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Department of Mathematics Education, Başkent University, Ankara, Turkey

Abstract. Deriving curves based on the other curves like involute-evolute
curves or Bertrant curves is an old subject in geometry. In this paper, we
have defined a ruled surface based on the involute curve of a given curve
which is called the involutive B-scroll. We introduced the positions of the
involutive B-scroll and the B-scroll relative to each other.

1. Introduction

Some of the earliest research results about plane curves were motivated by the
desire to build more accurate clocks. Practical designs were based on the motion
of a pendulum, requiring careful study of motion due to gravity first carried out by
Galileo, Descartes, and Mersenne. The culmination of these studies was the work
of Christian Huygens (1629-1695) in his 1673 treatise. He is also known for his
work in optics. Some of the ideas introduced in Huygens’s classic work [6], such
as the involute and evolute of a curve, are part of our current geometric language.
The idea of a string involute is due to Huygens, he discovered involutes while he
was trying to build a more accurate clock [1].
The involute of a given curve is a well-known concept in Euclidean three-space E3.
We can say that evolute and evolvent is a method of deriving a new curve based
on a given curve. The evolvent is often called the involute of the curve. Evolvents
play a part in the construction of gears [7]. Evolute is the locus of the centers of
tangent circles of the given planar curve.
It is well-known that if a curve is differentiable in an open interval, at each point,
a set of mutually orthogonal unit vectors can be constructed. And these vectors
are called Frenet frame or moving frame vectors. The rates of these frame vectors
along the curve define curvatures of the curves.
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B-scrolls are the special ruled surfaces. B-scroll over null curves with null rulings
in three-dimensional Lorentzian space form has been introduced by Graves [2].
In this study we will define and work on involute curves and involutive B-scroll of
any curve in the Euclidean three-space E3.
Let α and β be curves in the Euclidean three-space E3. The tangent lines to a
curve α(s) generate a surface called the tores of α. If the curve β(s) which lies on
the tores intersect the tangent lines orthogonally is called an involute of α(s). If
a curve β(s) is an involute of α(s), then by definition α(s) is an evolute of β(s).
Hence given β(s), its evolutes are the curves whose tangent lines intersect β(s)
orthogonally. If β(s) is a point on an involute β, then β(s)-α(s) is proportional to
the tangent vector V1(s). Thus the involute β(s) will have a representation of the
form

β(s) = α(s) + λ(s)V1(s).

Theorem 1 ([5]). In the Euclidean three-space E3, β ⊂ E3, if the curve β(s) is
the involute of α(s) with tangent vector V1(s), then we have that

β(s) = α(s) + (c− s)V1(s), for all s ∈ I

where c is a constant.

Thus there exists an infinite number of involutes for each constant c. If the curve
α is the evolute of the curve β, then the curve β is the involute of the curve α. The
opposite is true locally. When the tangent line of a curve α(s) = α is given by
β = α+ λV1,−∞ < λ < +∞, then

∥dβ(s)
dλ

∥=∥V1∥= 1.

That is, λ is a natural parameter. Also since β = α for λ = 0, it follows that |λ| is
the distance between the point β on the tangent line and the point α on α(s) [5].
All involutes of a given curve are parallel to each other. This property also makes
it easy to see that evolute of a curve is the envelope of its normals. If we calculate
the distance between the respective congruent points of two involutes β1(s) =
α(s)+ (c1− s)V1(s) and β2(s) = α(s)+ (c2− s)V1(s) we have remains constant
for all s and equal to |c1 − c2|, for all s ∈ I .

Theorem 2. In the Euclidean three-space E3, α, β ⊂ E3, if the curve β(s) is the
involute of α(s), then for all s ∈ I

d(α(s), β(s)) = |c− s|, c = const

is the distance between the arclengthed curves α(s) and β(s) and c is constant.
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Example 1 (see Fig. 1). Along the circle α(t) = (a cos t, a sin t), a > 0, we have
the involute curve

β(t) = (a cos t− (c− at) sin t, a sin t+ (c− at) cos t).

Figure 1. A circle and its involute.

