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Abstract. Here we use the mathematical structure of group algebras and
H+-algebras for describing certain problems concerning the quantum dy-
namics of systems of angular momenta, including also the spin systems.
The underlying groups are SU(2) and its quotient SO(3,R). The proposed
scheme is considered in two different contexts.
Firstly, the purely group-algebraic framework is applied to the system of an-
gular momenta of arbitrary origin, e.g., orbital and spin angular momenta of
electrons and nucleons, systems of quantized angular momenta of rotating
extended objects like molecules and etc.
Secondly, the other promising area of applications is Schrödinger quantum
mechanics of rigid body with its often rather unexpected and very interesting
features. Even within this Schrödinger framework the algebras of operators
related to group algebras are a very useful tool.
Finally, we investigate also some problems of composed systems and the
quasiclassical limit obtained as the asymptotics of “large” quantum num-
bers, i.e., “quickly oscillating” wave functions on groups. They are related
in an interesting way to the geometry of the coadjoint orbits of the Lie group
SU(2).
The presentation is based on the general ideas of applying group-algebraic
methods and extesive use of the Lie group structure. The papers ends with
consideration of the special case of the group SU(2) and its quotient SO(3,R),
which is the main subject in this paper, i.e., angular momentum problems.
Formally, the scheme could be applied to the isospin systems.
However, it is rather hard to imagine realistic quasiclassical isospin problems.
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1. Introduction

Many physical systems have geometric background based on some groups or their
byproducts like homogeneous spaces, Lie algebras and co-algebras, co-adjoint or-
bits, etc. Those group structures are relevant both for classical and quantum theo-
ries. They are basic tools for fundamental theoretical studies. They provide us also
with the very effective tool for practical calculations. According to some views
[19], such a purely group-theoretical background is characteristic for almost all
physical models, or at least for realistic and viable ones.
Let us mention a funny fact known to everybody from the process of learning or
teaching quantum mechanics. After the primary struggle with elementary intro-
duction to quantum theory, first of all to atomic and molecular physics, students
are often convinced that the properties of quantum angular momentum, e.g., its
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composition rules, so important in atomic spectroscopy and nuclear phenomena,
are some mysterious and obscure dynamical laws. And only later on, they are very
surprised that there is nothing but group theory there, namely, the theory of unitary
irreducible representations of the three-dimensional rotation group SO(3,R) or its
covering group SU(2) [17, 31, 33]. And the really dynamical model assumptions
are placed elsewhere.
Below we concentrate on certain quantum and quasiclassical problems based on
some group-theoretic apriori, first of all on the theory of quantum angular mo-
menta and their systems, including systems of spins. There were various views
and various answers to the question: “What is quantum mechanics?” What is to
be used as its proper and most adequate mathematical language? Hilbert space,
rigged Hilbert space, operator algebra, wave mechanics, matrix mechanics, quan-
tum logic, orthomodular lattices, etc. [2, 10, 19]? We suppose there is no answer
to this question, in any case, there is none as yet. This work unifies the results
presented in [27–29].

2. Group Algebras as Framework for Quantum-Mechanical Models
with Symmetries

In this paper we follow some working hypothesis, idea by Schroeck [19], that ev-
ery really fundamental and viable model in quantum, but also in classical, mechan-
ics is always based on some apriori chosen group and its representations, cf. also
[4–7, 20–24, 26, 31, 32]. In flat-space theories, i.e., ones without gravitation, they
are Euclidean, pseudo-Euclidean and affine groups (and other Lie groups, e.g., in
gauge theories). When working in a manifold, i.e., when gravitation is taken into
account, everything is based on the infinite-dimensional group of all diffeomor-
phisms. Incidentally, this group is also fundamental in certain geometric models
of nonlinear quantum mechanics [25].
In our treatment the main mathematical tool is the theory of group algebras. And
we follow the idea of Tulczyjew [30] and Weyl [31] about group algebra as the in-
teresting, in a sense aprioric, model of quantum mechanics. We begin with a short
review of necessary mathematical preliminaries and prerequisites. This review is
less than being far from completeness and it cannot be anything more here. It is
just quoted to remind some elementary concepts and to fix notations. More details
and systematic exposition can be found in [1, 9, 11–13].

2.1. H+-Algebras

Let us begin with the concept of H+-algebra as introduced by Ambrose [1]. This
is a special case of the Banach algebra with involution, but not necessarily with
the identity. Let us mention, incidentally, that any Banach algebra B without the
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identity may be reinterpreted as a maximal ideal in the unital Banach algebraB×C
with the product rule

(x, λ) (y, µ) := (xy + λy + µx, λµ)

and the norm
∥ (x, λ) ∥ := ∥x∥B + |λ|.

Then the element (0, 1) becomes the identity and x 7→ (x, 0) is just the mentioned
injection of B into B × R, its image (B, 0) being a maximal ideal. Let us remind
that the involution, denoted by x 7→ x+, is assumed to satisfy

x++ = x, (λx+ µy)+ = λx+ + µy+, (xy)+ = y+x+.

The bar-symbol above denotes the complex conjugation. We avoid to use the star-
symbol for it, because this would badly interfere with stars used in our paper in the
different context.
Often, but not necessarily, one assumes also

∥xx+∥ = ∥x∥2.
The algebra of bounded operators in a Hilbert space, with the usual definition of
the operator norm and with the Hermitian conjugation as an involution, is a typical
and very important example.
An H+-algebra is a consistent hybrid of two structures: a Banach algebra with
involution and a Hilbert space. The underlying linear space will be denoted by B
and the scalar product of elements x, y ∈ B will be denoted by (x, y) and it is
assumed to obey the usual Hilbert space axioms. Let us remind what is meant by
the compatibility of those structures.

• The Banach and Hilbert norms are identical

∥x∥2 = (x, x) .

• The involution, referred to as Hermitian conjugation, is compatible with
the Hermitian conjugation of linear operators acting in B. This means that
for any w ∈ B the Hermitian conjugation of the left regular translation
Lw : B → B is identical with the left regular translation Lw+ : B → B by
the involution of w, (Lw)

+ = Lw+ , i.e.,

(wx, y) =
(
x,w+y

)
(1)

for any x, y ∈ B.
• The involution is a norm-preserving operation, i.e.,

∥x+∥ = ∥x∥
for any x ∈ B

x ̸= 0 ⇒ x+x ̸= 0.
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All these axioms imply in particular that the involution is an antiunitary operator(
x+, y+

)
= (y, x) = (x, y).

Therefore, it is an isometry of B as a metric space

d
(
x+, y+

)
= ∥y+ − x+∥ = ∥y − x∥ = d (x, y) .

Of course, being antilinear, the involution cannot be unitary. Another important
consequence is that the analogue of (1) holds also for the right translations Rw

(xw, y) =
(
x, yw+

)
(2)

for any x, y ∈ B.
It is just (1) and (2) that enable one to use the same symbol for the involution in B
and Hermitian conjugation in L(B), the algebra of linear operators on B. There is
no danger of confusion.
One deals very often with some special situations, when the Hilbert structure of a
Banach algebra with involution is a byproduct of something more elementary, i.e.,
a linear functional T : B → C such that

T (xy) = T (yx), T
(
x+
)
= T (x), x ̸= 0 ⇒ T

(
x+x

)
> 0.

The scalar product is then defined as

(x, y) = T
(
x+y

)
. (3)

The most elementary example, which at the same time provides some, so-to-speak,
comparison pattern for all more general situations, is the associative algebra L(H)
of all linear operators acting on a finite-dimensional unitary space H . Scalar
product of vectors φ,ψ ∈ H will be denoted by ⟨φ|ψ⟩ while the involution in
B = L(H) is defined by the usual formula

⟨xφ|ψ⟩ = ⟨φ|x+ψ⟩

for the Hermitian conjugation. Then T is just the trace operation, T (x) = Tr x,
and the scalar product (3) is given by the standard formula

(x, y) = Tr
(
x+y

)
. (4)

Let ei be some basic elements of H and ei be the corresponding dual elements of
the conjugate space H∗, thus

⟨ei, ej⟩ = ei (ej) = δij

where the symbol ⟨f, u⟩, used as a popular abbreviation for f(u), denotes the
evaluation of the linear function f ∈ H∗ on the vector u ∈ H . The Gramm
matrix assigned to the basis (. . . , ei, . . .) has elements

Γij = ⟨ei|ej⟩
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then for any vectors u = uiei, v = vjej we have

⟨u|v⟩ = Γ(u, v) = Γiju
ivj .

Warning: There are some subtle problems concerning the complex conjugation
of vectors or, more generally, tensors. The point is that there is no well-defined
complex conjugation as an operation acting within an abstract linear space over
C. There is a well-defined concept of the complex space V complex-conjugated
to V . Then the bar-operation acts from V to V , not from V to V . Such problem
does not appear in Cn or more generally when some distinguished basis is fixed.
The corresponding detailed description would take too much space and introduce
superfluous discussion, for details cf. [25]. Hence, any time when in this article
we write the complex conjugation symbol over vectors or tensors, we mean the
complex conjugation of their components as numbers.
The inverse matrix element will be denoted by Γij

ΓikΓkj = δij .

The scalar product of linear functions f = fie
i, g = gje

j ∈ H∗ is given by

⟨f, g⟩ = Γijfigj .

Apparently, this expression is correctly defined, i.e., independent on the choice of
basis in H . Usually one prefers the choice of orthonormal bases, when

Γij = ⟨ei|ej⟩ = Γ (ei, ej) = δij , Γij = δij .

Any basis (. . . , ei, . . .) in a linear space H gives rise to the corresponding adapted
basis

(
. . . , ej

i, . . .
)

in L(H), where

ej
i := ej ⊗ ei, i.e., ej

iek = δikej .

Therefore, the matrix elements of ej i with respect to the basis (. . . , ei, . . .) are
given by (

ej
i
)a

b = δibδ
a
j .

It is easy to see that

ej
ier

s = δirej
s, Tr ej

i = δj
i. (5)

Introducing the modified basic elements

eji := Γikej
k = ej

kΓki
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we have

eikelj = Γkleij (6)

Tr (eij) = Γji = Γij (7)

e+ij = eji (8)

ei
j+ = ΓiaΓ

bjeb
a = Γ

jb
eb

aΓai (9)

where the contravariant upper-case Γ is reciprocal to the covariant lower-case one,

ΓacΓcb = δab, ΓacΓ
cb = δa

b.

It is clear that also the following holds

Γ
ac

Γcb = δab, Γac Γ
cb
= δa

b.

The basic scalar products of operators have the following form(
ei

j , ea
b
)
= ΓiaΓ

bj = ΓiaΓ
jb (10)

(eij , eab) = ΓiaΓbj = ΓiaΓjb. (11)

These are “orthogonality” relations for the operators eab, eab.
Some of the above formulas become remarkably simpler, if the basis (. . . , ei, . . .)
is orthonormal

Γij = δij , Γij = δij .

However, it is sometimes convenient to separate the “metrical” concepts from the
weaker “affine” ones as far as possible.
It is instructive and convenient for the analysis of quantum problems to mention
and make use of the Dirac notation inH , B = L(H). The basic vectors ei are then
denoted by |i⟩ and the basic operators eij are then given by

eij = |i⟩⟨j|.

Certainly, the above notation is adapted just to the situation when we choose the
basis (. . . , ei, . . .) to be orthonormal. Perhaps the notation

Pij := |i⟩⟨j|

is then more adequate than eij . The diagonal elements

Pi := Pii = |i⟩⟨i|

are then orthogonal projections onto C-one-dimensional subspaces with bases ei =
|i⟩ and ∑

i

|i⟩⟨i| = IdH .
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For a general basis we have the following completeness relation∑
a,b

Γabeab =
∑
a,b

ΓabPab = IdH

or using the “summation convention”

Γabeab = Γ
ba
eab = IdH .

The corresponding non-metrical, “affine” completeness relation is given by∑
a

eaa = eaa = IdH .

Let us notice that the operators eii (the underlining of indices means that no sum-
mation convention is used here!) are idempotents, cf. equation (5). When the basis
(. . . , ei, . . .) is not orthonormal, they are not Hermitian, however, they are such if
the basis is orthonormal, Γij = δij , see equation (9). Unlike this, the “diagonal”
elements eii (no summation convention!) are always Hermitian and in the case of
orthonormal basis in H they are also idempotents, cf. equations (6) and (8), so we
have then that

e+ii = eii, eiieii = eii

(no summation convention!). So in this case we obtain the orthonormal decompo-
sition of the identity operator

IdH =
∑
a

eaa = eaa

(the summation convention meant on the extreme right-hand side).
It is easy to see that for any fixed j, the linear span of elements eij , i.e., equivalently,
the linear span of elements eij = eikΓ

jk, forms a minimal left ideal L(H)eij =
L(H)ei

j in L(H), so L(H) is a direct sum of n = dimH such ideals. One can
easily show that such left ideals are generated by the operators ejj , or equivalently,
by ejj (no summation convention!). Let us denote those left ideals by

Mj = L(H)ejj = L(H)ej
j .

Let us stress that: Mj is the set of linear combinations of the form αiei
j = βieij ,

where α, β are arbitrary.
Similarly, we have the minimal right ideals

jM := ejjL(H) = ej
jL(H).

They are obtained as the sets of linear combinations of the form αiej
i = βieji,

where α, β are again arbitrary.
As mentioned, L(H) splits into the direct sum of ideals Mj or jM

L(H) =M1 ⊕ · · · ⊕Mn = 1M ⊕ · · · ⊕ nM.
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This is the orthogonal splitting in the sense of (4), i.e., Mi is orthogonal to Mj if
i ̸= j, and the same is true for iM , jM .
Any finite-dimensional H+-algebra B is an H+-subalgebra of the above L(H)
with the induced structures. It may be uniquely decomposed into the direct sum of
minimal two-sided ideals M(α), α = 1, . . . , k, every one of them being isomor-
phic to some L(V ) with the structure of H+-algebra as described above. There-
fore, dimM(α) = n2α and

k∑
α=1

n2α = dimB.

Every M(α) is generated by some Hermitian idempotent e(α)

M(α) = Be(α)B

and the following holds

e(α)e(β) = 0 if α ̸= β, (e(α), e(β)) = 0 if α ̸= β

e(α)e(α) = e(α), e(α)+ = e(α).

The minimal two-sided ideals M(α), M(β) are orthogonal when α ̸= β.
In L(H) there are only two ideals M(α), the improper ones, namely, L(H) itself
and {0}. And, evidently, in L(H) the corresponding Hermitian idempotent is just
the identity element

e = IdH = eaa = Γabeab.

In a general finite-dimensionalH+-algebraB, we have that the minimal two-sided
ideals M(α), being isomorphic with L (nα,C) ≃ Cn2

α , are direct sums of n(α)
left minimal ideals M(α)j , each one of dimension n(α). Of course, they are also
representable as direct sums of n(α) right minimal ideals jM(α), every of dimen-
sion n(α). The label j runs the range of naturals from 1 to n(α). And, on analogy
to L(H), we choose some special bases e(α)ij , e(α)ij in B, where, for a fixed
α, i, j run over the natural range from 1 to n(α) (to avoid the crowd of symbols
we simply write i, j instead of i(α), j(α) as we in principle should have done).
Those bases are assumed to have, for a fixed α, the properties analogous to that
described in equations (5)–(11). More precisely, it is so when B is not an abstract
H+-algebra but some H+-subalgebra of L(H). Otherwise some comments would
be necessary concerning the coefficients Γ(α)ij . In any case, to avoid discussion,
one can put them to be the Kronecker symbols.
Nevertheless, in a general H+-algebra there are situations when (10), (11) are
modified, e.g., that for any α there exists its own Γ(α). For instance, analytically
the coefficients Γ(α)rs are there proportional to δrs with coefficients depending
on α. This is not the case in (6), (7). One can show (cf. [1]) that in general the
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canonical ε-basis may be chosen in such a way that

ε(α)ikε(α)jl = δkjε(α)il

(ε(α)ik, ε(α)jl) = 0 unless i = j and k = l

(ε(α)ik, ε(α)ik) = (ε(α)11, ε(α)11)

ε(α)+ij = ε(α)ji

ε(α) =
∑
i

ε(α)ii.

The diagonal elements ε(α)ii are irreducible Hermitian idempotents (any of them
is not a sum of two idempotents), and their sum equals the idempotent ε(α) gener-
ating the two-sided ideal M(α). For different α, β the corresponding ε-elements
are mutually orthogonal and annihilate each other under multiplication

(ε(α)ij , ε(β)rs) = 0 if α ̸= β

ε(α)ikε(β)rs = 0 if α ̸= β

(ε(α), ε(α)) = (ε(α)11, ε(α)11) dimM(α).

Unlike the minimal two-sided ideals M(α), the left and right ideals M(α)i and
iM(α) are not unique.
Similarly, the basic elements e(α)ij or e(α)ij are not unique. However, their
“index-traces”

e(α) = e(α)ii = Γ(α)ije(α)ij (12)

are unique and just coincide, as denoted, with the generating idempotents e(α).
The “diagonal” idempotents e(α)ii or e(α)ii (no summation convention!) are not
unique, however, the “trace” (12) is so, and their sum is just the identity element
of B ∑

α

e(α) = e.

The idempotent e(α) is referred to as the induced unit of M(α).

2.2. Infinite-Dimensional Situation

Those roughly referred examples provide some “reference frame” for understand-
ing the general theory. Nevertheless, the general case, when the infinite dimension
of B is admitted, is much more complicated, and many finite-dimensional analo-
gies are misleading. Many importantH+-algebras are non-unital. Instead of direct
sums, some direct integrals of Hilbert spaces must be used. In the infinite dimen-
sion many structures taken from finite-dimensional operator algebras diffuse, one
must oscillate between various subsets like those of trace-class operator, Hilbert-
Schmidt operators, etc.
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The simplest infinite-dimensional situations are group algebras on locally com-
pact topological groups. In particular, group algebras on compact subgroups are
relatively similar to the finite-dimensional case, e.g., all minimal ideals are finite-
dimensional.
Let G be a locally compact topological group. Although we are interested mainly
in finite-dimensional Lie groups, nevertheless, there is a hierarchy of structures
based on more general ideas and only later on, on the level of applications, assum-
ing more and more specialized concepts. Let µl, µr denote respectively the left-
and right-invariant Haar measures on G. They are unique up to constant normal-
ization factors, but in general they do not coincide. Nevertheless, the right-shifted
left-invariant measure is still left-invariant, i.e., roughly speaking

dµl(gh) = ∆(h)dµl(g)

where ∆(h) is a positive factor, and iterating those right transforms one can easily
show that

∆(hk) = ∆(h)∆(k) = ∆(kh).

So, ∆ is a homomorphism of G into R+ as a multiplicative group and µl, µr may
be different only when G does possess a nontrivial homomorphism into R+. If
they are identical, we say that G is unimodular. Compact and Abelian Lie groups,
and so their direct and semidirect products, are unimodular. IfG is unimodular, the
measure elements dµl(g) = dµr(g) are denoted simply by dg. If G is unimodular,
then not only

µ(Ah) = µ(hA) = µ(A)

but also µ
(
A−1

)
= µ(A) for any measurable subset A ⊂ G. From now on it will

be always assumed that G is unimodular, so we write symbolically

d(gh) = d(hg), d
(
g−1
)
= dg.

In the space L1(G) of integrable functions one defines the convolution operation

(A ∗B) (g) =

∫
A(h)B

(
h−1g

)
dh =

∫
A
(
gk−1

)
B(k)dk. (13)

It is defined on the total L1(G)×L1(G) and produces from elements of L1(G) the
elements of L1(G), so L1(G) is an algebra under the convolution,

L1(G) ∗ L1(G) ⊂ L1(G).

We see that the convolution ∗ turns L1(G) into L1(G), so that the axioms of asso-
ciative Banach C∗-algebra hold in L1(G), e.g.

||f ∗ g|| ≤ ||f || ||g||
where the L1(G)-norm is meant, and the involution is defined as(

f+
)
(x) = f (x−1). (14)



Quasiclassical and Quantum Dynamics of Systems of Angular Momenta 81

The linear functional Tr is defined as the value at the group identity

Tr(f) := f(1) (15)

and the scalar product of functions on G is defined as

(φ,ψ) = Tr
(
φ+ ∗ ψ

)
=

∫
φ(x)ψ(x)dx.

It is positive, i.e.,

Tr
(
φ+φ

)
=

∫
φ(x)φ(x)dx > 0 if 0 ̸= φ ∈ L2(G).

These expressions lead us to the space L2(G) and algebraic structures there. All
these structures fit together so as to result in the structure of H+-algebra in L2(G).
Such structures in L1(G), L2(G) are referred to as group algebras. Everything is
particularly simple when G is a discrete group. Then we have that

⟨φ,ψ⟩ =
∑
x∈G

φ(x)ψ(x).

If G is compact, then we usually normalize the measure such that

µ(G) = 1.

In particular, if it is a finite, N -element group, we put∫
f(x)dx =

1

N

∑
x∈G

f(x).

However, this normalization is not always used and not always is convenient.
If G is compact, then L2(G) splits uniquely into the direct sum of minimal two-
sided ideals M(α), where α runs over some discrete set of labels Ω

L2(G) = ⊕
α∈Ω

M(α).

These ideals are mutually orthogonal

M(α) ⊥M(β) if α ̸= β, (F,G) = 0 if F ∈M(α), G ∈M(β)

and then

M(α) ∗M(β) = {0} if α ̸= β, F ∗G = 0 if F ∈M(α), G ∈M(β).

