PATH INTEGRALS ON RIEMANNIAN MANIFOLDS WITH SYMMETRY AND STRATIFIED GAUGE STRUCTURE

SHOGO TANIMURA
Department of Engineering Physics and Mechanics, Kyoto University Kyoto 606-8501, Japan

Abstract

We study a quantum system in a Riemannian manifold M on which a Lie group G acts isometrically. The path integral on M is decomposed into a family of path integrals on quotient space $Q=M / G$ and the reduced path integrals are completely classified by irreducible unitary representations of G. It is not necessary to assume that the action of G on M is either free or transitive. Hence the quotient space M / G may have orbifold singularities. Stratification geometry, which is a generalization of the concept of principal fiber bundle, is necessarily introduced to describe the path integral on M / G. Using it we show that the reduced path integral is expressed as a product of three factors; the rotational energy amplitude, the vibrational energy amplitude, and the holonomy factor.

1. Basic Observations and the Questions

Let us consider the usual quantum mechanics of a free particle in the one-dimensional space \mathbb{R}. A solution for the initial-value problem of the Schrödinger equation

$$
\begin{equation*}
\mathrm{i} \frac{\partial}{\partial t} \phi(x, t)=-\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} \phi(x, t)=\frac{1}{2} \Delta \phi(x, t) \tag{1.1}
\end{equation*}
$$

is given by

$$
\begin{equation*}
\phi(x, t)=\int_{-\infty}^{\infty} \mathrm{d} y K(x, y ; t) \phi(y, 0) \tag{1.2}
\end{equation*}
$$

with the propagator

$$
\begin{equation*}
K(x, y ; t)=\langle x| \mathrm{e}^{-\frac{\mathrm{i}}{2} t \Delta}|y\rangle=\frac{1}{\sqrt{2 \pi \mathrm{i} t}} \exp \left[\frac{\mathrm{i}}{2 t}(x-y)^{2}\right] \tag{1.3}
\end{equation*}
$$

Their physical meanings are clear; the wave function $\phi(x, t)$ represents probability amplitude to find the particle at the location x at the time t. The propagator $K(x, y ; t)$ represents transition probability amplitude of the particle to move from y to x in the time interval t.
If the particle is confined in the half line $\mathbb{R}_{\geq 0}=\{x \geq 0\}$, we need to impose a boundary condition on the wave function $\phi(x, t)$ at $x=0$ to make the initialvalue problem (1.1) have a unique solution. As one of possibilities we may chose the Neumann boundary condition

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}(0, t)=0 . \tag{1.4}
\end{equation*}
$$

Then the solution of (1.1) is given by

$$
\begin{equation*}
\phi(x, t)=\int_{-\infty}^{\infty} \mathrm{d} y K_{N}(x, y ; t) \phi(y, 0) \tag{1.5}
\end{equation*}
$$

with the corresponding propagator

$$
\begin{equation*}
K_{N}(x, y ; t)=K(x, y ; t)+K(-x, y ; t) \tag{1.6}
\end{equation*}
$$

The physical meaning of the propagator $K_{N}(x, y ; t)$ is obvious; the first term $K(x, y ; t)$ represents propagation of a wave from y to x while the second term $K(-x, y ; t)$ represents propagation of a wave from y to $-x$, which is the mirror image of x. Thus the Neumann propagator $K_{N}(x, y ; t)$ is a superposition of the direct wave with the reflected wave.
As an alternative choice we may impose the Dirichlet boundary condition

$$
\begin{equation*}
\phi(0, t)=0 \tag{1.7}
\end{equation*}
$$

Then the solution of (1.1) is given by

$$
\begin{equation*}
\phi(x, t)=\int_{-\infty}^{\infty} \mathrm{d} y K_{D}(x, y ; t) \phi(y, 0) \tag{1.8}
\end{equation*}
$$

with the corresponding propagator

$$
\begin{equation*}
K_{D}(x, y ; t)=K(x, y ; t)-K(-x, y ; t) \tag{1.9}
\end{equation*}
$$

Thus the Dirichlet propagator $K_{D}(x, y ; t)$ is also a superposition of the direct wave with the reflected wave but reflection changes the sign of the wave.

