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Abstract. Orbits of coadjoint representations of classical compact Lie groups 
have a lot of applications. They appear in representation theory, geometrical 
quantization, theory of magnetism, quantum optics, etc. As geometric ob
jects the orbits were the subject of extensive study. However, they remain 
hard for calculation and application. We propose a simple solution for the 
following problem: an explicit parametrization of the orbit by means of a 
generalized stereographic projection, which provide a Kählerian structure on 
the orbit, and basis two-forms for the cohomology group of the orbit.

1. Introduction

Orbits of coadjoint representations of semisimple Lie groups are an extremely in
teresting subject. These homogeneous spaces are flag manifolds. Remarkable, that 
the coadjoint orbits of compact groups are Kählerian manifolds. In 1950s Borel, 
Bott, Koszul, Hirzebruch et al. investigated the coadjoint orbits as complex homo
geneous manifolds. It was proven that each coadjoint orbit of a compact connected 
Lie group G admits a canonical G-invariant complex structure and the only (within 
homotopies) G-invariant Kählerian metrics. Furthermore, the coadjoint orbits can 
be considered as fibre bundles whose bases and fibres are coadjoint orbits them

Coadjoint orbits appear in many spheres of theoretical physics, for instance in rep
resentation theory, geometrical quantization, theory of magnetism, quantum op
tics. They serve as definitional domains in problems connected with nonlinear 
integrable equations (so called equations of soliton type). Since these equations 
have a wide application, the remarkable properties of coadjoint orbits interest not 
only mathematicians but also physicists.

selves.
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It should be pointed out that much of our material is, of course, not new, but drawn 
from various areas of the mathematical literature. The material was collected for 
solving the physical problem based on a classical Heisenberg equation with SU(n) 
as a gauge group. The equation describes a behavior of magnetics with spin s >  1. 
The paper includes an investigation of geometrical and topological properties of 
the coadjoint orbits. We hope it fulfills a certain need. We would like to men
tion that we have added a number of new results (such as an explicit expression 
for a stereographic projection in the case of group SU(3) and improving the way 
of its computation, the idea of obtaining the Kählerian potential on an orbit, an 
introduction of basis two-forms for the cohomology ring of an orbit).

The paper is organized as follows. In Section 2 we recall the notion of a coadjoint 
orbit, propose a classification of the orbits, and describe the orbit as a fibre bundle 
over an orbit with an orbit as a fibre. Section 3 is devoted to a generalized stere
ographic projection from a Lie algebra onto its coadjoint orbit, it gives a suitable 
complex parametrization of the orbit. As an example, we compute an explicit ex
pression for the stereographic projection in the case of group SU(3). In Section 4 
we propose a way of obtaining Kählerian structures and Kählerian potentials on 
the orbits. Section 5 concerns a structure of the cohomology rings of the orbits and 
finding of G-invariant bases for the cohomology groups.

2. Coadjoint Orbits of Semisimple Lie Groups

We start with recalling the notion of a coadjoint orbit. Let G be a compact semisim
ple classical Lie group, g denote the corresponding Lie algebra, and g* denote the 
dual space of g. Let T  be the maximal torus of G, and h be the maximal commuta
tive subalgebra (also called a Cartan subalgebra) of g. Accordingly, h* denotes the 
dual space of h.

Definition 1. The subset Oß =  { Ad* ß  ; g G G }  of g* is called a coadjoint orbit 
of G through ß  G g*.

In the case of classical Lie groups we can use the standard representations for 
adjoint and coadjoint operators

Adfl X  =  gXg- 1, X  G g, Ad* ß =  g- 1ßg, ß  G g*.

Comparing these formulas one can easily see that a coadjoint orbit coincides with 
the adjoint.
Define the stability subgroup at a point ß  G g* as Gß =  { g G G ; A d * ß =  ß } . 
The coadjoint operator induces a bijective correspondence between an orbit Oß 
and a coset space G M\ G (in the sequel, we deal with right coset spaces).

First of all, we classify the coadjoint orbits of an arbitrary semisimple group G. 
Obviously, each orbit is drawn from a unique point, which we call an initial point
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and denote by p0. The following theorem from [1] allows to restrict the region of 
search of an initial point.

Theorem ([1]). Each orbit o f the coadjoint action o f G intersects h* precisely in 
an orbit of the Weyl group.

In other words, each orbit is assigned to a finite non-empty subset of h*. For more 
detail recall the notion of the Weyl group. Let N (H) be the normalizer of a subset 
H c  G in G, that is N  (H) =  { g G H; g -1 Hg =  H } . Let C  (H) be the centralizer 
of H, that is C  (H) =  { g G G; g -1 hg =  h, h G H } . Obviously, C  (T) =  T, 
where T  is the maximal torus of G.

Definition 2. The Weyl group o f G is the factor-group o f N  (T) over C  (T)

W  (G) =  N  (T )/C  (T).

The Weyl group W (G) acts transitively on h*. The action of W (G) is performed 
by the coadjoint operator. It is easy to show that W (G) is isomorphic to the finite 
group generated by reflections wa across the hyperplanes orthogonal to simple 
roots a

/ x  n {P ,a ) , *
Wa (p) =  p -  2 ^a  a ) a, p G h

where {■, ) denotes a bilinear form on g*.

Definition 3. The open domain

C  =  {p G h* ; {p ,a ) > 0, a  G A + }

is called the positive Weyl chamber. Here A + denotes the set o f positive roots.

We call the set r a =  {p G h* ; {p, a ) =  0}  a wall o f the Weyl chamber.