They are generated by Hermitian idempotents ε(α), therefore

M(α) = ε(α) ∗ L2(G) = L2(G) ∗ ε(α)
and the following holds

(ε(α), ε(β)) = 0 if α ̸= β, ε(α) ∗ ε(β) = δαβε(β)n
2(β)

(no summation convention in the last expression!).
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The convolution with ε(α) acts as the orthogonal projection of L2(G) onto M(α).
In particular, it is a generated unit of M(α)

ε(α) ∗ F = F ∗ ε(α) = F

for any F ∈ M(α). If G is a finite group with N elements, then L1(G) = L2(G)
is a unital algebra under convolution. Its identity ε is proportional to the “delta”
function

Id(g) = Nδ(g), δ(x) := δxe = 1 if x = e, δ(x) = 0 if x ̸= e

where e ∈ G denotes the group identity. The δ-type convolution identity does exist
for any discrete group. It is just δ itself for finite groups.
Apparently, δ is identical with the sum of idempotents ε(α)

δ =
∑
α∈Ω

ε(α). (16)

If G is a continuous group, this expression is a divergent series and there is no
identity in group algebra. It does exist in any (in general, non-minimal) two-sided
ideal obtained from (16) when the summation is extended over a finite subset of
Ω. The procedure of the formally introduced identity in a one-dimensionally ex-
tended group algebra would be rather artificial, nevertheless. If G is a Lie group,
it is much more natural to introduce the “identity” represented by the Dirac-delta
distribution. The more so, some derivatives of “delta” distribution represent some
very important physical quantities.
Let us stress that the minimal two-sided Hermitian idempotents ε(α) span the cen-
tre of group algebra. More precisely, they form a complete system in the subspace
of convolution-central functions. All such central functions are constant on the
classes of conjugate elements, i.e., on the orbits of inner automorphisms of G. If
we admit the unit element of group algebra as represented by the Dirac delta dis-
tribution, then formally this δ is given by the series (16). As a function series it is
divergent, however the limit does exist in the distribution sense. And, as a func-
tional on the appropriate function space, δ assigns to any function F : G → C its
value at the unit element e of G

⟨δ, f⟩ = f(e).

It is shown that the set of minimal two-sided ideals is identical with the set Ω
of unitary irreducible representations of G, pairwise non-equivalent ones. More
precisely, Ω is the set of equivalence classes of unitary irreducible representations.
Due to the compactness of G, all those representations are finite dimensional. Let

D(α) : G→ U(n(α)) ⊂ GL(n(α),C)
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denote the α-th unitary irreducible representation, more precisely, some represen-
tant of the corresponding class. Clearly, n(α) is the dimension of the correspond-
ing representation space Cn(α). All these representation spaces are assumed to be
unitary in the sense of the standard scalar products

⟨u, v⟩ =
n(α)∑
a=1

uava = δabu
avb.

The minimal two-sided ideals M(α) are spanned by the matrix elements of the
representations α, D(α)ij . Moreover, one can show that after appropriate normal-
ization the functions D(α)ij form the canonical basis, more precisely, the canon-
ical complete system of the H+-algebra L2(G). This follows from the following
properties of matrix elements, well-known from the representation theory

D(α)ij ∗D(α)kl =
1

n(α)
δjkD(α)il (17)

D(α)ij ∗D(β)rs = 0 if β ̸= α (18)

(D(α)ij , D(α)kl) =
1

n(α)
δikδjl (19)

(D(α)ij , D(β)rs) = 0 if β ̸= α. (20)

These equations are valid when the Haar measure on G is normed to unity

µ(G) =

∫
G

dµ = 1.

If other normalization is fixed, then on the right-hand sides of (17)–(20) the volume
of G, µ(G), appears as a factor.
Let χ(α) and ε(α) denote the character of D(α) and the corresponding trace of
ε(α) = n(α)D(α) respectively

χ(α) =
∑
i

D(α)ii, ε(α) =
∑
i

ε(α)ii = n(α)χ(α).

Then

χ(α) ∗ χ(α) =
1

n(α)
χ(α), χ(α) ∗ χ(β) = 0 if α ̸= β

(χ(α), χ(α)) = 1, (χ(α), χ(β)) = 0 if α ̸= β

and similarly

ε(α) ∗ ε(α) = ε(α), ε(α) ∗ ε(β) = 0 if α ̸= β (21)

(ε(α), ε(α)) = n2(α), (ε(α), ε(β)) = 0 if α ̸= β. (22)
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The above properties tell us that the canonical basis is given by functions

ε(α)ij = n(α)D(α)ij . (23)

They really satisfy all above-quoted structural properties of canonical bases inH+-
algebras

ε(α)ij ∗ ε(α)kl = δjkε(α)il (24)

ε(α)ij ∗ ε(β)rs = 0 if β ̸= α (25)

(ε(α)ij , ε(α)kl) = δikδjln(α) (26)

(ε(α)ij , ε(β)rs) = 0 if β ̸= α (27)

ε(α)ij
+ = ε(α)ji (28)

Tr ε(α)ij = δij . (29)

Let us stress that the above symbols “+” and “Tr” are used in the sense of equations
(14) and (15) and do not concern directly the operations performed on indices i, j.
However, they concern them indirectly. Namely, every function F ∈ L2(G) may
be expanded as a function series with respect to the above complete system

F =
∑

α∈Ω, n,m=1,...,n(α)

F (α)nmε(α)nm. (30)

Let us describe relationships in equations (24)–(29) in terms of the coefficients
used here. For binary operations we analogously expand the other function

G =
∑

α∈Ω, n,m=1,...,n(α)

G(α)nmε(α)nm. (31)

It follows from the above rules (24)–(29) that the convolution of F , G is repre-
sented by the system of matrices

(F (α)G(α))nm =
∑
k

F (α)nkG(α)km

i.e.,
F ∗G =

∑
α∈Ω, n,m=1,...,n(α)

(F (α)G(α))nmε(α)nm. (32)

Similarly, the Hermitian conjugate and the Tr-functional are represented by the
usual matrix Hermitian conjugation and trace

F+ =
∑

α∈Ω, n,m=1,...,n(α)

(F (α)+)nmε(α)nm

Tr F =
∑
α∈Ω

Tr F (α)
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and in particular, for the scalar product we have that

(F,G) =
∑
α∈Ω

Tr
(
F (α)+G(α)

)
n(α). (33)

This is just the explanation of apparently strange definitions of those operations.

2.3. Algebraic Formulation of Quantum Mechanics

In a sense, the group algebra over G may be considered as an arena for some
type of the algebraic, operator-type formulation of quantum mechanics [30]. We
are given the associative convolution product and all necessary equipment of H+-
algebra. So, we have everything that is necessary for the algebraic formulation of
quantum mechanics. Physical quantities are +-self-adjoint elements of the group
algebra, A+ = A. Density operators are self-adjoint elements, ρ = ρ+, satisfying
in addition the normalization condition

Tr ρ = 1 (34)

and the positive-definiteness condition(
ρ,A+ ∗A

)
> 0

for any element A of the group algebra. Pure states are described by Hermitian
idempotents. Thus, in addition to the above conditions the following must hold

ρρ = ρ, ρ+ = ρ.

Expectation value of the physical quantity A = A+ on the state ρ is given by

⟨A⟩ρ = Tr (Aρ) =
(
A+, ρ

)
= (A, ρ).

If ρ0 is some pure state, then the probability that the measurement performed on
the general state ρ will detect the state ρ0 is given by

Tr (ρρ0) = (ρ, ρ0) .

Statistical interpretation may be also assigned to the non-normalized states ρ, i.e.,
those which do not fulfill (34). Then one can speak only about relative probabili-
ties. However, there are yet no wave functions and no superposition principle. It is
a good thing to have also some space of wave functions. The most natural candi-
dates are L2-spaces on the groupG and its homogeneous spaces. Before going any
further in this direction one should quote some comments concerning invariance
problems.
Everything above was based on the convolution product (13). It is evidently asso-
ciative

(F ∗G) ∗H = F ∗ (G ∗H).
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It is so for any L1(G)-functions on any locally compact topological group G. The
group structure of G brings about the question concerning the G-invariance of the
convolution, in any case the question concerning the sense of such invariance. On
the group manifold of G the group G itself acts through three natural transforma-
tion groups: left translations, right translations and inner automorphisms. These
actions are given respectively as follows

x 7→ Lg(x) := gx, x 7→ Rg(x) := xg

x 7→ Ag(x) := gxg−1, Ag = Lg ◦Rg−1 = Rg−1 ◦ Lg.

With this convention g 7→ Lg, g 7→ Ag, g 7→ Rg are respectively two realizations
and one anti-realization of the group G

Lg1g2 = Lg1 ◦ Lg2 , Ag1g2 = Ag1 ◦Ag2 , Rg1g2 = Rg2 ◦Rg1 . (35)

Substituting g−1 instead of g we replace realizations by anti-realizations and con-
versely.
The above operations induce the pointwise actions on functions on G, namely

L[g]f := f ◦ Lg−1 , R[g]f := f ◦Rg−1 (36)

A[g]f := f ◦Ag−1 , A[g] = L[g]R
[
g−1
]
= R

[
g−1
]
L[g]. (37)

Via replacement of g by g−1, we obtain in this way two linear representations and
one anti-representation of G in function spaces on G itself

L[g1g2] = L[g1]L[g2], A[g1g2] = A[g1]A[g2], R[g1g2] = R[g2]R[g1].

All these transformations preserve the spaces L1(G), L2(G). They preserve also
the scalar products and the corresponding statistical statements concerning mea-
surements. However, the left and right regular translations L[g], R[g] do not pre-
serve the convolution. Unlike this, internal automorphisms do preserve this alge-
braic structure. Indeed

L[g](F ∗G) = (L[g]F ) ∗G ̸= (L[g]F ) ∗ (L[g]G) (38)

R[g](F ∗G) = F ∗ (R[g]G) ̸= (R[g]F ) ∗ (R[g]G) (39)

A[g](F ∗G) = (A[g]F ) ∗ (A[g]G). (40)

Physically the associative product has to do with spectra, eigenvalues and eigen-
states. This is just that part of physical statements for which the left and right
regular translations in G are not physical automorphisms in the H+-algebraic
formulation of quantum mechanics. Concerning the connection with spectra and
eigenproblems: in an algebraic formulation, including the H+-algebraic one, the
number λ does belong to the spectrum of the function F if the convolution inverse
of (F − λδ) does not exist, i.e., if there is no function H satisfying

H ∗ (F − λδ) = δ.
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This is easily expressible in terms of the expansion (30), namely, λ ∈ Sp F if and
only if there exists α ∈ Ω such that

det
(
F (α)− λIdn(α)

)
= 0.

All this is equivalent to the statement that there exists such a density matrix ρ ∈
L2(G) for which the following eigenequation holds

A ∗ ρ = λρ.

When A+ = A, this is equivalent to the right-hand-side “eigenequation”

ρ ∗A = λρ.

These physically interpretable statements are based on the associative convolution
product, therefore, the left and right regular translations, which do not preserve
it, are not physical symmetries of the quantum-mechanical formulation based on
the group algebra of G. Some light is shed on such problems when convolutions
are interpreted as linear shells of regular translations. And at the same time some
natural link is established then with the concepts of wave functions, superpositions,
etc.
Let us follow one of finite-dimensional patterns outlined above. Namely, we be-
gin with the linear space H of wave functions on G, in principle the Hilbert space
L2 (G,dg), although in practical problems the Hilbert space language is often too
narrow, e.g., one must admit distributions or non-normalizable wave functions (in
the non-compact case). The following sets are relevant for quantum theory: the
Banach algebra B(H) of bounded linear operators on H and H+-algebraic struc-
tures in appropriate subspaces of B(H). Of course, in practical problems some
non-bounded operators, elements of L(H) are admissible and, when properly and
carefully treated, just desirable. The point is that some very important physical
quantities, e.g., momenta, angular momenta and so on, are represented by differ-
ential operators, of course, non-bounded ones.
However, let us begin with bounded operators describing G-symmetries, namely,
described by equations (36) and (37)

L[g], R[g], A[g] = L[g]R
[
g−1
]
= R

[
g−1
]
L[g].

These operators are unitary in L2 (G, dg) and, being unitary, they are bounded.
The linear shell of the family of operators {L[g] ; g ∈ G} is just the group algebra
of G. Namely, if we take two functions F,H ∈ L1(G) and the corresponding
linear operators

L{F} =

∫
F (g)L[g]dg, L{H} =

∫
H(g)L[g]dg (41)

then it may be easily shown that

L{H}L{F} = L{H ∗ F}. (42)
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Of course, (41) is a rather symbolic way of writing, i.e., this formula is meant in
the following sense

L{F}f =

∫
F (g)L[g]fdg = F ∗ f. (43)

Therefore, all operations performed on operators of the type L{F} are represented
by the corresponding, described above, operations on functions F as elements of
the Lie algebra over G. Let us stress that the operators of the form (41) are very
special, albeit important elements of L(H). Let us formally substitute for F in
(41) the “delta distribution” δh concentrated at h ∈ G, i.e., symbolically

δh(g) = δ
(
gh−1

)
= δ

(
hg−1

)
.

Then
L{δh} = L[h], δh ∗ f = L[h]f

i.e., the formal convolution with δh is the h-translation of f . In particular, δe = δ
is the convolution identity. Something similar may be done with the right transla-
tions. One obtains then another family of linear operators acting on wave functions.
Namely, let us take again the linear shell of right regular translations, in particular
the operators

R{F} =

∫
F (g)R[g]dg, R{H} =

∫
H(g)R[g]dg (44)

give, with the definition analogues to (43),

R{F}f = f ∗ F.
And again after simple calculations we obtain the following superposition rule

R{F}R{H} = R{H ∗ F}. (45)

Unlike the representation rule (42), this is anti-representation of the convolution
group algebra on G into the algebra of all operators acting on “wave functions” on
B, in particular, on L1(G), L2(G). To obtain the representation property also for
the R-objects, one should define them in the “transposed” way

RT {F} :=

∫
F T (g)R[g]dg =

∫
F
(
g−1
)
R[g]dg

=

∫
F (g)R

[
g−1
]
dg

F T (g) := F
(
g−1
)
.

Then
RT {F}RT {H} = RT {F ∗H}.

The transformation rules (38), (39) and the representation rules (42), (45) tell us
that the convolution is not invariant under regular translations, i.e., convolution of
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translates differs from the translate of convolution. Nevertheless, this is a very
peculiar non-invariance and something is invariant, in a sense. Namely, the left-
translated convolution is identical with the convolution in which the left factor
is left-translated and the right one is kept unchanged. And conversely, the right-
translated convolution is the convolution in which the right factor is right-translated
(but only this one).
Concerning translational non-invariance of the convolution, let us notice that F ∗H
may be symbolically expressed with the use of the Dirac distribution

(F ∗H) (g) =

∫
δ
(
x−1gy−1

)
F (x)H(y)dxdy

(46)

=

∫
δ
(
yg−1x

)
F (x)H(y)dxdy.

Let us write down a binary multilinear operation on functions on G in the integral
form, maybe symbolic one

(F ⊥ H) (g) =

∫
K(g;x, y)F (x)H(y)dxdy.

This operation is invariant under right or left translations, i.e., respectively the
following holds

(F ⊥ H) (gh) =

∫
K(g;x, y)F (xh)H(yh)dxdy (47)

(F ⊥ H) (hg) =

∫
K(g;x, y)F (hx)H(hy)dxdy (48)

when

K(g;x, y) = Kr

(
gx−1, gy−1

)
, K(g;x, y) = Kl

(
x−1g, y−1g

)
respectively for (47) and (48). Certainly,

K(g;x, y) = δ
(
x−1gy−1

)
does not satisfy any of conditions (47), (48). Moreover, if G is non-Abelian, those
two conditions are rather incompatible.
Let us consider also the total linear shell of translation operators. Let us take a
function F : G×G→ C and construct the operator

Tt{F} :=

∫
F (g1, g2)L[g1]R

[
g−1
2

]
dg1dg2. (49)

One can show that multiplication of such operators results in convolution of func-
tions on the direct product G×G

Tt{F}Tt{H} = Tt{F ∗H} (50)
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where

(F ∗H) (g1, g2) =

∫
F (h1, h2)H

(
h1

−1g1, h2
−1g2

)
dh1dh2. (51)

One could also proceed like in (44), namely, define

T{F} =

∫
F (g1, g2)L[g1]R[g2]dg1dg2. (52)

Then the convolution in the second argument is “transposed”. By that we mean the
operation

f ∗t g := g ∗ f
and thus

T{F}T{H} = T{F
(
∗t
)
H} (53)

where (
F
(
∗t
)
H
)
(g1, g2) =

∫
F (h1, h2)H

(
h−1
1 g1, g2h

−1
2

)
dh1dh2. (54)

Evidently, the difference between the expressions (52), (53), (54) and respectively
(49), (50), (51) is of a rather cosmetical nature.
Operators of the convolution form (49), (52) are very special linear operations act-
ing on the wave functions Ψ : G → C. They are “smeared out” in G, essentially
non-local, if F is a “usual”, “good” function. To obtain very important opera-
tors of geometrically distinguished physical quantities or unitary operators of left
and right regular translations one must use distributions. Let us mention, e.g., the
obvious, trivial examples

L[h] = L{δh}, R[h] = R{δh}, L[h]R[k] = F{δ(h,k)} (55)

where, let us repeat

δh(g) = δ
(
gh−1

)
, δh,k (g1, g2) = δ

(
g1h

−1, g2k
−1
)
= δh(g1)δk(g2). (56)

A more detailed analysis, including the description of important physical quan-
tities, may be performed only when one deals with Lie groups and makes use of
their differential and analytical structure. Here we stress only the fact that when the
algebraic scheme of group algebras is used, then the regular translations fail to be
automorphisms of the theory. Physical automorphisms are given by the operators

A[g] = L[g]R
[
g−1
]
= R

[
g−1
]
L[g].

Therefore, the minimal two-sided ideals M(α) must be further decomposed into
direct sums of minimal subspaces invariant under inner automorphisms. This leads
to operator algebras invariant under unitary similarity transformations acting in the
space L2(G) of wave functions.
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Let us stress that the Hilbert space operations in L2(G) as the space of wave func-
tions are compatible with the H+-algebra operations in the sense that

L{F}+ = L
{
F+
}
, R{F}+ = R

{
F+
}
, T{F}+ = T

{
F+
}

where the involutions on the right-hand sides of these equations are meant in the
sense of (14), i.e.,

F+(g) = F (g−1), F+ (g1, g2) = F
(
g−1
1 , g−1

2

)
.

In particular, the mentioned operators are Hermitian if and only if the correspond-
ing functions are involution-invariant.
Similarly, the operators of convolution are unitary

L {F}+ L {F} = IdL2(G)

R {F}+R {F} = IdL2(G)

T {H}+ T {H} = IdL2(G×G)

if and only if
F+ ∗ F = δG, H+ ∗H = δG×G.

Definitely, all translation operators in (36), (37), (55) and (56) are unitary inL2(G).
This follows from the invariance of the Haar measure. They preserve the scalar
product of wave functions onG, and automatically they preserve the scalar product
in the H+-algebra L2(G). It is interesting to stress again how they are represented
in the algebra L(L2(G)) of all operators in L2(G), and first of all, in the algebra of
bounded operators B(L2(G)). Of course, any invertible operator F in L2(G) acts
in L(L2(G)), B(L2(G)) through the similarity transformations

A→ FAF−1.

This concerns in particular unitary operators, like regular translations. It is inter-
esting to see how they act in the linear shell of translations, i.e., in the algebras of
convolution-type operators. One can easily show that

L[g]L{F}L[g]−1 = L{A[g]F}
R[g]L{F}R[g]−1 = L{F}
L[g]R{F}L[g]−1 = R{F}
R[g]R{F}R[g]−1 = R{A[g−1]F}

or, better to express

R[g−1]R{F}R[g−1]−1 = R{A[g]F}.

Therefore,

L[g1]R[g2]T{F} (L[g1]R[g2])−1 = T
{
F ◦

(
A[g1]×A[g2

−1]
)}
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or equivalently

L[g1]R[g2]Tt{F} (L[g1]R[g2])−1 = Tt {F ◦ (A[g1]×A[g2])} .
The Cartesian product of mappings A : X → U , B : Y → V , denoted by
A×B : X × Y → U × V , is meant in the usual sense, i.e.,

(A×B) (x, y) = (A(x), B(y)) .