The half line $\mathbb{R}_{\geq 0}$ can be regarded as an orbifold $\mathbb{R} / \mathbb{Z}_{2}$. In the above discussion we have assumed the existence of the propagator $K(x, y ; t)$ in \mathbb{R} and constructed the propagators in $\mathbb{R} / \mathbb{Z}_{2}$ from $K(x, y ; t)$. There are two inequivalent propagators; the Neumann propagator $K_{N}(x, y ; t)$ obeys the trivial representation of \mathbb{Z}_{2} whereas the Dirichlet propagator $K_{D}(x, y ; t)$ obeys the defining representation of $\mathbb{Z}_{2}=\{+1,-1\}$.
Now a question arises; how is a propagator in a general orbifold M / G constructed? Here M is a Riemannian manifold and G is a compact Lie group that acts on M by isometries. Such an example is easily found; we may take $M=\mathbb{S}^{2}$ and $G=\mathbb{U}(1)$. Then the quotient space is $M / G=[-1,1]$, which has two boundary points.
Let us turn to another aspect of the propagator, namely, the path-integral expression of the propagator. For the general Schrödinger equation

$$
\begin{equation*}
\mathrm{i} \frac{\partial}{\partial t} \phi(x, t)=H \phi(x, t)=-\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} \phi(x, t)+V(x) \phi(x, t), \quad x \in \mathbb{R} \tag{1.10}
\end{equation*}
$$

its solution is formally given by

$$
\begin{equation*}
\phi(x, t)=\int_{-\infty}^{\infty} \mathrm{d} y K(x, y ; t) \phi(y, 0) \tag{1.11}
\end{equation*}
$$

The propagator satisfies the composition property

$$
\begin{equation*}
K\left(x^{\prime \prime}, x ; t+t^{\prime}\right)=\int_{-\infty}^{\infty} \mathrm{d} x^{\prime} K\left(x^{\prime \prime}, x^{\prime} ; t^{\prime}\right) K\left(x^{\prime}, x ; t\right) \tag{1.12}
\end{equation*}
$$

By dividing the time interval $[0, t]$ into short intervals we get

$$
\begin{equation*}
K\left(x_{N}, x_{0} ; t\right)=\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} \mathrm{d} x_{N-1} \cdots \mathrm{~d} x_{1} K\left(x_{N}, x_{N-1} ; \epsilon\right) \cdots K\left(x_{1}, x_{0} ; \epsilon\right) \tag{1.13}
\end{equation*}
$$

with $t=N \epsilon$. For a short distance and a short time-interval the propagator asymptotically behaves as

$$
\begin{equation*}
K(x+\Delta x, x ; \Delta t) \sim \frac{1}{\sqrt{2 \pi \mathrm{i} \Delta t}} \exp \left[\frac{\mathrm{i}}{2}\left(\frac{\Delta x}{\Delta t}\right)^{2} \Delta t-\mathrm{i} V(x) \Delta t\right] \tag{1.14}
\end{equation*}
$$

Then "the limit $N \rightarrow \infty$ " gives an infinite-multiplied integration, which is called the path integral,

$$
\begin{equation*}
K\left(x^{\prime}, x ; t\right)=\int_{x}^{x^{\prime}} \mathcal{D} x \mathrm{e}^{\mathrm{i} \int L \mathrm{~d} s}=\int_{x}^{x^{\prime}} \mathcal{D} x \exp \left[\mathrm{i} \int_{0}^{t} \mathrm{~d} s\left(\frac{1}{2} \dot{x}(s)^{2}-V(x(s))\right)\right] \tag{1.15}
\end{equation*}
$$

In a rigorous sense, the limit $N \rightarrow \infty$ does not exists but physicists use this expression for convenience. The philosophy of the path integral can be symbolically written as

$$
\begin{equation*}
\text { propagation of the wave }=\sum_{\text {trajectories }} \text { motion of the particle. } \tag{1.16}
\end{equation*}
$$

We can construct the path integral on the half line $\mathbb{R}_{\geq 0}=\mathbb{R} / \mathbb{Z}_{2}$ as well:

$$
\begin{align*}
& K_{N}\left(x^{\prime}, x ; t\right)=\sum_{n=0}^{\infty} \int_{x}^{x^{\prime}} \mathcal{D} x \mathrm{e}^{\mathrm{i} \int L \mathrm{~d} s} \tag{1.17}\\
& K_{D}\left(x^{\prime}, x ; t\right)=\sum_{n=0}^{\infty}(-1)^{n} \int_{x}^{x^{\prime}} \mathcal{D} x \mathrm{e}^{\mathrm{i} \int L \mathrm{~d} s} \tag{1.18}
\end{align*}
$$

where the summations are taken with respect to the number of reflections of the trajectory at the boundary $x=0$.
Now another question arises; what is the definition of path integrals on a general orbifold M / G ? Our main concerns are propagators and path integrals in M / G.

