Fourth International Conference on

Geometry, Integrability and Quantization

June 6-15, 2002, Varna, Bulgaria

Ivailo M. Mladenov and Gregory L. Naber, Editors
Coral Press, Sofia 2003, pp 271-283

CONFORMAL SCHWARZIAN DERIVATIVES
AND DIFFERENTIAL EQUATIONS

HAJIME SATO' and TETSUYA OZAWA?

" Graduate School of Mathematics, Nagoya University
Chikusa-ku, 464-8602 Nagoya, Japan

 Department of Mathematics, Meijo University
Tempaku-ku, 468-8502 Nagoya, Japan

Abstract. We investigate the fundamental system of equations in the
theory of conformal geometry, whose coefficients are considered as
the conformal Schwarzian derivative. The integrability condition of
the system is obtained in a simple method, which allow us to find a
natural geometric structure on the solution space. From the solution
spaces, using this geometric structure, we get a transformation whose
Schwarzian derivative is equal to the given coefficients of the equation.

1. Introduction

Some years ago Sasaki and Yoshida [10] gave the fundamental system of linear
equations, which is the key system connecting the theory of conformal connec-
tions and the uniformizing differential equations in the geometry of symmetric
domains of type IV. It is a system of equations with n variables such that
the maximal dimension of the solution space is n + 2. The solutions natu-
rally provide a map into the projective space whose image is contained in the
hyperquadric, and accepts the conformal transformation group as its symmetry.

Sasaki and Yoshida considered the equations as a higher dimensional analogue
of Gauss—Schwarz equation. In projective geometry of higher dimension, they
defined Schwarzian derivatives as a difference of normal Cartan connections
moved by a diffeomorphism. Using the Schwarzian derivatives, they got the
system of linear equations such that the maximal dimension of the solution
space is n + 1 on n variables [9, 12]. In conformal geometry of higher dimen-
sion, the problem is much harder. As the Schwarzian derivatives we need more
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data than the difference of normal Cartan connections. They add some data
derived from the difference of conformal metrics (see also [1]) and finally got
the equation in [10]. From various viewpoints, several authors studied other
generalized notions of Schwarzian derivative in conformal geometry (see e. g.
[2,7,8]).

In a certain dimension, the equation gives a concrete description of Aomoto—
Gel’fand hyper-geometric equation of type (3, 6) and is used by Matsumoto—
Sasaki—Takayama—Yoshida to study the monodromy of the period map of some
family of K3 surfaces [3-6].

But the introduction of the key equation in [10] is by a very roundabout way.
They use the hypersurface theory of projective geometry and the theory of
normal Cartan connection. In this paper, we introduce a simpler equation by a
direct method showing that this is the only equation that we need. We use a
simple calculation in conformal geometry and we get both a key equation and
its integrability condition. By this simple method, we hope to find other key
equation in other geometric structure that may extend the result of Seashi [11]
to nilpotent geometries.

The following system of linear partial differential equations is fundamental for
us:

1 a C 1 a C 1 a
ij — —hijh Y = (T, — —hijh T )@ + (i — —hijh "Tap) (1)
for each 7,7 = 1,...,n, and we call (1) the fundamental equation. The

summation over a,b and c run from 1 to n. Here ¢ is the unknown function
on R* (or C"), and ¢,; and ¢, are its partial derivatives, while h,;; = hj;,
Iy, =T%, ry; = rj; are given functions on R” (or C™), such that the matrix
{h,;} is nondegenerate, and {h°*} is its inverse. We regard h = {h;;} as a
pseudo-Riemannian metric, and note that the equation (1) is invariant under
conformal changes of h, provided Ffj and r;; are respectively the Christoffel

symbol of h and —1/(n — 2) times the Ricci curvature.

Let V denote the covariant derivative whose coefficients are {F;k }. We assume

that V is the Weyl conformal connection of the metric h, that is, there exists a
function f such that VA = df ® h holds.