The message of these formulas is that regular translations acting on wave functions
on G are represented in the group algebras over G or G × G by inner automor-
phisms. Because of this, classification of states and physical quantities in group
algebras overG andG×G is based on the analysis of minimal subspaces invariant
under inner automorphisms. One point must be stressed: the operators of the form
T{F} are not the most general operators acting in L2(G). The position opera-
tors, more precisely, the operators of pointwise multiplication of wave functions
by functions on G do not belong to this class. Nevertheless, if G is non-Abelian,
then some (not all!) position-like quantities are implicitly present in T{f}-type
operators.
The main peculiarity of convolution-type operators and their singular special cases
like the regular translations and automorphisms specified in (36), (37), (41), (44),
(49) and (51) is that they preserve separately all subspaces/ideals M(α).
It is not the case with the position-like operators because they mix various sub-
spaces (ideals) with each others. The points is interesting in itself, because it has to
do with the relationship between two algebraic structures in function spaces over
G. One of them is just the structure of the associative algebra under convolution
in L1(G). It is non-commutative unless G is Abelian and has no literally meant
unity unless G is discrete. The other one is the structure of commutative associa-
tive algebra under the pointwise multiplication of functions. Clearly, this is the
unital algebra with the unity given by the constant function taking the value one
on the whole G. In general there are some subtle points concerning the under-
lying sets of algebras and their mutual relationships. The convolution algebra is
defined in L1(G), whereas the pointwise multiplicative algebra is defined in the
set of all globally defined functions on G. No comments are necessary, and the
both underlying sets coincide, only when G is finite.
The pointwise products of matrix elements of representations D(α), D(ϱ) are ex-
panded with respect to the orthogonal systems of functions D(κ)kl according to
the rule

D(α)abD(ϱ)rs =
∑
κ,k,l

(αϱar|κk) (αϱbs|κl)D(κ)kl

where (αϱar|κk) and so on are Clebsch-Gordan coefficients for the group G
[17, 31, 33]. Summation over κ is extended over an appropriate range depend-
ing on (α, ϱ), and for the fixed κ, the range of k, l is given by the set of naturals
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1, . . . , n(κ). To be more precise, k, l run over some n(κ)-element set. In the
theory of angular momentum, when G = SU(2), it is convenient to use the con-
vention: κ = 2j + 1, where j runs over the set of non-negative integers and
half-integers, and k, l run over the range −j,−j + 1, ..., j − 1, j, jumping by one.
The expression (23) implies that

ε(α)abε(ϱ)rs =
∑
κ,k,l

n(α)n(ϱ)

n(κ)
(αϱar|κk) (αϱbs|κl) ε(κ)kl.

The coefficients at ε(κ)kl are structure constants of the commutative algebra of
pointwise multiplication with respect to the canonical basis/complete system. They
are bilinear in Clebsch-Gordon coefficients. The latter ones are meant in the usual
sense of the procedure

i) Take two irreducible representations of G, D(α), D(ϱ) acting respectively
in Cn(α), Cn(ϱ)

(D(α)(g)u(α))a =
∑
b

D(α)(g)abu(α)b

(D(α)(g)u(ϱ))r =
∑
s

D(α)(g)rsu(ϱ)s.

ii) Take the tensor product of those representations

D(α)⊗D(ϱ) : G×G→ L(Cn(α) ⊗ Cn(ϱ)) ≃ L(Cn(α)n(ϱ))

given by

[[D(α)(g1)⊗D(ϱ)(g2)] t(α, ϱ)]ar =
∑
bs

D(α)(g1)abD(ϱ)(g2)rst(α, ϱ)bs.

This representation is irreducible, if, as assumed, D(α), D(ϱ) are irre-
ducible.

iii) Take the direct product of D(α), D(ϱ), i.e., restrict D(α) ⊗ D(ϱ) to the
diagonal {(g, g) ; g ∈ G} ⊂ G × G. One obtains some representation
D(α)×D(ϱ) of G in Cn(α) ⊗ Cn(β) ≃ Cn(α)n(β).
In general, this representation is reducible and equivalent to the direct sum
of some irreducible representations,

⊕
κ∈Ω(α,ϱ)

D(κ)

the direct sum performed over some subset of labels, Ω(α, ϱ) ⊂ Ω. Evi-
dently, this representation acts in the Cartesian product

×
κ∈Ω(α,ϱ)

Cn(κ). (57)
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Let U denote an equivalence isomorphism of Cn(α) ⊗Cn(ϱ) onto the repre-
sentation space (57). Then, by definition, the Clebsch-Gordon coefficients
are given by

U (u (α)a ⊗ v (ϱ)r) =
∑
κ,k

(αϱar|κk)w (κ)k (58)

where u (α)a, v (ϱ)r, w (κ)k denote basis vectors of the representation
spaces for D (α), D (ϱ), D (κ). When the natural bases in Cn(α), Cn(ϱ),
Cn(κ) are used, then u (α)a, v (ϱ)r, w (κ)k may be reinterpreted as compo-
nents of the representation vectors u (α), v (ϱ), w (κ). And then we simply
write instead of (58) the following formulas

u(α)av(ϱ)r =
∑
κ,k

(αϱar|κk)w(κ)k.

These are just the implicit definitions of the Clebsch-Gordon coefficients.

There are two special cases when all minimal ideals M(α) are finite-dimensional,
i.e., all irreducible unitary representations D(α) are finite-dimensional. These are
when the topological group G is compact or Abelian. Of course, those are non-
disjoint situations. In the Abelian case all M(α) are one-dimensional and one is
dealing with Pontryagin duality [16, 18]. The set Ω of irreducible unitary repre-
sentations has the natural structure of a locally compact Abelian group too, the
so-called character group, denoted traditionally by Ĝ. The group operation in Ĝ
is meant as the pointwise multiplication of functions on G. In other words, the
elements of Ĝ are continuous homomorphisms of G into the group

U(1) = {z ∈ C ; |z| = 1}

the multiplicative group of complex numbers of modulus one. If G is compact and
Abelian, then Ĝ is discrete, and the Peter-Weyl series expansion (30), (31) becomes
a generalized Fourier series. If G is non-compact, one obtains generalized Fourier
transforms and direct integrals of family of one-dimensional spaces.

According to the well-known Pontryagin theorem, the dual of Ĝ, e.g., the second

dual ̂̂G of G, is canonically isomorphic with G itself [16, 18]. This resembles the
relationship between duals of finite-dimensional linear spaces, (V ∗)∗ ≃ V .

The Fourier transform Ψ̂ : Ĝ→ C of Ψ : G→ C is defined as follows

Ψ̂(χ) =

∫
⟨χ|g⟩Ψ(g)dg =

∫
⟨χ|g⟩−1Ψ(g)dg (59)

where dg again denotes the integration element of the Haar measure on G and
⟨χ|g⟩ is the evaluation of χ ∈ Ĝ on g ∈ G. Equivalently, in virtue of Poincare
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duality, this is the evaluation of g ∈ G ≃ ̂̂
G on χ ∈ Ĝ. The inverse formula of (59)

reads

Ψ(g) =

∫
⟨χ|g⟩ Ψ̂(χ)dχ (60)

where dχ denotes the element of Haar integration on Ĝ. The formulas (59), (60)
fix the synchronization between normalizations of measures dg, dχ. In principle,
these formulas are meant in the sense of L1-spaces over G, Ĝ, nevertheless, some
more or less symbolic expressions are also admitted for other functions, as short-
hands for longer systems of formulas. First of all, this concerns δ-distributions, just
like in general situation of locally compact G. Of course, the correct definition of
distributions and operations on them must be based on differential concepts, nev-
ertheless, the Dirac distribution itself (but not its derivatives) may be introduced in
principle on the basis of purely topological concepts, just like in the general case.
Let us notice that

Ψ(g) =

∫
dχ

∫
dhΨ(h)

⟨
χ|hg−1

⟩
.

The order of integration here is essential! But, of course, one cannot resist the
temptation to change “illegally” this order and write symbolically

Ψ(g) =

∫
dh δ

(
hg−1

)
Ψ(h), δ(x) =

∫
dχ ⟨χ|x⟩ . (61)

If G is discrete, then Ĝ is compact (and conversely) and the second integral is well
defined, namely

δ(x) = δxe

{
1, if x = e

0, if x ̸= e

where e is the natural element (identity) ofG. Then the first integral is literally true
as a summation with the use of Kronecker delta. But when obeying some rules, we
may safely use the formulas (61) also in the general case, when they are formally
meaningless. So, we shall always write

δ(g) =

∫
⟨χ|g⟩dχ = δ

(
g−1
)

δ(χ) =

∫
⟨χ|g⟩dg =

∫
⟨χ|g⟩ dg = δ

(
χ−1

)
∫
δ(g)f(g)dg = f (e(G))∫
δ(χ)k(χ)dχ = k

(
e(Ĝ)

)
and e(G), e(Ĝ) denote the units in G, Ĝ, respectively.
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Convolution is defined by the usual formula (13), but the peculiarity of Abelian
groups G is that convolution is a commutative operation

F ∗G = G ∗ F.

Of course, Fourier transforms of convolution are pointwise products of Fourier
transforms, and conversely

(F ∗G)̂ = F̂ Ĝ.

This is the obvious special case of the equation (32) - F̂ (χ), Ĝ(χ) are 1×1 matrices
F (α), G(α).
It is clear that just like in the general case, δ-distribution is the convolution identity

F ∗ δ = δ ∗ F = F.

And now, we may be a bit more precise. Namely, let U ⊂ Ĝ be some compact
measurable subset of Ĝ, and let L {U} denote the linear subspace of functions
(60) such that the Fourier transform Ψ̂ vanishes outside U and is L1-class. Take
the function δ{U} given by

δ{U}(g) :=
∫
U

⟨χ|g⟩dχ.

It is clear that δ{U} is a convolution identity of the subspace L{U}. And now take
an increasing sequence of subsets Vi ⊂ Ĝ such that

Vi ⊃ Vj for i > j
∪
i

Vi = Ĝ.

It is clear that for any function F ⊂ L1(G) we have

lim
i→∞

δ {Vi} ∗ F = F (62)

although the limit of the sequence δ{Vi} does not exist in the usual sense of func-
tion sequences. However, it does exist in an appropriately defined functional sense.
So, by abuse of language, we simply write

δ = lim
i→∞

δ{Vi}, δ ∗ F = F

as a shorthand for the rigorous relation (62).

Calculating formally the convolution of χ1, χ2 ∈ Ĝ, we obtain

⟨χ1 ∗ χ2|g⟩ = δ
(
χ1χ2

−1
)
⟨χ2|g⟩ = δ

(
χ1χ2

−1
)
⟨χ1|g⟩

i.e., briefly
χ1 ∗ χ2 = δ

(
χ1χ2

−1
)
χ2 = δ

(
χ1χ2

−1
)
χ1. (63)
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If G is compact, i.e., Ĝ is discrete, this is the usual condition for irreducible idem-
potents (21), (22). Similarity, we have the orthogonality/normalization condition

(χ1, χ2) = δ
(
χ1χ2

−1
)
=

{
1, if χ1 = χ2

0, if χ1 ̸= χ2.
(64)

If G is not compact, i.e., Ĝ is not discrete, then both normalization and idempo-
tence rules (63), (64) are meant symbolically, just like the corresponding rules for
Dirac distributions in Rn

δa ∗ δb = δ(a− b)δa = δ(a− b)δb (65)

(δa, δb) = δ(a− b). (66)

Surely, δa(x) := δ (x− a). Incidentally, (65), (66) is just the special case of (63),
(64) when G = Rn and the addition of vectors is meant as a group operation.
The peculiarity of locally compact Abelian groups is that they offer some analogies
to geometry of the classical phase spaces and some natural generalization of the
Weyl-Wigner-Moyal formalism. Certain counterparts do exist also in non-Abelian
groups, especially compact ones. However, they are radically different from the
structures based on Abelian groups. And in the non-compact case the analogy
rather diffuses.
Finally, let us remind that just like in the classical Fourier analysis, the Pontryagin
Fourier transform is an isometry of L2(G) onto L2

(
Ĝ
)

∫
A(g)B(g)dg =

∫
Â(χ)B(χ)dχ

in particular, the Plancherel theorem holds∫
|A(g)|2 dg =

∫ ∣∣∣Â(χ)∣∣∣2 dχ.
Compare with the formula (33) for compact topological groups and the correspond-
ing expression for the norm ∥F∥

∥F∥2 =
∑
α∈Ω

Tr
(
F (α)+ F (α)

)
n (α) .

2.4. Some Remarks Concerning Physical Interpretation

Let us finish this section with some comments concerning physical interpretation.
It is impossible to answer definitely the question

What is the most fundamental mathematical structure
underlying quantum mechanics?
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There are approaches based on quantum logic, the usual Hilbert space formula-
tions, operator algebras, etc. According to certain views [19], all non-artificial and
viable models, both in quantum and classical mechanics, assume some groups as
fundamental underlying structures. The framework of group algebra may appear
in two different, nevertheless, somehow interrelated, ways.

1. The first scheme is one in the spirit of algebraic approaches. Namely, when
some topological group G is assumed, one can simply state: “quantum me-
chanics based on G is the group algebra of G”. In any case it works on
compact groups and locally compact Abelian ones. Group algebras are par-
ticular H+-algebras. The important operations of quantum mechanics are
based on structures intrinsically built into them. Hermitian elements rep-
resent physical quantities, Hermitian and positive ones are quantum states
in the sense of density operators, idempotent ones among them represent
pure states. This is common to all H+-algebras. The peculiarity of group
algebras is that besides the convolution operation there exist also another
composition rule, namely, the pointwise product of functions, associative
one as well, and commutative (convolution is non-commutative if G is non-
Abelian). The relationship between them is given by the Clebsch-Gordan
coefficients. This structure is also physically interpretable, namely, it de-
scribes the properties of composed system, e.g., composition of angular mo-
menta. Pointwise multiplication of functions representing quantum states
describes the direct product of density operators of subsystems [30, 31].
However, one important structure of quantum mechanics is missing here,
namely, the superposition principle. The point is that wave functions do
not fit this framework directly. Nevertheless, in a sense they are implicitly
present. Namely, group algebra, as any associative algebra, acts on itself
through the left or right regular translations

x→ a ∗ x, x→ x ∗ a. (67)

To be more precise, it is so in any H+-algebra. In this way, the elements
of group algebra become operators. By convention, we can choose the left
regular translations. Group algebra becomes represented by algebra of lin-
ear operators. However, this representation is badly reducible. Namely, it
is not only so that any ideal, in particular, any minimal ideal M(α), is in-
variant under left (and right too) regular translations (67). But within any
minimal two-side ideal M(α) spanned by all ε(α)mn functions, separately
any minimal left idealM(α, n) is also closed under all translations, and this
representation is irreducible. The minimal left ideal M(α, n) is spanned by
all functions ε(α)mn, where n is fixed. Symmetrically, any minimal right
ideal M(n, α), spanned by all functions ε(α)nm with a fixed n, is a repre-
sentation space of some irreducible representation of H+ algebra. Roughly
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speaking, M(α, n), M(n, α) are respectively columns and rows of the ma-
trices [ε(α)ab]. And the elements of M(α, n) are “wave functions”, “state
vectors” of the “α-th type”. Subspaces

M(α, n1), M(α, n2), n1 ̸= n2

are merely different representatives, just equivalent descriptions of phys-
ically the same situation. By convention we may simply fix n = 1. And
then the linear shell of all subspacesM(α, 1) is the space of “state vectors”.

2. Another scheme is one in which G is meant as the classical configuration
space (take, e.g., SO(3,R) or SU(2) as the configuration space of rigid
body). Then all functions on G are interpreted as wave functions, and
ε(α)mk, ε(α)ml for k ̸= l are different wave functions, different physical
situations. One can easily construct Hamiltonians which predict “quantum
transitions” between those subspaces. But also within such Schrödinger
wave-mechanical framework, group-algebraic structures are physically rel-
evant. Namely, the most important, geometrically distinguished operators
are unitaries (36), (37) representing transformation groups motivated by
G. They describe some physically significant unitary representations of
G. And then the linear shells (41), (44), (49) and so on of these represen-
tations appear in a natural way. Roughly speaking, those linear shells are
physically interpretable representations of the abstract group algebra over
G. And they in a sense “parametrize” the algebra of operators acting on
wave functions. If the function F in (41), (44), (49) is of the L1(G)- or
L1 (G×G)-class, then the resulting operators are bounded. But it is just
certain unbounded operators that are physically interesting. They describe
important physical quantities. We obtain them from the group-algebraic
scheme, formally admitting in (41), (44), (49) distributions instead of func-
tions F . In differential theory, when G is a Lie group, some derivatives
of Dirac delta are then used. But even some important bounded operators,
e.g., the identity operator and G-translations, are expressed in terms of dis-
tributions, namely, Dirac deltas, as formally included into group algebra.
Differential concepts are not used then.
Hence, physically relevant and operationally interpretable quantities are to
be sought first of all among elements of the group algebras (41), (44), (49),
formally extended by admitting distributions.

3. Quantum Mechanics on Lie Groups and Methods of Group
Algebras

The previous section was devoted to the H+-algebras as a mathematical tool for
describing quantum mechanics. It was shown there that the H+-algebras form in a
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sense a beautiful scheme useful for the mathematical expression of quantum rules
and for the very formulation of quantum ideas. This is due to their mathematical
structure which in a sense unifies both the linear space and the non-commutative
associative algebra with involution. The idea of using the H+-algebras in such a
context was formulated many years ago by W. M. Tulczyjew. It enables us both
to investigate the basic ideas of quantum mechanics and, basing on the Clebsch-
Gordan series, to formulate the rules of composing two quantum systems into a
single one.
It turns out that the convolution group algebras, first of all ones over the compact
and Abelian groups, are the most interesting examples from the point of view of
quantum applications. In this section we will investigate that very particular choice
of the Lie group and of the metric structure on it. We assume that the group un-
derlying our investigation is either a compact semisimple Lie group or a group
isomorphic with Rn, or something between those two extreme special cases, e.g.,
the Cartesian product of the two mentioned situations. In certain problems we may
decide to admit semisimple but not necessarily compact Lie group of transforma-
tions acting on some Abelian Lie group of translations. Nevertheless, to be as
concrete as possible, we usually concentrate on the compact/semisimple Lie group
of transformations acting on a linear space or just on a linear space interpreted as
an Rn-type additive Abelian Lie group.
When dealing with semisimple Lie groups of transformations acting in a linear
space, we mainly use the Cartan-Killing metric tensor. In certain problems the
metric tensors invariant under the group of all left or right regular translations are
admitted. Obviously, they lead to the same volume-metric on G. Analytically, it
is given by the square root of the determinant of the matrix of the metric tensor.
Basing on the theory of representations of compact Lie groups, we construct the
canonical complete system of states on the group. Discussed is also another com-
plete system of states suited to the group of inner automorphisms acting on the
group. It turns out that this alternative set of states is a very convenient tool of the
analysis leading to the quasi-classical analysis.

3.1. Compact Lie Groups

Let us now discuss the very important situation when G is a compact Lie group.
The special stress is laid on semisimple Lie groups or their central extension. We
are particularly interested in problems concerning angular momentum, i.e., the
group SU(2) or its quotient SO (3,R) = SU (2) /Z2. Nevertheless, it is convenient
to begin with remarks concerning the general situation.
The Lie algebra of G will be denoted by g. We assume G to be a linear group,
i.e., a group of finite matrices, some subgroup of GL (N,R) or GL (N,C). This
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simplifies notation. Of course, any compact Lie group is linear. Lie algebras are
meant in the matrix commutator sense. Let (. . . , ea, . . .) be some basis in g, the
structure constants are meant in the following convention

[ea, eb] = eaeb − ebea = ekC
k
ab. (68)

The Killing metric tensor on g, i.e., the Ad-invariant scalar product γ, is meant in
the following convention

γ (u, v) = Tr (aduadv) (69)

where adu ∈ L (g) ≃ g⊗ g∗ is given by the usual formula

adu · x = [u, x] .

Analytically, in terms of the basis e

γab = Ck
laC

l
kb, γ = γabe

a ⊗ eb (70)

where ea ∈ g∗ are elements of the dual basis, ⟨ea, eb⟩ = δab. If G is compact
and semisimple, then γ is negatively definite and in an appropriate basis e, γab is
a negative multiple of δab. Usually the basis is chosen in some convenient way
motivated by various reasons, then it is customary to change the normalization of
γab replacing it just by gab = δab. The contravariant inverse of γ, γ−1 ∈ g ⊗ g, is
analytically given by

γ−1 = γabea ⊗ eb, γacγcb = δab. (71)

In the trivial central extension G×U (1) of G, the Killing tensor is degenerate and
u (1) is the degenerate direction of g×u (1). Then it is customary to use the metric
tensor obtained as a direct combination of the Killing metric on g and the invariant
metric on u (1). The latter is unique up to normalization. Sometimes one proceeds
similarly when dealing with direct or semidirect products of semisimple groups
and Abelian ones of arbitrary dimension, however, if that dimension is higher than
one, the Abelian component of metric has a non-canonical arbitrariness.
Canonical coordinates of the first kind ka are defined by the formula

g
(
k1, . . . , kn

)
= e (kaea) , dimG = n (72)

(the summation convention is used on the right-hand side). This choice is often
convenient, but also other ones are useful, e.g., canonical coordinates of the second
kind

g
[
ξ1, . . . , ξn

]
= e

(
ξ1e1

)
. . . e (ξnen)

or something between, like Euler angles on SO (3,R) or SU (2). Often some gen-
eralized coordinates, “curvilinear” with respect to ka or ξa, are better suited to
particular problems. In any case, the choice of coordinates is a matter of conve-
nience.



