the above is propor-

tional to the vector sum τ + τ̃ , so in order to determine the type of the composite
vector (resp. transformation) we need the sign of the expression

c2 ∼ (τ + τ̃ )2 = τ 2 + τ̃ 2 − 2τ1τ2τ3.

In this example we have κ = η, ω = 1, ρk = n̂k, ρ̃
k = n̂k, ϵ1 = ϵ2 = 1, ϵ3 = −1

and σ31 = R31 = −R3
1 = −shψ2, so we easily obtain

τ±2 = −1±
√

1 + (R3
1)

2

R3
1

= −1± chψ2

shψ2
= {− coth

ψ2

2
, tanh

ψ2

2
}

and for the other two scalar parameters

τ±1 =
(n̂1 + n̂2n̂3τ)τ±2

(ϵ+ (n̂3)2)ττ±2 − n̂1n̂3τ + n̂2
, τ±3 =

(n̂3 − n̂1n̂2τ)τ±2
(ϵ− (n̂1)2)ττ±2 − n̂1n̂3τ + n̂2

which can easily be rewritten for the covariant components Rij and n̂j , as well as
in terms of trigonometric functions of the ψi’s.
For a more detailed derivation of the analogous expressions in the Euclidean case
we refer to [5].
To sum up, as it has been shown in [18], one may always decompose into three
transformations with respect to non-collinear axes (actually, we demand only the
second axis not to be collinear with the other two) among which one needs to be
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space-like in the generic case. Apart from that, these axes may be arbitrary, as long
as the positive discriminant condition (27) is fulfilled.

3.2. The Case of Two Axes

We are also interested in deriving explicit formulae for a decomposition of the type

Rh(τ n̂) = Rh(τ2ĉ2)Rh(τ1ĉ1) (33)

together with the necessary and sufficient conditions for its existence.
Following the same idea as before, we easily obtain

σ21 = ĉ2 · Rh(τ n̂) ĉ1 = ĉ2 · ĉ1 = κ21 (34)

which plays the role of such condition.
As for the expressions for τ1 and τ2 we use the explicit form (22) of

c = ⟨c2, c1⟩
which we multiply on the left by n̂f and then consider hyperbolic scalar products
with ĉ1 and ĉ1 respectively to obtain (assuming τ1,2 ̸= 0)

τ1 =
ρ̃3

ϵ1ρ2 − κ12ρ1
, τ2 =

ρ̃3

ϵ2ρ1 − κ12ρ2
· (35)

In the Euclidean case of pure SO(3) rotations we have similar expressions with
ϵ1 = ϵ2 = 1 and ρ̃3 = −ρ̃3.

τ1 =
ρ̃3

κ12ρ1 − ρ2
, τ2 =

ρ̃3
κ12ρ2 − ρ1

(36)

and they ought to be considered instead of formula (29) in [5], which is mistaken
for some reason (in the notations of [5] we have u, v instead of τ1, τ2).

3.3. Degenerate Solutions

There is one particular situation in which one cannot determine (30) and (31) inde-
pendently, but only a certain combination of these two, due to a lack of sufficient
information. This is an analogue of the classical gimbal lock - a phenomenon, well
known in the applications.
The condition for such a degenerate type of solution is rather simple

ĉ3 = ±Rh(c) ĉ1 (37)

and in that case (24) takes the form

Rh(c) = Rh(±τ3Rh(c) ĉ1)Rh(τ2ĉ2)Rh(τ1ĉ1) (38)

which can also be written as

Rh(τ2ĉ2)Rh(τ1ĉ1) = Rh(∓τ3Rh(c) ĉ1)Rh(c) = Rh(c)Rh(∓τ3ĉ1) (39)
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where for the last equality we use the well-known relation

R(c)R(a)R(c)−1 = R(R(c)a) (40)

that is equally valid for Euclidean and hyperbolic rotations.

Multiplying both sides of (39) on the right with Rh(±τ3ĉ1) we end up with

Rh(c) = Rh(τ2ĉ2)Rh(⟨τ1ĉ1,±τ3ĉ1⟩) = Rh(τ2ĉ2)Rh(τ
′
1ĉ1) (41)

where
τ ′1 =

τ1 ± τ3
1± ϵ1τ1τ3

(42)

according to (22).

