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Abstract, Acting within the framework of the geometric quantum mechan­
ics, we give a Jacobi field interpretation of the quantum mechanical un­
certainty. Then a link with elliptic curves via die classical integrability of 
Schrôdinger dynamics and the cross ratio interpretation of quantum proba­
bilities is established. Furthermore a geometrical construction of all special 
unitary representations of die diree-strand braid group on die quantum one- 
qubit space is provided.

1. In teg rab ility  in Q uan tum  M echanics

1.1. Geometry of Quantum Mechanics

We shut this paper by briefly reviewing geometric quantum mechanics and, in 
particular, the completely integrable structure of Schrôdinger dynamics in finite 
dimensional quantum space (cf. [1-4,6,15]).
Throughout the paper we assume h =  1. Let V" be a complex Hilbert space of di­
mension n + 1  with a scalar product {-| •) which is linear in the second variable. We 
shall freely use the Dirac notation. The space of pure states in quantum mechanics 
is the projective space associated to V", denoted by P(U), of complex dimension n, 
whose points are the rays [tj (directions) pertaining to nonzero vectors |r). Con­
sidering the actions of the unitary group U(VJ associated to (V, (j-)) and its Lie 
algebra u(V j, consisting of all skew-hermilian endomorphisms of V" (the quan­
tum observables, and with a slight abuse of language), the projective space P(U) 
becomes a U(Vr)-homogeneous Kahler manifold. Furthermore we can identify a 
point in P(U) with the projection operator
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and then compute the fundamental vector field associated to A  e  u (F ) (evalu­
ated at [n] 6  PCF), IHI =  1 ) as

=  +  |/1 r){r|.

The action of the complex structure J  is

=  |n)(L4n| +  |L4n)(n|

while the expressions for the natural Fubini-Study metric g

9[v](a %],  BH[v]) = $l{(Av\Bv)  +  (v\Av)(v\Bv)}  

and the Kahler form uj

yield a Riemannian and a symplectic structure in the pure quantum state space 
P(F), respectively.

1.2. Toral Action and Integrability

Every quantum system with a non-degenerate Hamiltonian H  can be viewed as 
a completely integrable classical system (cf. [2] and references therein). Indeed, 
given a quantum Hamiltonian and orthonormal basis of eigenvectors |ej), j  =  
0 , . . . ,  n, we have the basic relations

n

I«) =  Y , a i\ei)
3=0

for each vector \v) e  V  and
n n

3=0 j=o

where Pj is the projection operators onto the line (ej). In general, given an ob­
servable F  we can define the function /  : P(F) —» R

/ ( H )  := {v\iFv).

Moreover it can be shown that there is an effective group action of the n-dimensio- 
nal torus Tn on (a dense subset of) P(F) induced by

ej I—>• exp(ißj)ßj

with ßj e  [0, 2tt). In view of this we can state the following
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Theorem 1 (cf. [2]). The “classical“ Hamiltonian system (P(U), cu, h) is com­
pletely integrable. The Lagrangian tori are provided by the orbits o f the n-dimen- 
sional torus action above. The action variables Ij coincide with the transition 
probabilities |a j |2 =  Pj([v]), j  = 1 ,2 , . . .  , n, the angle variables are the phases 
ßj —ßo, say, and the orbit space can be identified with the standard open n-simplex 
in the Euclidean space R”.

For a more precise statement see [2], Note that in a two level quantum system 
this theorem is simply pictured by a sphere S2 =  P(C2), the tori correspond to 
parallels (related, in turn, to the “action” variables) whereas the angles around the 
axis through the poles represent the “angle” variable.

1.3. Cross Ratio and Transition Probabilities

Another outstanding geometric property of the quantum transition probabilities is 
the fact that given two pure quantum states, [£] and [rj] in P (F ) and given their 
respective hermitian-orthogonal states [£-*-] and [rjL} on the projective line [£] [r)\ 
which they determine, their cross-ratio equals the transition probability between 
[£] and [rj\

^ = ( K ] , M , h W ] )  =

(see e.g., [4]). Notice that if [£] [r)\ is regarded as a sphere, then [£] and [£-*-], and 
[t]} , [77-*-], respectively, become antipodal points thereon.