102 J. J. Sławianowski, V. Kovalchuk, A. Martens, B. Gołubowska and E. Rożko

The differential structure of G offers some powerful tools of analysis. First of all,
one uses differential operators generating transformations (36), (37). Generators
of left and right regular translations are defined in the convention

(Laψ)
(
g
(
k
))

=
∂

∂xa
(
ψ
(
g (x) g

(
k
)))∣∣

x=0

(Raψ)
(
g
(
k
))

=
∂

∂xa
(
ψ
(
g
(
k
)
g (x)

))∣∣
x=0

i.e., roughly, we have the following expansions for small values of the group pa-
rameters ε

ψ (g (ε) g) ≈ ψ (g) + εa (Laψ) (g)

ψ (gg (ε)) ≈ ψ (g) + εa (Raψ) (g)

valid to terms quadratic and higher order in ε.
La, Ra are respectively, basic right- and left-invariant vector fields on G. We
represent them as follows

La = Li
a

(
k
) ∂

∂ki
, Ra = Ri

a

(
k
) ∂

∂ki
· (73)

With this convention we have the following commutation rules

[La,Lb] = −Ck
abLk, [Ra,Rb] = Ck

abRk, [La,Rb] = 0. (74)

Similarly one defines differential operators Da generating inner automorphisms

(Aaψ)
(
g
(
k
))

=
∂

∂xa
(
ψ
(
g (x) g

(
k
)
g (−x)

))∣∣∣
x=0

i.e., roughly
ψ (g(ε)gg(−ε)) ≈ ψ(g) + εa (Aaψ) (g)

up to higher-order corrections in ε. Here

Aa = La −Ra

and we use the notation

Aa = Ai
a(k)

∂

∂ki
·

It is also clear that
[Aa,Ab] = −Ck

abAk (75)

and
[Aa,Lb] = −Ck

abLk, [Aa,Rb] = Ck
abRk. (76)

The ± signs on the right-hand sides of (74), (75), (76) are essential. As mentioned,
the translation operators (36), (37), (55) are unitary in L2(G) due to the very def-
inition and properties of the Haar measure on G. Therefore, their generators La,
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Ra, Aa are skew-symmetric in the corresponding dense subdomain of L2(G)

⟨Laψ|φ⟩ = −⟨ψ|Laφ⟩
⟨Raψ|φ⟩ = −⟨ψ|Raφ⟩
⟨Aaψ|φ⟩ = −⟨ψ|Aaφ⟩ .

By their very definition as differential operators, La, Ra, Aa are not globally de-
fined on L2(G).
Let us quote the following formulas

L
[
g(k)−1

]
= L

[
g(−k)

]
= e (kaLa)

R
[
g(k)−1

]
= R

[
g(−k)

]
= e (kaRa)

A
[
g(k)−1

]
= A

[
g(−k)

]
= e (kaAa)

which hold when their right-hand sides are well defined. Thus, in an appropriate
dense subdomain, with the convergence meant in the sense of L2(G)-norm. Cer-
tainly, the left-hand sides are well defined in action on the total linear space of all
possible functions on G (with arbitrary target spaces, not necessarily C).
The imaginary-unit multiples of La, Ra, Aa are formally Hermitian (symmet-
ric). Because of the obvious physical reasons we introduce the formally Hermitian
operators of L[G]-, R[G]- and A[G]-momenta, just the quantum versions of the
corresponding classical momentum mappings

Σa =
~
i
La, Σ̂a =

~
i
Ra, ∆a =

~
i
Aa = Σa − Σ̂a. (77)

As operators acting on L2(G)-wave functions, they satisfy the obvious quantum
Poisson brackets

1

i~
[Σa,Σb] = {Σa,Σb}Q = Ck

abΣk (78)

1

i~

[
Σ̂a, Σ̂b

]
=
{
Σ̂a, Σ̂b

}
Q
= −Ck

abΣ̂k (79)

1

i~

[
Σa, Σ̂b

]
= 0. (80)

The corresponding classical counterparts are given by the phase-space functions

Σa = piLi
a, Σ̂a = piRi

a, ∆a = pi∆
i
a = Σa − Σ̂a. (81)

Their classical Poisson brackets are structurally identical with (78)–(80), i.e.,

{Σa,Σb} = Ck
abΣk,

{
Σ̂a, Σ̂b

}
= −Ck

abΣ̂k,
{
Σa, Σ̂b

}
= 0.

As mentioned, the regular translations and automorphisms (36), (37) and all op-
erators of convolution (41), (44), (49) preserve separately all subspaces/minimal
ideals M(α). This is also true for the operators La, Ra, ∆a as generators of
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those group actions. Of course, their multiples Σa, Σ̂a, ∆a also preserve all ideals
M(α). The basic right- and left-invariant differential forms on G will be denoted
respectively by La, Ra. By definition they are assumed to be dual to La, Ra

⟨La,Lb⟩ = ⟨Ra,Rb⟩ = δab.

We shall use the standard analytical representation dual to (73)

La = La
i(k)dk

i, Ra = Ra
i(k)dk

i

where
Li

aLa
j = Ri

aRa
j = δij , La

iLi
b = Ra

iRi
b = δab.

Then the following equations are satisfied, dual to (74)

dLa =
1

2
Ca

bdLb ∧ Ld, dRa = −1

2
Ca

bdRb ∧Rd.

Let us notice that
La(g) =

(
Adg−1

)b
aRb(g) (82)

where the matrices
[
(Adg)

b
a

]
are implicitly given by

Adgea = geag
−1 = eb (Adg)

b
a.

Similarly, (ady)
b
a are given by

adyea = [y, ea] = eb (ady)
b
a

thus
(ady)

b
a = Cb

day
d = −Cb

ady
d

and
Ade(a) = e (ada) . (83)

In finite dimensions all above expressions are well-defined. Dually to (82) we have

La(g) = (Adg)
a
bRb(g). (84)

The above differential operators and differential forms are a very useful tool of
analysis. When constructing important tensor fields and differential operators on
G we need certain intrinsically constructed tensors on its Lie algebra g. We mean
some tensors built of the structure constants Ci

jk with the use of universal alge-
braic operations. The first of them isC itself, it is a mixed tensor once contravariant
and twice covariant,C ∈ g⊗g∗⊗g∗, skew-symmetric in its lower indices. The next
one is the Killing tensor γ ∈ g∗ ⊗ g∗ (69), (70) and its inverse tensor γ−1 ∈ g⊗ g.
One can also construct the higher-order covariant tensors like

γ(3)ijk = Ca
biC

b
cjC

c
ak (85)

and so on, e.g.,

γ(m)i1···im = Ca
bi1C

b
ci2 . . . C

k
lim−1C

l
aim (86)
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all of them covariant and in general non-symmetric (unlike the Killing tensor
γ(2)ij = γij). Let us also mention other tensors like

γ(1)i = Ca
ai, Γij = C(1)kC

k
ij = −Γji. (87)

If G is semisimple, then the inverse tensor (71) does exist and one can construct
the whole ZOO of γ-tensors by the Killing-shift of indices. And similarly when G
is a trivial central extension of some semisimple group. The invariant metric tensor
on the centre is unique up to normalization.
The Killing metric tensor on G is given by

g = γabLa ⊗ Lb = γabRa ⊗Rb (88)

i.e., analytically
gij = γabLa

iLb
j = γabRa

iRb
j .

It is invariant under right and left regular translations on G. Usually one changes
its normalization in such a way that in certain practically useful coordinates, at the
group identity gij coincides with the Kronecker δij . In particular, if G is compact,
then γ, g are negatively definite, so it is the natural to inverse their signs.
The most general right-invariant metric on G is given by

rg = κabLa ⊗ Lb (89)

where the matrix [κab] is non-degenerate and constant. Similarly, for the left-
invariant metrics we have

lg = κabRa ⊗Rb. (90)

They become identical and doubly-invariant when κab = γab. The corresponding
inverse contravariant metrics are given by

g−1 = γabLa ⊗ Lb = γabRa ⊗Rb

gij = γabLi
aLj

b = γabRi
aRj

b

and similarly for the inverses of (89) and (90)

rg
−1 = κ−1abLa ⊗ Lb, lg

−1 = κ−1abRa ⊗Rb.

The Laplace-Beltrami operator corresponding to the Killing metric (88) is given
by

∆ = γabLaLb = γabRaRb. (91)

Quite similarly, for the right-invariant metric (89) and left-invariant metric (90) we
would have respectively

r∆ = κabLaLb, l∆ = κabRaRb. (92)

Note that if G is non-Abelian, these expressions are different when κab ̸= γab.
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One can show that all these expressions coincide with the usual definition of the
Laplace-Beltrami operator [3]

∆ = gab∇a∇b (93)

where ∇a denotes the Levi-Civita affine connection induced by the corresponding
vector tensors (88), (89), (90). Surely, this coincides with the analytical formula

∆ψ =
1√
|g|

∑
i,j

∂

∂ki

(√
|g|gij ∂ψ

∂kj

)
where again for g the expressions (88), (89), (90) are substituted, their contravari-
ant inverses gij are used, and |g| denotes the determinant of the matrix [gij ].
The Haar measure in G is identical with the n-form

L1 ∧ . . . ∧ Ln = R1 ∧ . . . ∧Rn

in the sense that∫
f(g)dg =

∫
fL1 ∧ . . . ∧ Ln =

∫
fR1 ∧ . . . ∧Rn.

In this prescription it is implicitly assumed that the orientation of G is chosen in
such a way that the integral of non-negative functions is non-negative. Analytically
we have that∫

f(g)dg =

∫
f det[La

i]dk
1 . . . dkn =

∫
f det[Ra

i]dk
1 . . . dkn.

This integration coincides (up to a constant factor) with the usual Riemann inte-
gration ∫

f(h)dh =

∫
f
√

|g|dk1 . . .dkn

where g denotes any of the metric tensors (88), (89), (90). The Laplace-Beltrami
operators (91), (92), (93) are formally self-adjoint (symmetric) with respect to the
usual scalar product in L2(G).
The properties (38)–(40) imply immediately that

La (F ∗G) = (LaF ) ∗G, Ra (F ∗G) = F ∗ (RaG) . (94)

Again we conclude that La, Ra are not differentiations of the convolution alge-
bra, although they are so for the pointwise product algebra. If F is constant on
equivalence classes of adjoint elements, i.e., if it is a linear combination or series
of idempotents ε(α) or characters

χ(α) =
1

n(α)
ε(α)

then
AaF = 0 (95)
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therefore
LaF = RaF.

In particular, it is so for the Dirac distribution δ which formally plays the role of
the convolution unity. Let us stress that in differential manifolds the distributions
are well defined. In any case, for any finite subset I ⊂ Ω

δ (I) =
∑
α∈I

ε(α)

is the well-defined unity of the two-sided ideal

M(I) := ⊗
α∈I

M(α).

If J is a family of finite subsets of Ω ordered by inclusion and such that∪
I∈J

M(I) = Ω

then δ is the distribution limit of the generalized sequence J ∋ I → δ(I).
Equations (94) imply that

LaF = La (δ ∗ F ) = (Laδ) ∗ F, RaF = Ra (F ∗ δ) = F ∗ (Raδ)

for any differentiable function F . This reduces separately to the ideals M(α),
where the action of operators La, Ra reduces respectively to the left and right
convolutions with Laε(α), Raε(α).
Let us quote some important and intuitive commutation relations in the convolution
algebra

(Laδ) ∗ (Lbδ)− (Lbδ) ∗ (Laδ) = −Ck
ab (Lkδ)

(Raδ) ∗ (Rbδ)− (Rbδ) ∗ (Raδ) = −Ck
ab (Rkδ) .

This is of course the same relation written in two ways, because Laδ = Raδ.
Roughly speaking, the functions constant on manifolds of mutually adjoint ele-
ments are scalars of the group of inner automorphisms of G, they satisfy the con-
ditions

AcF = 0, Acδ = 0, Ac

∑
α

cαε(α) = 0.

It is no longer the case with their Lr-derivatives

LaF = RaF, Laδ = Raδ, La

∑
α

cαε(α) = Ra

∑
α

cαε(α). (96)

Roughly speaking, they are vectors of the group of inner automorphisms, e.g.,
denoting

Qa := Laδ = Raδ (97)
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we have
AaQb = −Ck

abQk

and similarly, for all other quantities in (96) and their multiples by functions con-
stant on equivalence classes. Similarly, we have higher-order tensors, e.g.

Qab = LaLbδ = (Laδ) ∗ (Lbδ) = Qa ∗Qb. (98)

They satisfy
AcQab = −Ck

caQkb − Ck
cbQak

and so on, for example, for

Qabc = LaLbLcδ = Qa ∗Qb ∗Qc (99)

we have
AdQabc = −Ck

daQkbc − Ck
dbQakc − Ck

dcQabk

etc.
Casimir L-operators are polynomials of Lb with constant coefficients, commuting
with all La. They are expected to be polynomials of Lb with coefficients built
intrinsically of structure constants C, like (70), (85), (86), (87) or rather their ver-
sions with γ-raised indices. The most important example is the Laplace-Beltrami
operator (91). It is clear that

[∆,La] = [∆,Ra] = 0.

Other expected quantities of this type are

γ(m)i1...imLi1 . . .Lim

etc. The raising of indices is meant in the sense of the Killing tensor. In the group-
algebraic representation, these Casimir objects are given by functions/distributions
like

C(2) = γij (Liδ) ∗ (Ljδ) = γijLiLjδ

C(m) = γ(m)i1...im (Li1δ) ∗ · · · ∗ (Limδ) = γ(m)i1...imLi1 . . .Limδ.

They are expected to satisfy

C(m) ∗ f − f ∗ C(m) = 0

(central elements of the convolution algebra).
To avoid distributions, one can consider their “α-versions”, built of elements of
M(α)

C(2, α) = γij (Liε(α)) ∗ (Ljε(α))

C(m,α) = γ(m)i1...im (Li1ε(α)) ∗ · · · ∗ (Limε(α)) .
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Similarly, for any fixed α ∈ Ω, the quantities (97), (98), (99), and so on become
usual functions

Qa(α) = Laε(α) = Raε(α) (100)
Qab(α) = LaLbε(α) = (Laε(α)) ∗ (Lbε(α)) = Qa(α) ∗Qb(α) (101)

Qabc(α) = Qa(α) ∗Qb(α) ∗Qc(α) (102)
...

...

Qab...r(α) = Qa(α) ∗Qb(α) ∗ · · · ∗Qr(α) (103)

etc. Evidently, Qa, Qab, Qabc, etc., are distributions obtained as series (in the
distribution sense of limit) of all the above Q-s. One important circumstance must
be stressed: The quantities Qab...r are tensors under the action of automorphisms,
however they are not irreducible tensors, because they are not symmetric if G is
non-Abelian. To obtain irreducible tensors one must take their symmetric parts,
skew-symmetric ones, and remove the γ-traces from the symmetric parts.
For any fixed α the tensors Qa, Qab, etc., form some basis of M(α) alternative to
ε(α)ij . Of course, when α is fixed, the order of tensors Q(α) terminates at some
value, because dimM(α) = n(α)2 cannot be exceeded.
From some point of view one might suppose that the pointwise products of Qa,
e.g., QaQb, QaQbQc, etc., might be simpler and more convenient. And they are
tensors of Ai as well. However, it is not the case, because Qa(α)Qb(α), etc., are
no longer elements of M(α). Nevertheless, they may be useful in a sense. They
may become elements ofM(α) when multiplied by appropriate scalars under inner
automorphisms, i.e., multiplied by appropriate functions f(α) constant on classes
of adjoint elements, thus, satisfying (95).
The matrices of irreducible representations D(α) will be represented (at least lo-
cally, in some neighbourhood of the group identity), as follows

D(α)(g) = e (kae(α)a) , g
(
k1, . . . , kn

)
= e (kaea) (104)

where e(α) are n(α)× n(α) matrices which obey the commutation rules (68)

[e(α)a, e(α)b] = e(α)kC
k
ab.

If D(α) are unitary, that is always assumed here, then e(α) are anti-Hermitian, so
we have that

D(α)+ = D(α)−1, e(α)+ = −e(α).

In quantum-mechanical considerations the fundamental role is played by Hermit-
ian matrices

Σ(α)a =
~
i
e(α)a = Σ(α)+a



110 J. J. Sławianowski, V. Kovalchuk, A. Martens, B. Gołubowska and E. Rożko

which obey the commutation rules analogous to (78)–(80)

1

i~
[Σ(α)a,Σ(α)b] = Ck

abΣ(α)k.

Then we have the favourite formulas of physicists

D(α)
(
g
(
k
))

= e

(
i

~
kaΣ(α)a

)
L
(
g(k)−1

)
= e

(
i

~
kaΣa

)
(105)

R
(
g(k)−1

)
= e

(
i

~
kaΣ̂a

)
.

Note that the last two formulas are meant in an appropriate function domain, if to
be meaningful. The representation property and definition of operators La, Ra,
Aa and their Hermitian counterparts Σa, Σ̂a, ∆a imply that the matrix-valued
functions D(α) on G (equivalently ε(α) = n(α)D(α)) satisfy the following dif-
ferential equations

LaD(α) = e(α)aD(α) (106)
RaD(α) = D(α)e(α)a (107)

AaD(α) = e(α)aD(α)−D(α)e(α)a = [e(α)a, D(α)] (108)

or, in terms of “Hermitian” operators

ΣaD(α) = Σ(α)aD(α) (109)

Σ̂aD(α) = D(α)Σ(α)a (110)

∆aD(α) = [Σ(α)a, D(α)] . (111)

Let C(L), C(R), C(A) denote the mentioned Casimir operators. Let us remind
that C(L) commute with all La-operators, C(R) commute with all Ra-operators,
and C(A) commute with all Aa-operators. They are built in a polynomial way
respectively of L, R, A. Moreover, C(L)-Casimirs commute also with all R-
and A-operators and C(R)-Casimirs also commute with L- and A-operators. This
follows from the obvious fact that all L-operators commute with all R-operators.
But attention: C(A)-Casimirs do not commute with all L- and R-operators. How-
ever, they do commute with C(L)- and C(R)-Casimirs. For physical reasons one
uses often the C(Σ)-, C

(
Σ̂
)

-, and C(∆)-Casimirs. They are built of Σ-, Σ̂- and
∆-operators just like C(L), C(R) and C(A) are built of the indicated operators.
Usually there are a few ones of each kind. If necessary, some additional label is
introduced (e.g. polynomial degree, etc.).
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The use of differential operators acting on the functions on G, in particular, the use
of their associative products, enables one to avoid dealing with more abstract and
non-intuitive notion of the enveloping algebra of g.
The most important Casimirs are γ-quadratic functions of L, R, A

C(L, 2) = C(R, 2) = ∆ = γabLaLb = γabRaRb

C(A, 2) = γabAaAb.

As mentioned, in addition to the obvious rules

[C(L, 2),La] = [C(L, 2),Ra] = [C(A, 2),Aa] = 0

we have also
[C(L, 2),Aa] = [C(L, 2), C(A, 2)] = 0. (112)

The corresponding expressions for “Hermitian” operators will be denoted by

C (Σ, 2) = C
(
Σ̂, 2

)
, C (∆, 2) , etc.

They are built according to the prescriptions for C(L, 2), C(R, 2), C(A, 2) with
Σ, Σ̂, ∆ substituted respectively instead of L, R, A, therefore, for quadratic
Casimirs we have

C (Σ, 2) = −~2C(L, 2), C
(
Σ̂, 2

)
= −~2C(R, 2), C (∆, 2) = −~2C(A, 2)

and similarly for other Casimirs.
When we fix some α and act with our Casimirs on functions D(α) (ε(α)), they
simply suffer the multiplication by scalars, just the eigenvalues of Casimirs. This
follows from the Schur lemma, because D(α) are irreducible. Therefore, e.g.,
iterating appropriately (106)–(108), (109)–(111), we obtain

γabLaLbD(α) = γabRaRbD(α)
(113)

= γabe(α)ae(α)bD(α) = C(2, α)D(α)

γabΣaΣbD(α) = γabΣ̂aΣ̂bD(α) = −~2C(2, α)D(α) (114)

where
γabe(α)ae(α)b = C(2, α)Idn(α)

and C(2, α) are elements of the spectrum of ∆ (91). These eigenvalues are n(α)2-
fold degenerate. It was mentioned that although γabAaAb does not commute in
general with La, Rb, nevertheless, it does commute with

∆ = γabLaLb = γabRaRb.

