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STAR PRODUCTS AND APPLICATIONS∗

MARI IIDA and AKIRA YOSHIOKA

Department of Mathematics, Tokyo University of Science, 162-8601 Tokyo, Japan

Abstract. A family of star products parametrized by complex matrices is
defined. Especially commutative associative star products are treated, and
star exponentials with respect to these star products are considered. Jacobi’s
theta functions are given as infinite sums of star exponentials. As application,
several concrete identities are obtained by properties of the star exponentials.

1. Star Products

Using an arbitrary complex symmetric matrix, we can define a star product, which
gives a family of star products parameterized by complex matrices [4–6]. In par-
ticular for symmetric matrices we obtain a family of commutative associative star
products [1, 2].
In this note, as a special case we consider a family of star product algebras of
functions of one variable. Using star exponentials of these algebras we describe
Jacobi’s theta and its basic identities (cf. [1, 2, 6]).
First we consider a star product given by an arbitrary complex matrix. For sim-
plicity, we consider star products of two variables (u1, u2). The general case for
(u1, u2, · · · , u2m) is similar.

For any 2 × 2 complex matrix Λ =
(

λ11 λ12
λ21 λ22

)
∈ M2(C), we have a biderivation

in the space of polynomials

p1
←−
∂ Λ
−→
∂ p2 = p1

∑
αβ

λαβ
←−
∂α
−→
∂β

 p2 =
∑
αβ

λαβ∂αp1 ∂β
p2, p1, p2 ∈ P(C2).

Then we define a star product by the formula

∗Reprinted from J. Geom. Symmetry Phys. 20 (2010) 49–56.
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p1 ∗Λ p2 = p1 exp
(
i~
2

←−
∂ Λ
−→
∂
)
p2 = p1

( ∞∑
n=0

1
n!

(
i~
2

)n (←−
∂ Λ
−→
∂
)n)

p2

=

∞∑
n=0

1

n!

(
i~
2

)n

p1

(←−
∂ ∧
−→
∂
)n

p2

where
(←−
∂ Λ
−→
∂
)k

is the k-th power of the derivation such that

p1

(←−
∂ Λ
−→
∂
)k

p2 = p1

(←−
∂ Λ
−→
∂
)
· · ·
(←−
∂ Λ
−→
∂
)

︸ ︷︷ ︸
k

p2

=
∑

λα1β1 · · ·λαkβk
∂α1 · · · ∂αk

p1∂β1 · · · ∂βk
p2.

In this setting we have

Proposition 1. For any Λ ∈M2(C), the product ∗Λ is well-defined and associative
on P(C2).

2. Star Products on Functions

The star products are well defined on the space of polynomials. In this section we
look for their extension to certain class of functions on C2. We introduce a system
of semi-norms and then its topology in P(C2). We take the completion to obtain
a space of functions on which the star products are well defined. On this space we
can consider star exponentials.
Now we define a topology. Let ρ be a positive number. For every s > 0 we define
a semi-norm for polynomials by

|p|s = sup
u∈C2

|p(u1, u2)| exp (−s|u|ρ) .

Then the system of semi-norms {| · |s}s>0 defines a locally convex topology Tρ on
P(C2).

By taking the completion of P(C2) with respect to the topology Tρ we obtain the
Fréchet space Eρ(C2).

Proposition 2. For a positive number ρ, the Fréchet space Eρ consists of entire
functions on the complex plane C2 with finite semi-norm for every s > 0, namely,

Eρ(C2) =
{
f ∈ H(C2) ; |f |s <∞, for all s > 0

}
.

As to the continuity of star products, the space Eρ(C2), 0 < ρ ≤ 2 is very suitable,
namely, we have the following
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Theorem 1. On the space Eρ(C2) for 0 < ρ ≤ 2, every product ∗Λ is continuous.

For the spaces Eρ(C2) where ρ > 2, the situation is not so good, but we still can
rely on the following result.

Theorem 2. For ρ > 2, take ρ′ > 0 such that
1

ρ′
+

1

ρ
= 1. Then every star

product ∗Λ defines a continuous bilinear product

∗Λ : Eρ(C2)× Eρ′(C2)→ Eρ(C2), Eρ′(C2)× Eρ(C2)→ Eρ(C2).

This means that (Eρ(C2), ∗Λ) is a continuous Eρ′(C2)-bimodule.

Let us introduce the Fréchet space

Eρ+(C2) = ∩λ>ρEλ(C2)

and consider the exponential element

exp∗
Λ
t

(
H

i~

)
=

∞∑
n=0

tn

n!

H

i~
∗Λ · · · ∗Λ

H

i~︸ ︷︷ ︸
n

in Eρ(C2). The right hand side is not convergent in general. Hence for a polyno-
mial H ∈ P(C2), we define the star exponential exp∗

Λ
t(H/i~) by the differential

equation

d

dt
exp∗

Λ
t

(
H

i~

)
=

H

i~
∗Λ exp∗ t

(
H

i~

)
, exp∗

Λ
t

(
H

i~

)
|t=0 = 1.