We see that the problem is reduced to decomposition into a pair of rotations and
since (41) guarantees that the corresponding condition (34) is fulfilled, we may use
(35) to obtain

τ2 =
ρ̃3

ϵ2ρ1 − κ12ρ2
,

τ1 ± τ3
1± ϵ1τ1τ3

=
ρ̃3

ϵ1ρ2 − κ12ρ1
· (43)

The first equation above determines τ2 uniquely, but the second one fails to do so
with the remaining parameters τ1 and τ3. Instead, it provides a single relation for
them, which allows each to be expressed from the other, or in other words we end
up with a one-parameter degenerate solution, just as in the Euclidean case (see also
[27]).

3.4. The Trivial Element

Here we consider a decomposition of the trivial element in SO+(2, 1) (the identity
transformation) which cannot be assigned a particular direction n̂, since the scalar
(and respectively the vector) parameter is identically zero. Therefore neither ρ nor
ρ̃ is well defined and we cannot use the results, obtained above (formulae (28), (30)
and (31)), so instead we take advantage of the fact that each of the pseudo-rotations
in the decomposition can be expressed as a superposition of the remaining two

c1 = ⟨−c2,−c3⟩, c2 = ⟨−c3,−c1⟩, c3 = ⟨−c1,−c2⟩ (44)

since ⟨a, 0⟩ = ⟨0,a⟩ = a. Then we multiply the kth equality in the system with
ĉfk and consider (hyperbolic) dot products with ĉ2 for the first, respectively ĉ3 for
the second and ĉ1 for the third relation to obtain

(κ12κ23 − ϵ2κ13) τ2τ3 + ωτ3 = 0

(κ13κ23 − ϵ3κ12) τ1τ3 + ωτ1 = 0 (45)

(κ12κ13 − ϵ1κ23) τ1τ2 + ωτ2 = 0
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which always has the trivial solution τ = 0 and for ω ̸= 0 there is one more

τ1 =
ω

ϵ1κ23 − κ12κ13
, τ2 =

ω

ϵ2κ13 − κ12κ23
, τ3 =

ω

ϵ3κ12 − κ13κ23
· (46)

In the case ω = 0, just as in its Euclidean analogue (see [5]), there is a non-
trivial solution if and only if ĉ1 = ±ĉ3. This solution, however, is not uniquely
determined - we have τ+2 = τ−2 = 0 and τ1 = ∓τ3, so that the two non-trivial
transformations in the decomposition are mutually inverse, which provides a good
example for a degenerate solution.

3.5. Divergencies

We note that the denominator in (22) is very likely to vanish in certain cases and
there is nothing disturbing about that. Since we are dealing with projective quan-
tities, after all, division by zero is well justified operation. In order to avoid the
inconvenience of dealing with vectors of infinite magnitude, however, one may
simply lift up back to the universal cover. Diverging vector parameters correspond
to pseudo-quaternions with vanishing scalar part ζ0 = 0 ⇒ ζ2 = −1, so they
may appear only if the compound vector is time-like and thus the transformation
associated with it - elliptic. In particular, if the invariant axis is collinear with OZ,
we encounter a half-turn (rotation by an angle π). More generally, we may have a
product of a pure rotation and a Lorentz boost. Here we consider different configu-
rations of compositions that produce such a transformation. The condition for this
to happen, as can be seen from (22), has the simple form

1 + c1 · c2 = 0. (47)

In the parabolic case for example, we may think of the vector parameters as gener-
ated by R2 that can be written as complex numbers