2. Reduction of Quantum System

When a quantum system has a symmetry, it is decomposed into a family of quantum systems that are defined in the subspaces of the original. Here we review the reduction method [5] of quantum system.
A quantum system (\mathcal{H}, H) is defined by a pair of a Hilbert space \mathcal{H} and a Hamiltonian H, which is a self-adjoint operator on \mathcal{H}. The symmetry of the quantum system is specified by (G, T), where G is a compact Lie group and T is a unitary representation of G over \mathcal{H}. The symmetry implies that $T(g) H=H T(g)$ for all $g \in G$. The compact group G is equipped with the normalized invariant measure $\mathrm{d} g$.
To decompose (\mathcal{H}, H) into a family of reduced quantum systems, we introduce $\left(\mathcal{H}^{\chi}, \rho^{\chi}\right)$, where \mathcal{H}^{χ} is a finite dimensional Hilbert space of the dimensions $d^{\chi}=\operatorname{dim} \mathcal{H}^{\chi}$. Besides, ρ^{χ} is an irreducible unitary representation of G over \mathcal{H}^{χ}. The set $\{\chi\}$ labels all the inequivalent representations. For each $g \in G$, $\rho^{\chi}(g) \otimes T(g)$ acts on $\mathcal{H}^{\chi} \otimes \mathcal{H}$ and defines the tensor product representation. The reduced Hilbert space is defined as the subspace of the invariant vectors of $\mathcal{H}^{x} \otimes \mathcal{H}$,

$$
\begin{equation*}
\left(\mathcal{H}^{\chi} \otimes \mathcal{H}\right)^{G}:=\left\{\psi \in \mathcal{H}^{\chi} \otimes \mathcal{H} ; \forall h \in G,\left(\rho^{\chi}(h) \otimes T(h)\right) \psi=\psi\right\} \tag{2.1}
\end{equation*}
$$

Let the set $\left\{e_{1}^{\chi}, \ldots, e_{d}^{\chi}\right\}$ be an orthonormal basis of \mathcal{H}^{χ}. Then the reduction operator $S_{i}^{\chi}: \mathcal{H} \rightarrow\left(\mathcal{H}^{\chi} \otimes \mathcal{H}\right)^{G}$ is defined by

$$
\begin{equation*}
f \in \mathcal{H} \mapsto S_{i}^{\chi} f:=\sqrt{d^{\chi}} \int_{G} \mathrm{~d} g\left(\rho^{\chi}(g) e_{i}^{\chi}\right) \otimes(T(g) f) \tag{2.2}
\end{equation*}
$$

Theorem 2.1. S_{i}^{χ} is a partial isometry. Namely, $\left(S_{i}^{\chi}\right)^{*} S_{i}^{\chi}$ is an orthogonal projection operator acting on \mathcal{H} while $S_{i}^{\chi}\left(S_{i}^{\chi}\right)^{*}$ is the identity operator on $\left(\mathcal{H}^{\chi} \otimes \mathcal{H}\right)^{G}$.

Theorem 2.2. The family of the projections $\left\{\left(S_{i}^{\chi}\right)^{*} S_{i}^{\chi}\right\}$ forms a resolution of the identity as

$$
\begin{equation*}
\sum_{\chi, i}\left(S_{i}^{\chi}\right)^{*} S_{i}^{\chi}=I_{\mathcal{H}} \tag{2.3}
\end{equation*}
$$

Hence, the Hilbert space is decomposed as

$$
\begin{equation*}
\mathcal{H}=\bigoplus_{\chi, i} \operatorname{Im}\left(S_{i}^{\chi}\right)^{*} S_{i}^{\chi} \cong \bigoplus_{\chi, i}\left(\mathcal{H}^{\chi} \otimes \mathcal{H}\right)^{G} \tag{2.4}
\end{equation*}
$$

and this decomposition is compatible with the Hamiltonian action. Namely, we have the commutative diagram

Then $\left(\left(\mathcal{H}^{\chi} \otimes \mathcal{H}\right)^{G}, \operatorname{Id} \otimes H\right)$ defines a reduced quantum system.
The projection $P^{\chi}: \mathcal{H}^{\chi} \otimes \mathcal{H} \rightarrow\left(\mathcal{H}^{\chi} \otimes \mathcal{H}\right)^{G}$ onto the reduced space is defined by

$$
\begin{equation*}
P^{\chi}:=\int_{G} \mathrm{~d} g \rho^{\chi}(g) \otimes T(g) . \tag{2.6}
\end{equation*}
$$

