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Abstract. This work is concerned with the determination of stresses and
strains in cell membranes subjected to micro-injections. For that purpose, a
suitable variational statement of the problem is developed within a continuum
mechanics approach to the analysis of cell membrane geometry and physics.
In this setting, the cell membrane is regarded as an axially symmetric surface
in the three-dimensional Euclidean space providing a stationary value of the
bending energy functional under the constraint of fixed total area. The Euler-
Lagrange equations and the natural boundary conditions associated with the
foregoing variational problem are derived, analyzed and used to express the
stresses and moments in the membrane. Several examples of such surfaces
representing possible shapes of cell membranes subjected to micro injection
are determined numerically.

1. Introduction

Nowadays micro-injection is a common procedure in genetics, drug delivering, in-
vitro fertilization, etc. During the process of a micro-injection, a micro pipette
pierces the cell membrane and delivers substances within the cell interior. The
success of a micro-injection to a large extent depends on the mechanical properties
of the injected cell membrane and on the specific way of interaction between the
injection pipette and the membrane.
Observing the literature on micro-injections of cells one realizes that large cells are
the most often studied, typical examples being the zebrafish and mouse embryos.
The analysis is mainly experimental, but several theoretical models have also been
suggested (see, e.g. [1, 6, 11, 12, 16]).
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A semi-empirical model of axisymmetrical membrane deformation of zebrafish
embryo is presented by Lu et al [6]. In this work, the stress at the injection pipette
tip is obtained measuring the radius of the contact spot between the embryo mem-
brane and the wall the cell is held to. In this model, the stretch at the border
circle between the deformed and undeformed parts of the membrane is obtained
approximating the observed contour of the deformed membrane by second-order
polynomials.

A more sophisticated model for membrane deformation is suggested by Tan et
al [12]. In this model, the cell membrane is supposed to be a two-dimensional
Mooney-Rivlin material, its deformation being governed by a system of quasi-
static equilibrium equations.

It should be underlined that from mechanical point of view, the embryos are dif-
ferent from the other animal cells in both, their size and coating. For instance, the
zebrafish embryos are 0.6− 1.25mm in diameter [1] whereas the size of the most
eukaryotic animal cells is within 10− 30µm (the red blood cells are even smaller
– less than 6µm in size). On the other hand, that embryo’s coating is a veil called
chorion [1] unlike the other cells that are coated by lipid bilayer membrane with
protein inclusions.

A realistic theoretical model for deformation of lipid bilayer membranes was sug-
gested in 1973 by Helfrich [4]. This model, usually referred to as the sponta-
neous curvature model, is widely acknowledged and used by many authors to
study stresses and strains in cell membranes (see, e.g., the exhaustive surveys
[5, 8, 10, 15]). The corresponding partial differential equations determining the
equilibrium shapes of closed lipid bilayer membranes (vesicles – the simplest
model of cells) subjected to hydrostatic pressure is derived in 1989 by Ou-Yang
and Helfrich [9]. Latter on, Capovilla et al [2] and Tu et al [13, 14] have extended
the foregoing model to cell membranes with free edges.

In the present study, the deformation of cells subjected to micro-injection and the
corresponding forces, stresses and strains arising in the cell membrane is examined
in the line of the Helfrich spontaneous-curvature model. The cell membrane is
supposed to be inextensible and to deform axisymmetrically. The evolution of the
membrane shape during a micro-injection process is supposed to be a quasi-static
phenomenon. Thus, our main interest is in the determination of the equilibrium
shapes of an initially spherical vesicle subjected to a force applied at a contour of
the surface and acting along the symmetry axis and directed inward.

The significance of these results is that the estimated stress provides a performance
target for the penetration process, while the estimated strain (deflection) serves as
an indicator of the deformation sustained by cell organelles prior to penetration,
which may be used for the purposes of a fault diagnosis.
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2. Variational Statement of the Problem

In the present study, the deformation of cells subjected to micro-injection and the
corresponding forces, stresses and strains arising in the cell membrane is examined
in the line of the Helfrich spontaneous-curvature model [4] (see also [3,5, 8,10,
15]).
Within the framework of this model, the cell membrane is regarded as a two-
dimensional surface S embedded in the three-dimensional Euclidean space R3.
The membrane is supposed to exhibit a purely elastic mechanical behaviour and
to be inextensible upon deformation. The equilibrium shapes of the membrane are
described in terms of its mean H and Gaussian K curvatures, which are assumed
to be such that the so-called curvature (shape) energy functional

Fc =
kc
2

∫
S
(2H − Ih)2dA+ kG

∫
S
KdA

has a local extremum under the constraints of fixed total area A and enclosed vol-
ume V (if a hydrostatic pressure p is applied). Here, kc and kG are two con-
stants associated with the bending rigidity of the membrane and Ih is the so-called
spontaneous curvature. It should be noted that the associated Euler-Lagrange
equation, usually called the membrane shape equation, is a nonlinear fourth order
partial differential equation with respect to the components of the position vector,
see [9]. At this stage of our study, however, we assume p = Ih = 0.
For an initially spherical cell membrane of radius ρ supposed to retain its axial
symmetry upon deformation, as it is assumed in the present study, the curvature
energy functional Fc takes the form