C ∋ zk = xk + iyk −→ ck = (xk, yk,
√
x2k + y2k) = (zk, |zk|), k = 1, 2

and then the hyperbolic dot product of the ck’s is given by

c1 · c2 = ℜ(z1z̄2)− |z1| |z2| = |z1| |z2|(cosϕ− 1), ϕ = argz2 − argz1

so in order to have (47) satisfied we need for the angle between the two vectors to
obey the constraint

cosϕ = 1− 1

|z1| |z2|
·

In particular, we may have |z1| = |z2| = 1 and ϕ =
π

2
, or let |z1|, |z2| → ∞ which

leads to ϕ→ 0, once more leaving two out of three independent parameters. An-
other example would be to restrict to one-parameter submanifold by the following
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contruction

c1 = (s, s+ 1,
√

2s(s+ 1) + 1), c2 = (s+ 1, s,
√

2s(s+ 1) + 1), s ∈ R.
In the elliptic and hyperbolic cases, we deal with co-dimension one submanifolds
since the restriction to the vector norm is given by an inequality, rather than equal-
ity. Compositions of pure boosts that result in elliptic transformations are interest-
ing for the applications (see Section 5) and as for the case of rotations, they have
been thoroughly studied in [5]. There we make use of l’Hôpital’s rule to derive
the scalar parameters of the generalized Euler decomposition, when the compound
transformation happens to be a half-turn. Similarly, we may study (30) and (31) in
the limit τ → ∞ to obtain

τ±1 =
(ϵκ23 − ρ2ρ3)τ

±
2

(ρ1ρ̃1 + ρ2ρ̃2)τ
±
2 + ρ1ρ3 − ϵκ13

(48)

τ±3 =
(ϵκ12 − ρ1ρ2)τ

±
2

(ρ2ρ̃2 + ρ3ρ̃3)τ
±
2 + ρ1ρ3 − ϵκ13

·

It could happen in particular that τ2 → ∞ as well (if σ31 ̸= κ31 and ∆ = 0 ̸= ω).
Then we apply l’Hôpital’s rule once more and end up with

τ1 =
ϵκ23 − ρ2ρ3
ρ1ρ̃1 + ρ2ρ̃2

, τ3 =
ϵκ12 − ρ1ρ2
ρ2ρ̃2 + ρ3ρ̃3

· (49)

This simple tricks works also for compositions of the type (22) - if either c1 or c2
has divergent pseudo-norm (i.e., τ1 → ∞ or τ2 → ∞), then it is straightforward to
write

⟨c2, c1⟩ →
c1 + c2 f c1

c2 · c1
, ⟨c2, c1⟩ →

c2 + c2 f c1
c2 · c1

in the former and in the latter case respectively, so that the divergencies cancel out.
On the other hand, if both scalar parameters tend to infinity simultaneously, then
we simply have

⟨c2, c1⟩ →
c2 f c1
c2 · c1

similarly to the Euclidean case.

4. Null Vectors and Invariant Axes

In this section we discuss the hyperbolic analogue of Euler’s fixed axis theorem and
then focus on the behavior of parabolic and elliptic representatives of SO+(2, 1).
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4.1. Euler’s Fixed Axis Theorem

First we remind that in the Euclidean case (see e.g. [5, 26]) there is a theorem
due to Euler, stating that a special orthogonal transformation in R2k+1 has an in-
variant axis, determined by the eigenvector, corresponding to the eigenvalue one.
The latter is unique except in the trivial case - the identity operator, for which the
eigenspace of such vectors coincides with the imbedding space R2k+1.

One possible proof uses the fact that skew-symmetric matrices in odd dimensions
are singular and thus have a zero eigenvalue. Since they constitute the Lie algebra
so(2k + 1) of the corresponding group of rotations, for the latter we have a unit
eigenvalue given by the exponential map, which is either simple in the generic
case, or triple in the trivial one.

Similarly, we may construct the standard matrix representation of so(2, 1) from the
adjoint action of the generators ek (or ẽk), which allows for expressing a generic
element A ∈ so(2, 1) as

A(x) = xkad(ek) = xf =

 0 −x3 x2
x3 0 −x1
x2 −x1 0

 · (50)

This gives for the eigenvalues λ1 = 0 and λ2,3 = ±
√
x21 + x22 − x23 = ±

√
x· x

and we may consider some specific cases:

1. For x3 = 0 and x ∈ R2, that is a particular example of a space-like vec-
tor (pointing outside the light cone), we have distinct real eigenvalues and
eigenvectors. Moreover A is symmetric in this case, so it can easily be put
into diagonal form.