We find the integrability condition of the equation (1) as follows: let R,; and
R be the Ricci and scalar curvature tensor of F;'-k

R trace, r 1
ij — hij — ——= Ry
Tig (n(n2)+ n ) Joop -2
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is one of the conditions, which is equivalent to r,; = —R,;/(n—2) in the equa-
tion, and the other condition is the vanishing of the conformal Weyl curvature
tensor of {h;;} (the Cotton tensor when the dimension of the manifold is 3).

Let us consider R™ (or C") endowed with the linear pseudo-Riemannian metric
hq of signature (p,q) (p + ¢ = n). For a local diffeomorphism f on this flat

space, we denote by h;; the pull back f*hg, and {Z’;} and R,; the Christoffel

symbol and Ricci curvature tensor of h,;, respectively. In view of (1), we
define the Schwarzian derivative of f as the following data:

(s Gror (i) g (e )

As we prove in Lemma 3, if the equation is normalized as indicated in Section 4,
the solution space has a natural inner product. If the equation (1) is integrable,
then the dimension of the solution space is equal to n + 2, and an orthonormal
basis of the solution space is used to construct a map into the projective space
whose image is contained in a hyperquadric, which is conformally equivalent
to the standard flat conformal structure of R™ (or C™). Therefore we get a local
diffeomorphism on this flat space.

Our main theorem concerns a close relation between the equation (1) and the
resulting diffeomorphism via the Schwarzian derivative. We briefly state it
as follows (for the precise statement see Theorem 1): if h;; is conformally
flat, then the normalized fundamental equation is integrable and the resulting
diffeomorphism has the Schwarzian derivatives equal to the coefficients of the
equation. Conversely, given a diffeomorphism on a conformally flat space, the
Jfundamental equation with coefficients equal to the Schwarzian derivatives of
the diffeomorphism is integrable, and the resulting diffeomorphism is equal to
the given diffeomorphism up to a translation in O(p + 1,q + 1).

2. Fundamental Equation

The Einstein convention of summation is assumed and all indices a, b, ... will
run from 1 to n.

Using the coefficient of the fundamental equation (1), we define an operator D
by

1 1 1 1
Dy = —habcpab — Eh“"rgb% — Ehab’rabgo = - E(Ag@ + R) 2)

mn
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where A is the Laplacian, and R is the scalar curvature. Then the equation (1)

can be written as
82
ox* 0z 14

0
:hijDSO‘I‘ZF?j%(P‘FTU@'
k

3)

This form of the equation is suitable for the theory of hypersurfaces in the
affine differential geometry, where D¢ serves as the Blaschke normal vector

field.

Lemma 1. Let S; be the matrix defined bellow

0 & --- 6" 0
ru Ty oo T ha
Si= | 1 Do
Tni F71m le hnz
B A e

Then the equation (3) is equivalent to

0
axit(w,wl,---soml?@) =S - (¢, 01, ¢, Do)

if and only if

Q; = %h“me, B = %h“bRSbi
o = (W R W )
where
R = hany — hajre + Tighay — Ui har
Rﬁjk = Fik,j - Ff;j,k + kaFij - F?j]‘_‘fzk
R?jk = Tikj — Tije + DipTa; — Ffjrak .

“4)

®)

(6)

Proof: We are required to explain the derivatives (Dg); of Dy with respect

to z* in terms of {h;;,['*

i;»Tig 1+ Differentiating (2) we get

n(Dg); = h% (Pap — Toype — Tar) + h* (Qap — Toppe —

- h'flib (habD(p + FZb(pc + TabP — Fcczb(pc o Tab(p)

+ he (cpm-b — T, 0 — Tabitp — Doy — m%) :
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We substitute @, = (hm-Dcp + T4 04 + 'rm-)b to get

(- 1)(D¢)