If we reflect the closure C  of the positive Weyl chamber by elements of the Weyl 
group we cover h* overall

h* =  U  w ■ c .
wew(G)

An orbit of the Weyl group W (G) is obtained by the action of W (G) on a point 
of C . In the case of group SU(3), two possible types of orbits of the Weyl group 
are shown on the root diagram (see Fig. 1). Black points denote intersections 
of a coadjoint orbit with h* and form an orbit of W (SU (3)). The positive Weyl 
chamber is filled with grey color. It has two walls: r ai and r a2. The respective 
reflections across these hyperplanes are denoted by wai and wa2. At the left, one 
can see a generic case, when an orbit of W (SU (3)) has six elements. It happens if 
an initial point lies in the interior of the positive Weyl chamber. At the right, there 
is a degenerate (non-generic) case, when an orbit of W (SU (3)) has three elements. 
It happens if  an initial point belongs to a wall of the positive Weyl chamber.
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generic orbit positive degenerate orbit

Figure 1. Root diagram for SU(3).

In the both cases the closed positive Weyl chamber contains a unique point of an 
orbit of W (G). We obtain the following

Proposition 1. Each orbit O o f  G is uniquely defined by an initial point p 0 G h*, 
which is located in the closed positive Weyl chamber C . I f  p 0 lies in the interior o f 
the positive Weyl chamber: p 0 G C, it gives rise to a generic orbit. I f  p 0 belongs 
to a wall o f the positive Weyl chamber: p 0 G r a, a  G A + , it gives rise to a 
degenerate orbit.

As mentioned above, one can define the orbit O , o through an initial point p 0 G h * 
by O , o = G ,o\ G. Note, that a stability subgroup G , as p G h* generically 
coincides with the maximal torus T. However, if  p belongs to a degenerate orbit, 
then G , is a lager subgroup of G containing T. Therefore, we define a generic 
orbit by

O ,  o =  T \ G

and a degenerate one by

O ,  o =  G ,o\ G

where G ,o =  T, G ,o O T.

An important topological property of the coadjoint orbits is the following. Almost 
each orbit can be regarded as a fibre bundle over an orbit with an orbit as a fibre, 
except fo r  the maximal degenerate orbits. Indeed, if  there exists an initial point p o 
such that G ,o O T, one can form a coset space T \ G ,o. Thus, the orbit O , o = 
T \ G is a fibre bundle over the base G ,o\ G with the fibre T \ G ,o

O , o =  E (G ,o\ G, T \ G ,o ,n)

where n denotes a projection from the orbit onto the base. Moreover, G ,o\ G and 
T \ G ,0 are coadjoint orbits themselves. We formulate this as
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Proposition 2. Suppose Oß0 = G M0 \ G is not the maximal degenerate orbit o f  G. 
Then a subgroup K  such that G D K  D G M0 exists, and Oß0 is a fibre bundle over 
the base K \ G with the fibre G M0\ K

Oßo = E (K \ G, G w \K ,n ) .

We will illustrate the proposition by some examples.

Example 1. The group SU(2) has the only type of orbits:

<nSU(2) =  SU(2) ^  C P 1
u ( i)  “  .

The group SU(3) has generic and degenerate orbits

0 SU(3) =  SU(3) 0 SU(3) =  SU(3) ^  C p 2

U (1) x U (1) ’ d SU(2) x U (1) .

Comparing the above coset spaces we see that a generic orbit O SU(3) is a fibre 

bundle over a degenerate orbit O SU(3) with a fibre O SU(2)

O SU(3) =  E (o SU(3), O SU(2),n j  =  E (C P 2 , C P 1 ,n).

The group SU(4) has several types of degenerate orbits. There is a list of all 
possible types of orbits

O SU(4) = SU(4) SU(4)
Od1cl X c! X

SU(4) =
Od2 =

SU(4) SU(4)
Od3S(U(2) x U (2) ) ,

SU(4)
SU(2) x U (1) x U (1)

SU(4)
SU(3) x U (1)

C P3

As a result, there exist several representations of a generic orbit O SU(4) as a fibre 
bundle. For example,

O SU(4) =  E (o S3U(4), O SU(3),n ) =  E (C P 3, O SU(3),n ) 

O SU(4) =  E (o S2U(4), O SU(2),n j  =  E ( o S2U(4), C P 1, n j .

Example 2. In this paper we consider compact classical Lie groups. They describe 
linear transformations of real, complex, and quaternionic spaces. Respectively, 
these groups are SO(n) over the real field, SU(n) over the complex field, and 
Sp(n) over the quaternionic ring. Here we list the maximal tori of all these groups, 
and their representations as fibre bundles.

n— 1
,--------------- A--------------- s

The maximal torus of SU(n) is T  =  U (1) x U (1) x ■ ■ ■ x U (1) and the generic 
type of orbits can be represented as

O SU(n) =  E (C P n—1, o SU(n—1), n j .
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The maximal torus of SO(n) as n =  2m and n =  2m +  1 has the following form 
T  =  SO(2) x SO(2) x ■ ■ ■ x SO(2) and in this case the generic type of orbits can

'------------------ V------------------ '
m

be represented as

O SO(2m) =  E (Ö2„;2, O SO(2m—2),n )

O SO(2m+1) =  e  [C2n- l ;2, O SO(2m-1),n ) 

where G 2m;2, G 2m-1;2 denote real Grassman manifolds.
n— 1

/--------------- A--------------- X

The maximal torus of Sp(n) is T  =  U (1) x U (1) x ■ ■ ■ x U (1) while the generic 
type of orbits can be represented as

O Sp(n) =  E (HPn—1, O Sp(n—1),n )

where H denotes the quaternionic ring.

3. Complex Parameterization of Coadjoint Orbits

In the theory of Lie groups and Lie algebras different ways of parameterization 
of coadjoint orbits are available. As the most prevalent we choose a generalized 
stereographic projection [2]. It is named so since in the case of group SU(2) it 
gives the well-known stereographic projection onto the complex plane, which is 
the only orbit of SU(2). The generalized stereographic projection is a projection 
from a dual space onto a coadjoint orbit parameterized by complex coordinates. 