2. When x1 = x2 = 0, x3 ̸= 0 - the vector is time-like (inside the light cone)
and we end up with a skew-symmetric matrix that generates a rotation. The
eigenvalues are 0 and ±ix3 and the real eigenvector is oriented in the z
direction (we end up with a pure rotation about OZ).

3. Finally, if x is null (x · x = 0), we end up with a triple eigenvalue λ = 0
and a triple eigenvector x as already discussed.

The above present particular examples for generators of hyperbolic, elliptic and
respectively parabolic transformations. More generally, similarly to SL(2,R), we
have an easy criterion to distinguish between these cases, namely Rh is

1. hyperbolic if Tr(Rh) > 3

2. elliptic if Tr(Rh) < 3

3. parabolic if Tr(Rh) = 3
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which can be used to determine the type of its vector parameter: it is space-like in
the first case, time-like in the second one and null or isotropic (also called light-
like) in the third case.

After we have determined the type of the vector-parameter, it is not difficult to
determine its direction and magnitude in a way, similar to the one, proposed in
[26] for the SO(3) case. Actually, as long as φ ̸= 0 and in the pure rotational case
also φ ̸= π, we can always determine c, at least up to a scale factor, from the term
cf in (15). More precisely we have

n̂ =
1− ϵτ2

2τ

−R23

R13

−R12

 (51)

where Rij denote the matrix entries of Rh(τ n̂) in the standard basis and the pre-
factor on the right is equal to (sinhφ)−1, (sinφ)−1 or φ−1 for ϵ = ±1 and ϵ = 0
respectively. In the elliptic case this does not determine the angle completely, so
we need also cosφ which is easy to find from Tr(Rh) = 2 cosφ+1. One specific
example is the so-called half turn O(n̂) = 2n̂⊗ n̂t − I .

With this technique we can always determine the vector parameter (or the angle
and axis) for a SO+(2, 1) transformation and vice versa.

4.2. The Parabolic Case

In Minkowski space each null vector lies in its orthogonal complement - something
that has no analogue in Euclidean geometry. When we use such vector in (15), the
exponential map gives for the corresponding group element Rh(x) = expA(x) a
triple eigenvalue e0 = 1 although there is a single invariant axis, determined by x̂.

We note that for a generic x ∈ R3 we have

A(x) = xf, A2(x) = (x·x) I−x⊗(η x)t, A3(x) = (x·x)A(x) (52)

which leads back to different versions of Rodrigues’ formula, based on the matrix
exponent Rh(x) = expA(x) if we put x = φn̂. However, this works only if
x·x ̸= 0 - for a null vector we end up with

Rh(x) = expA(x) = I + xf − 1

2
x⊗ (η x)t, x·x = 0 (53)

since all higher order terms vanish.

According to our previous notations, however, we have x = φ n̂ and thus

Rh(φn̂) = expA(φ n̂) = I + φ n̂f − φ2

2
n̂⊗ (η n̂)t, n̂·n̂ = 0 (54)
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which can be used in an appropriate scalar product to obtain the analogue of (28)
for the parabolic case

φ± =
−ω ±

√
∆

κ12κ23
(55)

with
∆ = ω2 + 2(κ31 − σ31)κ12κ23 ≥ 0 (56)

being the necessary and sufficient condition for the existence of real solutions.
We note that in this case the Euler substitution is not justified, since we are at a sep-
aratrix between elliptic and hyperbolic regions. That is why the parametrizations
with the “angle” φ appears most natural - they leads to the Rodrigues’ formula
and we can write φ instead of sinφ (sinhφ), 1 for cosφ (respectively coshφ) and

corrected value
φ2

2
for 1− cosφ (or coshφ− 1).

From this point of view (54) is a substitute for (13) and (17) for the parabolic case.
It also allows to use τ =

φ

2
so that (15) and (22) make sense as well.

On the other hand setting ϵ2 = 0, in (28) we easily derive the relation

τ±2 =
−ω ±

√
∆

2κ12κ23
(57)

which is in complete accordance with the corresponding expressions obtained above.
Now let us see how composition of parabolic elements works on the level of vector
parameters. Applying (22) with ci =

φi

2
ĉi, (ĉi, ĉi) = 1 we end up with

⟨c2, ĉ1⟩ =
1

2

(
φ1ĉ1 + φ2ĉ2 +

φ1φ2

2
ĉ2 f ĉ1

)
(58)

in the case ĉ1 · ĉ2 = 0. In particular for ĉ1 = ĉ2 the above reduces to

φ = φ1 + φ2.