The reduced time-evolution operator of the reduced system is

$$
\begin{equation*}
U^{\chi}:=P^{\chi}\left(\operatorname{Id} \otimes \mathrm{e}^{-\mathrm{i} H t}\right) \tag{2.7}
\end{equation*}
$$

Theorems 2.1 and 2.2 are easily proved by an application of the Peter-Weyl theorem, which states that the set of the matrix elements of irreducible unitary representations $\left\{\sqrt{d^{\chi}} \rho_{i j}^{\chi}(g)\right\}_{\chi, i, j}$ forms a complete orthonormal set of $L_{2}(G)$. Our main purpose is to give a path-integral expression to the time-evolution operator U^{χ}. To describe it we need to introduce some related notions.

Assume that the base space M is equipped with the measure $\mathrm{d} x$. Then the space of the square-integrable functions $L_{2}(M)$ becomes a Hilbert space \mathcal{H}. Moreover, assume that the compact Lie group G acts on M preserving the measure $\mathrm{d} x$. Then $g \in G$ is represented by the unitary operator $T(g)$ on $f \in L_{2}(M)$ by

$$
\begin{equation*}
(T(g) f)(x):=f\left(g^{-1} x\right) \tag{2.8}
\end{equation*}
$$

Let $p: M \rightarrow Q=M / G$ be the canonical projection map. Then a measure $\mathrm{d} q$ of $Q=M / G$ is induced by the following way. Let $\phi(q)$ be a function on Q such that $\phi(p(x))$ is a measurable function on M. The induced measure $\mathrm{d} q$ of Q is then defined by

$$
\begin{equation*}
\int_{Q} \mathrm{~d} q \phi(q):=\int_{M} \mathrm{~d} x \phi(p(x)) . \tag{2.9}
\end{equation*}
$$

On the other hand, suppose that the time-evolution operator $\mathbb{U}(t):=\mathrm{e}^{-\mathrm{i} H t}$ is expressed in terms of an integral kernel $K: M \times M \times \mathbb{R}_{>0} \rightarrow \mathbb{C}$ as

$$
\begin{equation*}
(\mathbb{U}(t) f)(x)=\int_{M} \mathrm{~d} y K(x, y ; t) f(y) \tag{2.10}
\end{equation*}
$$

for any $f(x) \in L_{2}(M)$.
Let us turn to the reduced Hilbert space (2.1) and characterize it for the case $\mathcal{H}=L_{2}(M)$. A vector $\psi \in \mathcal{H}^{\chi} \otimes L_{2}(M)$ can be identified with a measurable map $\psi: M \rightarrow \mathcal{H}^{\chi}$. The tensor product $\rho^{\chi}(g) \otimes T(g)$ acts on ψ as

$$
\begin{equation*}
\left(\left(\rho^{\chi}(g) \otimes T(g)\right) \psi\right)(x)=\rho^{\chi}(g) \psi\left(g^{-1} x\right), \quad g \in G \tag{2.11}
\end{equation*}
$$

via the definition (2.8). The definition (2.1) of the invariant vector $\psi \in\left(\mathcal{H}^{\chi} \otimes\right.$ $\left.L_{2}(M)\right)^{G}$ implies

$$
\begin{equation*}
\left(\left(\rho^{\chi}(g) \otimes T(g)\right) \psi\right)(x)=\rho^{\chi}(g) \psi\left(g^{-1} x\right)=\psi(x) \tag{2.12}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\psi(g x)=\rho^{\chi}(g) \psi(x) \tag{2.13}
\end{equation*}
$$

A function $\psi: M \rightarrow \mathcal{H}^{\chi}$ satisfying the above property is called an equivariant function. Hence the reduced Hilbert space is identified with the space of the equivariant functions $L_{2}\left(M, \mathcal{H}^{\chi}\right)^{G}$.
The projection operator $P^{\chi}: L_{2}\left(M ; \mathcal{H}^{\chi}\right) \rightarrow L_{2}\left(M, \mathcal{H}^{\chi}\right)^{G}$, is now given by

$$
\begin{equation*}
\left(P^{\chi} \psi\right)(x)=\int_{G} \mathrm{~d} g \rho^{\chi}(g) \psi\left(g^{-1} x\right) \tag{2.14}
\end{equation*}
$$