Complex coordinates are introduced by the well-known procedure that combines 
Iwasawa and Gauss-Bruhat decompositions. These coordinates are often called 
Bruhat coordinates [3].

We start with complexifying a group G in the usual way: G C =  exp{g +  ig}. A  
generic orbit of G is defined in GC by Montgomery’s diffeomorphism

O =  T \G  ~  P \G C (1)

where P denotes the minimal parabolic subgroup of GC.

Equation (1) becomes apparent from the Iwasawa decomposition G C =  N AK , 
where A  ~  exp{ih} is the real abelian subgroup of G C, N is a nilpotent subgroup 
of G C, and K  is the maximal compact subgroup of G C. Since we consider only 
compact groups G, K  coincides with G. Then the Iwasawa decomposition of G C 
has the following form

G C =  NAG.

It is easy to express A  and N in terms of root vectors. Let A +  be the set of positive 
roots a  o f G C. By X a, X —a, a  G A + , denote positive and negative root vectors, 
respectively. By Ha, a  G A + , denote the corresponding Cartan vectors, which
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form a basis for the Cartan subalgebra h. According to [4], we choose X a and 
X -a  so that X a -  X - a , i(X a +  X - a ) G g. Then

N — exp \ E  Ha X a , Ua G C, A  — exp < E  üa iHa , üa G R .
[ a€A + ) [ a€A + )

In this notation P =  NAT. This makes (1) evident.

In the case of a degenerate orbit, we have the following diffeomorphism

Oß0 =  C M0\G -  P w \G C (2)

where G M0 is the stability subgroup and P M0 is the parabolic subgroup with respect 
to Oß0. Then P M0 =  N A G M0, that proves (2).

On the other hand, G admits a Gauss decomposition (for the generic type of orbits)

GC =  N T CZ

where T C is the maximal torus of G C, and T C =  AT in the above notation; N and 
Z — N* are nilpotent subgroups of GC normalized by T C. In terms of the root 
vectors introduced above

Z exp E ZaX
a€A+

-a za G C .

After [4] we call aa, ua , za the canonical coordinates connected with the root 
basis {Ha, X a,X -a  ; a G A + }. These are coordinates in the group G.

A  comparison of the Gauss and Iwasawa decompositions implies that the orbit O 
is diffeomorphic to the subgroup manifold Z

O ~
NAG
N AT

N ATZ

N AT
Z . (3)

Diffeomorphism (3) asserts that one can parameterize the orbit O in terms of the 
complex coordinates {za , a  G A +  } that are canonical coordinates in Z.

However, a Gauss decomposition is local. Therefore, we use a Gauss-Bruhat de
composition instead

g c =  n  p z w .
wew(G)

It gives a system of local charts on the orbit

O =  P \G C =  p| Zw. (4)
wew(G)

In the case of a degenerate orbit Oß0, T  is to be replaced by Gß0, and P by P M0. It 
is sufficient to take the intersection over w G W (G M0)\W (G ) in (4). Furthermore, 
in this case, Z has a less number of coordinates.
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Proposition 3. Each orbit O o f a compact semisimple Lie group G is locally pa
rameterized, in terms o f the canonical coordinates {za, a  G A + }  in a nilpotent 
subgroup Z o f  G C according to (4).

Now we apply the above scheme to compact classical Lie groups, namely SO (n), 
SU(n), Sp(n). The scheme consists of several steps. First we parameterize the 
subgroups N , A , and the group G in terms of { za , a  G A + } . Secondly, we choose 
an initial point p 0 in the positive closed Weyl chamber C  and generate an orbit 
Oß0 by the dressing formula

P =  g - 1Pog, g G G.

That gives a parametrization on one of the charts covering the orbit. Finally, we 
extend the parametrization to all other charts by the action of elements of the Weyl 
group of G . We consider the scheme in detail.
Step 1. Being a finite group, each classical Lie group has a matrix representation. 
Let a be the matrix representing an element a. An Iwasawa decomposition of 
Z G Z has the following form

a =  nap, n g n , a g a , k g g . (5)

One has to solve (5) in terms of the complex coordinates za that appear as entries 
of the matrix Z. The following transformation of (5) makes the computation easier

aa* =  aaaa*a*n* =  n a 2n *

where k* denotes the hermitian conjugate of p . Indeed, a a * =  e for all of the men
tioned groups. This is evident, if  one considers the conjugation over the complex 
field in the case of SU(n), and over the quaternionic ring in the case of Sp(n). If 
k G SO(n) one has k* =  k T, and the equality a a * =  e is obvious. Moreover, it 
can easily be checked that a a * =  a2. When n and a are parameterized in terms of 
{ za } , the matrix a (z) is computed by the formula

a (z) =  a - 1 (z)n - 1 (z)z.

Here we obtain complex parameterizations of N , A , G for all classical compact 
groups of small dimensions.

Example 3. In the case of group SU(n), the corresponding complexified group 
is SL(n, C ) . The subgroup N consists of complex upper triangular matrices with 
ones on the diagonal, the subgroup Z consists of complex low triangular matrices 
with ones on the diagonal, the subgroup A  contains real diagonal matrices aa =
diag(ri , r2 , . . . ,  r,n) such that f ln= i  r  =  1 .
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Decomposition (5) for a generic orbit O SU(3) gets the form

1 0 0 1 n 1 n A / rL
ri 0 0

z 1 1
0 ) == ( 0 1 n2 I 0 ri

r2 0
z3 z2 1 0 0 1 0 0 r 2

u, u G SU(3)

whence it follows

rj =  1 +  |zi|2 +  Z  -  Z1Z2I2 

2

rj =  1 +  |z2|2 +  N 2
1

ni =  -0 (zi(1 +  |Z212) -  Z2Z3), 
r i2

n2 =  2̂ (Z2 + Z1Z3), n3 Z32 r22 2 i 3 3 r 2
r 2

The dressing matrix u is

/

u

X
ri

_Zi
ri

Zl(1 +  |z2 |2)-Z3Z2 1 +  |z3|2-ZiZ2Z3
rir2 V1V2

Z3
r2

Z2
r2

Z3-Z1Z2 \ 
ri

Z2+Z1Z3
rir2

r2 .