_ (h;bhab b h®hgs s + T By — habrgbhm.) Dy

7

+ (h“bFi,b + T TY + h¥ry — hO°T¢

ab,i

— habFZngi — h“brab(ﬁi) Pd
+ (h“bFf”-’r‘cb R gy — hPT e — hab’rab,i)(p'

The last equation is equivalent to (D), = a; Dy + Y2, + Byp. O

The Ricci curvature tensor of {I'};} is by definition,

Ri; = Ri,;
which is also equal to
habRaibj — h,abRiajb — habRZjthi — *habRijhci . (7)
Finally ~/ is equal to
. 1 . . .
vl = ] (—h" Ry + B'"r,; — trace, 7d)) (8)
n J—

where the trace;, r denotes the sum h%r,,.

3. Maurer-Cartan Relation of the Fundamental Equation

In this section, we derive a necessary and sufficient condition for the funda-
mental equation (1) to be integrable, that is, to have an n + 2 dimensional
solution space.

Let S be the matrix valued 1-form defined by
S =.5,dz"

where the matrices S, are given in (4). From Lemma 1, it follows that the
fundamental equation (1) is integrable, if and only if S satisfies the Maurer—
Cartan relation

dS=5AnS.

The exterior derivative of S is equal to

dS = d(S,dz*) = dS, Adz® = S, , dz® A dz®
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and the wedge product is equal to
SAS=(S,dz") A (S,dz®) = 5,8, dz* Adz®.
Therefore the Maurer—Cartan relation can be read as
Si; — S +8.5;, —8;5 =0.

We can derive the same equations in terms of {h,;, ['¥ %, Tij } that is equivalent

to the Maurer—Cartan relation. First of all the derivatives of S are given by

0 o --- 0 0
T1i,j FL—,J— e F’fm hii;

Sij =1\ : : :
T'ni,j F71u g FZl »J h”i’j
By YL A ag

If we denote by Sf . the matrix elements of 5,5, then they are equal to

Szoj() Tigs Szly() Fip Sz%l = hi
Sgk =705 + hrf3i, S! ik = Tkzd;- + FZzny + hkl’yJ,SZ’,:l [yihaj + hyio;
Szg(n+1) ’Yz Taj + al/BJ7 Sz](n+1) /815; + ’71(1 aj + ai’Yj

SZJ(;}H) =V haej + i

(¢,7,k,1l = 1,...,n). Finally each entry of the Maurer—Cartan relation is as
follows:

MC1 h;; = hj,;, Fk = F?w Tij = Tjis

MC2 745 — Thji + Uiraj — UgjTai + hwiB5 — b i = 05

MC3 Tkz-él Th;OF — Rf,”j + hkfy;- — hyyt =05

MC4 hy; 5 — higi + Dihag — Uijha + by — hygo, = 05

MC5 (i ; — Bji +¥i'Taj — ’Y;—z""m; + Oéﬂj — ;P8 =05

MC6 v ; — ;i + Bi0; — B;0; + Ty — ¥ Ty + vy — v = 0

MC7 o, ; — o + i hay jhm-:O.

4. Normalization of the Fundamental Equation

We normalize the fundamental equation (1) as follows:

rs={ = 12Rki ©)

n —
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where {k} denotes the Christoffel symbol with respect to {h;;}

1j

1
k o ka
{Z—j} = §h (hai,j + hjai — h'ij,a) .
First, we remark that the equality T}, = {Z} holds, if and only if {h;;} is
parallel with respect to the connection V75 0 = V} hy; = hij o —hio D —hja T

Remark 1.

1. The condition 0 = Vrhij seems to be essential for us. We don’t know
whether it is possible to replace it by other conditions or not.

2. We normalize the fundamental equation (1) as V' h = 0 in place of V' h =
f ® h, since the equation (1) is invariant under the conformal change of
the metric.