From (2.7-2.10) and (2.14) the reduced time-evolution operator is given by

$$
\begin{equation*}
\left(U^{\chi}(t) \psi\right)(x)=\int_{G} \mathrm{~d} g \int_{M} \mathrm{~d} y \rho^{\chi}(g) K\left(g^{-1} x, y ; t\right) \psi(y) \tag{2.15}
\end{equation*}
$$

and thus the corresponding reduced propagator is $K^{\chi}: M \times M \times \mathbb{R}_{>0} \rightarrow$ End \mathcal{H}^{χ} is defined by

$$
\begin{equation*}
K^{\chi}(x, y ; t):=\int_{G} \mathrm{~d} g \rho^{\chi}(g) K\left(g^{-1} x, y ; t\right) \tag{2.16}
\end{equation*}
$$

Our aim is to express the reduced propagator in terms of path integrals.

3. Stratification Geometry

To write down a concrete form of the path integral we need to equip the base space M with a Riemannian structure. Namely, now we assume that M is a differential manifold equipped with a Riemannian metric g_{M} and that the Lie group G acts on M preserving the metric g_{M}. Then the volume form induced from the metric defines an invariant measure $\mathrm{d} x$ of M. We do not assume that the action of G on M is free. Therefore $p: M \rightarrow M / G$ is not necessarily a principal bundle.
For each point $x \in M, G_{x}:=\{g \in G ; g x=x\}$ is called the isotropy group of x and $\mathcal{O}_{x}:=\{g x \mid g \in G\}$ is the orbit through x. It is easy to see that $\mathcal{O}_{x} \cong G / G_{x}$. Note that the dimensions of the orbit \mathcal{O}_{x} can change suddenly when the point $x \in M$ is moved. The subspace of the tangent space $T_{x} M$, $V_{x}:=T_{x} \mathcal{O}_{x}$, is called the vertical subspace and its orthogonal complement $H_{x}:=\left(V_{x}\right)^{\perp}$ is called the horizontal subspace. $P_{V}: T_{x} M \rightarrow V_{x}$ is the vertical projection while $P_{H}: T_{x} M \rightarrow H_{x}$ is the horizontal projection. A curve in M whose tangent vector always lies in the horizontal subspace is called a horizontal curve. Although these terms have been introduced in the theory of principal fiber bundle, we use them for a more general manifold that admits group action.
Let \mathfrak{g} denote the Lie algebra of the group G. For each $x \in M, \mathfrak{g}_{x}$ is the Lie subalgebra of the isotropy group G_{x}. The group action $G \times M \rightarrow M$ induces infinitesimal transformations $\mathfrak{g} \times M \rightarrow T M$ by differentiation. The induced linear map $\theta_{x}: \mathfrak{g} \rightarrow T_{x} M$ has ker $\theta_{x}=\mathfrak{g}_{x}$ and $\Im \theta_{x}=V_{x}$. Then it defines an isomorphism $\tilde{\theta}_{x}: \mathfrak{g} / \mathfrak{g}_{x} \rightarrow V_{x}$. Now we define the stratified connection form ω by

$$
\begin{equation*}
\omega_{x}:=\left(\tilde{\theta}_{x}\right)^{-1} \circ P_{V}: T_{x} M \rightarrow \mathfrak{g} / \mathfrak{g}_{x} \tag{3.1}
\end{equation*}
$$

Actually ω is not smooth over the whole M but it is smooth on each stratum of M.

4. Reduction of Path Integral

The Riemannian structure $\left(M, g_{M}\right)$ defines the Laplacian Δ_{M}. Suppose that $V: M \rightarrow \mathbb{R}$ is a potential function such that $V(g x)=V(x)$ for all $x \in M$, $g \in G$. Then the Hamiltonian $H=\frac{1}{2} \Delta_{M}+V(x)$, which acts on $L_{2}(M)$, commutes with the action of G, which is defined in (2.8). Let us assume that the path integral in M is formally given by

$$
\begin{equation*}
K\left(x^{\prime}, x ; t\right)=\int_{x}^{x^{\prime}} \mathcal{D} x \exp \left[\mathrm{i} \int_{0}^{t} \mathrm{~d} s\left(\frac{1}{2}\|\dot{x}(s)\|^{2}-V(x(s))\right)\right] \tag{4.1}
\end{equation*}
$$

Now we repeat our question; what is the path-integral expression for the reduced propagator (2.16) on $Q=M / G$? The answer is our main result which is given below.