Example 2 (see Fig. 2). Let us consider the circular helix α(t) = (a cos t, a sin t, bt),
a > 0, then the involute curve of α(t) is

β(t) = (a[(cos t+ t sin t)− γ sin t], a[(sin t− t cos t) + γ cos t], γb)

γ =
c√

a2 + b2
, t =

s√
a2 + b2

·

Figure 2. A helix and its involute.

As shown in the Figure the involute of a helix is a planar curve, whose plane is
z = γb.



208 Seyda Kilicoglu

2. Frenet Apparatus and Frenet Formulas of the Involute Curve

The set, whose elements are frame vectors and curvatures of a curve, is called
Frenet apparatus of the curves. The following result shows that we can write the
Frenet apparatus of the involute curve based on its evolute curve. And also we can
introduce the Frenet formulas of the involute curve based on the Frenet apparatus
of its evolute curve.

Theorem 3. In the Euclidean three-space E3 α, β ⊂ E3, α(s) and β(s∗) are the
arclengthed curves with the arc-parameters s and s∗, respectively. Let V1, V2, V3

and V ∗
1 , V

∗
2 , V

∗
3 be the Frenet vectors belonging to the the curve α(s) and its invo-

lute β(s∗), respectively, and we have the equation [3]

⟨V1, V
∗
1 ⟩ = 0.

Theorem 4 ([3]). Let α(s) and β(s∗) are the arclengthed curves in the Euclidean
three-space E3, with the arc-parameters s and s∗, respectively. Let the first and
second curvatures of the curves α(s) and β(s∗) be k1, k2 and k∗1, k

∗
2 , respectively.

In these settings we have the following equations

V ∗
1 = V2, λk1 > 0, λ = c− s

V ∗
2 =

−k1V1 + k2V3

λk1k∗1

V ∗
3 =

k2V1 + k1V3

λk1k∗1

where c is a constant.

Theorem 5. In the Euclidean three-space E3, α, β ⊂ E3, α(s) and β(s∗) are the
arclengthed curves with the arc-parameters s and s∗, respectively. Let the first and
second curvatures of the curve α(s) and β(s∗) be k1, k2 and k∗1, k

∗
2 , respectively.

The first curvature of the involute β is

k∗1 =

√
k21 + k22
λ2k21

, λ = c− s, k1 ̸= 0.

If we use this result in the equation for V ∗
2 and V ∗

3 , we have

V ∗
1 = V2, λk1 > 0

V ∗
2 =

−k1V1 + k2V3√
k21 + k22

V ∗
3 =

k2V1 + k1V3√
k21 + k22

·
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Corollary 6. If the second curvature k2 of the curve α(s) is equal to zero, that is
α(s) is a planar curve, then

k∗1 =
1

λ
, λ = c− s > 0.

Corollary 7. If the second curvature k2 of the curve α(s) is constant but not equal
to zero, then k̇2 = 0. Hence we have

(k∗1)
2 =

k21 + k22
λ2k21

, k1 ̸= 0.

Theorem 8. Let α(s) and β(s∗) are the arclengthed curves in the Euclidean three-
space E3, with the arc-parameters s and s∗, respectively. Let β(s∗) be the involute
of the curve α(s). Then, the differentials of the Frenet vector fields can be ex-
pressed in the form V ∗

1 (s), V
∗
2 (s), V

∗
3 (s) as V̇ ∗

1

V̇ ∗
2

V̇ ∗
3

 =


−1
λ 0 k2

λk1
k2k∗2
λk1k∗1

−k∗1
k∗2
λk∗1

1
λ 0 − k2

λk1


 V1

V2

V3

 .

Theorem 9. Let α(s) and β(s∗) are the arclengthed curves in the Euclidean three-
space E3, with the arc-parameters s and s∗, respectively. If β(s∗) is the involute
of the curve α(s) for λ = c− s, then

k∗2 =
k1k

′
2 − k

′
1k2

λk1(k21 + k22)
, c = const .

Theorem 10. If the second curvature k2 of the curve α is equal to zero, k2 = 0,
then k∗2 = 0, i.e., if the curve α is a planar curve, then the involute of α is a planar
curve too.