By taking the trace of (8), we get

R
0 = trace, r + —] + trace y (10)
n —

where R denotes the scalar curvature of {I'};}
R=h"Ry,.
Letting [ = 7 run from 1 to n in the equality (MC3), we get
¥ = trace 6" + h* Ry, + (n — 1)h*r,, . (11)
From (8), (10) and (11), we get

R trace, r 1
= hy; — ; 12
Tki (’I’L(’l’l — 2) + n ) k1 n_ 9 sz ( )
and also
v R ~ trace, T 55 1 pRaR
' n(n —1)(n — 2) n oon—2 (13)

T n —

1
- __ ( i N —|—2tracehr> 5f + hker,, .

Remark that, even though the coefficients Ffj and r;; are replaced by ffj =
Ffj + huﬂ,k and 'F” = rij -+ )\h'ij,
at all. Therefore we equivalently normalize the fundamental equation by

1

the fundamental equation (1) does not change
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as well as (12). Then the equality trace, r = —R/(n — 2) holds, and also, by
(10), the equality tracey = R/(n — 1)(n — 2) holds. Therefore, from (13), it
follows that

R : 1

i 5
T Dmn 27 n2

T nm oy e

By using (6) or (MC2), we get
1

B = —— (Vi (hr) — VI (hrs,))
— 1 T'7r7ab
ey (VI (hRy) — R;)
8R . . P . - - F b .
where R, = vk Since Bianchi identity implies 2V, (h* Ry;) = R;, we obtain
xl
R;

208, = . 16
p (n—1)(n—2) (16)

Finally we remark that the condition V'h,;; = 0 implies

a, =0. a7

5. Integrability and Conformal Flatness

The equation (1) is supposed to be normalized according (14) and (15). Then
{ai, v, B} satisfy (15), (16) and (17). We denote by V the covariant deriv-
ative defined by {I'%}.

Lemma 2. If the Weyl conformal curvature tensor and the Cotton tensor of the
metric {h;;} vanishes, then all equalities from (MCI) to (MC7) hold.

Proof: (MC1), (MCS5) and (MC7) hold, because h;; and the Ricci curvature
tensor R,;; are symmetric, and because [3; is given by (16).

(MC3) follows from the vanishing of the Weyl conformal curvature tensor

1
Ciljk :Rijk + E(szdé - Rik(s;- + h”Rﬁc — hsz;)
R l l
B P T (hisdl — hydl).

Actually, if we substitute for r;; and *y;. the formulae from (14) and (15), we
find that (MC3) is exactly the same as C’fjk =0.
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(MC2) and (MC6) follow from the vanishing of Cotton tensor

R;

R,
Cijp = ViR, — ViR + ———hjr — 2 1)

R -
2(n — 1) o

For this, we note that (MC2) is equivalent to
V7 — Vit +hi 35 — hi; 8 =0
and that (MC6) is equivalent to
Vi, — Vz"Y;- + 615; — f;6, =0.

Notice that a; = 0. If we substitute for r,;, fy;- and (3, the formulae in (14),

(15) and (16), we easily see that the equalities (MC2) and (MC6) comes from
Cix=0.0

6. Inner Product on the Solution Space

We suppose that the equation (1) is normalized as in Section 4. Then we have

(Dg -+ - DY), = (Vi pa + Bip) + @ (Ve + Bit0) + D - s + @i - DY
= 7] (@a¥ + 9a) + 2Bi0¢ + D - ¥; + @i - DY
and
(R @atbs)s = hibﬁﬁad)b + h®(hai D + T80, + Taitp) s
+ hub(ﬁa(hbiDl/’ + Iy be + 1))
= D¢ - + ;- DY + b1y (the + @at) -

The subtraction of the above equations gives

(h®patbs)i — (D ¢ + ¢+ DY), = (h®7y — ¥) (% + ©ath) — 2800

R

= — n—1)(n —2) (p¥; + @) — 20,09,

Here we used the normalization (14) and (15). As a conclusion, we find that

R
(n— 1)(n— 2)

(o) = h®@.by — Dp -9 — ¢ - D + o

is a constant for any solutions ¢, ¢ of the fundamental equation. Thus we have
proved
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Lemma 3. Let (p,q) be the signature of the pseudo-riemannian metric {h;;}.
On the solution space of the fundamental equation (1), the inner product defined
by

(p, ¥y = =Dy - — ¢ DY+ oY+ Y Ry, (18)

R
(n—1)(n — 2)

is nondegenerate and of signature (p + 1,q + 1), provided (1) satisfies the
integrability condition.