The case of a degenerate orbit O^U(3) is derived from the above by assigning z 1
0, or z2 =  0.

Example 4. In the case of group Sp(n), the complexified group is Sp(n, C). The 
both groups describe linear transformations of the quaternionic vector space Hn. 
Therefore, it is suitable to operate with quaternions instead of complex numbers. 
Each quaternion q is determined by two complex numbers z 1, z2 as q =  z 1 +  z2j. 
The quaternionic conjugate of q is q =  z 1 — j2 2, where zfi, 22 are the complex 
conjugates of z 1, z2. Several useful relations are available

jz  =  j  z +  w =  z +  w, z ■ w =  w ■ z

where z, w G C.

The subgroups N, Z have the same representatives as in the case of group SU(n), 
but over the quaternionic ring. The subgroup A  consists of real diagonal matrices 
with the same property as in the case of SU(n).

We start with the simplest group Sp(2). Suppose v,q  G H such that v =  n 1 +  n2j, 
q =  z 1 +  z2j, where n 1, n 2, z 1, z2 G C. Decomposition (5) for an orbit O Sp(2) gets 
the following form

1 0
q 1

1 v
0 1

1 0\ „ 
0 r p ,

P G Sp(2)

whence it follows r 2 1 +  |q|2, v q/r2, or in terms of complex coordinates

r 2 =  N 2 +  |z2|2, n 1
■ 21
r2 , n 2

z2 
r 2 '
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The dressing matrix p is

P
1 (  1 -Z l  +  jZ2^

V |zi|2 +  N 2 Vz i +  z2j 1 )

In the case of group Sp(3), we perform all computations in terms of quaternions. 
Suppose qi = zi +  z j ,  q2 = z3 +  z j  q3 =  Z5 +  z6j, vi = ni +  n j  V2 =  n  +  n4j, 
v3 = n5 +  n6j. Then, for a generic orbit O Sp(3), one obtains

1 0 0 1 v1 v A /rLr 1 0

q1 1 0 I == ( ° 1 V2 1 0 ri
r2

q3 q2 1 0 0 1 0 0

0
0

r 2 /
P,

whence it follows

p E Sp(3)

r 2 =  1 +  |qi|2 +  |q3 -  q2qi|2, =  1 +  |q2|2 +  |q3|2
1 1

v i =  - 0 (Zi (1 +  |q2| ) -  Z3q2), V2 =  - 0 (q2 +  qi Z3),
qZ3

V3 =  "2 '

The dressing matrix p is

(

p =

1 qi S3-qiS2
ri r 1 ri

-|92|2)-Ç2Ç3 i + |93|2-SiS3S2 S2+SiS3
rir2 rir2 rir2
S3. S2 j_
r2 r2 r2

The case of Sp(n) in terms of quaternions is very similar to the case of SU(n). 
The only warning is that the multiplication of quaternions is not commutative.

Example 5. In the case of group SO(n), the corresponding complexified group is 
SO(n, C). Representatives of the subgroups N and Z have not so clear structure 
as for groups SU(n) and Sp(n). The real abelian subgroup A  consists of block
diagonal matrices à =  d iag(A i , A 2, . . . ,  A m) in the case of group SO(2m), and 
à =  d iag(A i , A 2, . . . ,  Am, 1) in the case of group SO(2m +  1). Here

A i cosh ài —i sinh àj 
i sinh ai cosh ai

Consider the group SO(3). The only type of orbits is O SO(3) =  SO(2)\SO (3). In 
this case the decomposition (5) gets the form

h -1 2
iz2
2 z ( 1 1 2

in2
2 n

iz2
2

- z2 
1 ' 2 —iz = in2

2 1 +  n2 1 ' 2 —in

z iz 1 n in 1

cosh à —isinh à 0\ 
isinh à cosh à 0 I à 

0 0 1/
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where o E SO (3), and a, n, z  are canonical coordinates in the group. One easily 
computes the following

e°

The dressing matrix o is

o =

:1  +  |Z|2, n =
Z

1 +  |z |2

2—z2-z 2 i(z2—z2) z+,2
2(1+| z |2 ) 2(1+|z |2 )
i(z2—z2 ) 2+z2+z2 'i(z -z z )
2(1+|z|2)

z+zz 
\  1+|z|2

2(1+|z|2)
i(z~z)
1 + |z|2

" 1+|z|2
1-|z|2 
1 + |z|2

\

/

We return to the scheme.

Step 2. Suppose we have some parametrization of the dual space g* of the group G. 
We call these parameters group coordinates. In order to parameterize an orbit of G 
we find expressions for the group coordinates in terms of the complex coordinates 
{za , a E A + }. Let us continue with the example of group SU(3).