Corollary 11. If the second curvature k2 of the curve α(s) is constant but not
equal to zero, then k̇2 = 0. Hence we have that

k∗2 = − k
′
1k2

λk1(k21 + k22)
·

Corollary 12. If the curve α(s) is a helix, then the involute β(s) of the curve α(s)
is a planar curve. If the curve α(s) is a helix

k∗2 =
k1k

′
2 − k

′
1k2

λk1(k21 + k22)
=

(k2k1 )
′

λ(k21+k22)
k1

= 0.
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3. Involutive B-scroll in the Euclidean Three-Space E3

Definition 1. Let α(s) be an arclengthed curve in the Euclidean three-space E3.
The equation

φ(s, u) = α(s) + uV3(s)

is the parametrization of the ruled surface which is called B-scroll (binormal
scroll) [4]. The directrix of this B-scroll is the curve α(s). The generating space of
this B-scroll is spanned by binormal subvector V3 and Sp{V1, V2} is the osculator
plane of the curve α(s).

Definition 2. In the Euclidean three-space E3, let α(s) and β(s∗) be the ar-
clengthed curves. If the curve β(s) is the involute of the curve α(s). The equation

φ∗(s, v) = β(s) + vV ∗
3 (s)

is the parametrization of the ruled surface which is called involutive B-scroll
(binor-mal scroll) of the curve α. The directrix of this involutive B-scroll is the
involute curve β(s) = α(s) + (c − s)V1(s) of the curve α(s). The generating
space of B-scroll is spaned by binormal subvector V ∗

3 and Sp{V ∗
1 , V

∗
2 } is the os-

culator plane of the curve β.

Theorem 13. Let the sets V1, V2, V3, k1, k2 and V ∗
1 , V

∗
2 , V

∗
3 , k

∗
1, k

∗
2 in the Eu-

clidean three-space E3 be the Frenet apparatus of the curve α and its involute
curve β, respectively. The parametrization of the involutive B-scroll of the curve
α(s) is

φ∗(s, v) = α(s) +

(
λ+

vk2(s)√
k21 + k22

)
V1(s) +

vk1(s)√
k21 + k22

V3(s)

λ = c− s, c = const, λk1 > 0.

Proof: It is trivial. �

Theorem 14. Let the sets V1, V2, V3, k1, k2 and V ∗
1 , V

∗
2 , V

∗
3 , k

∗
1, k

∗
2 in the Eu-

clidean three-space E3 be the Frenet apparatus of the non-planar curve α and
the involute curve β, respectively. The intersection of the involute B-scroll of α(s)
and B-scroll of the curve α(s) is a curve with parametrization

φ(s) = α(s)− λ
k1(s)

k2(s)
V3(s), λ = c− s, c = const .

Proof: Under the conditions

λ+
vk2√
k21 + k22

= 0 and
vk1√
k21 + k22

= 0



On the Involutive B-Scrolls in the Euclidean Three-Space 211

we get

v = −λ
k1
k2

, k2 ̸= 0.

�

Theorem 15. In the Euclidean three-space E3, let the Frenet vectors of the curve
α be V1, V2, V3 and

φ(s, u) = α(s) + uV3(s)

is the parametrization of the ruled surfaces which is called B-scroll (binormal
scroll). Then the normal vector field [4] of ruled surface B-scroll is

N =
−uk2V1 − V2√

1 + u2k22
·

Theorem 16. In the Euclidean three-space E3, the normal vector field of involute
B-scroll of the curve α(s) is

N∗ =
λk21
√

k21 + k22√
(λk1(k21 + k22))

2 + v2(k1k
′
2 − k

′
1k2)

2
V1

+
−v(k1k

′
2 − k

′
1k2)√

(λk1(k21 + k22))
2 + v2(k1k

′
2 − k

′
1k2)

2
V2

− λk1k2
√

k21 + k22√
(λk1(k21 + k22))

2 + v2(k1k
′
2 − k

′
1k2)

2
V3.

Proof: We already have the equation of the involute B-scroll of the curve α(s),
and also it is well known that the normal vector field N∗ of any B-scroll surface
[4] is