On the other hand, one may consider the asymptotic behavior of the composition
for small and large values of the parameters φi. In the first case the composition is
reduced to a simple vector summation

c ∼ c1 + c2, φ1, φ2 → 0

while in the second one, we have a formula, familiar from the rotational case

c ∼ c2 f c1
c2 · c1

, φ1, φ2 → ∞.

4.3. The Embedding SO(2) ⊂ SO+(2, 1)

It is clear that so(2) ⊂ so(2, 1) as the maximal compact subalgebra. The em-
bedding is quite visible from the particular form of the matrix A - one restricts to
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the skew-symmetric block by setting x1 = x2 = 0 and ends up with a generator
of rotation about OZ. Obviously the same relation holds for the corresponding
groups and one can make it explicit by considering the power series expansion for
expA in this case - the upper-left 2 × 2-block of A when squared gives minus
identity and thus, for this particular choice of vector-parameter, we end up with the
classical Rodrigues’ formula

R(n̂, φ) = cosφ I + (1− cosφ) n̂⊗ n̂t + sinφ n̂×, n̂ = êz (59)

or, alternatively, one may use the basis of complex eigenvectors of A to derive

expA = diag(eiφ, e−iφ, 1), x → (0, 0, φ)

which is an equivalent U(1) representation.
For the physical applications considered in this paper, however, we are interested
in the way ordinary SO(2) rotations interact with pure Lorentz boosts. Suppose we
want to compose two SO+(2, 1) transformations - one of the former and one of the
latter type, so that we have ĉ1 ∈ R2, ĉ2 = êz . Since the two vector parameters
will be orthogonal in the hyperbolic (as well as in the Euclidean) metric, we have
for the composition

⟨c2, c1⟩ = c2 + c1 + c2 f c1 (60)

and since the last vector on the right has a vanishing third component, we may write
c2×c1 instead of c2fc1. Furthermore we may decomposeĉ1 = cos γ êx+sin γ êy,
where γ is the polar angle, representing the unit vector ĉ1 in the XOY -plane, and
then use êz × êx = êy, êz × êy = −êx to obtain

⟨c2, c1⟩ = τ1(cos γ − τ2 sin γ) êx + τ1(sin γ + τ2 cos γ) êy + τ2 êz. (61)

Alternatively, we may compose in the reverse order

⟨c1, c2⟩ = τ1(cos γ + τ2 sin γ) êx + τ1(sin γ − τ2 cos γ) êy + τ2 êz. (62)

5. Wigner Rotation

A well-known fact from special relativity is that the composition of two non-
collinear Lorentz boosts results in transformation that is no longer a pure boost,
but can be expressed as a product of a rotation and a boost

Rh(c2)Rh(c1) = Rh(τ̃ez)Rh(c) (63)

where the first factor on the righthand side stands for the rotational contribution (a
pure rotation in SO+(2, 1) is possible only about the third axis ez) and the second
one is the hyperbolic (boost) contribution to the result.
Since by construction c1 and c2 have vanishing third components, they can be
expressed with planar vectors, or more conveniently - complex numbers z1, z2 ∈ C

zk = xk + iyk → ck = (xk, yk, 0)
t, k = 1, 2. (64)
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From (61) we see that the third component of the composition ⟨c2, c1⟩ is respon-
sible for the rotational contribution to the compound transformation. Since c1 and
c2 lie in the XOY -plane, this component is quite easy to obtain, using (22)

τ̃ = ⟨c2, c1⟩z =
x1y2 − x2y1

1 + x1x2 + y1y2
= −ℑ(1 + z1z̄2)

ℜ(1 + z1z̄2)
(65)

and therefore we have for the angle of that rotation θ = 2arctan τ̃ the simple
expression

θ = −2 arg (1 + z1z̄2). (66)

The latter is known as Wigner angle and plays an important role in both special
relativity and quantum mechanics. The simple and compact formula we obtain is
very convenient for the interpretation of θ as a Berry phase [6, 25], or (negative)
area of a hyperbolic triangle [2].

