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Abstract. In this paper we study some properties of a Lie algebroid and
its prolongation over the vector bundle projection of the dual bundle. We
generalize some results on Poisson manifolds to the level of a Lie algebroid.
The notions of canonical Poisson bivector and horizontal lift are studied and
their compatibility conditions are pointed out.

1. Introduction

The Lie algebroid [10] is a generalization of both concepts of Lie algebra and
integrable distribution, being a vector bundle (F, 7, M) with a Lie bracket on his
space of sections with properties very similar to those of a tangent bundle. The
Poisson manifolds are the smooth manifolds equipped with a Poisson bracket on
their ring of functions. I have to remark that the cotangent bundle of a Poisson
manifold has the natural structure of a Lie algebroid [13]. In the last years diverse
aspects of these subjects have been studied in a lot of papers (see for instance [13],
[14], [12], [1] and [7]). In the present paper we study some geometrical structures
on the prolongation of a Lie algebroid to its dual bundle and investigate some
aspects of the Lie algebroid geometry endowed with a Poisson structure. In this
way we generalize some results on Poisson manifolds.

The paper is organized as follows. In the Section 2 we recall the Cartan calculus
and the Schouten-Nijenhuis bracket at the level of a Lie algebroid and present the
Poisson structures on the Lie algebroid. The Section 3 deals with the prolongation
of a Lie algebroid [5], [8] to its dual bundle and continue the investigation starting
in [6]. We study the properties of the canonical Poisson bivector and introduce the
notion of horizontal lift. Finally, the compatibility conditions of these bivectors
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are given. We remark that in the particular case of the standard Lie algebroid
(E =TM, o = 1d) some results of Mitric [12] are obtained.

2. Preliminaries on Lie Algebroids

Let M be a differentiable, n-dimensional manifold and (7'M, 7z, M) its tangent
bundle. A Lie algebroid over the manifold M is the triple (E,[-, ], o) where
7w : E — M is a vector bundle of rank m over M, whose C°°(M )-module of
sections I'( F) is equipped with a Lie algebra structure [-,-]and 0 : E — T'M is a
vector bundle map (called the anchor) which induces a Lie algebra homomorphism
(also denoted o) from T'( F) to x(M), satisfying the Leibnitz rule

[81, fSZ] = f[sl’ 82] + (U(Sl)f)SQ
for every f € C°°(M) and s1, so € I'(E). Therefore, we have
[o(s1),0(s2)] = os1,82],  [s1,[s2,83]] + [s2,[s3, 51]] + [s3,[51, 52]] = 0.

If w € A*(E*) then the exterior derivative d?w € A"T1(E*) is given by the
formula

k+1
Afw(sy, ..., spe1) = Z(—l)“‘la(si)w(sl, ooy 8iy ety Ska1)
i=1
+ Z (—1)i+jLU([SZ"Sj],81,...,§i,...,,§j,...,8k+1)
1<i<j<k+1

where s; € T(E),i = 1,k + 1, and it follows that (dZ)2? = 0. Also, for ¢ € T(E)
one can define the Lie derivative with respect to ¢ by

Le =igod” +d¥ oig
where i¢ is the contraction with .

If we take the local coordinates (%) on an open U C M, a local basis {s,} of

sections of the bundlejr_1 (U) — U generates the local coordinates (x’,y) on E.
The local functions o}, (z), L, () on M defined by

0
Oxt’
are called the structure functions of the Lie algebroid and satisfy the so called
structure equations on the Lie algebroid

0(50) = 0, [$ars 8] :Llﬂsv, i=1,....,n, o,B,v=1,....,m

0o’ - Hot . OO
b _ i — i i 2By 5 orn | _
TaGmi " P ow  Tvles (Z> (”"‘ Jur +Laan> =0. ()
By
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Locally, if f € C°°(M) then d€f = 2L 5% @ where {5} is the dual basis of

oz T«
{sq} and,if 6 € T(E*), § = 0,5* then
. 00 1

Particularly, we get

. . 1
dfzt = o' 5%, dFs™ = —ng,Ys’B N s7.

The Schouten-Nijenhuis bracket is given by [13]
(X1 A AXp, YT A AN

p q
= (1PN (DXL YIAX A AXGA - AXpAY A AYG A AY,
i=1j=1

where X;,Y; € T'(F) and a hat means the absence of a factor.

2.1. Lie Algebroids with Poisson Structure

Let us consider the bivector on F (i.e., contravariant, skew-symmetric, 2-section)
W € T(A?E) given by

1
W = gwo‘ﬁ(x)sa A s3. (2)
Definition 1. The bivector W is a Poisson bivector on E if and only if we have the
relation [W, W] = 0, where |-, -] is Schouten-Nijenhuis bracket.
Proposition 2. The relation [W, W] = 0 implies locally that

af 1 8’&)65 (o
(E) (’w ﬁO’ﬁ.}W +w ﬁw75L%7> = 0. 3)
a,e,0

If W is a Poisson bivector then the pair (E, W) is called a Lie algebroid with
Poisson structure. The Poisson bracket on F is given by

{fi,f2} =W(d"f1,d"f2),  f1. fa € CZ(E).
We have the bundle map ©# : E* — F defined by
™p=1i,W,  peT(E).
Let us consider the bracket
[pa G]W = £7r#p9 - ‘Cw#ﬂp - dE(W(pa 9))

where L is the Lie derivative and p, 0 € T'(E*). With respect to this bracket and
the usual Lie bracket on vector fields, the map o : £* — T'M given by

#

O=00T



230 Liviu Popescu

is a Lie algebra homomorphism
lp,0l= = [op,00)].
The bracket [ -, -] satisfies also the Leibnitz rule
s f0lx = flp, Olx + (p)(S)0

and it results that (E*,[-, |, o) is a Lie algebroid [14].