N∗ =
−vk∗2V

∗
1 − V ∗

2√
1 + v2k∗2

2

so that normal vector field N∗ of the involute B-scroll is

N∗ =
−v(k1k

′
2 − k

′
1k2)√

(λk1(k21 + k22))
2 + v2(k1k

′
2 − k

′
1k2)

2
V2

− −k1V1 + k2V3( √
k21+k22

λk1(k21+k22)

)√
(λk1(k21 + k22))

2 + v2(k1k
′
2 − k

′
1k2)

2

·

This completes the proof. �
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Theorem 17. In the Euclidean three-space E3, let us consider the involutive B-
scroll of the curve α(s) given by φ∗(s, v) = β(s) + vV ∗

3 (s). If the normal vector
field N∗ of involute B-scroll of the curve α(s) and the normal vector field N of
B-scroll of the curve α(s) are perpendicular to each other, then

v = u
λk21
√

k21 + k22
k1k

′
2 − k

′
1k2

·

Proof: Let us rename the coefficients of the normal vector fields N∗ of involute
B-scroll of the curve α(s) as δ, ϵ and η, we get N∗ = δV1 + ϵV2 + ηV3. Using the
orthogonality condition; If N∗ ⊥ N , then ⟨N∗, N⟩ = 0 and

δ
−uk2√
1 + u2k2

2
= ϵ

1√
1 + u2k2

2
,

√
1 + u2k2

2 ̸= 0

uk2δ = −ϵ,
√

(λk1(k21 + k22))
2 + v2(k1k

′
2 − k

′
1k2)

2 ̸= 0

u

v
=

k1k
′
2 − k

′
1k2

λk21k2
√

k21 + k22
·

�

Corollary 18. If α(s) is helix, then
(
k2
k1

)′

=0 the normal vector field N∗ of involute
B-scroll of the curve α(s) and the normal vector field N of B-scroll of the curve
α(s) can not be perpendicular to each other and

u

v
=

1

λk2
√

k21 + k22

(
k2
k1

)′

=0, v ̸= 0, u = 0.

That is there are not any B-scroll surfaces.

Theorem 19. In the Euclidean three-space E3, if the normal vector field N∗ of
involute B-scroll of the curve α(s) and the normal vector field N of B-scroll of the
curve α(s) cannot be perpendicular to each other.

Proof: Using the condition of parallelism

If N//N∗,
δ

−uk2√
1+u2k22

=
ϵ
−1√

1+u2k22

and η = 0

we get

uv =
−λk21

√
k21 + k22

k2(k1k
′
2 − k

′
1k2)

and λk1k2

√
k21 + k22 = 0

uv = 0.

That is there are not any B-scroll surface. �
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Example 3. In the Euclidean three-space E3, along the helix α(t) = (a cos t, a sin t, bt),
a > 0, we have the involute B-scroll of the helix α(t) is

φ∗(t, v) = β(t) + vV ∗
3 (t)

= (a[(cos t+ t sin t)− γ sin t], a[(sin t− t cos t) + γ cos t], γb+ v)

γ = c(a2 + b2)
−1
2 and t = s(a2 + b2)

−1
2 ·

Figure 3. Involutive B-scroll of the circle.

Example 4. Then we obtain the intersection of the involute B-scroll of the helix
α(s) and B-scroll of a non-planar curve α(s) as a curve with parametrization

φ(s) =

(
a cos t+

λa sin t√
a2 + b2

, a sin t− λa cos t√
a2 + b2

, bt+
λa2

b
√
a2 + b2

)

t = s(a2 + b2)
−1
2 .

Example 5 (see Fig. 3). Along the circle α(t) = (a cos t, a sin t, 0), a > 0 we have
the involute B-scroll of the circle α(t) with the parametrization

φ∗(t, v) = β(t) + vV ∗
3 (t)

= (a cos t− (c− at) sin t, a sin t+ (c− at) cos t, v).
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[3] Hacisalihoğlu H., Diferensiyel Geometri, Cilt 1 Ínönü Üniversitesi Yayinlari, Malatya

1994.
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