2. Jacobi Fields and Elliptic Functions in Quantum Mechanics

2.1. Uncertainty and Jacobi Fields

Now we discuss an interpretation of quantum uncertainty in terms of Jacobi fields 
and a connection with the theory of elliptic curves. This can be done via classical 
integrability of Schrôdinger dynamics and the cross-ratio interpretation of quantum 
transition probabilities discussed above.
We confine ourselves to the case of a two level system with the non-degenerate 
Hamiltonian

H  = Ao|0)(0| +  Ai 11) <11
with Ao < Ai. The dispersion of the observable A  e  11(F) in the state [n] is

A[„]A =  IIA v -  (u|Au)u|| =  ||At,|[„]|| := \Jg[v\(A#|[„], A#|[„]) =  || J|[„]Att|[„]||

so we can define the vector field J  := J|[„]ift,|[„] taken along a minimal geodesic 
curve joining two orthogonal eigenstates of H.  This is just a half-meridian in
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S2 =  P(C2), viewed as a totally geodesic submanifold of the full projective space, 
and it is perpendicular to the geodesic at every point.
We need also to observe that the relationship between the canonical metrics of the 
two-sphere and the complex projective line is

1
9r( c 2) — ^ 5§2

i.e., the Fubini-Study metric on the projective line is the metric on a sphere of 
radius | ,  whence the curvature c 2) =  4 K s 2 =  4 (see e.g., [5,7]).
So we can state the following

Theorem 2 (cf. [3]). i) The dispersion equals Sh ■ r,$, where r,$ is the radius
o f the parallel with colatitude t> pertaining to the sphere with radius | .
ii) The corresponding vector field J  is a Jacobi vector field when restricted to a
geodesic connecting two orthogonal eigenstates corresponding to different energy
levels.

Notice that in view of this theorem the Heisenberg Uncertainty Principle appears 
essentially as a manifestation of the curvature of the quantum mechanical space
P(C2) (see also [6,15]).

2.2. A Link with Elliptic Functions

A relation, rather speculative but interesting, between two level quantum systems 
and elliptic functions, will be shown here (see also [3]), but first let us review some 
basic definitions and properties of these objects (see e.g. [12,14,16,18]).
The complete elliptic integral of the first kind, according to Legendre’s classifica­
tion, associated to the Jacobi modulus k  e  C \  {0,1} is

f |  1
K ( k ) =  dfi.

^0 y  1  — k 2 sin2 (f>

An important case, especially for applications, arises when the Jacobi modulus k 
is real and 0 < k < 1. By this restriction k 2 can be interpreted as a cross-ratio of 
the four roots of a complex polynomial appearing in a generic elliptic integral in 
Weierstraß form

r dx
J  y/4(a: -  ei)(a: -  e2)(x -  e3)

where z 2 =  4(x — ei)(x  — 62) (x — e.3) is a non singular cubic C in P2 with 
ei +  62 +  63 =  0. The elliptic integral above is explicitly inverted by the Weierstraß 
function p  =  p(z,  r ) ,  fulfilling the above equation with x = p, z  = p' . It is known 
that this cubic is diffeomorphic to a torus T  := C/A, defined by quotienting C



Uncertainty, Braiding and Jacobi Fields 131

via the normalized lattice A =  Z(1 , r ) ,  where r  =  i . Furthermore, the j -  
invariant specified below parameterizes the isomorphism classes of elliptic curves

, _  4 (1 -  k 2k ,2f  
3 ~  27 ¥ k ^

Now we come back to the two level quantum system and recall, as explained in 
Subsection 1.3, that

|(l k>)|2 =  (M ,[l ],[0] , M ) = : * 2

and |(0|n)|2 =: k '2 =  1 — k 2. So the idea is that we may regard the transition 
probability k 2 = | ( l |n)|2 as the Jacobi modulus {squared) o f an elliptic curve 
C = Ck2 =  Cj. The modulus k 2 will also be the cross-ratio o f the corresponding 
Weierstraß roots.
The main result is the following

Theorem 3 ([3]). i) There exists a family o f elliptic curves Ck2 parameterized by 
k 2, building up a {topologically trivial, i.e., having a contractible base) fibration 
T  —> (0 ,1) by abelian tori, wherein the dynamical Lagrangian tori {parallels on 
the unit sphere) can be embedded and made to correspond, in the normalized lat­
tice Z (l, r )  to the t -one-cycle. The one-one-cycle can be associated to a meridian 
passing through the poles, and can be called collapse cycle, since the measure­
ment o f the Hamiltonian forces collapse onto an eigenstate, with the appropriate 
probability.
ii) The tori have varying complex structures (induced by r), ultimately governed 
by the geometrical uncertainty, which appears directly in the expression for the 
j-invariant.

Further properties and explicit calculations can be found in [3].