Next, we can define the contravariant exterior differential d™: A (E*)— NFHL (E*)
by

k+1
d"w(s1, ...y Spr1) = Z(—l)’+15(si)w(sl, ey 8iy ey SEpa1)
=1
+ Z (—1)i+jw([si,8j]ﬂ-,81,...,§i,...,§j,...,8k+1).
1<i<j<k+1

In fact, is obtained the cohomology of the Lie algebroid E* with the anchor ¢ and
the bracket |-, -] which generalize the Poisson cohomology of Lichnerowicz for
Poisson manifolds [9].

3. The Prolongation of a Lie Algebroid to Its Dual Bundle

Let 7 : E* — M bethe dval of # : E — M and (E,[-,],0) a Lie algebroid
structure over M. One can construct a Lie algebroid structure over E*, by taking
the prolongation of (E, [+, -], o) over 7 : E* — M (see [5], [8], [11] and [6]). This
structure is given by the following objects:

e The associated vector bundle is (7 E*, 71, E*) where T E* = Uy« g+ Ty« E*
with
T B ={(ug,vy+) € By X Ty» B o (ug) = Tye 7 (Vg ), 7(u*) =2 € M}

and the projection 71 : T E* — E*, 71 (ug, vy~ ) = u*.
e The Lie algebra structure |-, -] on I'(7 E*) is defined in the following way:
if p1,p2 € T(T E*) are such that p;(u*) = (X;(7(u*)),U;(u*)) where
X; e T(E),U; € x(E*) and o( X;(m(u*)) = Ty=7(U; (u*)), i = 1,2, then
")

o1, p2] (w”) = ([X1, Xo|(7(u)), (U1, Uz](u7)).

e The anchor is the projection o' : TE* — TE*, o (u,v) = v.

Notice that if 77 : TE* — E, T7(u,v) = u then (VT E*, 7|y 7g-, E*) with
VTE* :=ker T 7 is asubbundle of (7 E*, 71, E*), called the vertical subbundle.
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If (z%, po) are local coordinates on E* at u* and {s,} is a local basis of sections
of m : E — M then alocal basis of I'(7 E*) is {X,, P*} where
). @

Xal?) = (salrwD.ot 5| ) P = (050

The Lie brackets on the elements of this basis are:

[Xa, Xg] = L) 5 X, [Xa, P?] =0,  [P*PF=0 (5)
and
.0 0
1 1 1 ay\
0 (Xa) =00z, o (PY)= B

) . 1
dfz" =0, X, dPpa =P, dX7 = —§L16Xa NS AP =0

where {X'*, Py} is the dual basis of {X,, P*}. Also, if p = p* Xy + (,P¥is a
section of 7 E*, then

i o 0 0
Jl(p) = 0upP (%:Z +Coza_

If w* € E* and (ug, vy~) € By X Ty~ E* then

05 (u") (Uzs vyr) = u" (uz)
is called the Liouville section. The canonical symplectic section wg, is defined by
wp = —dF0g
and it results that this is a nondegenerate two form and d®wg = 0.
In the local coordinates it follows that the Liouville section is given by
O = o X®

and we obtain

wg = X* APy + %MQL§7X5 NXT. (6)

We remark that V7 E* is Lagrangian for wg, i.e., wg{p1, p2) = 0, for every verti-
cal sections p1, p2 € T(VT E*).

Definition 3. The Ehresmann nonlinear connection on T E* is an almost product
structure N on 7 : TE* — E* (i.e., a bundle morphism N : TE* — TE*, such
that N = 1d) smooth on T E* \ {0} such that VT E* = ker(Id +\).

If NV is a connection on 7 E* then HT E* = ker(Id —/\/) is the horizontal distri-
bution associated to N and

TE*=VTE*® HTE".

Each p € T(T E*) can be written as p = p" + p? where p”, p? are sections in the
horizontal and respective, vertical subbundles. A connection A on 7 E* induces
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two projectors h,v : T E* — T E* such that h{p) = p" and v(p) = p for every
p € T(T E*). We have

h= %(Idw\f), v = %(Id _N)

kerh = imv = VT E*, imh = kerv = HTE"
h® = h, v? =, hv = vh =0, h+v=1Id.