However, D(α)ij are not their common eigenfunctions. Indeed

γabAaAbD(α) = 2C(2, α)D(α)− 2γabe(α)aD(α)e(α)b (115)
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i.e.,

γab∆a∆bD(α) = −2C(2, α)~2D(α)− 2γabΣ(α)aD(α)Σ(α)b. (116)

Nevertheless, their common eigenfunctions do exist and are given by (100)–(103).
For any fixed α ∈ Ω, the order of tensors (100)–(103) terminates at some fixed
value.
It is seen that in the action on functions

ε(α)ij = n(α)D(α)ij

our differential operators become algebraic. This is just the obvious counterpart
and generalization of the well-known facts in Fourier analysis. Let us quote a few
obvious and practically important formulas.
It was mentioned earlier about the Peter-Weyl expansion (30). Let us write it a bit
more symbolically as

F =
∑
α∈Ω

Tr
(
F (α)T ε(α)

)
=
∑
α∈Ω

Tr
(
F (α)TD(α)

)
n(α). (117)

The general operations of group algebras are then represented in a suggestive way
by the corresponding operations performed on the matrices F (α), cf. (32)–(33).
Together with the formulas (106)–(108), (109)–(111), (113)–(114), (115), (116)
this implies that the action of differential operators may be expressed in the fol-
lowing way by the corresponding algebraic operations on the representing matrices
F (α)

La,Σa : F (α) 7→ F (α)e(α)a, F (α) 7→ F (α)Σ(α)a (118)

Ra, Σ̂a : F (α) 7→ R(α)aF (α), F (α) 7→ Σ(α)aF (α) (119)

Aa,∆a : F (α) 7→ [F (α), e(α)a] , F (α) 7→ [F (α),Σ(α)a] . (120)

Therefore, the action of

γabLaLb = γabRaRb = ∆

is represented by multiplication of matrices F (α) by C(2, α), and similarly for
other Casimirs.
Let us mention that for some purposes the convention of transposed F (α)-matrices
might be more convenient, namely

F =
∑
α∈Ω

Tr (F (α)ε(α)) =
∑
α∈Ω

Tr (F (α)D(α))n(α). (121)

A disadvantage is that then F ∗ G is not represented by the system of F (α)G(α)
but G(α)F (α). But, and this is an aesthetic advantage, the matrix transposition is
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avoided, namely, the La/Σa act respectively as follows

La,Σa : F (α) 7→ F (α)e(α)a, F (α) 7→ F (α)Σ(α)a (122)

Ra, Σ̂a : F (α) 7→ R(α)aF (α), F (α) 7→ Σ(α)aF (α) (123)

Aa,∆a : F (α) 7→ [F (α), e(α)a] , F (α) 7→ [F (α),Σ(α)a] . (124)

But again, a disadvantage is that the left/right differential generators are repre-
sented algebraically by the right/left matrix multiplication, thus, conversely. Of
course, all this is a merely matter of convention.
If we use the convention (117), then the functions (97), (98), (99), etc., i.e.,

lQab...k = LaLb . . .Lkδ = (Laδ) ∗ · · · ∗ (Lkδ) = Qa ∗Qb ∗ · · · ∗Qk (125)

are represented by matrices
lQ̂(α)ab...k = e(α)a

T e(α)b
T . . . e(α)k

T . (126)

And similarly, the functions
rQab...k = RaRb . . .Rkδ = Lk . . .LbLaδ = (Raδ) ∗ (Rbδ) ∗ . . . ∗ (Rkδ)

= (Lkδ) ∗ . . . ∗ (Lbδ) ∗ (Laδ) = Qk ∗ . . . ∗Qb ∗Qa = lQk...ba

are represented by matrices
rQ̂(α) = e(α)k

T . . . e(α)b
T e(α)a

T . (127)

If we use the convention (121), then instead of (126), (127) we obtain respectively
lQ̂(α)ab...k = e(α)k . . . e(α)be(α)a (128)
rQ̂(α)ab...k = e(α)ae(α)b . . . e(α)k.

The Hermitian version of Qa, representing a physical observable, is obtained by
replacing the operators La, Ra by (77), i.e., by

Σa =
~
i
La, Σ̂a =

~
i
Ra.

They are given by

Σa =
~
i
Qa (129)

whereas Qa themselves are anti-Hermitian.
Let us observe that if G is non-Abelian (and here we concentrate mainly on semi-
simple ones), then in general the functions

lQab...k,
rQab...k

and the representing matrices
lQ̂(α)ab...k,

rQ̂(α)ab...k
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fail to be anti-Hermitian. Therefore, the corresponding monomials of Σ(α) and
Σ(α)T are not Hermitian. But their symmetrizations

Σ(α)(a . . .Σ(α)k), Σ(α)T(a . . .Σ(α)
T
k) (130)

are Hermitian and so are the functions

Σ(a...k) =

(
~
i

)p (
L(aδ

)
∗ · · · ∗

(
Lk)δ

)
=

(
~
i

)p (
R(aδ

)
∗ · · · ∗

(
Rk)δ

)
(131)

where p is the order of tensors (the number of convolution factors). Note that (130)
are matrices of (131) when the conventions (121), (117) are used, respectively.
In realistic dynamical models Hamiltonians are usually given by simple algebraic
functions of the above Hermitian elements of group algebras. As a rule, those
Hamiltonians or their important terms are low-order polynomials. In special cases
of high symmetry they are built according to the Casimir prescriptions.

3.2. Abelian Lie Groups

Let us finish with some remarks concerning Abelian Lie groups. The only (up to
isomorphism) connected Abelian groups are

Rn, Tn = U(1)n = Rn/Zn

and their Cartesian products Rn × Tm, i.e., linear spaces, tori and cylinders. The
group operation in Rn is meant as the addition of vectors (null vector being the
neutral element). In Tn it is meant as the quotient action obtained when Rn is
divided by the “crystallographic” lattice Zn ⊂ Rn.
Some conflicts between the above notational conventions and various customs
from the classical Fourier analysis appear, so one must be careful with an auto-
matic use of traditional formulas.
It is perhaps convenient to write down some formulas concerning Rn in the lan-
guage of abstract vector space. So, let V be a finite-dimensional linear space, and
V ∗ be its dual. We put n = dimV = dimV ∗. We consider them as Abelian
additive Lie groups. So, G = V with the “+” composition rule, Ĝ is isomorphic
with V ∗. And the particular choice of this isomorphism is a matter of convention.
G being non-compact, there is no standard of normalization. If V is endowed with
some fixed metric tensor γ ∈ V ∗ ⊗ V ∗, as it usually is in physical applications,
then, of course, the standard of Lebesgue measure is fixed∫

f(x)dµ(x) =

∫
fe1 ∧ . . . ∧ en

where (. . . , ea, . . .) is an arbitrary orthonormal co-basis in V ∗

g = δije
i ⊗ ej .
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In arbitrary coordinates, including curvilinear ones, we have∫
f(x)dµ(x) =

∫
f(x)

√
det [gij ] dx

1 . . . dxn.

The dual linear space V ∗ parametrizes the dual group V̂ with the help of the stan-
dard covering homomorphism of the (additive) R onto (multiplicative) U(1)

R ∋ φ 7→ e(iφ) ∈ U(1)

so, χ (k) ∈ V̂ is given by

⟨χ (k) , x⟩ = e (i ⟨k, x⟩)

where ⟨k, x⟩ is the evaluation of k ∈ V ∗ on x ∈ V . Analytically

⟨k, x⟩ = kax
a.

Using the language of quantum momentum p = ~k, one writes also⟨
χ
[
p
]
, x
⟩
= e

(
i

~
⟨
p, x
⟩)

= e

(
i

~
pax

a

)
.

The corresponding conventions of Fourier analysis, particularly popular in quan-
tum mechanics, are as follows

f (x) =
1

(2π)n

∫
f̂ (k) e (i ⟨k, x⟩) dnk

(132)

=
1

(2π~)n

∫
f̂
(
p
)
e

(
i

~
⟨
p, x
⟩)

dnp

f̂ (k) = f̂
[
p
]
=

∫
f (x) e

(
− i

~
⟨
p, x
⟩)

dnx. (133)

The convolution on V is meant in the usual convention

(A ∗B) (x) =

∫
A(y)B(x− y)dy.

We have then the following rules

χ (k) ∗ χ (l) = (2π)nδ (k − l)χ (k) = (2π)nδ (k − l)χ (l)

(χ (k) , χ (l)) = (2π)nδ (k − l)

χ
[
p
]
∗ χ
[
p′
]
= (2π~)nδ

(
p− p′

)
χ
[
p
]
= (2π~)nδ

(
p− p′

)
χ
[
p′
](

χ
[
p
]
, χ
[
p′
])

= (2π~)nδ
(
p− p′

)
rather unpleasant ones, because of the (2π)n- and (2π~)n-factors. But this has to
do with the use of traditional symbols of analysis. If we remember that it is not
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dnk, or dnp, but rather
dnk

(2π)n
,

dnp

(2π~)n
that is a measure Fourier-synchronized with dnx, that it is just

(2π)nδ (k − l) or (2π~)nδ
(
p− p′

)
that is to be interpreted as a “true Dirac delta”, let us say

∆
(
k − k′

)
, ∆

(
p− p′

)
respectively in the spaces of wave co-vectors and linear momenta.
There are various conventions concerning Fourier transforms and synchronization
of measures on G, Ĝ, it is even stated in the book by Loomis [9], that it is “an
interesting and non-trivial problem”.
In classical analysis one often prefers the “symmetric” convention

A (x) =
1

(2π)n/2

∫
Â (k) e (i ⟨k, x⟩) dnk

Â (k) =
1

(2π)n/2

∫
A (x) e (−i ⟨k, x⟩) dnx.

An additional advantage of this convention is that the iteration of Fourier trans-
formation results in the inversion (total reflection) of the original function, with
respect to the origin ̂̂

A (x) = A(−x).
And, roughly speaking, Gauss function is invariant under Fourier transformation.
More precisely, we have

G(x) = e

(
−1

2
x · x

)
, Ĝ(k) = e

(
−1

2
k · k

)
where the scalar product in V is meant in the sense of metric g ∈ V ∗ ⊗ V ∗, and in
V ∗ — under its contravariant inverse g−1 ∈ V ⊗ V

x · x = g(x, x) = gijx
ixj , k · k = ĝ(k, k) = gijxixj .

If we identify V = Rn = V ∗, then the Gauss function is literally invariant under
the Fourier transformation.
The counterparts of Clebsch-Gordon series, i.e.,

ε(α)abε(ϱ)rs =
∑
κ,k,l

n(α)n(ϱ)

n(κ)
(αϱar|κk) (αϱbs|κl) ε(κ)kl (134)

and
U (u (α)a ⊗ v (ϱ)r) =

∑
κ,k

(αϱar|κk)w (κ)k (135)
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are very simple now, because

χ(k)χ(l) = χ(k + l)

χ
[
p
]
χ
[
p′
]
= χ

[
p+ p′

]
χ(k)χ(l) =

∫
δ(k + l −m)χ(m)dnm

χ
[
p
]
χ
[
p′
]
=

∫
δ(p+ p′ − π)χ [π] dnπ.

Let us now fix some symbols concerning the compact case Tn = U(1)n. Just
like Rn is an analytical model of any n-dimensional linear space over reals, Tn is
parametrized by the system of angles

(
φ1, . . . , φn

)
taken modulo 2π, or uniquely,

by the system of unimodular complex numbers(
ζ1, . . . , ζn

)
, ζa = e (iφa) .

Sometimes the convention “modulo 1” is accepted instead “modulo 2π”, i.e., one
puts

ζa = e (2πiξa) .

This is often used when Tn is realized as a quotient of V modulo the “crystallo-
graphic lattice” generated freely by some fixed basis (. . . , ea, . . .) in V . Of course,
that discrete translation group is isomorphic with Zn. The parametrization modulo
2π is more popular in theory of Fourier series. Torus is compact and it is natural to
take the Haar measure normalized to unity, as usual. If the multiple Fourier series
on Tn are meant in the convention

f(φ) =
∑
m∈Zn

f̂(m)e (im · φ)

then the inverse formula for coefficients f̂ reads

f̂(m) =
1

(2π)n

∫
f(φ)e (−im · φ) dnφ.

Concerning notation, analytical meaning of the expressions above is as follows

m = (m1, . . . ,mn) ∈ Zn, φ =
(
φ1, . . . , φn

)T
contractions in exponents are given by

m · φ = maφ
a = m1φ

1 + · · ·+mnφ
n

and the range of variables φa in the integration element

dnφ = dφ1 . . . dφn

is given by [0, 2π].
It is seen that the occurrence of factors (2π)−n is reciprocal to that in Fourier
analysis on Rn. This spoils the formal analogy, but suits the convention that the
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Haar volume of compact groups equals the unity. To save the analogy, we would
have to replace (132)–(133) by

f(x) =

∫
f̂(k)e (i ⟨k, x⟩) dnk

f̂(k) =
1

(2π)n

∫
f(x)e (−i ⟨k, x⟩) dnx

which, by the way, is sometimes used indeed, however, it is incompatible with
some other customs of physicists and their taste.

Characters on Tn are labelled by multi-indices m ∈ Zn

⟨χ(m), ζ(φ)⟩ =
(
ζ1
)m1 . . . (ζn)mn = e (im · φ) .

The idempotence and independence property is literally satisfied, because Tn is
compact and Zn is discrete

χ(m) ∗ χ(l) = δmlχ(m) = δmlχ(l)

χ(m)χ(l) = χ(m+ l) (136)

(χ(m), χ(l)) = δml

where the multi-index Kronecker symbol δml vanishes if m ̸= l (i.e., at least one
component of m differs from the corresponding component of l), and δml = 1
when m = l. In other words

δml = δm1l1 . . . δmnln .

Concerning the “Clebsch-Gordon” rule (136), its representation in terms of (134),
(135) reads

χ(m)χ(l) =
∑
π∈Zn

(m l|π) (m l|π)χ(π)

where

(m l|π) = δm+l,π = (m l|π)2 .

Let us notice that in the non-compact case G = Rn, the counterpart of (134), i.e.,
the right-hand side of (135), fails because the square of Dirac-delta is not well
defined.

Note that if we take as an arena of our physics the discrete group Zn, then its dual
group Tn is compact and continuous. Again the mentioned problems with squared
delta-distribution appear.
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3.3. Byproducts of Group Structure

For certain reasons, first of all ones concerning quasiclassical analysis, it is inter-
esting to discuss certain byproducts of the group structure in G. It is well known
that the Lie algebra g of G encodes a great amount of information about the global
structure of G, although, of course, not the total information. This is due to the
very analytic structure of Lie groups. Making use of exponential mapping of g
into G (not “onto” in general) one can “pull back” some structures of G and some
physics in G to its tangent space g = TeG. But now, g as a finite-dimensional
linear space is an Abelian Lie group under addition of its elements. Therefore, we
can consider some physics, using the group algebra of g as an additive group of
vectors. But of course this would be completely non-physical and non-interesting
if we did not take into account the Lie-algebraic structure of g. This structure leads
to certain additional structures and relationships in the group algebra of g. Namely,
it is well know that the co-algebra g∗, i.e., the algebraic dual space of g, carries the
canonical Poisson structure. Namely, Poisson bracket of differentiable functions
A, B on g∗ is analytically given by

{A,B} := σkC
k
lm
∂A

∂σl

∂B

∂σm
(137)

where σk are linear coordinates in g∗ and Ck
lm are structure constants with respect

to these coordinates, or more precisely, with respect to the dual linear coordinates
in g. Notice that, being linear functions on g∗, i.e., elements of the second dual
g∗∗, functions σk are canonically identical with some basis vectors ek in g and

[el, em] = ekC
k
lm.

We might simply use the symbols σk instead of ek in this formula, however, this
might be perhaps a bit confusing, although essentially true.
It is obvious that the expression (137) is correct, i.e., coordinate-independent. It
is well known that it may be formulated without any use of coordinates. Namely,
take differentials dAσ, dBσ at the point σ ∈ g∗. Being linear functions on g∗ ≃
Tσg

∗, they are canonically identical with some elements of g. We take their
bracket/commutator [dAσ, dBσ] ∈ g and evaluate the one-form σ ∈ g∗ on this
vector, ⟨σ, [dAσ,dBσ]⟩. One obtains the prescription assigning a number to any
point σ ∈ g∗. The resulting function is just the value of {A,B} at σ

{A,B}(σ) = ⟨σ, [dAσ,dBσ]⟩ . (138)

The skew-symmetry is obvious and the Jacobi identity follows from the identity
satisfied by structure constants, thus, finally from the Jacobi identity in Lie algebra.
It is worth to note that (137) and (138) are defined only for differentiable functions.
The associative algebra of smooth functions C∞ (g∗) in the sense of pointwise
product becomes simultaneously an infinite-dimensional Lie algebra under Poisson
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bracket. The two structures are compatible in the sense that the Poisson-bracket
ad-operation is a differentiation of the associative algebra

adC(AB) = {C,AB} = A{C,B}+ {C,A}B = (adCA)B +A (adCB) .

The both structures may be transported from the function space over g∗ into func-
tion space over g by means of the Fourier transform. The pointwise product in g∗

becomes the convolution in g. All relationships are preserved. The new Poisson
bracket in g is a differentiation of the Abelian convolution.
Let us denote the corresponding Poisson bracket in g by [, ]. More precisely, if F ,
G are functions on g Fourier-expressed as

F (ω) =
1

(2π~)n

∫
F̂ (σ)e

(
i

~
σ · ω

)
dnσ

G(ω) =
1

(2π~)n

∫
Ĝ(σ)e

(
i

~
σ · ω

)
dnσ

then their bracket is defined as

[F,G] (ω) =
1

(2π~)n

∫
{F̂ , Ĝ}(σ)e

(
i

~
σ · ω

)
dnσ.

One can show that

[F,G] =
1

i~
(AaF ) ∗ (ωaG) =

1

i~
Aa (F ∗ ωaG) . (139)

Concerning the last formula, let us notice that

Aa (f ∗ g) = (Aaf) ∗ g + f ∗ (Aag)

but it may be also shown that for any G

Aa (ω
aG) = 0.

This explains why only one term appears in the middle expression in (139). An-
other, equivalent expression for [F,G] is

[F,G] = − 1

i~
Aa ((ω

aF ) ∗G) = − 1

i~
(ωaF ) ∗ (AaG) . (140)

Therefore, the more symmetric formula for [F,G] would be

[F,G] =
1

i~
((AaF ) ∗ (ωaG)− (ωaF ) ∗ (AaG))

(141)

=
1

i~
((AaF ) ∗ (ωaG)− (AaG) ∗ (ωaF )) .

Let us stress here some subtle point concerning the relationship between symbols
ka, ωa. Roughly speaking, they denote almost the same, however, some delicate
difference in their meaning should be noted. In (72) the canonical coordinates ka

are analytically used as coefficients at the basic elements ea of the Lie algebra g.
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Being used as a parametrization of g, they are functions on the group manifold G,
in general in a local sense. The exponential mapping e of g into G establishes a
correspondence between ka and ωa, namely, ωa = ka ◦ e, when carefully taking
domains into account. One must remember however that strictly speaking, ka as
functions on G are defined locally and the range of their values is not identical
with Rn. Unlike this, ωa are global linear coordinates on the linear space g. Inter-
pretation of functions on G in terms of functions on g is also local. As a rule, the
global identification fails, even because of simple topological reasons. The point
is, however, that in the quasiclassical limit these obstacles become inessential. In
this limit we deal with “large quantum numbers”, i.e., with “quickly oscillating”
functions. One performs some truncation or cut-off procedure, namely, the total
group algebra over G is replaced by its subalgebra composed of ideals M(α) the
generating units ε(α) of which have the number of nods above some fixed value.
The higher is the truncation threshold, the more is the essential behaviour of admis-
sible functions concentrated in a small neighbourhood of the group unity e. The
admissible functions on G practically vanish far away from e, and “do not feel”
the topology of G. They may be in a good approximation represented by functions
on g, thus, on a linear space. More precisely, it is so for functions superposed in
a quasiclassical way of the basic quickly oscillating functions ε(α)ij . By that we
mean that the combination coefficients C(α)ij are concentrated in a “wide range”
of the label α and are “slowly varying” within that range. To be more (even if
roughly) rigorous with such statements, one must specify what is meant when we
say that the labels α, β are nearby. Simply we mean then that the numbers of nodes
of ε(α), ε(β) are nearby (roughly speaking, the corresponding quantum numbers
are nearby). Functions on G constructed according to such prescription may be
reasonably represented by functions on the Lie algebra g. Operations in the group
algebra of G may be approximated by certain operations in the group algebra of g,
where, just as above, g is interpreted as an Abelian additive Lie group. Continu-
ous Fourier expansion approximates in a satisfactory way the discrete Peter-Weyl
expansion on the compact group G. Expanding in the convolution formulas the
group multiplication rule in Taylor series and retaining the lowest-order terms, we
obtain some asymptotic approximate formulas, namely

F ∗
G
H ≈ F ∗

g
H +

i~
2
[F,H] (142)

where [F,H] is just (140), (141) and the symbols ∗
G

, ∗
g

denote respectively convo-

lutions in the sense ofG and g (as an additive group). The use of the same symbols
F , H on the left and right sides of (142) is rough, however, the meaning is obvi-
ous: just the “identification” in terms of the exponential map. In the lowest order
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of approximation, the quantum Poisson bracket is expressed as follows

{F,H}q =
1

i~

(
F ∗

G
H −H ∗

G
F

)
≈ [F,H]. (143)

We can notice that (142) and (143) is a counterpart of the well-known quasiclassi-
cal expansion of star products, first of all, the Weyl-Moyal product.
Some more details will be presented when discussing the physically important spe-
cial case G = SU(2) or G = SO(3,R), i.e., quantum description of angular mo-
mentum.

4. Group Algebra su(2), Quantum Angular Momentum and
Quasiclassical Asymptotics

In the previous sections of this paper we have investigated some general problems
of the formulation of quantum mechanics based on the H+-algebras. In particular,
we reviewed their important subclass, namely, the associative convolution algebras
of functions on locally compact topological groups, first of all, Lie groups. In the
final section below we concentrate on the main subject of this paper, namely, on
the theory of systems with quantum angular momentum. It is not decided what is
the nature of this angular momentum; it may be either orbital or spin or some their
superposition. The nature of the system as that of angular momentum is specified
by using the convolution algebra of once integrable functions on the group SU(2).
We begin with the usual expressions involving the Pauli matrices and canonical
coordinates of the first kind on SU(2), i.e., components of the rotation vector, ad-
mitting the doubled range of the angle of rotation. We also mention about the
projective parametrization based on the so-called vector of finite rotations, when
during the multiplication of matrices some purely algebraic rule of computation of
parameters is used. Operators La, Ra, Aa, introduced previously, i.e., generators
of the left and right multiplicative argument-wise action of SU(2) and its quotient
SO(3,R), are below explicitly expressed in terms of partial differentiation with
respect to the group coordinates on SU(2). Some algebraic formulas for the action
of those operators on our configuration space functions and the resulting differ-
ential equations satisfied by the unitary irreducible matrix elements D(j)mn and
magnetic multipoles Qp

kl are below discussed.
As it is well known, there are various objections against the usage of the ~ → 0
limit transition from the quantum to classical mechanics. In our SU(2)-approach to
the theory of angular momentum this problem is particularly essential because, as
a matter of fact, apparently there is no use of the Planck constant at all. The method
of quasiclassical analysis we suggest below is based on some other limit transition.
Namely, instead of the ~ → 0 procedure, we perform the procedure of eliminating
the low quantum numbers in the group algebra on SU(2). So, the problem is to
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fix some value of L and to investigate only the sub-algebra of L(SU(2)) obtained
as the direct sum of all two-sided ideals with the value of the angular momentum
j > L. And then we perform the limit transition with L→ ∞.
After some manipulations one obtains in this “classical limit” a Poisson system in
the Lie co-algebra of SU(2). In the special case of the usual dipole model, one
obtains the traditional classical equations of motion. If the model is more compli-
cated, one obtains models with Hamiltonians containing, e.g., higher-order multi-
pole magnetic moments. It is interesting that when we perform the quasiclassical
analysis in this sense, then some classically strange maxima/minima of functions
on SU(2) for k = 2π approximately cancel each other for the neighbouring values
of large scalar angular moments j, j + 1.