When H ∈ P(C2) is a linear element, then exp∗ t
(
H
i~
)

belongs to the good space
E1+(⊂ E2). In this case, the star exponentials are obtained directly by the formula∑∞

n=0
tn

n!
H
i~ ∗Λ · · · ∗Λ

H
i~︸ ︷︷ ︸

n

.

On the other hand, we remark here that the most interesting case is given by qua-
dratic form H ∈ P(C2), which case

∑∞
n=0

tn

n!
H
i~ ∗Λ · · · ∗Λ

H
i~ is not convergent

and we need the differential equation to define the star exponentials. The star ex-
ponential belongs to the space E2+(C2), which is difficult to treat at present.

3. Theta Functions

In this section, we consider the star product for the simple case where

Λ =

(
ρ 0
0 0

)
.
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Then we can see easily that the star product is commutative and explicitly given
by p1 ∗Λ p2 = p1 exp

(
i~ρ
2

←−
∂u1

−→
∂u1

)
p2. This means that the algebra is essentially

reduced to the space of functions of one variable u1. Thus, we consider func-
tions f(w), g(w) of one variable w ∈ C for which we define a commutative star
product ∗τ with complex parameter τ such that

f(w) ∗τ g(w) = f(w)e
τ
2

←−
∂ w
−→
∂ wg(w).

3.1. Star Theta Functions

In this section we consider the Jacobi’s theta functions as an example of star expo-
nentials.
A direct calculation gives

exp∗τ itw = exp(itw − (τ/4)t2).

Hence for ℜτ > 0, the star exponential exp∗τ niw = exp(niw − (τ/4)n2) is
rapidly decreasing with respect to integer n and then we can consider summations
for τ satisfying ℜτ > 0

∞∑
n=−∞

exp∗τ 2niw =
∞∑

n=−∞
exp

(
2niw − τ n2

)
=

∞∑
n=−∞

qn
2
e2niw, q = e−τ .

This is Jacobi’s theta function θ3(w, τ) (cf. [1]). Then we have expression of the
theta functions as

θ1∗τ (w) =
1
i

∞∑
n=−∞

(−1)n exp∗τ (2n+ 1)iw, θ2∗τ (w) =

∞∑
n=−∞

exp∗τ (2n+ 1)iw

θ3∗τ (w) =

∞∑
n=−∞

exp∗τ 2niw, θ4∗τ (w) =

∞∑
n=−∞

(−1)n exp∗τ 2niw.

Remark that θk∗τ (w) are the Jacobi’s theta functions θk(w, τ), k = 1, 2, 3, 4 re-
spectively. This is obvious by the exponential law

2 exp∗τ 2iw ∗τ θk∗τ (w) = θk∗τ (w), k = 2, 3

exp∗τ 2iw ∗τ θk∗τ (w) = −θk∗τ (w), k = 1, 4.

Then using exp∗τ 2iw = e−τe2iw and the product formula directly we have

2e2iw−τθk∗τ (w + iτ) = θk∗τ (w), k = 2, 3

e2iw−τθk∗τ (w + iτ) = −θk∗τ (w), k = 1, 4.
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Following Toda’s idea [3] we obtain the following formulas with the help of the
above expressions. In what follows we use as a variable v instead of w given by
the relation πv = w.

Lemma 1.

θ21∗τ (v) =

(
e∑
λ

o∑
µ

−
o∑
λ

e∑
µ

)
M(λ, µ)

θ22∗τ (v) =

(
e∑
λ

o∑
µ

+
o∑
λ

e∑
µ

)
M(λ, µ)

θ23∗τ (v) =

(
e∑
λ

e∑
µ

+
o∑
λ

o∑
µ

)
M(λ, µ)

θ24∗τ (v) =

(
e∑
λ

e∑
µ

−
o∑
λ

o∑
µ

)
M(λ, µ)

where M(λ, µ) = e
τ
2
(λ2−µ2)π2

e2λπiv∗τ and
e∑
λ

means that λ runs through all even

integers etc.

Proof: By a direct calculation we have

θ21∗τ (v) = −
∑
n,m

(−1)n+me
(2n+1)πiv
∗τ e

(2m+1)πiv
∗τ .

We notice that

e
(2n+1)πiv
∗τ e

(2m+1)πiv
∗τ = −e−

τ
2
(2n+1)πi(2m+1)πie

(2n+1)πiv
∗τ ∗τ e(2m+1)πiv

∗τ

= −e
τ
2
(2n+1)(2m+1)π2

e
2(n+m+1)πiv
∗τ .

The introduction of λ = n + m + 1 and µ = n −m gives after some work the
following formula

θ21∗τ (v) =
∑
λ,µ

(−1)λe
τ
2
(λ2−µ2)π2

e2λπiv∗τ .