Theorem 4.1. The reduced path integral on $Q=M / G$ is

$$
\begin{align*}
K^{\chi}\left(x^{\prime}, x ; t\right)= & \int_{q}^{q^{\prime}} \mathcal{D} q \rho^{\chi}(\gamma) \rho_{*}^{\chi}\left(\mathcal{P} \exp \left[-\frac{\mathrm{i}}{2} \int_{0}^{t} \mathrm{~d} s \Lambda(\tilde{q}(s))\right]\right) \tag{4.2}\\
& \times \exp \left[\mathrm{i} \int_{0}^{t} \mathrm{~d} s\left(\frac{1}{2}\|\dot{q}(s)\|^{2}-V(q(s))\right)\right]
\end{align*}
$$

To read the above equation we need explanation of the symbols. The canonical projection map $p: M \rightarrow Q=M / G$ induces the metric g_{Q} of Q by asserting that the map p is a stratified Riemannian submersion. For $x, x^{\prime} \in M$ we put $q=p(x)$ and $q^{\prime}=p\left(x^{\prime}\right)$. The map $q:[0, t] \rightarrow Q$ is a curve connecting $q=q(0)$ and $q^{\prime}=q(t)$. The map $\tilde{q}:[0, t] \rightarrow M$ is a horizontal curve such that $\tilde{q}(0)=x$ and $p(\tilde{q}(s))=q(s)$ for $s \in[0, t]$. The element $\gamma \in G$ is a holonomy defined by $x^{\prime}=\gamma \cdot \tilde{q}(t)$.
To describe the symbol Λ, which is called the rotational energy operator, we need more explanation. The metric $g_{M}: T M \otimes T M \rightarrow \mathbb{R}$ defines an isomorphism $\hat{g}_{M}: T M \rightarrow T^{*} M$. Then its inverse map $\hat{g}_{M}^{-1}: T^{*} M \rightarrow T M$ defines a symmetric tensor field $g_{M}^{-1}: M \rightarrow T M \otimes T M$. Thus combining it with the stratified connection $\omega_{x}: T_{x} M \rightarrow \mathfrak{g} / \mathfrak{g}_{x}$ we define the rotational energy operator by

$$
\begin{equation*}
\Lambda(x):=-\left(\omega_{x} \otimes \omega_{x}\right) \circ g_{M}^{-1}(x) \in\left(\mathfrak{g} / \mathfrak{g}_{x}\right) \otimes\left(\mathfrak{g} / \mathfrak{g}_{x}\right) \tag{4.3}
\end{equation*}
$$

The unitary representation ρ^{χ} of the group G in \mathcal{H}^{χ} induces the representation ρ_{*}^{χ} of the universal enveloping algebra $\mathcal{U}(\mathfrak{g})$. Then we have $\rho_{*}^{\chi}(\Lambda(x)) \in$ End \mathcal{H}^{x}. Moreover,

$$
\begin{equation*}
\lambda(\tau)=\rho_{*}^{\chi}\left(\mathcal{P} \exp \left[-\frac{\mathbf{i}}{2} \int_{0}^{\tau} \mathrm{d} s \Lambda(\tilde{q}(s))\right]\right) \in \operatorname{End} \mathcal{H}^{\chi} \tag{4.4}
\end{equation*}
$$

is defined as a solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} \tau} \lambda(\tau)=-\frac{\mathrm{i}}{2} \rho_{*}^{\chi}(\Lambda(\tilde{q}(\tau))) \lambda(\tau), \quad \lambda(0)=I \in \operatorname{End} \mathcal{H}^{\chi} \tag{4.5}
\end{equation*}
$$

Now we can read off the physical meaning of the reduced path integral (4.2). The path integral is expressed as a product of three factors:
i) the rotational energy amplitude $\exp \left[-\frac{i}{2} \int_{0}^{t} \mathrm{~d} s \Lambda(\tilde{q}(s))\right]$, which represents motion of the particle along the vertical directions of $p: M \rightarrow M / G$;
ii) the vibrational energy amplitude $\exp \left[\mathrm{i} \int_{0}^{t} \mathrm{~d} s\left(\frac{1}{2}\|\dot{q}(s)\|^{2}-V(q(s))\right)\right]$, which represents motion of the particle along the horizontal directions;
iii) the holonomy factor γ, which is caused by non-integrability of the horizontal distributions.