4.1. Lie Algebra of SU(2) and SO(3,R)

Theory of angular momentum is based on the group SU(2) and its quotient, i.e.,
SO(3,R) = SU(2)/Z2 (see, e.g. [14, 15]). The two-element centre and maximal
normal divisor Z2 of the simply-connected group SU(2) is given by

Z2 = {I2,−I2}
where I2 is the 2× 2 unit matrix.
Let σa, a = 1, 2, 3 denote Pauli matrices in the following convention

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
.

They are basic traceless Hermitian 2 × 2-matrices. The Lie algebra of SU(2),
su(2), consists of anti-Hermitian traceless matrices. The basic ones are chosen as

ea :=
1

2i
σa. (144)

The corresponding structure constants are given by the Ricci symbol, more pre-
cisely

[ea, eb] = εcabec

where εabc is just the totally antisymmetric Ricci symbol, ε123 = 1, and the rais-
ing/lowering of indices is meant here in the sense of the “Kronecker delta” δab as
the standard metric of R3. So, this shift of indices is here analytically a purely
“cosmetic” procedure, however we use it to follow the standard convention.
We know that SU(2) is the universal 2 : 1 covering group of SO(3,R), the proper
orthogonal group in R3. The projection epimorphism

SU(2) ∋ u 7→ R = p(u) ∈ SO(3,R)
is given by

uebu
−1 = uebu

+ = eaR
a
b. (145)
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With respect to the basis (144) the Killing metric γ has the components

γab = −2δab.

Its negative definiteness is due to the compactness of the simple algebra/group
su(2)/SU(2). For practical purposes one eliminates the factor (−2) and takes the
metric

Γab = −1

2
γab = δab. (146)

In terms of the canonical coordinates of the first kind

u(k) = e (kaea) = cos
k

2
I2 −

i

k
sin

k

2
kaσa (147)

where k denotes the Euclidean length of the vector k ∈ R3

k =
√
k · k =

√
δabkakb.

Its range is [0, 2π] and the range of the unit vector (versor) n := k/k is the total
unit sphere S2(0, 1) ⊂ R3. This coordinate system is singular at k = 0, k = 2π,
where

u(0n) = I2, u(2πn) = −I2
for any n ∈ S2(0, 1). Of course, the formula (147) remains meaningful for k > 2π,
however, the “former” elements of SU(2) are then repeated.
Sometimes one denotes

σ0 = I2, e0 =
1

2
I2.

Then (147) may be written down as follows

u = ξµ(k) (2eµ) (148)

where the summation convention is meant over µ = 0, 1, 2, 3(
ξ0
)2

+
(
ξ1
)2

+
(
ξ2
)2

+
(
ξ3
)2

= 1 (149)

and this formula together with the structure of parametrization (147), (148) tells
us that SU(2) is the unit sphere S3(0, 1) in R4. Roughly speaking, k = 0 is the
“north pole” and k = 2π is the corresponding “south pole”.
This “pseudo-relativistic” notation is rather misleading. The point is that the ma-
trices σµ, eµ above are used to represent linear mappings in C2, i.e., mixed tensors
in C2. In the relativistic theory of spinors, e.g., in Lagrangians for (anti)neutrino
fields, σµ are used as matrices of sesqulinear Hermitian forms, thus, twice co-
variant tensors on C2. The space of such forms carries an intrinsic conformal-
Minkowskian structure (Minkowskian up to the normalization of the scalar prod-
uct). And then σµ form a Lorentz-ruled multiplet. This is seen in the standard
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procedure of using SL(2,C) as the universal covering of the restricted Lorentz
group SO↑(1, 3), namely

aσµa
+ = σνΛ

ν
µ

describes the covering assignment

SL(2,C) ∋ a 7→ Λ ∈ SO↑(1, 3).

The four-dimensional quantity
(
ξ0, ξ1, ξ2, ξ3

)
in (148), (149) may be also inter-

preted in terms of the group SO(4,R) and its covering group, however, this inter-
pretation is relatively complicated and must not be confused with the relativistic
aspect of the quadruplet of σµ-matrices as analytical representants of sesquilinear
forms.
The Lie algebra of SO(3,R), so(3,R), consists of 3× 3 skew-symmetric matrices
with real entries. The standard choice of basis of so(3,R), adapted to (144) and to
the procedure (145), is given by matrices Ea, a = 1, 2, 3, with entries

(Ea)
b
c := −εabc

where again εabc is the totally antisymmetric Ricci symbol, and indices are “cos-
metically” shifted with the help of the Kronecker symbol. Then, of course

[Ea, Eb] = εcabEc.

In spite of having isomorphic Lie algebras, the groups SU(2) and SO(3,R) ≃
SU(2)/Z2 are globally different. The main topological distinction is that SU(2) is
simply connected and SO(3,R) is doubly connected.
Using canonical coordinates of the first kind, we have in analogy to (147) the
formula

R(k) = e (kaEa) .

Because of the obvious reasons, known from elementary geometry and mechanics,
k is referred to as the rotation vector, k =

√
k · k is the rotation angle, and the unit

vector (versor)

n =
k

k
is the oriented rotation axis. We use the all standard concepts and symbols of the
vector calculus in R3, in particular, scalar products a · b and vector products a× b.
The rotation angle k runs over the range [0, π] and the antipodal points on the
sphere S2(0, π) ⊂ R3 are identified, they describe the same rotation

R (πn) = R (−πn) . (150)

Therefore, this sphere, taken modulo the antipodal identification, is the manifold of
non-trivial square roots of the identity I3 in SO(3,R). It is seen in this picture that
SO(3,R) is doubly connected, because any curve in the ballK2(0, 1) ⊂ R3 joining



126 J. J. Sławianowski, V. Kovalchuk, A. Martens, B. Gołubowska and E. Rożko

two antipodal points on the boundary S2(0, 1) is closed under this identification,
i.e., it is a loop, but it cannot be continuously contracted into a single point.
It is worth to note that formally the values k > π are admitted, however, they
correspond to rotations by k < π, taken earlier into account. By abuse of language,
in SU(2) the quantities k, k are also referred to as the rotation vector and rotation
angle. But one must “rotate” by 4π to go back to the same situation, not by 2π.
The matrix of R(k) is given by

R
(
k
)a

b = cos kδab +
1

k2
(1− cos k) kakb +

1

k
sin kεabck

c

i.e.,

R
(
k
)
x = cos kx+

1− cos k

k2
(
k · x

)
k +

sin k

k
k × x

or, symbolically

R(k) ·x = x+k×x+ 1

2!
k×
(
k × x

)
+ · · ·+ 1

n!
k×
(
k × · · · ×

(
k × x

)
· · ·
)
+ . . .

Let us distinguish between two ways of viewing, representing geometry of SU(2)
and SO(3,R) in terms of some subsets in R3 as the space of rotation vectors k or,
alternatively, in terms of closed submanifolds and their quotients in R4.
As seen from (149), SU(2) is a unit sphere S3(0, 1) ⊂ R4, SO(3,R) is obtained
by the antipodal identification. Then SO(3,R) is doubly connected because the
curves on S3(0, 1) joining antipodal points project to the quotient manifold onto
closed loops non-contractible to points in a continuous way. In R3 the group SU(2)
is represented by the ball K2(0, 2π) and the whole shell S2(0, 2π) represents the
single point −I2 ∈ SU(2). Then SO(3,R) is pictured as the ball K2(0, π) ⊂
R3 with the antipodal identification of points on the shell S2(0, π), cf. (150).
This exhibits the identification of SO(3,R) with the projective space RP3. The
antipodally identified points on S2(0, π) represent the improper points at infinity
in R3.
For certain reasons, both practical and deeply geometrical, it is convenient to use
also another parametrization of SO(3,R), using so-called vector of finite rotation

κ =
2

k
tg
k

2
k. (151)

One can note that in the neighbourhood of group identity, when k ≈ 0, κ differs
from k by higher-order quantity. The practical advantage of κ is that the com-
position rule and the action of rotations are described by very simple and purely
algebraic expressions

R (κ1)R (κ2) = R (κ)
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where

κ =

(
1− 1

4
κ1 · κ2

)−1(
κ1 + κ2 +

1

2
κ1 × κ2

)
R [κ]x = x+

(
1 +

1

4
κ2

)−1

κ ×
(
x+

1

2
κ × x

)
.

An important property of this parametrization is that it describes the projective
mapping of SO(3,R) onto the projective space RP3. The one-parameter subgroups
and their cosets in SO(3,R) are mapped onto straight-lines in R3. The manifold of
π-rotations (non-trivial square roots of identity) is mapped onto the set of improper
points in RP3, i.e., it “blows up” to infinity.
The homomorphism (145) of SU(2) onto SO(3,R), u 7→ R(u), may be alterna-
tively described in terms of inner automorphisms of SU(2) and the rotation-vector
parametrization

uv(k)u−1 = v
(
R(u)k

)
, u ∈ SU(2). (152)

Roughly speaking, inner automorphisms in SU(2) result in rotation of the rotation
vector. The same holds in SO(3,R)

OR(k)O−1 = R
(
Ok
)
, O ∈ SO(3,R).

Therefore, inner automorphisms preserve the length k of the rotation vector k, and
the classes of conjugate elements are characterized by the fixed values of the rota-
tion angle (but all possible oriented rotation axes n). This means that in the above
description they are represented by spheres S2(0, k) ⊂ R3 in the space of rotation
vectors. There are two one-element singular equivalence classes in SU(2), namely
{I2}, {−I2} corresponding respectively to k = 0, k = 2π. Of course, in SO(3,R)
there is only one singular class {I3}. More precisely, in SO(3,R) the class k = π
is not the sphere, but rather its antipodal quotient, so-called elliptic space. The
idempotents ε(α)/characters χ(α) = ε(α)/n(α) and all central functions of the
group algebras of SU(2) and SO(3,R) are constant on the spheres S2(0, k), i.e.,
depend on k only through the rotation angle k. In many problems it is convenient
to parametrize SU(2) and SO(3,R) with the help of spherical variables k, θ, φ in
the space R3 of the rotation vector k. Historically the most popular parametrization
is that based on the Euler angles (φ, ϑ, ψ). It is given by

u[φ, ϑ, ψ] = u(0, 0, φ)u(0, ϑ, 0)u(0, 0, ψ) (153)

R[φ, ϑ, ψ] = R(0, 0, φ)R(0, ϑ, 0)R(0, 0, ψ). (154)

Historically φ, ϑ, ψ are referred to respectively as the precession angle, nutation
angle and the rotation angle.
Sometimes one uses u(ϑ, 0, 0), R(ϑ, 0, 0) instead u(0, ϑ, 0), R(0, ϑ, 0) in (153),
(154). The only thing which matters here is that one uses the product of three
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elements which belong to two one-parameter subgroups. The Euler angles are
practically important in gyroscopic problems. Canonical parametrization of the
second kind

u(α, β, γ) = u(α, 0, 0)u(0, β, 0)u(0, 0, γ)

are not very popular. One must say, however, that many formulas have the same
form in variables (φ, ϑ, ψ) and (α, β, γ).

4.2. Irreducible Unitary Representations

It is well known that in SU(2) irreducible unitary representations, or rather their
equivalence classes, are labelled by non-negative integers and half-integers,

α = j = 0,
1

2
, 1,

3

2
, . . .

i.e.,

Ω = {0}
∪ N

2
where N denotes the set of naturals (positive integers). And

n(α) = n(j) = 2j + 1.

On SO(3,R) one uses integers only

α = j = 0, 1, 2, . . . , Ω = {0}
∪

N.

For any α = j, there is only one irreducible representation of dimension

n(α) = n(j) = 2j + 1

i.e., only one up to equivalence. It is not the case for many practically important
groups, e.g., for SU(3) or for the non-compact group SL(2,C).
Historically, the irreducible representations of SU(2), SO(3,R), SL(2,C), and
SO↑(1, 3) were found in two alternative ways

i) algebraic one, based on taking the tensor products of fundamental represen-
tation (by itself),

ii) differential one, based on solving differential equations like (106)–(111),
(113), (107).

The left and right generators La, Ra, i.e., respectively the basic right- and left-
invariant vector fields, are analytically given by

La =
k

2
ctg

k

2

∂

∂ka
+

(
1− k

2
ctg

k

2

)
ka
k

kb

k

∂

∂kb
+

1

2
εab

ckb
∂

∂kc
(155)

Ra =
k

2
ctg

k

2

∂

∂ka
+

(
1− k

2
ctg

k

2

)
ka
k

kb

k

∂

∂kb
− 1

2
εab

ckb
∂

∂kc
(156)
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and therefore

Aa = La −Ra = εab
ckb

∂

∂kc
·

In terms of explicitly written components

Li
a =

k

2
ctg

k

2
δia +

(
1− k

2
ctg

k

2

)
ka
k

ki

k
+

1

2
εab

ikb

Ri
a =

k

2
ctg

k

2
δia +

(
1− k

2
ctg

k

2

)
ka
k

ki

k
− 1

2
εab

ikb

Ai
a = εab

ikb.

The shift of indices is meant here in the Kronecker-delta sense.
The corresponding Cartan one-forms are given by

La =
sin k

k
dka +

(
1− sin k

k

)
ka

k

kb
k
dkb +

2

k2
sin2

k

2
εabck

bdkc

Ra =
sin k

k
dka +

(
1− sin k

k

)
ka

k

kb
k
dkb − 2

k2
sin2

k

2
εabck

bdkc

i.e., in terms of the components

La
i =

sin k

k
δai +

(
1− sin k

k

)
ka

k

ki
k

+
2

k2
sin2

k

2
εabik

b (157)

Ra
i =

sin k

k
δai +

(
1− sin k

k

)
ka

k

ki
k

− 2

k2
sin2

k

2
εabik

b. (158)

The central functions on SU(2) and on SO(3,R), in particular the idempotents
ε(j)/characters χ(j) satisfy the obvious differential equations

Aaf = 0, i.e., Laf = Raf, a = 1, 2, 3.

Then the analytical formulas (155)–(158) are formally valid both on SU(2) and
SO(3,R), and in general the calculus on SU(2) is simpler than that on SO(3,R).
It is convenient to rewrite the formulas (155)-(158) so as to express them explicitly
in terms of the angular and radial differential operations in the space of rotation
vectors k. After simple calculations one obtains

La = na
∂

∂k
− 1

2
ctg

k

2
εabcn

bAc +
1

2
Aa

Ra = na
∂

∂k
− 1

2
ctg

k

2
εabcn

bAc − 1

2
Aa

La = nadk + 2 sin2
k

2
εabcn

bdnc + sin kdna

Ra = nadk − 2 sin2
k

2
εabcn

bdnc + sin kdna.
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Using the R3-vector notation, including also the vectors with operator components,
we can denote briefly, without using indices and labels

L = n
∂

∂k
− 1

2
ctg

k

2
n×A+

1

2
A (159)

R = n
∂

∂k
− 1

2
ctg

k

2
n×A− 1

2
A (160)

L = ndk + 2 sin2
k

2
n× dn+ sin kdn (161)

R = ndk − 2 sin2
k

2
n× dn+ sin kdn (162)

A = k ×∇ (163)

where ∇ denotes the Euclidean gradient operator.
Let us note the following interesting and suggestive duality relations

⟨dk,Aa⟩ = Aak = 0,

⟨
dk,

∂

∂k

⟩
= 1

⟨dna,Ab⟩ = Abna = εabcn
c,

⟨
dna,

∂

∂k

⟩
=
∂na
∂k

= 0.

In R3, considered as an Abelian group under addition of vectors, the right-invariant
fields coincide with the left-invariant ones, and when using spherical variables we
have then

L = R = ∇ = n
∂

∂r
− 1

r
n×A(r) (164)

L = R = dr = ndr + rdn. (165)

This is in agreement with the formulas (159)–(163), namely, in a small neighbour-
hood of the group identity I2 ∈ SU(2), i.e., for k ≈ 0, expressions (159)–(163) up
to higher-order terms in k, one obtains

L ≈ R ≈ ∇k = n
∂

∂k
− 1

k
n×A

L ≈ R ≈ dk = ndk + kdn.

The quantities n, dn, A are non-sensitive to the asymptotics k → 0, because they
are purely angular (θ, φ) variables, independent of k.
SU(2) is the sphere S3(0, 1) in R4. Taking the sphere of radius R, S3(0, R) ⊂ R4,
and performing the limit transition R → ∞, one obtains also the relationships
(164), (165) as an asymptotic limit.
The Killing metric tensor with the modified normalization (146) is given by

gij =
4

k2
sin2

k

2
δij +

(
1− 4

k2
sin2

k

2

)
ki

k

kj

k
(166)
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and its contravariant inverse by

gij =
k2

4 sin2 k/2
δij +

(
1− k2

4 sin2 k/2

)
ki

k

kj

k
·

The corresponding metric element may be concisely written as

ds2 = dk2 + 4 sin2
k

2

(
dθ2 + sin2 θdφ2

)
= dk2 + 4 sin2

k

2
dn · dn (167)

or, in a more sophisticated way

g = dk ⊗ dk + 4 sin2
k

2
δABdn

A ⊗ dnA (168)

and, similarly, for the inverse tensor

g−1 =
∂

∂k
⊗ ∂

∂k
+

1

4 sin2 k/2
δABAA ⊗AB.

According to the standard procedure, the volume element on the Riemannian mani-
fold is given by

dµ
(
k
)
=
√

|g|d3k =
√

det
[
gij
(
k
)]
d3k.

It is easy to see that for our normalization of the metric tensor

dµ
(
k
)
= 4 sin2

k

2
sin θdkdθdφ =

4 sin2 k/2

k2
d3k (169)

where d3k is the usual volume element in R3 as the space of rotation vectors k.
This volume element is identical with that given by (169), (170), (171). The reason
is that all these expressions are translationally-invariant and the Haar measure is
unique. We assume here that G is unimodular. In fact, we mean only the compact
semisimple groups and their products with Abelian groups (clearly, in the latter
case it is not the Killing tensor that is meant in the Abelian factor). Nevertheless,
any metric meant there is also assumed translationally-invariant, and so the total
Riemann measure also coincides with (169), (170), (171).
Let us mention that when the Euler angles (φ, ϑ, ψ) are used as a parametrization,
then the Riemann metric is given by

ds2 = dϑ2 + dφ2 + 2 cosϑdφdψ + dψ2. (170)

The measure element is then expressed

dµ (φ, ϑ, ψ) = sinϑdϑdφdψ. (171)

The metric element expression (170) may be diagonalized by introducing the new
“angles”

α = φ+ ψ, β = φ− ψ

however, this representation rather is not used practically.



132 J. J. Sławianowski, V. Kovalchuk, A. Martens, B. Gołubowska and E. Rożko

Let us remind that on SU(2) the range of Euler angles is [0, 4π] for φ, ψ, and
[0, 2π] for ϑ, on SO(3,R), it is respectively [0, 2π] and [0, π].
In some of earlier formulas we used the convention of the Haar measure on com-
pact groups normalized to unity, µ(G) = 1. When normalized in this way, it will
be denoted as µ1. The label “(1)” will be omitted when the normalization is clear
from the context or when there is no danger of confusion.
After elementary integrations we find that on SU(2) the element of normalized
measure is given by

dµ(1) =
1

4π2
sin2

k

2
sin θdkdθdφ =

sin2 k/2

4π2k2
d3k.

If we used the normalization (169), the “volume” of SU(2) would be 16π2. With
the same normalization, the volume of SO(3,R) would be 8π2. It is intuitively
clear: SU(2) is “twice larger” than SO(3,R). So, we would have

dµ(1)SO(3,R) =
1

2π2
sin2

k

2
sin θdkdθdφ =

sin2 k/2

2π2k2
d3k.

However, as mentioned, all formulas will be meant in the covering group sense
SU(2).
The metric tensor (166), (167) is conformally flat. It is seen when we introduce
some new variables ϱ instead of k, namely

ϱ = |ϱ| = atg
k

4
,

ϱ

ϱ
=
k

k
= n (172)

where a denotes some positive constant. Then (167) becomes

ds2 =
16a2

(a2 + ϱ2)2
(
dϱ2 + ϱ2

(
dθ2 + sin2 θdφ2

))
=

16a2

(a2 + ϱ2)2
(
dϱ2 + ϱ2dn · dn

)
or, using again the “sophisticated” form (168)

g =
16a2

(a2 + ϱ2)2

(
dϱ⊗ dϱ+ ϱ2δabdn

a ⊗ dnb
)
.