Note that if we reverse the order in the composition, only the sign of θ is changed.
Moreover, once we have determined τ̃ , it is not difficult to retrieve the vector pa-
rameter c of the boost in the decomposition

⟨c2, c1⟩ = ⟨τ̃ez, c⟩. (67)

With the help of (61) and (62) it is almost straightforward to write

c± =
ℜ(1 + z1z̄2)

|1 + z1z̄2|2

ℜ(z12)± τ̃ ℑ(z12)
ℑ(z12)∓ τ̃ ℜ(z12)

0

 , z12 = z1 + z2 (68)

where the two solutions c+ and c− correspond to the forward ⟨c2, c1⟩ and back-
ward ⟨c1, c2⟩ composition respectively. Note that we may easily find the compo-
nents of the corresponding pseudo-quaternion ζ with the help of (19)

c±
2 =

∣∣∣∣ z1 + z2
1 + z1z̄2

∣∣∣∣2 =⇒ ζ0 = (1 + c2±)
− 1

2 =
|1 + z1z̄2|√

|1 + z1z̄2|2 − |z1 + z2|2
(69)

ζ± =
ℜ(1 + z1z̄2)√

|1 + z1z̄2|2 − |z1 + z2|2

ℜ(z1 + z2)± τ̃ ℑ(z1 + z2)
ℑ(z1 + z2)∓ τ̃ ℜ(z1 + z2)

0


where we have written only the solution with positive scalar part, since ζ and −ζ
participate symmetrically (the ± subscript stands for the different permutations of
the two boosts).

In scattering theory we encounter a SU(1, 1) representation in the monodromy ma-
trix formalism. More precisely, the monodromy matrix M relates the left and right
free particle asymptotic solutions (or rather one-jets of solutions) in the one dimen-
sional scattering problem. When we write these solutions in a real basis (with sin
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and cos functions), this matrix is bound to be SL(2,R), due to a conservation law
for the phase volume. Then, we conclude that back in the standard complex ba-
sis, usually preferred in quantum mechanics, M ∈ SU(1, 1). Whether the process
takes place at a point or over an interval, the monodromy matrix (as an alterna-
tive to the scattering matrix) describes the scattering potential and its entries are
given by the corresponding transition and reflection coefficients. For simplicity of
notations we are going to write it as

M =

(
α β
β̄ ᾱ

)
∈ SU(1, 1) (70)

so if we have two scatterers on the same axis with potentials V1 and V2, the com-
pound monodromy matrix will be given by M = M2M1. It would be convenient
to expand these matrices in the basis (1) built in Section 2, which is equivalent
to associating to each of them a pseudo-quaternion: M1 → ξ, M2 → ζ and
M → ζ ξ, and then use the composition law (21) to find ζ explicitly. We may also
use complex coordinates αi, βi to write Mi in the form (70). Note that if we project
this construction (dividing by the scalar part), we would obtain the composition for
the vector-parameters (22) in the corresponding SO+(2, 1) representation.

What we are aiming for is to find the angle of Wigner rotation that appears as a re-
sult of such superposition of scatterers. Mathematically, this process is explained
with the fact that the compound monodromy M can be represented as a composi-
tion of an elliptic and hyperbolic transformation

M = MeMh, Me ∈ SO(2,R). (71)

In particular we may also represent Me and Mh with pseudo-quaternions, say ζ̃
and ξ̃ respectively, where ξ̃ has vanishing fourth component while for ζ̃ - the second
and the third are zero. If we map these to SO+(2, 1) via projection, the composition
for the vector parameters coincides with (61) so we may find the Wigner angle from
the third component of the compound parameter as

θ = 2arctan ⟨c2, c1⟩z (72)

and since ζ ξ = ζ̃ ξ̃, lifting up back to the universal cover gives simply

⟨c2, c1⟩ =
ζ0 ξ + ξ0 ζ + ζ f ξ

ζ0 ξ0 + ζ · ξ
· (73)