Here we give the outline of the proof of the main Theorem 4.1. For the detail see the reference [6]. Essentially, it is only a matter of calculation; from the path integral on M (4.1)

$$
\begin{equation*}
K\left(x^{\prime}, x ; t\right)=\int_{x}^{x^{\prime}} \mathcal{D} x \mathrm{e}^{\mathrm{i} I[x]}, \quad I[x]=\int_{0}^{t} \mathrm{~d} s\left(\frac{1}{2}\|\dot{x}(s)\|^{2}-V(x(s))\right) \tag{4.6}
\end{equation*}
$$

with the reduction procedure (2.16) we get

$$
\begin{align*}
& K^{\chi}\left(x^{\prime}, x ; t\right):=\int_{G} \mathrm{~d} h \rho^{\chi}(h) K\left(h^{-1} x^{\prime}, x ; t\right)=\int_{G} \mathrm{~d} h \rho^{\chi}(h) \int_{x}^{h^{-1} x^{\prime}} \mathcal{D} x \mathrm{e}^{\mathrm{i} I[x]} \\
& \quad=\int_{G} \mathrm{~d} h \rho^{\chi}(h) \int_{q}^{q^{\prime}} \mathcal{D} q \int_{e}^{h^{-1} \gamma} \mathcal{D} g \mathrm{e}^{\mathrm{i} I[g \tilde{q}]}=\int_{q}^{q^{\prime}} \mathcal{D} q \int_{G} \mathrm{~d} h \rho^{\chi}(h) \int_{\epsilon}^{h^{-1} \gamma} \mathcal{D} g \mathrm{e}^{\mathrm{i} \mathrm{I}[g \tilde{q}]} \\
& \quad=\int_{q}^{q^{\prime}} \mathcal{D} q \int_{G} \mathrm{~d} h \rho^{\chi}(\gamma h) \int_{e}^{h^{-1}} \mathcal{D} g \mathrm{e}^{\mathrm{i} I[g \tilde{q}]} \tag{4.7}\\
& \quad=\int_{q}^{q^{\prime}} \mathcal{D} q \rho^{\chi}(\gamma) \int_{G} \mathrm{~d} h \rho^{\chi}(h) \int_{e}^{h^{-1}} \mathcal{D} g \mathrm{e}^{\mathrm{i} \int \mathrm{~d} s \frac{1}{2}\|\dot{g}\|^{2}} \mathrm{e}^{\mathrm{i} \int \mathrm{~d} s\left\{\frac{1}{2}\|\dot{q}\|^{2}-V(q)\right\}} \\
& \quad=\int_{q}^{q^{\prime}} \mathcal{D} q \rho^{\chi}(\gamma) \rho_{*}^{\chi}\left(\mathcal{P} \exp \left[-\frac{\mathrm{i}}{2} \int_{0}^{t} \mathrm{~d} s \Lambda(\tilde{q}(s))\right]\right) \mathrm{e}^{\mathrm{i} \int \mathrm{~d} s\left\{\frac{1}{2}\|\dot{q}\|^{2}-V(q)\right\}}
\end{align*}
$$

5. Example

Finally, we show an example of application of our formulation. Let us begin with the plane $M=\mathbb{R}^{2}$, which has the standard metric $g_{M}=\mathrm{d} x^{2}+\mathrm{d} y^{2}=$ $\mathrm{d} r^{2}+r^{2} \mathrm{~d} \theta^{2}$. It admits the symmetry action of $G=\mathbb{S O}(2)$. The quotient space is a half line $Q=\mathbb{R}^{2} / \mathbb{S O}(2)=\mathbb{R}_{\geq 0}$. The invariant potential is a function $V(r)$ only of r.
The group action

$$
\mathbb{S O}(2) \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} ; \quad\left(\begin{array}{rr}
\cos \phi & -\sin \phi \tag{5.1}\\
\sin \phi & \cos \phi
\end{array}\right)\binom{x}{y}
$$

induces the action of the Lie algebra

$$
\mathfrak{s o}(2) \times \mathbb{R}^{2} \rightarrow T \mathbb{R}^{2} ; \quad\left(\begin{array}{rr}
0 & -\phi \tag{5.2}\\
\phi & 0
\end{array}\right)\binom{x}{y},
$$

which defines the vertical distribution

$$
\theta: \mathfrak{s o}(2) \times \mathbb{R}^{2} \rightarrow T \mathbb{R}^{2} ; \quad\left(\left(\begin{array}{rr}
0 & -\phi \tag{5.3}\\
\phi & 0
\end{array}\right),\binom{x}{y}\right) \mapsto \phi \frac{\partial}{\partial \theta}
$$