Apparently, (172) is a conformal mapping of SU(2) onto R3 with its usual Eu-
clidean metric. The ball K2(0, 2π) “blows up” to the total R3 and the sphere
S2(0, 2π) “blows up” to infinity. In other words, SU(2) is identified with the one-
point compactification of R3 and the element −I2 ∈ SU(2) becomes just the com-
pactifying point. The ballK2(0, π) corresponding to the manifold of SO(3,R) and
its boundary sphere S2(0, π) (non-trivial square-root of identity) become respec-
tively K2(0, a) and S2(0, a). If we put a = π, they are mapped onto themselves.
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From the conformal point of view the particular choice of the constant a does not
matter.
The projective mapping (151) of SO(3,R) onto RP3 maps geodetics of (167) onto
straight lines in R3. However, it is neither isometry nor the conformal transforma-
tion, instead we have that

ds2 =
4

4 + κ2

(
4

4 + κ2
dκ2 + κ2

(
dθ2 + sin2 θdφ2

))
.

On SU(2) the formulas (82), (84) take on the following form

La(u) = R(u)abRb(u), La(u) = Rb(u)R(u)
−1b

a

where the dependence

SU(2) ∋ u 7→ R(u) ∈ SO(3,R)

is given by (145), (152). In orthonormal coordinates this is the same formula,
because inverses of orthogonal matrices coincide with their transposes. The corre-
sponding symmetric operators Σa, Σ̂a, denoted respectively by

Sa =
~
i
La, Ŝa =

~
i
Ra (173)

are interrelated by the same formula

Sa(u) = Ŝb(u)R(u)
−1b

a.

When interpreted in terms of action on the wave functions on SU(2), they are
operators of rotational angular momentum (spin) respectively in the spatial and
co-moving representations. The corresponding operators of hyperspin

∆a =
~
i
Aa =

~
i
εab

ckb
∂

∂kc

are given by
∆a = Sa − Ŝa, Aa = La −Ra.

The term “hyper” is used because this quantity tells us “how much” the spatial
components of spin exceed the corresponding laboratory ones. The operators Aa

generate rotations of the rotation vector and this is just the meaning of “hyper”.
According to (81), the corresponding classical quantities are given by

Sa = pjLj
a, Ŝa = pjRj

a = SbR
b
a

∆a = pj∆
j
a = Sa − Ŝa = εab

ckbpc

where pj denote canonical momenta conjugate to kj or rather to the corresponding
generalized velocities dkj/dt.
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Evaluating differential forms on vector tangent to trajectories in the configuration
spaces SU(2), SO(3,R), we obtain the following quantities

ωa = La
i

(
k
) dki
dt
, ω̂a = Ra

i

(
k
) dki
dt
, ωa (u, u̇) = R(u)abω̂

a (u, u̇) .

They are respectively spatial (ωa) and co-moving (ω̂a) components of angular ve-
locity. They are non-holonomic, i.e., fail to be time derivatives of any generalized
coordinates. The following duality relations are satisfied

saω
a = ŝaω̂

a = pi
dki

dt
·

Let us quote the obvious commutators and Poisson brackets

[La,Lb] =− εab
cLc, [Ra,Rb] = εab

cRc, [La,Rb] = 0

[Aa,Lb] =− εab
cLc, [Aa,Rb] =− εab

cRc, [Aa,Ab] =− εab
cAc

1

i~
[Sa,Sb] = εab

cSc,
1

i~
[Ŝa, Ŝb] = − εab

cŜc,
1

i~
[Sa, Ŝb] = 0

1

i~
[∆a,Sb] = εab

cSc,
1

i~
[∆a, Ŝb] = εab

cŜc,
1

i~
[∆a,∆b] = − εab

c∆c

{Sa, Sb} = εab
cSc, {Ŝa, Ŝb} =− εab

cŜc, {Sa, Ŝb} = 0

{∆a, Sb} = εab
cSc, {∆a, Ŝb} = εab

cŜc, {∆a,∆b} =− εab
c∆c.

In the enveloping algebras built over Lie algebras of L- and R-operators there
exists only one Casimir invariant, namely, the second-order one

C(L, 2) = C(R, 2) = ∆ = δabLaLb = δabRaRb. (174)

In physical expressions like various kinetic energies and so on, one uses their
(−~2)-multiplies

S2 := C(S, 2) = C
(
Ŝ, 2

)
= −~2∆.

There is also only one Casimir in the associative algebra generated by the Lie
algebra of A-operators

A2 := C(A, 2) = δabAaAb, ∆2 := −~2A2.

After some easy calculations one obtains for (174)

∆ =
∂2

∂k2
+ ctg

k

2

∂

∂k
+

1

4 sin2 k/2
A2.

For obvious reasons, when expressed by the spherical angular variables (θ, φ) in
the space of rotation vector k, ∆2 has identical form with the operator of the
squared magnitude of orbital angular momentum. Its spectrum consists of non-
negative numbers ~2l(l+1), where l denotes non-negative integers, l = 0, 1, 2, . . . .
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As we saw in (112), ∆2 = −~2A2 does commute with the Laplace-Beltrami
Casimir

S2 = −~2δabLaLb = −~2δabRaRb

so they have common wave functions. Spectrum of the Laplace-Beltrami operator
consists of non-negative numbers ~2j(j+1), where j runs over non-negative half-
integers and integers

j = 0,
1

2
, 1,

3

2
, . . . , i.e., j ∈ {0}

∪ N
2

where N denotes the set of naturals and j is just the label of irreducible unitary rep-
resentations of SU(2). When j is fixed, then l runs over the range l = 0, 1, . . . , 2j
for the possible common eigenfunctions of S2 and ∆2. According to (106)–(111),
(113), (114), we have that

S2D(j) = ~2j(j + 1)D(j), S2ε(j) = ~2j(j + 1)ε(j)

i.e., all matrix elements of the j-th irreducible unitary representation, or, equiva-
lently, all elements of the minimal two-sided ideal M(j), are eigenfunctions of

S2 = δabSaSb = δabŜaŜb = −~2∆[g]

with eigenvalues ~2j(j + 1).
Further, we have the following algebraization of operators

Sa =
~
i
La, Ŝa =

~
i
Ra

in this representation

SaD(j) = S(j)aD(j), ŜaD(j) = D(j)S(j)a (175)

∆aD(j) = [S(j)a, D(j)] (176)

and similarly for elements of the canonical basis, because, as we saw, there is a
proportionality

ε(j)km = (2j + 1)D(j)km.

Here S(j)a are standard (2j + 1)× (2j + 1) Hermitian matrices of the j-labelled
angular momentum. According to (104), (105) we have that

D(j)
(
u
(
k
))

= e

(
i

~
kaS(j)a

)
.

This algebraization of differential operators is very convenient because the matri-
ces of angular momentum are standard. Therefore, (117)–(120), or, alternatively,
(121)–(124), may be used, where the label α to be replaced by j and the symbols
Σ(α)a by S(j)a.
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Representations D(j) are irreducible, so, by definition

δabS(j)aS(j)b =
∑
a

S(j)2a = ~2j(j + 1)Id(2j+1).

The only Abelian Lie subgroups of SU(2), SO(3,R) are one-dimensional, just the
one-parameter subgroups. Therefore, one can choose only one L-type operator and
only one R-type operator to form, together with −~2∆[g], the complete system
of eigenequations for the functions ε(j)kl/D(j)kl. Traditionally one chooses for
S(j)a such a representation that S(j)3 are diagonal. Then, of course, one should
choose the operators L3, R3, or in terms of observables S3, Ŝ3. This is certainly
the matter of convention. One could as well take any versor n ∈ R3 and operators
naLa, naRa (or naSa, naŜa), assuming only that naS(j)a is diagonal for any
j. When we fix the quantum number j, then the eigenvalues of S3, Ŝ3 have the
form ~m, where m = −j,−j + 1, . . . , j − 1, j, jumping by one. Therefore,
the matrix labels of D(j)mk, ε(j)mk are not taken as 1, . . . , 2j + 1, but rather as
−j,−j + 1, . . . , j − 1, j. The matrices S(j)3 are then chosen as

S(j)3 = diag(−~j,−~(j − 1), . . . , ~(j − 1), ~j)
= ~ diag(−j,−(j − 1), . . . , (j − 1), j).

Therefore, the basic functions

D(j)mk, ε(j)mk = (2j + 1)D(j)mk

are defined by the following maximal system of compatible eigenequations

S2D(j)mk = ~2j(j + 1)D(j)mk (177)

S3D(j)mk = m~D(j)mk (178)

Ŝ3D(j)mk = k~D(j)mk. (179)

The solution is unique up to normalization and this one is fixed by the first and
third equations in (175), (176) with

n(α) = n(j) = 2j + 1.

Quite independently on the representation theory, the functions D(j)mk as solu-
tions of (177)–(179) were found as basic stationary states of the free symmetric
top, i.e., one with the following Hamiltonian (kinetic energy)

H =
1

2I

(
Ŝ1

)2
+

1

2I

(
Ŝ2

)2
+

1

2K

(
Ŝ3

)2
.

The corresponding energy levels (eigenvalues of energy) are given by

Ej,k =
1

2I
~2j(j + 1) +

(
1

2K
− 1

2I

)
~2k2.
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Certainly, they are 2(2j + 1)-fold degenerate, i,e, they do not depend on m at all
and they do not distinguish the sign of k. If the top is spherical, K = I , they are
(2j + 1)2-fold degenerate. When the top is completely asymmetric, the energy
levels are (2j + 1)-fold degenerate (independence on the spatial quantum number
m).
Matrix elements D(j)mk of irreducible unitary representations, i.e., equivalently,
elements of the canonical basis

ε(j)mk = (2j + 1)D(j)mk

are common solutions of the system of eigenequations (177)–(179).
There is also another complete system of commuting operators, namely, S2, ∆2,
∆3. Of course, taking the third component is but just a custom, we could take as
well na∆a, where n is an arbitrary unit vector in R3. Any common eigenfunction
of ∆2,∆3 has the following form

ψ
(
k
)
= ψ (k, θ, φ) = f(k)Ylm (n (θ, φ))

where f is an arbitrary function of the “rotation angle” k = |k|, Ylm is the standard
symbol of spherical functions, and n is the unit vector of the oriented rotation
axis. The eigenvalues are respectively given by ~2l(l + 1), where l ∈ {0}

∪
N

is an arbitrary non-negative integer, and m~, where m runs over the range m =
−l,−l+1, . . . , l−1, l, jumping by one. The well-known system of eigenequations
is satisfied

∆2ψ = ~2l(l + 1)ψ, ∆3ψ = ~mψ. (180)

The function f is arbitrary, because it is transparent for the action of ∆2, ∆3.
The space of solutions of (180) is infinite-dimensional and this infinity is due to
the arbitrariness of f . Roughly speaking, for any fixed value of l, such a system
of functions represents an irreducible tensor of the group of automorphisms (152).
The value l = 0 corresponds to scalars, i.e., functions constant on classes of adjoint
elements. They are linear combinations or rather series of idempotents/characters
ε(j)/χ(j). Similarly, all higher-order tensors may be combined from their orthog-
onal projections onto ideals M(j). Those projections are common eigenfunctions

Q{j}lm = fjl(k)Y
l
m (n)

of S2, ∆2, ∆3, therefore, the “radial” functions fjl satisfy the following reduced
eigenequation

d2fjl
dk2

+ ctg
k

2

dfjl
dk

+

(
j(j + 1)− l(l + 1)

4 sin2 k/2

)
fjl = 0. (181)

When j is fixed, then l runs over the range

l = 0, 1, . . . , 2j − 1, 2j
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i.e., integers from 0 to 2j. It turn, any l-level is (2j + 1)-fold degenerate, thus, for
any fixed j, the number of independent functions Q{j}lm equals

2j∑
l=0

(2l + 1) = (2j + 1)2

just as expected, because dimM(j) = (2j + 1)2.
This is an alternative choice of basis, or rather of orthonormal complete system
in L2 (SU(2)), tensorially ruled by irreducible representations of SO(3,R) as the
automorphism group of SU(2).
The corresponding finite transformation rule reads

Q{j}lm
(
gu
(
k
)
g−1
)
= Q{j}lm

(
u (R(g)) k

)
= Q{j}lm (k,R(g)n)

=
∑
n

Q{j}ln (k, n)D(l)nm (R(g)) .

Infinitesimally this is expressed as

∆aQ{j}lm =
∑
n

Q{j}lnS(l)anm.

In terms of the convolution commutator[
~
i
Laδ,Q{j}lm

]
=

[
~
i
Laε(j), Q{j}lm

]
=
∑
n

Q{j}lnS(l)anm.

Of course, the convolution commutator is meant in the sense

[f, g] = f ∗ g − g ∗ f. (182)

The use of spherical functions Y l
m (n) in (180) expresses explicitly the fact that

for a fixed l we are dealing with an irreducible object of the group of inner auto-
morphisms. This is so-to-speak a non-redundant description of such objects, with
all its advantages and disadvantages. The obvious disadvantage is that the tensorial
structure is hidden. The point is that Y l

m (n) are independent quantities extracted
from the l-th tensorial power of the unit versor n, ⊗

l
n. Analytically such a sym-

metric tensor is given by the system of components

na1 . . . nal . (183)

The transformation rule under R ∈ SO(3,R)

(Rn)a1 . . . (Rn)al = Ra1
b1 . . . R

al
bln

b1 . . . nbl

is evidently tensorial and preserves the symmetry, however, it is reducible, because
orthogonal transformations preserve all trace operations. Irreducible objects are
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obtained from (183) by eliminating all traces, e.g.,

Y(1)a = na (184)

Y(2)ab = nanb − 1

3
δab (185)

Y(3)abc = nanbnc − 1

5

(
naδbc + nbδca + ncδab

)
(186)

Y(4)abcd = nanbncnd − 1

7

(
nanbδcd + nancδbd + nandδbc + nbncδad

(187)

+ nbndδac + ncndδab
)
+

1

35

(
δabδcd + δacδbd + δadδbc

)
and so on. The logic of those tensors is that they are algebraically built of na, δbc,
are completely symmetric and traceless in any pair of indices (trace meant as a
contraction with an appropriate δab).
Any Y(l) has only (2l+1) independent components, which are linear combinations
of Y l

m, m = −l, . . . , l. Therefore, the representation is very redundant, however,
the tensorial structure is explicitly visible. Instead of functions Q{j}lm one can
use tensorial objects

Q{j, l}a1...al = fjl(k)Y(l) (n)a1...al . (188)

Infinitesimally, the tensorial character of quantities Q{j, l} is represented by the
following relationship

AbQ{j, l}a1...al = [Lbδ,Q{j, l}a1...al ] = −
∑
c

εb
ac

dQ{j, l}a1...ac−1dac+1...al

for example

AbQ{j, 2}km =
[
Lbδ,Q{j, 2}km

]
= −εbkdQ{j, 2}dm − εb

m
dQ{j, 2}kd

and so on. Surely, Lbδ in these equations may be replaced by Rbδ and both may
be replaced by Laε(j) = Raε(j). Irreducibility implies that

δabAaAbQ{j, l}a1...al = δab [Laδ, [Lbδ,Q{j, l}a1...al ]]

= δab [Laε(j), [Lbε(j), Q{j, l}a1...al ]]

= −l(l + a)Q{j, l}a1...al

with the (182)-meaning of the convolution commutator.

4.3. Some Problems Concerning Irreducible Tensors of Automorphism
Group

There are some subtle points concerning irreducible tensors of the automorphism
group, which were partially mentioned earlier in Section 2 devoted to general Lie
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groups. Namely, the tensorial quantities (131) were introduced there. They were
obtained as convolution monomials of

Qa = Laδ = Raδ or Σa =
~
i
Qa

or rather as symmetrizations of these monomials. The symmetrizations of mono-
mials built of Σa are Hermitian in the sense of group algebra, just as Σa themselves.
However, in general they are not irreducible tensors, just the traces (in the sense
of Killing metric tensor) must be subtracted. The symmetrized monomials are
represented in the Peter-Weyl sense by matrices (130) alternatively, depending on
whether the convention (117) or (121) is used. And an important point is of course
that the monomials (125) are different from the pointwise products QaQb . . . Qk.
In particular, the pointwise products Q(α)aQ(α)b . . . Q(α)k of M(α)-projections
do not belong to M(α), whereas the convolutions Q(α)a ∗ Q(α)b ∗ · · · ∗ Q(α)k
certainly do.
Let us specialize the problem to SU(2). The distribution Σa = (~/i)Qa, phys-
ically corresponding to the angular momentum, is suggestively expressed by the
operators (173)

Σa = Saδ = Ŝaδ =
~
i
Laδ =

~
i
Raδ (189)

and its projections onto ideals M(j) are given by

Σ(j)a =
~
i
Laε(j) =

~
i
Raε(j). (190)

The above expression (189) is a series built of (190) with all possible values of
j = 0, 1/2, 1, 3/2, . . . and the limit is meant in the distribution sense. But of
course Σ(j)a themselves are well-defined smooth functions and

Σ(j)a =
dε(j)

dk

ka
k

= (2j + 1)
dχ(j)

dk
na

because the idempotents ε(j)/characters χ(j) depend only on k. The Peter-Weyl
coefficients of Σa are given by the usual (2j + 1) × (2j + 1) matrices S(j)a
of angular momentum or by their transposes S(j)Ta , depending on which one of
conventions (121) or (117) is used.
The higher-order Hermitian SO(3,R)-tensors are again given by (131) and the
corresponding Peter-Weyl matrices (130) will be denoted by

S(j, l)a1...al = S(j)(a1 . . . S(j)al)

S(j, l)Ta1...al = S(j)T(a1 . . . S(j)
T
al)
.

They are tensorial and symmetric, nevertheless, just like (183), they are still re-
ducible. To obtain irreducible objects, one must eliminate traces, in analogy to
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(184)–(187). The corresponding traceless parts of (matrix-valued) tensors S(j, l),
S(j, l)T will be denoted by

S◦(j, l) = Traceless (S(j, l)) , S◦(j, l)T = Traceless
(
S(j, l)T

)
. (191)

Let us observe that the very literal analogy with (184)–(187) is, nevertheless, mis-
leading, because in (180), (183), (184)–(187) we are dealing with the pointwise
products

nanb . . . nr or kakb . . . kr.

Because of this the shape factor fjl(k) in (180), (188) must be introduced and
subject to the “radial” Schrödinger-type equation. Unlike this, there is no problem
of “radial” equation when one deals with functions Σ(j, l) on SU(2) with the Peter-
Weyl coefficients (191). Namely, for any fixed half/integer j and any l ≤ 2j, the
following functions on SU(2)

T (j, l)a1...al = Tr (S◦(j, l)a1...al ε̂(j)) = Tr (S◦(j, l)a1...alD(j)(2j + 1)) (192)

are eigenfunctions of S2 = −~2∆ with the eigenvalue ~2j(j + 1), thus, they are
elements of M(j) and simultaneously are the eigenfunctions of ∆2 = δab∆a∆b

with the eigenvalue ~2l(l + 1). Any element of M(j) may be uniquely expanded
as follows

F =

2j∑
l=0

P (l)a1...alT (j, l)a1...al (193)

where the tensor P (l) is totally symmetric and traceless.

Its Peter-Weyl matrix of coefficients F̂ in the convention (121) has the following
form

F̂ =

2j∑
l=0

P (l)a1...al S◦(j, l)a1...al . (194)

Evidently, the function (193) is Hermitian in the sense of group algebra if and
only if the coefficients P (l)a1...al are real, because all the matrices S◦(j, l)a1...al
combined in (194) are Hermitian.
The above representation is tensorially symmetric, however, informationally re-
dundant. In non-redundant description, based on spherical functions Ylm, we have
instead of (193) the representation

F =

2j∑
l=0

l∑
m=−l

PlmQ{j}lm (195)

where the functions Q{j}lm are given by (180).
The obvious properties of spherical functions, i.e.,

Y l
m(−n) = (−1)lYlm(n), Y

l
m = Y l

−m
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imply that F is Hermitian in the sense of group algebra over SU(2) if and only if

P lm = (−1)lPl(−m). (196)

The Hermitian elements of the group algebra of SU(2) given by (192) are assumed
to represent some important physical quantities. They have very suggestive ten-
sorial structure and for l = 1 they represent the angular momentum. Because
of this there is a natural temptation to interpret them physically in terms of mag-
netic multipole momenta [30]. Although in tensorial representation their system is
redundant, it is convenient to expand with respect to them the density operators.
The corresponding coefficients P (l)a1...al are directly related to the expectation
values of multipoles, and it is reasonable to interpret them physically as magnetic
polarizations of the corresponding order [30]. It is clear that the physical situa-
tions, characterized by the fixed label j of the Casimir invariant, possess multipole
momenta and polarizations of the orders l = 0, 1, . . . , 2j. The algebraically non-
redundant description of these objects is based on (195)–(196).