Locally, a nonlinear connection is expressed as N'(X,) = X, + 2N,5P” and
N(P) = —P2, where N,3 = N,z(z, i) are the local coefficients of N. The
local sections P, o« = 1, ..., m define a local frame of V7 E*, and the sections

5% = (Xa)" = Xo + NogP? (7)

generate a local frame of H7 E*. The frame {d§%, P} is a local basis of 7 E*
called adapted to the direct sum decomposition. The respective dual adapted basis
is {X%, 6P, } where

0Po = Po — NagXP. (8)

Definition 4. A connection N is called symmetric if HT E* is Lagrangian for wg,.

By a straightforward computation, using (6) and (7) we get
wE (05, 05) = Nag — Naa — iy Lig ©)
and it result that A is symmetric if and only if
Naﬁ _Nﬁa = Hleﬂ'

Proposition 5. With respect to a symmetric nonlinear connection, the canonical
symplectic structure wg can be written in the following form

wg = X A 6P + pa LG, X7 N X7,
Proof: Using (6) and (8) we get
1 1
wp = X" A 0Pa + 5(Nag = Nga) X A xP 4 §MQL§7X/3 A XY

which ends the proof. O
Proposition 6. The Lie brackets of the adapted basis {6, P*} are

8Nafy

0

[65,05] = L) 505 + RapyP?, 05, P = =P, [P P =0
&)

where
Rogsy = 63(Npn) — 55(Nay) — LEgNG. (10)
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Proof: Using (7) we obtain

[5ou 6,3] = <Ja axﬁ? — 03 axiﬁy + Nas 6;? _Nﬁ(SW(:) P+ fo,@‘)(e

and putting X = 07 — N, P we get [0, 03] = L] 505 + Rap, P O

The curvature of a connection A/ on 7 E* is given by  — N, where h is horizontal
projector and Ny, is the Nijenhuis tensor of h, given by

Remark 7. In the local coordinates we get
1
Q = — S Rapy X" A X epr
where R~ is given by (10) and is called the curvature tensor of N

Proof: Since h? = h we obtain
Q(hp1, hp2) = —vlhp1, hpa],  Qhp1,vp2) = Qvp1,vp2) =0
and in local coordinates we get
0, 653) = —v[dy,,05] = —Rap P’
which concludes the proof. 0

Remark 8. The curvature satisfies the Bianchi identity
Ragy + Rgya + Ryap = 0.

Proof: By direct computation, using relation (10) and structure equations given
by (D). O

The curvature is an obstruction to the integrability of H7 E*, understanding that a

vanishing curvature entails that horizontal sections are closed under the Lie alge-
broid bracket of 7 E*. We have

Remark 9. H7T E* is integrable if and only if the curvature vanishes.

The integrability conditions for the almost product structure A is given by the van-
ishing of the associated Nijenhuis tensor N /. By a straightforward computation
we obtain

Ny (P PP) =0,  Np(05,PP) =0,  Np(6%,0%) = 4Rup, P
Thus
Ny = —2Ro5, X A XP 0 P

and it results that the distribution H7 E* is integrable if and only if the almost
product structure N is integrable.
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3.1. Canonical Poisson Structure

On the Lie algebroid (7 E*,[,],o!) we have the canonical symplectic section wg
given by (6) which induces a vector bundle isomorphism

fop : E¥ — E, icwg € B* - (€ E.
Definition 10. 7he canonical Poisson bivector is given by
A=t wE.
It follows that
AdAF,dG) = —wg(h(dF), 1(dG@)), F,G € C*(E™)
and in local coordinates we get
A=PYNXo + %ua 5, PP AP

Remark 11. The Schouten-Nijenhuis bracket [A, A| leads, locally, to the expres-
sion

OL%

= Z ( ’3“’+L65L )Mepﬂ/\m/\w
(a,ﬂ 7)

and [A, A] = 0 follows from the structure equations on the Lie algebroid (1).

Definition 12. Let us consider a Poisson bivector on E given by (2), then the
horizontal lift of W to T E* is the bivector defined by

1 o * *
W = FW B(x)dr A 3.

Proposition 13. The horizontal lift W is a Poisson bivector if and only if W is a
Poisson bivector on E and

w™? w”éRme =0.
Proof: The Poisson condition [W, W] = 0 leads to the relation
0 €0
Z (waﬂwﬁl}%y + wo‘ﬁafg ;ﬁ;l ) =
(a,e,8)

and [WH WH] = 0 yields

O £0
> (w"‘ﬁuﬂ‘;Lg7 +w™ols (,;i - ) 52 NGNS +w P w R, PEAGLASL =0
(g,6,c)

which ends the proof. O
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Recall that two Poisson structures are said to be compatible if the bivectors w, and
wo satisfy the condition
[wl, ’wg] = 0.

Proposition 14. If W is a Poisson bivector and N is a symmetric nonlinear
connection, then W is compatible with the canonical Poisson structure A if and
only if the following relations fulfilled

; 0w o [ ON, ON, o
A (o) (B )0
W R = 0. (12)

Proof: If A is symmetric then Nog — Nso = L] 5 and with respect with the
basis {0, P} it results

A=P*NG,.
By a straightforward computation we obtain that the relation [WH ,A] = 0 is
equivalent with relations (11) and (12). [
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