The normalized z-component is given by
ζ3
ζ0

, that is the ratio between the imag-

inary and the real part of the first matrix entry of the composition M2M1 if we
work in complex coordinates, i.e.,

θ = 2arg (α2α1 + β2β̄1), α1, α2 ∈ R (74)
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in a complete correspondence with (66) (in order to see this one needs only to in-

troduce zk =
βk
αk

). The restriction on the αk’s guarantees that the Mk’s represent

pure boosts. Moreover, one may easily find the remaining boost in the decomposi-

tion, substituting zk =
βk
αk

in (69)

ζ0 =
|δ|√

|δ|2 − |ν|2
, ζ± =

ℜ(δ)
|α1α2|

√
|δ|2 − |ν|2

ℜ(ν)± τ̃ ℑ(ν)
ℑ(ν)∓ τ̃ ℜ(ν)

0

 (75)

where we use the short notations δ = α1α2 + β1β̄2 and ν = α1β2 + β1α2.

Now to replace αi and βi with the physical quantities ti and ri - the transition and
reflection coefficients (the latter is usually denoted by r+ in the literature), defined
by the asymptotic behavior of the solutions

Ψ(k, x) ∼ eikx + r(k) e−ikx, x→ −∞
Ψ(k, x) ∼ t(k) eikx, x→ ∞.

Using the well-known relations (see [3, 14, 15])

α =
1

t̄
, β = − r̄

t̄
(76)

and restricting to SU(1, 1) matrices with real diagonal entries t1, t2 ∈ R as they
are the ones corresponding to pure boosts, we end up with the compact expression

θ± = ±2 arg(1 + r1r̄2) (77)

for the forward and the backward composition respectively, and the condition for
zero Wigner rotation in both cases has the form r1r̄2 ∈ R.

The matrix of the remaining boost in this representation can be derived from (69)
with zk = −r̄k. In in pseudo-quaternion coordinates it has the form

c±
2 =

∣∣∣∣ r1 + r2
1 + r1r̄2

∣∣∣∣2 =⇒ ζ0 = (1 + c2±)
− 1

2 =
|1 + r1r̄2|√

|1 + r1r̄2|2 − |r1 + r2|2
(78)

ζ± =
ℜ(1 + r1r̄2)√

|1 + r1r̄2|2 − |r1 + r2|2

−ℜ(r1 + r2)± τ̃ ℑ(r1 + r2)
ℑ(r1 + r2)± τ̃ ℜ(r1 + r2)

0


respectively for the forward and the backward composition of scatterers.

With a little effort we can relate the above results to the Thomas precession phe-
nomenon, considering composition of infinitesimal vector parameters. However,
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we chose to ignore this opportunity for now and only refer to [4, 28] for different,
but related treatment of the problem.

6. Concluding Remarks

In the present article we focus mainly on the generalized Euler parameters in the
decomposition of three-dimensional pseudo-rotations. Using pseudo-quaternion
and vector-parameter techniques, we manage to obtain quite simple and compact
explicit solutions, similar to the ones we give for the Euclidean (pure rotational)
case [5].
Due to the well-known Lie algebra isomorphisms so(2, 1) ≃ su(1, 1) ≃ sl(2,R),
we are able to give analogous relations for the structure groups of the upper half-
plane and the Poincaré disk - actually, projecting and lifting up to the universal
cover is so easy for the formulae we obtain, that we did not bother to write all the
expressions.
Finally, we provide a well-known physical example - calculation of the Wigner
angle in special relativity and scattering theory, which appears to be particularly
easy using the machinery developed here.
Since most of the work is concerned with the three-dimensional Lorentz group
SO+(2, 1), we note that it has plenty of physical applications and should not be
considered a mere toy model for 3 + 1 dimensional special relativity. This has
become particularly apparent since the breakthrough in graphenes [7].
However, the 3 + 1 dimensional case seems like a natural extension and can be
treated with s imilar techniques. Another investigation of physical relevance would
be considering the case of coordinate frame, attached to the moving object. Actu-
ally, most of the results, obtained here, maintain their validity with a slight mod-
ification, but we reserve the pleasure of describing this correspondence for future
work.
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