Let Aa, a = 1, . . . ,  8, be Gell-Mann matrices, then Ya = — 2Xa, a = 1, . . . ,  8, 
form a basis for g*. Define a bilinear form on g* as {A, B ) =  —2 Tr A B . Each 
basis element Ya is assigned to a group coordinate: ß a = {ß, Ya) , where

ß
1
2

ß̂ 3 +  373 ß 8 

ß 1 +  iß2

y ß 4 +  iß5

ß 1 — iß2 ß 4 — iß 5̂

ß 3 +  7̂3 ß 8 ß 6 — iß 7

ß 6 +  iß7 "ÿ3 ß 8 j

A  coadjoint orbit is generated by the dressing formula

ß = Ü*ßoU, ßo E h*

where ß0 is an initial point. As shown in Section 2, each orbit is uniquely defined 
by a point of the closed positive Weyl chamber. Let simple roots of su(3) be as 
follows: a 1 =  diag(i, —i, 0) and a 2 =  diag(0, i, —i). The closed positive Weyl 
chamber is the set of points ß 0 such that

. /2 0 0\ . /I 0 0'

ß o =  — C ( 0 —1 0 I — 3 n ( 0 1 0
3 \0 0 - 1  3 \0 0 - 2

C, n > 0. (6)

Obviously, walls of the Weyl chamber are obtained by assigning C =  0 or n =  0. In 
thisnotationrai =  { —-3n d ia g (1 ,1, —2); n > 0 },r „ 2 =  { — 3Cdiag(2, —1, —1); 
C > 0}. The chosen representation of an initial point ß 0 is the most suitable for the 
further computation.

According to Proposition 1 we get a generic orbit i f  n =  0 and C =  0. If C or 
n vanishes, we get a degenerate one. A  generic orbit is parameterized by three
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complex coordinates z\, z2, z3. If £ vanishes, one has to assign z i =  0. If n 
vanishes, then z2 =  0. We consider the degenerate orbit through the following 
point

. A  0 0\
ß o = — 33 n I 0 i  0 I .

3 \ 0 0  —2

One can attach some physical meaning to nonzero entries of the initial point ß 0 be
cause of its diagonal form. For in quantum mechanics diagonal matrices represent 
observable variables. Suppose ß 0 is the value of ß at the infinity: ß 0 =  ß(<x>). The 
diagonal entries are expressed in terms of the group coordinates ß 3 and ß s and we 
fix their values at the infinity as follows: ß 3(<x>) = m , ß s ( ^ )  =  q. Then

n =  — 1 (m  — V3qJ , £ =  m.

Suppose the group SU(3) describes a magnetic with spin one. Then m serves as a 
projection of magnetic moment (magnetization) of the magnetic, and q serves as a 
projection of quadrupole moment.
The dressing procedure gives the following explicit expression for the generalized 
stereographic projection onto a generic orbit of SU(3)

ß i

ß 2

ß 3

ß 4

ß 5

ß 6

ß 7

\/3ßs

n £
----2 (z2z3 +  z2z3) ---- 2 (zi +  Zi)

r2 r 1

r2 (-̂ 2z3 — z2z3) + 1  (zi — ^i)

â  ( 1 z212 — |z3|2) +  4 (1 — |zi |2) 
r2 r i
n £

----2 (z3 +  z3) ---- 2 (z3 — ziz2 +  z3 — ziz2)
r 2 r i

33̂2(z3 — Z3) +  3-2 (z3 — ziz2 — (Z3 — Z ^ ) )

n £
----2 (z2 +  Z2) +  -2 (z i(z3 — ziz2) +  zi(Z3 — ZiZ2))r 2 r

332(z2 — Z2) — 3|  (z i(z3 — ziz2) — zi(Z3 — ZiZ2)) 
r| r2

4 ( 2  — |Z212 — |Z312) +  22(1 +  |zi |2 — 2|Z3 — ZiZ2|2) 
r22 r 2

(7)

where
r2 =  1 +  |zi|2 +  |Z3 — ZiZ2|2, r2 =  1 +  |z2|2 +  | Z312.

Obviously, all expressions can be divided into two parts: with the coefficients n 
and £. These parts correspond to the basis matrices in (6).
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For the stereographic projection onto a degenerate orbit through ß 0 chosen above 
one has to assign £ =  0, z 1 =  0 in (7).

Step 3 . Parametrization (7) is available on the coordinate chart containing the point 
(zi = 0 , z2 =  0, z3 =  0). By the action of elements of the Weyl group one obtains 
parameterizations on all other charts. The Weyl group is generated by reflections 
across the hyperplanes orthogonal to simple roots. In the case of group SU(3), 
these reflections are represented by the following matrices

(0  1 0\ ( - 1 0 0\
w1 =  1 1 0  0 I , w2 =  I 0 0 1 I .

\0 0 - 1  V 0 1 0/

The action of w1 transforms the chart with coordinates (7) onto another one by the 
following change of coordinates

(zi , z 2, z s ) ^  (zi , z 2 , z'3), z i  =  — , z2 =  - z3 , l 3 =  - z2 .
z 1

This chart contains the point (z1 =  œ , z2 =  0, z3 =  0). The action of W2 
transforms coordinates (7) by the following change of coordinates

(zi, z2, z3) ^  (z j, z2, z3), zi =  - (z 3 - z iz 2 ) , z23
1

,
z2

z33 z3
z2

The latter chart contains the point (zi =  0, z2 =  œ , z3 =  0).

Evidently, the other elements of W (SU (3)) are ê, w)i vj2, vj2vj1 , vj1vj2vj1 . The 
corresponding changes of coordinates are obtained by sequential actions of the 
two described above.

4. Kählerian Structure on the Coadjoint Orbits

The perfect property of coadjoint orbits of compact semisimple Lie groups is the 
following. Each orbit is simultaneously a Riemannian manifold and a symplectic 
one. A  Riemanian metrics and the matched symplectic form together are called a 
K ählerian s tructu re . Borel [5] proved the following

Proposition 4. Suppose G is a semisimple compact Lie group. Then each orbit o f  
G admits a complex analytic Kählerian structure invariant under the group G.