3. Braiding in One-Qubit Space 

3.1. The Braid Group and SL(2, Z)

In this Section we investigate a different but related property of the one-qubit space 
P(C2) =  S2, more precisely we study special unitary representations of the three- 
strand braid group from a geometrical viewpoint as an action on quantum states. 
Let us briefly review some of its basic properties (see e.g., [8,10,17]). The n-strand 
braid group B n, n > 3, can be presented via its generators h , i  = 1 , 2 , . . . ,  n — 1 
subject to the relations

h h +lbt = bt+1btbt+1 for i = 1 , 2 , . . . ,  n -  1 
bfij =  bjbi for \i — jj > 2  .
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Adjoining the relations bß =  1, i =  1 , 2 , . . . ,  n — 1, we get a presentation of the 
symmetric group Sn. There is a natural surjection B n —» Sn, and its kernel is given 
by the pure (or coloured) braid group Pn. In our case n =  3, so we have the single 
condition &1 &2&1 =  &2&1 &2-
The centre Z  of B% is generated by (&1 &2)3 and one has B%/Z = PSL(2, Z) (the 
latter being the modular group).

3.2. SU (2)-representations of B%

Now we are going to give a purely geometrical representation of the braid group 
in terms of the rotations in R3. To this aim, recall that any SU(2) matrix can be 
written in the form

up up UP
Un(ip) =  exp(i — a  ■ n) =  cos ^ I-> — sin — i er • n

with ip e  [0, 2tt), n  a unit vector, er := (oy, er2 , 0 3 ) (the Pauli matrices) which 
furnish a rotation in the ordinary three-space of angle ip around the axis n. Now, 
let a , b e l 3 be two unit vectors, and a  • b  =: cos Q. Then we have

C/a (a) • Ub(ß) =  p i 2 +  Çio- • a  +  ri<r • b  +  sicr • a  x b

with
a  IJ . a  , IJ

p =  cos — cos ;--sm — sin — cos 1 1
F 2 2 2 2

a  0 
q =  sm -  cos -

r  =
a  IJ 

cos — sm —

. a  , IJ 
s = — sm — sm —

Applying the latter in the braid relation for n = 3, we arrive at the following

Theorem 4 ([3]). i) There exists a unique family o f SU(2)-representation classes 
o f the three-strand braid group B%, where the rotation angle a  o f both generators 
and the angle O between their respective axes are related by means o f the formula

a  O 1 
sin — cos — =  —

2 2 2

with O e  | — yf1, ^ The equivalent forms are

cos O =
cos a  

1 — cos a
and cos a  =

eosfl 
1  +  cos O

with a  6 f  ) (trivial representations are included).
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ii) The above representations induce, in turn, special unitary representations o f 
SL(2, Z) and o f the modular group PSL(2, Z).

(See also [9,10]). Observe that all non trivial special unitary representations of 
Bz are genuine braid group representations in the sense that they do not induce 
representations of the symmetric group S3 . Indeed, this is the case if the extra 
condition 6f =  =  1  is fulfilled, which never happens unless the representa­
tion is trivial (see also [17]). The characters of the representations read, in turn 
x(C/a(a)) =  Tr (Ua(a)) =  2 cos f  =  X(Ub(a)).

3.3. Three-Strand Braiding in One-Qubit Space and the Weierstraß Roots

In [3] we have found the unitary representations of Bz  involving braiding of the 
Weierstraß roots ei , i  =  1,2,3 with ei +  62 +  63 =  0. The calculations show that 
the Weierstraß roots, when represented by points on a sphere, form an equilateral 
triangle inscribed in a great circle and the braid generators induce rotations of angle 
7r, with their respective axes forming an angle of One is led to the anharmonic
ratio of the Weierstraß roots and to the square lattice case.

Theorem 5 (cf. [3]). There exists a unique “physical” (i.e., with Jacobi modulus 
0 <  k 2 < 1 ) unitary representation (class) o f the three-strand braid group Bz, 
causing braiding o f the three roots e\ =  \/3, 62 =  0, 63 =  — >/3 o f the natural 
elliptic cubic, associated to the Jacobi modulus k 2 =  =  §•

Conclusions

In this work we have reviewed some basic geometric properties of the finite di­
mensional quantum mechanics, stemming from the complete integrability of the 
Schrödinger dynamics in the “classical” sense. We have shown a link between 
quantum uncertainty and Jacobi fields and have pointed out a connection with el­
liptic functions coming from to the cross-ratio interpretation of quantum transition 
probabilities. We also gave a geometrical construction, in terms of the rotations in 
the ordinary Euclidean space, of some special unitary representations of the three- 
strand braid group on the quantum one-qubit space. From this we derived an action 
of the braid group directly on the three Weierstraß roots, when viewed as points in 
the one-qubit space.
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