Fca = 2πkc
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since the mean H and Gaussian K curvatures of a surface in revolution are given
by the expressions
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Here, s is the arclength of the profile curve of the membrane, which is assumed to
lie in the ROZ-plain (see Fig. 1) and to be determined by the parametric equations
R = r(s), Z = z(s) while φ(s) is the slope angle defined by the relations

dr

ds
= cosφ,

dz

ds
= sinφ. (1)

The values s = 0 and s = L of the arclength variable are assumed to correspond to
the points at the profile curve where the injection pipette and the holding pipette,



Modeling of Stresses and Strains in Cell Membranes Subjected to Micro-Injection 181

Figure 1. Sketch of an initially spherical cell membrane of radius ρ
deformed axisymmetrically by two micro-pipettes in the process of a
micro-injection. Here, Z-axis is the symmetry axis of the cell, φ is the
slope angle of the profile curve, which is assumed to lie in the ROZ-
plane while f0 and fL are the magnitudes of the forces (per unit contour
length) exerted by the micro-pipettes at the contours s = 0 and s = L.

respectively, act on the cell membrane along the respective contours, which will be
denoted by C0 and CL.

Taking into account the constraint of fixed total area of the membrane and the geo-
metric relations (1) by introducing three Lagrange multipliers λ(s), µ(s), η(s) and
an auxiliary function α(s) such that α(L)− α(0) = A0/2π, where A0 is a certain
fixed value of the total area of the membrane, as well as accepting the additional
assumption that at both ends of the membrane, i.e., at s = 0 and s = L, there
are distributed forces f0 = kcq0 and fL = kcqL exerted at the membrane along
the Z-axis in the opposite directions and, finally, assuming that there could be line
tensions kcσ0 and kcσL due to the membrane – injection pipette and membrane –
holding pipette interactions, we arrive at the functional

A = 2πkc

[∫ L

0
Lds+ q0w0r(0) + σ0r(0) + qLwLr(L) + σLr(L)

]
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where w0 = ρ − z(0) and wL = ρ + z(L), whose Lagrangian density L is given
by the expression
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Setting to zero the first variation of the functional A one obtains the following
system of Euler-Lagrange equations
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and natural boundary conditions{[
dφ

ds
+

(
1 +

kG
kc

)
sinφ

r

]
rδφ+ λδα+ µδr + ηδz +Hδs

}L

0

+(q0w0 + σ0) δr(0)− q0r(0)δz(0) +Q0δs(0) (4)

+(qLwL + σL) δr(L) + qLr(L)δz(L) +QLδs(L) = 0

where
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Q0 = [q0w0 + σ0r(0)] cosφ(0)− q0r(0) sinφ(0) (5)

QL = [qLwL + σLr(L)] cosφ(L) + qLr(L) sinφ(L).

Actually, H is a conserved quantity on the smooth solutions of the Euler-Lagrange
equations (3) due to the invariance of the functional A under the translations of the
independent variable s. It should be noted also that δr(0) = δr(L) = 0 since the
diameters of the pipettes are fixed as well as λ(L)δα(L)−λ(0)δα(0) = 0 because
of the constraint of fixed total area and the fact that λ turned out to be a constant.
Observing expressions (4), one can immediately interpret

M = 2πkcM̂, M̂ =

[
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+
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)
sinφ
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]
r (6)

and
F = 2πkcF̂, F̂ = (µ+H cosφ)i+ (η +H sinφ)j (7)
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where i and j denote the unit vectors along the coordinate axes R and Z, as the
bending moment (couple resultant) and force (stress resultant), respectively, at
any contour of the membrane, except for the contours C0 and CL at which the
force suffers jump discontinuity because of the external forces

f0 = Q0 cosφ (0) i+ [Q0 sinφ (0) + q0r (0)] j (8)

and

fL = QL cosφ (L) i+ [QL sinφ (L) + qLr (L)] j (9)

respectively, which are applied at these contours.
This means that the so loaded cell membrane is in equilibrium provided that the
following jump conditions

[[M̂ ]]C0 = [[M̂ ]]CL
= 0, [[F̂]]C0 = f0, [[F̂]]CL

= fL (10)

are satisfied. In addition, the balance of the external forces implies

q0r (0) = qLr (L) . (11)

Thus, within the framework of the variational approach suggested here, the equi-
librium states (moments, forces and profile curves) of the considered cell mem-
branes subjected to micro-injections are determined by the solutions of the Euler-
Lagrange equations (3) that meet the conditions (10) and (11).

3. Numerical Results

It is difficult to find analytical solutions to the nonlinear system (3) and, for that
reason, the boundary value problem (3), (10), (11) is treated numerically using
the routine NDSolve in Mathematicar (see [17, Sec. 1.6.4]) combined with a
Maple implementation of the shooting method (package shoot, see [7]).
The work is still in progress and so the results presented in Fig. 2 are to be consid-
ered just as a first attempt to compare the cell membrane shapes predicted by the
suggested variational approach with the experimental results presented in Fig. 3.
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Figure 2. Shapes of axisymmetrically deformed initially spherical cell
membranes subjected to micro-injections predicted by the suggested
variational approach.

Figure 3. Screen shots of the injection process of single cells using the
Hydro-MiNa robotic system.
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