It means that each orbit possesses a hermitian Riemannian metrics, the Kählerian 
metrics d s2, and the corresponding closed two-form, the K ählerian form  w

ds2 = ^ 2  gaß dza d^ß, w =  iga;3 dza A d^ß.
a,ß a,ß

The G-invariance of a Kählerian structure means invariance under the action of 
G. Here we consider the action of a group as right multiplication. A  Kählerian
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structure is determined by a Kählerian potential $ according to the formula

d2$ .

9aß = dzadzß ’ U°ß =

The objective of this section is to obtain an expression for a Kählerian structure 
on a coadjoint orbit. Evidently, for this purpose it is sufficient to find a Kähle- 
rian potential, which simultaneously gives the Kählerian metrics and the Kählerian 
form.

On the other hand, one has the following

Proposition 5 (see [6]). If G is a compact semisimple Lie group, the Kirillov- 
Kostant-Souriau two-form coincides with a G-invariant Kählerian form.

While we deal with compact semisimple classical Lie groups, we can use a Kirillov- 
Kostant-Souriau differential form as a Kählerian form.

Define a bilinear form on g as follows

( X ,Y ) =  Tr X Y, X ,Y  G g.

In the case of classical Lie groups, the bilinear form is proportional to the standard 
Killing form on g

Define a vector field X  on a coadjoint orbit O by

* f  (P) = dT f  (A d:xp(rX) p) T=0 f  G C ~ (O ) '

One can introduce an Ad-invariant closed two-form on O by the formula

w (X , Y ) = (p, [X, Y ]) , X , Y  G fl, p G fl*. (8)

This two-form is called a Kirillov-Kostant-Souriau form.

The straightforward way of obtaining a Kählerian form is to solve equations (8). 
Unfortunately, it becomes extremely complicate in dimensions greater than three. 
This way is developed by Picken [3]. He computes Kählerian forms on flag mani
folds via G-invariant one-forms in terms of Bruhat coordinates.

We return to the idea of finding a Kählerian potential instead of a Kählerian form. 
In general, each G-covariant real function on an orbit serves as a Kählerian poten
tial. It turns out, that each orbit has a unique G-covariant real function, which we 
call a Kählerian potential on the orbit.

The same idea is used by Alekseevsky and Perelomov [7]. In order to find po
tentials for all closed two-forms on orbits of group GL(n), they consider the real 
positive functions built by means of principal minors of z z * G GL(n), and select 
the functions that are G-covariant. Here we develop the idea of Alekseevsky and 
Perelomov, because this way allows to avoid complicate computations.
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Below we prove that a Kählerian potential is determined by an one-dimensional 
irreducible representation of the real abelian subgroup A  of GC. We use the group- 
theoretical approach in our proof.
Each orbit O =  P \ G C is a holomorphic manifold, which admits the construction 
of a line bundle. Let { Uk }  be its atlas. An arbitrary gc  G G C has a decomposition

gc  =  hk(x ) sk (x), x  G Uk (9)

where sk : Uk ^  Gc  is alocal section of O . If Ukn Uj  =  0 , then there exists amap 
skj = s k o s ~ \  which is skj  : Uk n  Uj ^  P . A one-dimensional representation of 
the parabolic subgroup P of G c gives a G -covariant function on an orbit.
Recall, that P =  N AT in the case of a generic orbit. In the case of a degenerate 
orbit, one has P =  N A G M0, where G M0 is the stability subgroup at an initial point 
g o G h * giving rise to the orbit. A one-dimensional irreducible representation is 
trivial on any nilpotent group. This means that the representation of P coincides 
with the representation of the maximal torus T c  =  AT of Gc . Moreover, we are 
interested in real representations because a Kählerian potential is a real function. 
Consequently, the required representation is determined only by A .
Now we build a one-dimensional irreducible representation of T c . Obviously, 
T c  is isomorphic to a direct product of l samples of the multiplicative group 
C * =  C \ { 0} , where l =  d im T . Let the following set of complex numbers 
(d1 , d2, . . . ,  di) be an image of d G T c  under the isomorphism. It is clear that the 
set of real numbers (r\, r2, . . . ,  rl), where r  =  |dj |, i =  1 , . . . ,  l , is an image of 
à G A  under the isomorphism. In terms of complex coordinates z =  {za ; a  G 
A + } , which are canonical coordinates in Z , an Iwasawa decomposition of any 
Z G Z gets the form

Z =  h (z)â(z)à (z). (10)

Here à (z) represents a point of the orbit in terms of the complex coordinates {za } 
while n(z) and à(z) denote matrices n and à in terms of { za } . After the action of 
an element g G G on z we perform a Gauss-Bruhat decomposition

àg =  n b  (zg)d(zg)àg, n  b  (zg) G N. (11)

From the Iwasawa decomposition of àg we have

a(zg) =  n _1(zg )zg à _1(zg) .

Using (10) and (11) we get

à(zg ) =  n - 1 (zg )d- 1 (zg )n - 1 (zg) f i (z)à(z)à (z)àà~ 1(zg ) . (12)

In order to gather nilpotent elements together we recall that the maximal torus T C 
is the normalizer of N , that gives the following equality

d~ 1 (zg)n~B1 (zg)n(z)d(zg)  =  n(z ,g) ,  n( z , g)  G N.
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Substituting hB(zg)d 1(zg) for d l (zg)hBl (zg)n(z) in (12) we obtain 

d(za ) =  h ~ l (zg )h (z,g )dr l (zg)ô(z)fc(z)gfc- 1 (zfl ).