Then the stratified connection becomes

$$
\omega=\left(\begin{array}{rr}
0 & -1 \tag{5.4}\\
1 & 0
\end{array}\right) \mathrm{d} \theta
$$

In the cotangent space the metric is given as

$$
\begin{equation*}
\left(g_{M}\right)^{-1}=\frac{\partial}{\partial r} \otimes \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial}{\partial \theta} \otimes \frac{\partial}{\partial \theta} . \tag{5.5}
\end{equation*}
$$

The rotational energy operator is

$$
\Lambda=-(\omega \otimes \omega) \circ\left(g_{M}\right)^{-1}=-\frac{1}{r^{2}}\left(\begin{array}{rr}
0 & -1 \tag{5.6}\\
1 & 0
\end{array}\right) \otimes\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right) .
$$

The irreducible unitary representations of $\mathbb{S O}(2)$ are labeled by the integers $n \in \mathbb{Z}$ and defined by

$$
\rho_{n}: \mathbb{S O}(2) \rightarrow \mathbb{U}(1) ;\left(\begin{array}{rr}
\cos \phi & -\sin \phi \tag{5.7}\\
\sin \phi & \cos \phi
\end{array}\right) \mapsto \mathrm{e}^{\mathrm{i} n \phi}
$$

The differential representation of the Lie algebra of $\mathbb{S O}(2)$ is

$$
\left(\rho_{n}\right)_{*}: \mathfrak{s o}(2) \rightarrow \mathfrak{u}(1) ; \quad\left(\begin{array}{rr}
0 & -\phi \tag{5.8}\\
\phi & 0
\end{array}\right) \mapsto \mathrm{i} n \phi .
$$

The rotational energy operator is then represented as

$$
\begin{equation*}
\left(\rho_{n}\right)_{*}(\Lambda)=-\frac{(\mathrm{i} n)^{2}}{r^{2}}=\frac{n^{2}}{r^{2}} . \tag{5.9}
\end{equation*}
$$

Finally the reduced path integral is given by

$$
\begin{align*}
K_{n}\left(r^{\prime}, \theta^{\prime}, r, \theta ; t\right)= & \int_{r}^{r^{\prime}} \mathcal{D} r \mathrm{e}^{\mathrm{i} n\left(\theta^{\prime}-\theta\right)} \tag{5.10}\\
& \times \exp \left[\mathrm{i} \int_{0}^{t} \mathrm{~d} s\left\{-\frac{n^{2}}{2 r^{2}}+\frac{1}{2} \dot{r}^{2}-V(r)\right\}\right]
\end{align*}
$$

So the effective potential for the radius coordinate r is given by

$$
\begin{equation*}
V_{\mathrm{eff}}(r)=V(r)+\frac{n^{2}}{2 r^{2}} \tag{5.11}
\end{equation*}
$$

where the second term represents the centrifugal force.

Acknowledgements

Thanks are due organizers for the stimulating conference at the beautiful site, Sts. Constantine and Elena in Bulgaria. I wish to thank I. Mladenov especially for his effort to keep touch with me for a long time from a great distance. I have benefited also from discussions with P. Exner and C. Herald. This work is supported by a Grant-in-Aid for Scientific Research (\#12047216) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

[1] Davis M., Smooth G-manifolds as Collections of Fiber Bundles, Pacific J. Math. 77 (1978) 315-363.
[2] Landsman N. and Linden N., The Geometry of Inequivalent Quantizations, Nucl. Phys. B 365 (1991) 121-160.
[3] Montgomery R., Isoholonomic Problems and Some Applications, Commun. Math. Phys. 128 (1990) 565-592.
[4] Tanimura S. and Tsutsui I., Induced Gauge Fields in the Path-Integral, Mod. Phys. Lett. A 10 (1995) 2607-2617; e-print archive: hep-th/9508165.
[5] Tanimura S. and Iwai T., Reduction of Quantum Systems on Riemannian Manifolds with Symmetry and Application to Molecular Mechanics, J. Math. Phys. 41 (2000) 1814-1842; e-print archive: math-ph/9907005.
[6] Tanimura S., Path Integrals on Riemannian Manifolds with Symmetry and Induced Gauge Structure, Int. J. Mod. Phys. A 16 (2001) 1443-1461; e-print archive: hep-th/0006150.