7. Main Theorem

The following theorem explains the relation between the fundamental equation
(1) and the conformal geometry.

Theorem 1. Suppose that the fundamental equation (1) with coefficients {h
|

177
is conformally flat. Then the equation (1) is integrable, and for any or-
thonormal basis (¢°,--- , ™) of the solution space, the metric h;; coincides
with the pull back of the standard pseudo-Riemannian metric ¢,; by the map
o (xh e a™) o (@10 @™ /%), Especially, in the case that h;; = §;;
and Ffj = R;; =0, the map ¢ is a linear transformation from O(p+1,q+ 1).

279
5} is normalized as in (9), and that the pseudo-Riemannian metric h;;

Conversely, let h,; be the pull back of the standard metric 6,; by a diffeomor-
phism ¢ = (y,--- ,¢,), and let Ffj and R;; be Weyl conformal connection
and the Ricci curvature of h;;. Then the fundamental equation (1) with co-
efficients {h;;,T};, — Ri;/(n — 2)} is thus integrable, and the diffeomorphism
@ obtained as above by an orthonormal basis of the solution space coin-
cides with ¢ up to a linear transformation from O(p + 1,q + 1). Actually,

{1,9" - ¥, £ ¥, (¥*)*} is an orthonormal basis of the solution space.

Proof: Let H be the (n + 2) X (n + 2)-matrix defined by
R/(n—1)(n-2) 0 -1

H = 0 hi 0 .
-1 0 0

Then the inner product (18) is given by

<§03¢> = (903(101,"' ,SOmDSO)HtW,@bl,'“ ’wn’D¢)'
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For a set of linearly independent solutions (¢°,--- , ") of the fundamental

equation (1), let ® denotes the Wronskian

900 n—|—1
o) o et
= |,
@2 @+t

By Lemma 3, we find that
x> '®(x)H (2)®(x)

is a constant map.

Since our inner product is nondegenerate and of signature (p + 1,¢ + 1), we
can choose a set of solutions ¢, ---, "t so that

0 0 -1
‘O(z)H(z)®(z)=] 0 &5 0 |].

-1 0 O
Let I be the matrix of the right hand of the above. Since the matrix satisfies
the equality I? = I, we find

0 0 —1

OI'¢ =dI(I®'H ' )=H'=| 0 hy 0 .
-1 0 —R/(n—1)(n—2)

In view of the (1, 1)-entry of this matrix, we see that these solutions satisfies

Z(@a)Z . QQOOCPTH_I =0.

a

From this, it follows that the image of the map
z i [ (@); - e (2)] € PP

is contained in a hyperquadric of P"*'. The (i + 1,7 + 1)-entry reads as

> @it — @ittt — QI = hy; .
a=1
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On the other hand it holds that

(@) > (ﬁ)i(ﬁ)j - Z (ele" — %t (" —0"%5)

@? @°
= @l) > () — ¢} Z@ ©l— @ %Z@ o7 + “)22%’@?
= 0 0)2( ") — @ (@ ™) — PPN (@ ™) + Z% o5

= (@2 — @l — e + 3 pten)

Therefore we get
N (¥ -
> (El(gh = (¢") *hy

a

from which we find that the metric /,; and the pull back of the standard metric
by the map = — (@' (z)/¢"(z),...,¢"(x)/¢"(x)) are conformally related. O
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