To cancel the element k(z)gkBl (zg) = g' G G we take the following product

k2(zg ) =  k(zg )à*(zg ) =  h d- 1 (zg )k2(z)d*B l(zg )h * (13)

where h denotes h B1(zg)h (z,g) G N .
Now we construct a one-dimensional real representation of (13). Let x f (k) denote 
a representation of à with real weights £ =  (£1, £2, . . . ,  £i) . A one-dimensional real 
representation of k G A  has the following form X (à) =  r fl r^2 ■ ■ ■ rf l, and a one
dimensional real representation of d G T C has the form x f (d) =  d^  d22 ■ ■ ■ df . 
Therefore, the representation of k2(zg) gets the form

x 2Ç (à(zg)) =  x ç (d(zg )) x f (d(zg ) ) x 2? (k (z )) .

Whence it is seen that x 2f (à(z)) is transformed by a cocycle x f ( d(zg)j  defined 
on G x O. It means that the function

ln x 2Ç (à(z)) =  £1 ln r 2(z) +  £2 ln r2, (z) +  ■ ■■ +  £1 ln rf  (z) (14)

is G -covariant, and serves as a Kählerian potential on O. Moreover, each function 
ln r 2(z) , i =  1, . . . ,  l , is a Kählerian potential itself.
Remarkably, that each coadjoint orbit has a unique Kählerian potential of the form 
(14), where the weights £ =  (£1, £2, . . . ,  £1) are determined by an initial point of 
the orbit. We have proven the following

Proposition 6. Suppose A  is the real abelian subgroup o f  G C, à G A , and x f  (à) 
is the one-dimensional representation o f à with real weights £ =  (£1, £2, . . . ,  £ ) . 
Then Kählerian potentials on coadjoint orbits o f  G have the form  ln x 2f (à), more
over each orbit has the Kählerian potential with a unique £.

R em ark 1. In the case o f integer weights £ =  (£1, £2, . . . ,  £  ), the line bundle over 
each coadjoint orbit o f  G is holomorphic. This idea is derived from the Borel-Weyl 
theory based on [8].

Let us consider some examples.

Example 6. In the case of group SU (h), a representative of the real abelian sub
group A  has the form of a diagonal matrix with det à =  1, that is

à =  d iag(1/r1 , n / r 2 , . . . ,  ^ - 2/ ^ - 1 , r ^ )  

and dim T  =  h — 1. Let (r1, r2, . . . ,  rn-1 ) be an image of à under an isomor
phism from T C onto ( C*)n -1 . Then x f (à) =  r^  r | 2 ■ ■ ■ ^ B r / , where £  G R ,
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i =  1, . . .  ,n  — 1, whence Kählerianpotentials have the following form

$ =  6  ln rf +  {2 ln r\ +------ + {n- 1 ln - 1 .

For instance, Kählerian potentials on orbits of SU(3) are

$ =  { ln r f  +  n ln rf, r f  =  1 +  |z i |2 +  |z3 — z ^ 2 , rf =  1 +  |z2 12 +  | Z3 12 .

This expression completely accords with the straightforward solution of (8), which 
gives the following

$ =  (/to , â i ) $ i +  (/to , Ô2 ) $ 2

$ 1 =  ln(1 +  |z i |2 +  |Z3 — Z1 Z2 I2), $ 2 =  ln(1 +  | Z2 12 +  | Z3 12 ).

Here /t0 is an initial point of an orbit and a 1 , a2 are the simple roots of su(3). In 
the case of a degenerate orbit, one has to assign z 1 =  0 or z2 =  0.

Example 7. In the case of groups SO(n), n =  2m and n =  2m +  1, a representa
tive of the subgroup A  has the form of a block-diagonal matrix, namely

a =  diag(A1, A 2 , . . . ,  Am) or â =  d ia g (A  ,Ä 2 , . . . ,Ä m, 1)

A,,
cosh a, —i sinh a, 
i sinh a, cosh a,

i =  1 , . . . ,  m.

Here {a,} are canonical coordinates in the maximal torus T, and dim T  =  m. Let 
(e“1, e“2, . . . ,  e“m ) be an image of â under an isomorphism from T C onto (C*)m. 
Then X  (a) =  e 1̂“ 1 ê 2“2 ■ ■ ■ eßm“m, whence it follows

$ =  2{1a 1 +  2{2a2 +  " " " +  2C,mam .

Kählerian potentials on coadjoint orbits of SO(4) computed by (8) have the form

$ =  (/o, <â1)$1 +  (/o, Ô2)$2

$1 =  ln(1 +  | z 112 ) — ln(1 +  | Z212 ), $2 =  ln(1 +  |z112) +  ln(1 +  |z2|2).

Here the bilinear form on so (4) is defined by (A, B) =  1 Tr AB.

Proposition 7. The Kählerian potential on each coadjoint orbit Oß0 o f a compact 
classical Lie group G has the following form

$ =  X ) (/o, ak ) $ k , $k  =  aak
k

where a k is a simple root o f  g, aak is the canonical coordinate corresponding to 
Hak G h, and (■, ■) denotes a bilinear form  on the dual space o f  g.

R em ark 2. I f  / o satisfies the integer condition

2 (/ o,a k) Z
(ak , ak)
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fo r  all simple roots a k o f  g then the orbit through can be quantized. In other
words, there exists an irreducible unitary representation o f  G in the space ofholo- 
morphic sections on the orbit. Each section serves as a quantum state.

5. Cohomology Rings of Coadjoint Orbits

In the last section we examine the cohomology rings of coadjoint orbits of compact 
semisimple Lie groups. In [9] Borel proved that all forms of odd degrees on the 
orbit are precise. Therefore, we are interested in the forms of even degrees. In 
order to introduce a basis for the cohomology ring it is sufficient to find a basis for 
the cohomology group H 2.