4.4. Quasiclassical Asymptotic of “Large Quantum Numbers”

Let us now discuss the quasiclassical limit. By this we mean the limit of “large
quantum numbers” in equations like (180), (181) and others. An important as-
pect of this asymptotics is that the corresponding basic solutions are superposed
with coefficients which are “slowly varying” functions of their arguments in some
“wide” range of their values and practically vanishing outside this range. It is
important that the range is simultaneously “wide” in the sense “much wider than
one”, but at the same time concentrated about some “large” mean value. This
enables one to perform approximate “continuization” of discrete labels/(quantum
numbers) and to replace their summation by integration.
For l = 0 the substitution of

fj0 = A
χj0

sin k/2
, A = const

to (181) leads immediately to the following result

fj0 = A
sin(2j + 1)k/2

sin k/2
·

But
ε(j)(0) = (2j + 1)2

thus, A = 2j + 1, and finally

ε(j)(k) = (2j + 1)
sin(2j + 1)k/2

sin k/2
, δ(k) =

∞∑
j=0

(2j + 1)
sin(2j + 1)k/2

sin k/2
·

(197)
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One can easily show that

fj,l+1 =

(
d

dk
− l

2
ctg

k

2

)
fjl (198)

and therefore, iterating this recurrence formula one obtains the explicit formula for
the multipole basis (180)

fjl =
0∏

n=l−1

(
d

dk
− n

2
ctg

k

2

)
ε(j). (199)

Let us discuss the asymptotic expansions of such expressions in a domain [0, a]
where a < 2π. One can show that for continuous functions f on [0, a] the follow-
ing holds

lim
j→∞

∫ a

0
f(k)

(
sin(2j + 1)k/2

sin k/2
− sin(2j + 1)k/2

k/2

)
dk

= lim
j→∞

∫ a

0
f(k)

k/2− sin k/2

(k/2) sin k/2
sin(2j + 1)

k

2
dk = 0. (200)

Incidentally, this statement is true for more general “sufficiently regular” functions
f , i.e., they need not be continuous. The equation (200) means that in the integral
mean-value sense in [0, a] the functions ε(j) with “sufficiently large” j-s may be
asymptotically replaced by

(2j + 1)
sin(2j + 1)k/2

k/2
· (201)

And for “sufficiently large” values of j the functions (201) are essentially concen-
trated about k = 0.
Therefore, for any ε > 0 there exists n0 ∈ N such that for any n > n0 the following
holds ∣∣∣∣∫ a

0
f(k)

sinnk/2

k/2
dk −

∫ ∞

0
f(k)

sinnk/2

k/2
dk

∣∣∣∣ < ε

and

lim
n→∞

∫ a

0
f(k)

sinnk/2

k/2
dk = πf(0)

i.e.,

N ∋ n 7→ 1

π

sinnk/2

k/2

is a “Dirac-delta sequence”.
The functions ε(j) = (2j + 1)χ(j) are concentrated about k = 0 and have there
the maxima (2j+1)2. At k = 2π they have the extrema ±(2j+1)2 depending on
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Figure 1. Asymptotic behaviour of functions ε(j).

whether j is respectively integer (+) or half-integer (−). For j → ∞, ε(j) may be
replaced by

ε◦(j) = (2j + 1)
2

k
sin

(2j + 1)k

2
(202)

in any interval [0, a], a < 2π. But it is also seen that ε(j) may be replaced by

ε2π(j) = ±(2j + 1)
2

2π − k
sin

(2j + 1)k

2
(203)

in any interval [a, 2π], a > 0. The signs +/− appear respectively for integer/half-
integer values of j. Therefore, globally, in the total SU(2)-range k ∈ [0, 2π], we
have the following asymptotics for j → ∞

ε(j) ≈ (2j + 1) sin
(2j + 1)k

2

(
2

k
+ (−1)2j

2

2π − k

)
. (204)

The oscillating, sign-changing extremum at k = 2π is a purely quantum, spinorial
effect. Such an effect does not appear on SO(3,R), when the range of k is given
by [0, π] ⊂ R. However, when the functions ε(j) are superposed with slowly-
varying coefficients concentrated at large values of j, then the subsequent peaks
approximately cancel each other. Nevertheless, for any fixed j, it does not matter
how large one, we have the asymptotic formula (204) with both peaks. We shall
write it symbolically

ε(j) ≈ ε◦(j) + ε2π(j) (205)
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where ε0(j), ε2π(j) are concentrated respectively about k = 0 and k = 2π. The
same is true for all other “radial” functions appearing in the multipole expansion
(180).
Approximate equation for fjl about k = 0 and for large values of j has the follow-
ing form

d2

dk2
f◦jl +

2

k

d

dk
f◦jl +

(
j(j + 1)− l(l + 1)

k2

)
f◦jl = 0. (206)

For ε◦(j) = f◦j0 one re-obtains the known expression

ε◦(j) = (2j + 1)
sin(2j + 1)k/2

k/2
·

One can easily show that

f◦j,l+1 =

(
d

dk
− l

k

)
f◦jl

f◦jl =

(
0∏

n=l−1

(
d

dk
− n

k

))
ε◦(j)

in a complete analogy to (198), (199).
Another often used approximation for large j is

j(j + 1) 7→
(
j +

1

2

)2

.

Then the differential equation (206) becomes approximately

d2

dk2
f◦jl +

2

k

d

dk
f◦jl +

((
j +

1

2

)2

− l (l + 1)

k2

)
f◦jl = 0.

Again one can show that the approximate solutions of rigorous equations for the
large values of j have the following form

fjl = f◦jl + f2πjl

where

f◦jl =

(
0∏

n=l−1

(
d

dk
− n

k

))
ε◦ (j)

f2πjl =

(
0∏

n=l−1

(
d

dk
− n

2π − k

))
ε2π (j) ≈ − f2π

j+ 1
2
,l
.

One can note that ε(j) in (197) has the profound geometric interpretation of the
generated unit of M(j) and χ(j) = (1/(2j + 1))ε(j) is the character of the j-th
irreducible unitary representation of SU(2). And seemingly, one might have an
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impression that the asymptotic counterpart (202) is something “accidental”, non-
interpretable in geometric terms. However, as a matter of fact, it is an important
object of the Fourier analysis on R3 ≃ su(2) ≃ so(3,R).
Indeed, it may be easily shown that the Fourier representation of the Dirac delta
distribution on R3 (as the Fourier transform of unity)

δ (ω) =
1

(2π)3

∫
e (iκω) d3κ

after performing the integration over angels becomes

δ (ω) =
1

(2π)3

∫ 2π

0
dφ

∫ ∞

0
dκκ2

∫ π

0
dϑ cosϑe (iκω cosϑ)

where (κ, ϑ, φ) are spherical variables in the space R3 of vectors κ, adapted to the
direction of ω as the “z-axis direction”. After the substitution x = cosϑ ∈ [1,−1]
and κ = ζ/2 and elementary integrations, one obtains the following formula

δ (ω) =
1

16π2

∫ ∞

0
dζ
ζ sin ζω/2

ω/2
·

Under substituting ζ = (2j + 1) it is turned into

δ (ω) =
1

8π2

∫ ∞

−1/2
dj (2j + 1)

sin (2j + 1)ω/2

ω/2
=

∫
dj εclass(j)(ω). (207)

Expression

εclass(j)(ω) = (2j + 1)
sin (2j + 1)ω/2

ω/2
(208)

is an obvious counterpart of (197) and of its expression for the Dirac distribution
on SU(2), and the all other analogies are easily readable. They are not merely
formal analogies, the point is that they are really true asymptotic approximations
and geometric counterparts. Discrete summation over the “quantum number” j
is now replaced by the integration over the continuous label j corresponding to
the non-compactness of R3 ≃ su(2) and well suited to the “classical” nature of
expressions.
The superposed functions (208) play in the commutative group algebra su(2) ≈ R3

the role of generating units of ideals M(j) composed of functions with the fixed
“square of linear momentum”

(j + 1/2)2 ~2 ≈ j (j + 1) ~2.
The last approximate “equality” corresponding to the “large” values of j. This
ideal is not minimal. The minimal ones just correspond to the single exponents
with the wave vectors κ, i.e., “linear momenta” ~κ. In εclass(j) superposed are
(with equal “coefficients”) all exponents e (i (j + 1/2)n · ω), where n runs over
the manifold S2(0, 1) ⊂ R3 of all unit vectors. The ideals M(j) are minimal
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ones invariant under the group SO(3,R) of outer automorphisms of SU(2). Those
outer automorphisms are not only algebraic automorphisms of R3 as an Abelian
additive group. In addition they preserve the standard Euclidean metric in R3. This
metric just corresponds up to multiplicative constant factor to the Killing metric
of su(2) ≈ R3. It worth to note that the above terms like “group algebra” are
now used rather in a metaphoric sense, because we are dealing with continuous
spectrum and are outside of L2

(
R3
)

and L1
(
R3
)
. Everything may be rigorously

formulated in terms of rigged Hilbert spaces and direct integrals of Hilbert spaces,
however, there is no place for that here.
The above limit transition and asymptotics are meant in the sense of truncation
procedure in the rigorous group algebra of SU(2).
Quasiclassical limit is based on the truncation procedure of the group algebra of
SU(2). Namely, we take the subalgebra consisting of all ideals M(j) with j ≥ j0
for some fixed j0

M (j ≥ j0) :=
⊕
j≥j0

M(j).

As mentioned, for large values of j, the generated units ε(j) ∈ M(j) are essen-
tially concentrated about k = 0, k = 2π

ε(j) ≈ ε◦(j) + ε2π(j)

cf. (202), (203), (204), (205), and the following holds

ε◦(j)(0) = (2j + 1)2 , ε2π(j)(2π) = (−1)2j (2j + 1)2 .

The larger truncation threshold j0, the better the generated unit of M (j ≥ j0)

ε (j ≥ j0) :=
∞∑

j=j0

ε(j) (209)

is approximated by

εclass (j ≥ j0) :=

∫ ∞

j0

dj εclass(j) (210)

where εclass(j) is given by (208). Of course, the convergence of series (209) and
integral (210) is meant in the distribution sense.
Projections of functions A, B on SU(2) onto the truncated ideal M (j ≥ j0) will
be denoted by

Ã = A (j ≥ j0) , B̃ = B (j ≥ j0) .

The abbreviations Ã, B̃ are used when there is no danger of confusion.
For physically relevant functions A, B, the Peter-Weyl series expansions of Ã, B̃
may be reasonably approximated by continuous integral representations like (207),
(210).
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Let us go back to quantum states-densities represented in terms of non-redundant
multipole expansions as follows

ϱ =

∞∑
j=j0

2j∑
l=0

l∑
m=−l

P (j)lmQ {j}lm (211)

Q{j}lm
(
k
)
= fjk(k)Ylm

(
k

k

)
(212)

where the expansion coefficients P (j)lm may be roughly interpreted as magnetic
multipole moments.
Quasiclassical states are represented by expressions (211), (212), where

• j0 is “large”
• P (j)lm as functions of j are concentrated in some ranges[

j −∆j/2, j +∆j/2
]
, j ≫ ∆j ≫ 1

• within this range, P (j)lm are slowly varying functions of j

|P (j + 1/2)lm − P (j)lm| ≪ |P (j)lm| .
Algebraic operations of group algebra on SU(2) attain some very peculiar rep-
resentation in quasiclassical limit in the above sense. So, let us write down the
convolution formula for “truncated” functions

(A(j ≥ j0) ∗B(j ≥ j0))
(
u
(
k
))

=

∫
A(j ≥ j0)

(
u
(
l
))
B(j ≥ j0)

(
u
(
−l
)
u
(
k
)) 4 sin2 l/2

l2
d3l

16π2
·

The terms concentrated about k = 2π, as it was seen, approximately cancel each
other. One can assume that the integrated functions are essentially concentrated in
a close neighbourhood of the unity in SU(2), i.e., the null of su(2). There, in the
lowest order of approximation, we have

u
(
l
)
u
(
k
)
≈ u

(
l + k +

1

2
l × k

)
.

Performing the corresponding Taylor expansions in our integral formulas and mak-
ing use of the earlier mentioned relationship between the variables k and ω, we
finally obtain

A(j ≥ j0) ∗SU(2) B(j ≥ j0) ≈ A(j ≥ j0) ∗R3 B(j ≥ j0) (213)

where the convolution symbols on the left- and right-hand sides are meant in the
non-commutative SU(2)- and commutative R3 ≃ su(2) ≃ so(3,R)-senses, re-
spectively. Surely, (213) is meant in the sense of lowest-order approximation, the
terms with higher-order derivatives are neglected.
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Similarly, for the quantum Poisson bracket we obtain the familiar expression[
Ã, B̃

]
=

1

i~

(
Ã ∗SU(2) B̃ − B̃ ∗SU(2) Ã

)
≈ 1

i~

((
AaÃ

)
∗R3

(
ωaB̃

))
. (214)

Here again we mean the lowest-order approximation, when the higher-derivatives
terms following from the Taylor expansions are neglected. As usual, Aa is the
generator of inner automorphisms in SU(2), i.e., equivalently, of Killing rotations
in su(2) ≈ R3

Aa = εab
cωb ∂

∂ωc
·

So, in terms of Fourier representants ̂̃A(σ), we have

{σi, σj} = σkε
k
ij ,

{̂̃
A,
̂̃
B

}
= σkε

k
ij
∂
̂̃
A

∂σi

∂
̂̃
B

∂σj
·

In particular, for the evolution of density ϱ̃ we obtain

∂ϱ̃

∂t
=
[
H̃, ϱ̃

]
R3
,

∂̂̃ϱ
∂t

=

[ ̂̃
H, ̂̃ϱ]

where H denotes the Hamiltonian. Taking appropriate Hamiltonians one obtains
classical asymptotics of various dynamical models of the evolution of quantum
angular momentum, or rather systems of quantum angular momenta. This includes
complicated interactions between magnetic multipoles as described above.

4.5. Final Comments Concerning Quasiclassical Limit

Let finish with some comments concerning quasiclassical formulas which may be
helpful when operating with some geometrically and physically important quanti-
ties.
First of all, let us observe that (213) is a merely zeroth-order approximation. The
first-order approximation is given by

Ã ∗SU(2) B̃ ≈ Ã ∗R3 B̃ +
1

2

[
Ã, B̃

]
R3

(215)

where, let us remind
[
Ã, B̃

]
R3

is the extreme right-hand side of (214). The second

term is the lowest-order approximation to the SU(2)-convolution commutator. It
is well known that the commutator, or more precisely quantum Poisson bracket,
describes infinitesimal transformations, in particular symmetries of quantum states
(as described by density operators). It is well known that the operator eigenequa-
tion for density operators

Aϱ = aϱ
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implies that the operators A, ϱ do commute, thus, their quantum Poisson bracket
vanishes

{A, ϱ}Q =
1

i~
(Aϱ− ϱA) = 0.

It is assumed here that A represents a physical quantity, thus, it is self-adjoint,
A+ = A. Therefore, the concept of eigenstate, in particular that of pure state
(one satisfying a maximal possible system of compatible eigenconditions), unifies
in a very peculiar way two logically distinct concepts: information and symmetry.
Information aspect is that the physical quantity A has a sharply defined value on
the state ϱ, there is no statistical spread of measurement results. Symmetry as-
pect is that ϱ is invariant under the one-parameter group of unitaries, i.e., quantum
automorphisms, generated by A. On the quantum level, symmetry properties are
implied by information properties, because the quantum Poisson bracket is alge-
braically built of the associative product. This is no longer the case in quasiclassical
limit and on the classical level, where the Poisson bracket and (commutative) asso-
ciative product are algebraically independent on each other. But information and
symmetry are qualitatively different things, therefore, on the quasiclassical level,
the two first terms of the expansion for the non-commutative associative product
should be taken into account when discussing classical concepts corresponding to
eigenequations. Otherwise the physical interpretation of eigenconditions would be
damaged.
Let us remind, following (177)–(179), that differential equations satisfied by the
functions ε(j)mk may be written in the following form

S2 ε(j)mk = j(j + 1)~2 ε(j)mk

S3 ε(j)mk = m~ ε(j)mk

Ŝ3 ε(j)mk = k~ ε(j)mk

with the known spectra of quantum numbers j, m, k. Rewriting these equations in
terms of SU(2)-convolutions we obtain

Σ2 ∗ ε(j)mk = ε(j)mk ∗ Σ2 = j(j + 1)~2 ε(j)mk (216)

Σ3 ∗ ε(j)mk = m~ ε(j)mk (217)

ε(j)mk ∗ Σ3 = k~ ε(j)mk (218)

where Σa are given by (189) and Σ2 denotes the convolution-squared vector Σa

Σ2 = Σ1 ∗ Σ1 +Σ2 ∗ Σ2 +Σ3 ∗ Σ3.

To obtain the quasiclassical counterparts of (216)–(218) we must use the asymp-
totic formulas (215). It is more convenient to express them in terms of Fourier
transforms, which were defined as functions on the Lie co-algebra (su(2))∗ ≃ R3.
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So, we shall use the coordinates σi introduced above and the functions ε̂(j)(σ)
such that

ε(j)mn(κ) =
1

(2π~)3

∫
ε̂(j)mn(σ)e

(
i

~
σκ
)
d3σ. (219)

The left-hand sides of (219) are functions on the Lie algebra su(2) ≃ R3 used to
represent the approximate expressions for the elements of canonical basis (matrix
elements of irreducible UNIREPS) as functions on SU(2). The system (216)–(218)
is expressed in terms of these Fourier transforms as follows

σ2 ε̂(j)mn(σ) = j(j + 1)~2 ε̂(j)mn(σ) (220)

σ3 ε̂(j)mn(σ) +
1

2
{σ3, ε̂(j)mn(σ)} = m~ ε̂(j)mn(σ) (221)

σ3 ε̂(j)mn(σ)−
1

2
{σ3, ε̂(j)mn(σ)} = n~ ε̂(j)mn(σ). (222)

The last two equations imply that

{σ3, ε̂(j)mn(σ)} = (m− n)~ ε̂(j)mn(σ).

It is convenient to use the polar angle φ in the plane σ3 = 0 of variables σ1, σ2 in
su(2) ≃ R3

tg φ =
σ2
σ1

·

Instead of cylindrical variables σ3, ϱ =
√
σ12 + σ22, φ in the Lie co-algebra

(su(2))∗ ≃ R3, we shall use the modified, spherically-cylindrical coordinates

σ =
√
σ12 + σ22 + σ32, σ3, φ = arctg

σ2
σ1

·

They coincide with the canonical Darboux coordinates in (su(2))∗ as a Poisson
manifold. Their Poisson brackets have the following form

{φ, σ3} = 1, {σ, φ} = 0, {σ, σ3} = 0.

In particular, σ2 = σ ·σ is the basic Casimir invariant. Its value surfaces σ = const
are canonically two-dimensional symplectic manifolds. The exceptional “s-state”
value σ = 0 is the singular co-adjoint orbit of dimension zero, just the origin of
coordinates.
In these coordinates the following holds

{σ3, f(σ)} =
∂

∂φ
f(σ, σ3, φ)
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therefore, the system (220)–(222) is solved as follows

ε̂(j)mn = N(j)δ
(
σ2 − ~2j(j + 1)

)
δ

(
σ3 − ~

m+ n

2

)
e (i(m− n)φ)

(223)

=
N(j)

2~
√
j(j + 1)

δ
(
σ − ~

√
j(j + 1)

)
δ

(
σ3 − ~

m+ n

2

)
e (i(m− n)φ)

where N(j) is a j-dependent normalization factor. It is defined by the demand that

ε(j)mn|κ=0 = (2j + 1)δmn. (224)

As already mentioned above, in quasiclassical situations the quantum-mysterious
j(j + 1) is not very essential and may be replaced by (j + 1/2)2 or just by j2.
Let us observe an interesting analogy with some formulas from the Weyl-Wigner-
Moyal formalism for quantum systems with classical analogy. The “basis” of the
wave function space consisting of non-normalizable, or rather “Dirac-δ-norma-
lized”, states |π⟩ of fixed linear momentum π implies the following H+-algebra
“basis” in the space of phase-space functions (including the Moyal quasi-proba-
bility distributions)

ϱπ1,π2

(
q, p
)
= δ

(
p− 1

2
(π1 + π2)

)
e

(
i

~
(π1 − π2) q

)
.

There is an obvious analogy with the term

δ

(
σ3 −

1

2
(µ1 + µ2)

)
e

(
i

~
(µ1 − µ2)φ

)
in (223), if we put µ1 = ~m, µ2 = ~n. This analogy is not accidental. However,
there is no place here for more details.
Equation (223) and normalization condition (224) imply finally that

ε̂(j)mn ≈ 16π2~4
(
j +

1

2

)2

δ

(
σ2 − ~2

(
j +

1

2

)2
)

δ

(
σ3 − ~

m+ n

2

)
e (i(m− n)φ)

therefore

D̂(j)mn ≈ 8π2~4
(
j +

1

2

)
δ

(
σ2 − ~2

(
j +

1

2

)2
)

δ

(
σ3 − ~

m+ n

2

)
e (i(m− n)φ) .

In the above formulas we mean the same as previously asymptotic “indifference”
concerning j(j + 1), (j + 1/2)2, j2 for large values of j.
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Warning: It must be stressed that the above functions are not literally meant as-
ymptotic expressions for ε(j)mn, D(j)mn for “large” values of j. They may be
used instead of rigorous ε(j)mn, D(j)mn when superposing them with coefficients
“slowly varying” as functions of j. And the very important point: The discrete
quantum number j may be then formally admitted to be a continuous variable and
the summation with “slowly-varying” coefficients may be approximated by inte-
gration. In this way the compactness of SU(2) is seemingly “lost”. This procedure
is well known in practical applications of Fourier analysis, where often Fourier
series may be approximated by Fourier transforms.
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Excitations of Internal Affine Modes and Their Influence on Raman Spectra, Acta
Physica Polonica B 41 (2010) 165–218; arXiv: 0901.0243.

[27] Sławianowski J., Kovalchuk V., Martens A., Gołubowska B. and Rożko E., Quasi-
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