Cancellation in the summation yields

θ21∗τ (v) =

(
e∑
λ

o∑
µ

−
o∑
λ

e∑
µ

)
e

τ
2
(λ2−µ2)π2

e2λπiv∗τ

which produces the desired result. Other identities are obtained in a similar manner.
�

Using Lemma 1 we easily obtain
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Proposition 3.
θ41∗τ (v) + θ43∗τ (v) = θ42∗τ (v) + θ44∗τ (v).

Proof: We have

θ41∗τ (v) =

(
e∑
l

o∑
k

−
o∑
l

e∑
k

)
M(l, k)

(
e∑
λ

o∑
µ

−
o∑
λ

e∑
µ

)
M(λ, µ)

=

(
e∑
l

o∑
k

M(l, k)−
o∑
l

e∑
k

M(l, k)

)(
e∑
λ

o∑
µ

M(λ, µ)

−
o∑
λ

e∑
µ

M(λ, µ)

)
= (A−B)(C −D).

Similarly we have θ42∗τ (v) = (A+B)(C +D). By the same manner we see

θ43∗τ (v) =

(
e∑
l

e∑
k

+

o∑
l

o∑
k

)
M(l, k)

(
e∑
λ

e∑
µ

+

o∑
λ

o∑
µ

)
M(λ, µ)

= (E + F )(G+H)

and θ44∗τ (v) = (E − F )(G−H). Therefore

θ41∗τ (v)+ θ43∗τ (v)−
(
θ42∗τ (v) + θ40∗τ (v)

)
= (A−B)(C −D)

+ (E + F )(G+H)− {(A+B)(C +D) + (E − F )(G−H)}
= 2 (−AD −BC + EH + FG) .

Arranging the summation we have

2

(
−

e∑
l

o∑
k

o∑
λ

e∑
µ

−
o∑
l

e∑
k

e∑
λ

o∑
µ

+

e∑
l

e∑
k

o∑
λ

o∑
µ

+

o∑
l

o∑
k

e∑
λ

e∑
µ

)

× e
τ
2
(l2−k2+λ2−µ2)π2

e2πiv∗τ e2λπiv∗τ

= 2

(
o∑
l

e∑
λ

(
o∑
k

e∑
µ

−
e∑
k

o∑
µ

)
−

e∑
l

o∑
λ

(
o∑
k

e∑
µ

−
e∑
k

o∑
µ

))

× e
τ
2
(l2−k2+λ2−µ2)π2

e2πiv∗τ e2λπiv∗τ = 0

since
∑o

k

∑e
µ e
− τ

2
(k2+µ2) =

∑e
k

∑o
µ e
− τ

2
(k2+µ2). �

Proposition 4. For a complex parameter a ∈ C we have the identity

θ23∗τ (v) θ
2
3∗τ

(a) + θ21∗τ (v) θ
2
1∗τ

(a) = θ23∗τ (0) θ3∗τ (v + a) θ3∗τ (v − a).
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Proof: By a similar manner as in Lemma 1 we have

θ3∗τ (v + a) θ3∗τ (v − a) =

(
e∑
l

e∑
λ

+

o∑
l

o∑
λ

)
e

τ
2
(l2−λ2)π2

e2λπiae2lπiv∗τ .

Since e2λπiv∗τ |v=0 = e−τλ
2π2

e2λπiv|v=0 = e−τλ
2π2

we have also

θ23∗τ (0) =

(
e∑
k

e∑
µ

+
o∑
k

o∑
µ

)
e−

τ
2
(k2+µ2)π2

θ23∗τ (a) =

(
e∑
k

e∑
µ

+

o∑
k

o∑
µ

)
e−

ρ
2
(k2+µ2)π2

e2λπia

θ21∗τ (a) =

(
e∑
λ

o∑
µ

−
o∑
λ

e∑
µ

)
e−

τ
2
(λ2+µ2)π2

e2λπia.

Then we obtain

θ23∗τ (v)θ
2
3∗τ

(a) + θ21∗τ (v) θ
2
1∗τ

(a)

=

(
e∑
l

e∑
k

e∑
λ

e∑
µ

+

e∑
l

e∑
k

o∑
λ

o∑
µ

+

o∑
l

o∑
k

e∑
λ

e∑
µ

+

o∑
l

o∑
k

o∑
λ

o∑
µ

+

e∑
l

o∑
k

e∑
λ

o∑
µ

−
e∑
l

o∑
k

o∑
λ

e∑
µ

−
o∑
l

e∑
k

e∑
λ

o∑
µ

+

o∑
l

e∑
k

o∑
λ

e∑
µ

)
× e

τ
2
(l2−λ2−k2−µ2)π2

e2λπiae2lπiv∗τ

=

(
e∑
k

e∑
µ

+

o∑
k

o∑
µ

)
e−

τ
2
(k2+µ2)π2

(
e∑
l

e∑
λ

+

o∑
l

o∑
λ

)
× e

τ
2
(l2−λ2)π2

e2λπiae2lπiv∗ρ = θ23∗τ (0) θ3∗τ (v + a) θ3∗τ (v − a).

�
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