In the case of a generic coadjoint orbit of a compact semisimple Lie group G, the 
following formula is available

b0 +  b2 +  ••• +  b2n =  ord W (G)

where bk denotes the Betti number of a cohomology group H k. In the case of a 
degenerate orbit, one has to modify the formula as

b0 +  b2 +  ••• +  b2m 

where G M0 is the stability subgroup at p0.

ord W (G) 

ord W (G Mo )

Example 8. In the case of group SU(2), we have the only type of orbits O SU(2) 
of dimension two. The Weyl group W (SU (2)) also has dimension two. Therefore, 
the cohomology ring consists of two cohomology groups, each of dimension one

H  * =  H 0 ® H 2, 1 +  1 =  2.

In the case of group SU(3), we have two types of orbits: a generic one O SU(3) of 

dimension six, and a degenerate one O ^ 1-3) of dimension four. In the case of a 
generic orbit, the Weyl group has dimension six, and the cohomology ring is

H  * =  H 0 ® H 2 ® H 4 ® H 6, 1 +  2 +  2 + 1  =  6.

For a degenerate orbit we have ordW(G) 
ordW(OM0 )

H  * =  H 0 ® H 2 ® H 4,

3, and the cohomology ring is

1 +  1 +  1 =  3.

Recall the well-known Leray-Hirsch theorem.

Theorem  (Leray-Hirsch). Suppose E is a fibre bundle over a base M  with a fibre 
F , and u \, u 2, . . .  are cohomology classes on E that being restricted to each 
fibre give its cohomologies. Then

H  * (E) =  H *(M ) G H  * (F ).
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Apply the theorem to an orbit O regarded as a fibre bundle over an orbit O 1 with 
an orbit O 2 as a fibre, that is O =  E(Oi,  O 2, n). The cohomology ring of O is a 
tensor product of the cohomology rings of the base and the fiber

H  * (O) =  H  * (O i) C  H  * (O2).

Conversely, if  one finds coherent cohomology classes on O i and O2, then one 
can construct the cohomology ring of O by the latter formula. It means, the co
homology ring of a generic orbit can be derived from the cohomology rings of a 
degenerate orbit and a generic orbit of a group of less dimension.

Example 9. We continue to deal with the group SU(3). It was shown that

O SU(3) =  E ( o SU(3), O su(2), n) .

Then the cohomology ring of O su(3) is the tensor product of the cohomology rings 

of the orbits OSU(3) and O su(2)

H *(o su(3)) =  (H 0 ® H 2 ® H 4) ® (H 0 ® H 2)

=  H 0 ® H 0 ® H 0 ® H 2 ® H 2 ® H 0 ® H 2 ® H 2 ® H 4 ® H 0 ®H4 ® H 2.
'------------------------------- V------------------------------- ' '------------------------------- V------------------------------- '

H2(Osu(3)) h 4(Osu(3))

Obviously, the cohomology groups H 2 and H 4 of O su(3) both have dimension 
two. Moreover, from the previous expression we can see the structure of a basis 
for H 2

H 2 ( o su(3)) =  H 0(1) ® H 2(2) ® H 2(1) ® H 0(2) 

where 1 denotes OSU(3) ~  C P 2, and 2 denotes O su(2) ~  C P 1.

At the same time, a suitable basis for H 2 can be obtained from Kählerian potentials 
on coadjoint orbits of a group. As shown in the previous section, all two-forms on 
the orbits of a compact classical Lie group G have the form

u ]Cicfc]C
k a,ß

d 2$k
dza d %

dza A dzß, k =  1 , . . . ,  d i mT

where $ k coincides with the canonical coordinate aak corresponding to Hak G h. 
Obviously, d i m H 2 =  d i m T  =  l. Consequently, one can find precisely l two- 
forms that give a basis for H 2.

The standard way to generate a basis for H 2 is the following. Let H 2 be the 
homology group adjoint to H 2. By [7] we denote a class of two-cycles, which can 
be represented as spheres. The sphere is an orbit of a subgroup SUa (2)

SUa (2) ~  exp {Ha , (Xa -  X -a  ), i ( X a +  X -a  ) }, a  G A + .
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Suppose we find l independent two-cycles connected with the simple roots of g, 
we denote them by 7̂ . The basis for H 2 consists of two-forms Uj such that

Uj — öij (15)

where öij is the Kronecker symbol.

Example 10. We consider coadjoint orbits of SU(3) as an example. Let the simple 
roots of su(3) be as follows: a 1 — diag(i, —i, 0) and a 2 — diag(0, i, —i). Then 
the independent two-cycles are generated by the following dressing matrices 

/ 1

U1 —

-Z1
0 T R F  0 + ÏÜ F

zi 1
0

0
\/ï+k1F  ^ï+ÎZTi2 

0 0 1/

U2 —

0
-Z2

\A+Iz2l2 x/ !+lz212 
0  ̂ z2 1

\  V 1 + |z2|2 V 1+|z2|2/
which are obtained from the dressing matrix U by assigning z2 — z3 — 0 or 
z 1 — z3 — 0, respectively. The two-forms Uj satisfying (15) are

1 ^  9 2$ 7-

Uj — 2n g  d zö ö z ß dZa A dZß ■ j  = 1 -2

$1 — ln(1 +  |z112 +  |z3 — Z1Z2I2), $2 — ln(1 +  |z212 +  | Z312 ).

They form a basis for H 2(O SU(3)).

6. Conclusion

In this paper we develop a unified approach to solutions of the announced problems 
for a coadjoint orbit of a compact semisimple classical Lie group G. The problems 
are the following: an explicit parametrization of the orbit, obtaining a Kählerian 
structure, introducing basis forms for the cohomology group of the orbit. The 
key role belongs to the subgroup A  in an Iwasawa decomposition, this is the real 
abelian subgroup of a complexification of the group G. The subgroup A  determines 
a Kählerian potential on each orbit and a suitable basis for the cohomology group 
H 2 of the orbit.

Our investigation concerns classical (matrix) Lie groups. The same problems in 
the general case remain of current importance.
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