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Abstract. By considering the set of coupled KdV differential equations 
as a zero curvature representation of some fourth order linear differential 
equation and factorizing the linear differential equation, the hierarchy of 
solutions of the coupled KdV differential equations have been obtained 
from the eigen spectrum of constant potentials.

1. Introduction

The cKdV (coupled Korteweg-de Vries) equation is a generic example 
of A-component systems, energy dependent Schrodinger operators and bi- 
Hamiltonian structures for multi-component systems [3,4]. Quasi-periodic and 
soliton solution are studied in connection with Hamitonian systems on Rie- 
mann surface in [1], The soliton fission effect, kink to anti-kink transitions, 
and multi-peaked solitons extend to equations that model physical phenomena. 
The classical Boussinesq system and the equations governing second harmonic 
generation (SHG) are each connected to the cKdV system through nonsin­
gular transformations [2], Direct application of these transformations enables 
solutions of cKdV system to be interpreted in the context of these related equa­
tions. A connection between the SHG system and the cKdV system has been 
recently discussed [2,14]. Therefore, in this work because of more importance 
of cKdV systems, we consider two kind of integrable cKdV system [5,10] 
and solve them using the factorization method that it is somehow similar to
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the procedure of obtaining the solution of KdV equation from the free parti­
cle Schrodinger equation through the well known technique of supersymmetric 
quantum mechanics [6, 11, 12].
This work is organized as follows. In Section 2 we consider factorizing the 
fourth order linear differential equation and deform it through zero curvature 
representation. Section 3 is devoted to determining the set of functions that 
appear in the fourth order linear differential operators. In Section 4, we con­
sider the hierarchy of the fourth order linear differential operators. Finally in 
Section 5, we obtain the hierarchy of the solutions of cKdV and KdV [8,15] 
equations.

2. Factorization and Deformation of the Fourth Order Linear
Differential Equation

Let us consider the following eigenvalue equations

Li'ipi = Xipx , (1)

where the fourth order linear differential operator L 1 is:

L x = d i + X 1d2 + Y1d + Z 1 . (2)

The operator L { can be factorized as in [7]

L i = (d ~ 9a){9 -  g3)(d -  g2){d -  gx) +  c, (3)

where c is an arbitrary constant. Hence we will have

Liipi =  A4A3A 2A 1ipi + cipi = Xipi, i = 1 , . . . ,  4 (4)

in which A t are obtained from periodic permutations of the functions gt, i =  
1 , . . . ,  4, that is

9l • - >  92 ^  #3 ^  94 ^  gi , (5)
and

By defining

f p i + i  =  A t i p t , 
f p i  =  A 4 ip4 ,

A j = d - g j ,  j  =  1, - - -, 4 .

Fj = JXXX ,

(6)

(7)
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we can write [9]

F  = U F

where

(  0 1 0
0 0 1 0
0 0 0 1

V A -Z , ~Yj - X i 0/

(8)

(9)

It must to be mentioned that we have supposed the transformations (6) are 
canonical ones. Now by taking derivative of the relations (6) with respect to x  
and using the relations (8) we will have

where

Gk

Fj+1 — GjFj j  — 1 , . . . ,  3, 
Ft = GaFa ,

/  - 9 k 1 0
9kx ~ 9 k 1 0
Qkxx 2Qkx 9k 1

\A Z k Qkxxx T 3c/kxx) (̂ A”/j; 4“ 39kx') oy

( 10)

(11)

Now, taking derivative of both sides of (10) with respect to x  and assuming 
that the matrix Gk is invertible, we can write

Uj+i — GjXG j 1 +  GjU jG j1, j  — 1 , . . .  ,3 
Ux =  GAxGf 1 +  GaUaG41.

( 12)

Here we have assumed that the vectors F{ depend on another parameter such 
as t, so that

FJt = VJFJ , j  = (13)

By taking derivative of both sides of (10) with respect to t we conclude

Fj+i — GJtG j 1 +  Gj Vj Gj 1 , j  =  l , . . . , 3 ,
(14)

U, = G u G i 1 + G4H4G41 .

The relations (12) and (14) are just gauge transformations which preserve the 
zero curvature condition, i. e we have

Ui t - V ix + [U,V} = 0 , (15)
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Now by substituting the relations (9) and (11) in the transformations (12), we 
obtain

Xi+1 =  Xi +  4gix ,
Yi+1 — Yi+ X ix +  6gixx +  4gigix , (16)
^ + i =  +  2Xi+1gix +  Y0 +  4:gtxx +  +  Qgigixx +  ^gfgix ,

for l — 1 , . . . ,  3 and

X 1 =  X 4 +  4^4;c ,
Yi =  I 4 +  X 4x +  6^ 2; +  ^g4g4x , (17)
2̂ 1 =  Z4 +  2X4g4x +  Y4X +  ^g4xx +  g4X 4x +  Qg4g4xx +  4^4̂ 4a. .

3. Determination of the Set of Functions for Yi and Z i9
i =  1, 2, 3, 4 together with their Higher Step Generalization

If we can determine the set of functions X t , Yx and Z 4 by solving the eigenvalue 
equation Lx'ipx =  Xih \, then we can determine the set of functions X t, Yt and 
Zi, i =  2, 3, 4 via the prescription of previous section, that is, by choosing 
A =  c which yields

(d-gx)tp(c)  = 0 ^  gx =  ^ l o g ^ ( c ) .  (18)

Obviously the eigenvalue equation Lxi^x — Yio has four linearly independent 
solutions, since it is fourth order linear differential equation. Hence we can 
consider the set of functions tjjx (c), Ox (c) and £4 (c) as three linearly independent 
solutions of eigenvalue equation Lxtfjx =  Ayy for A =  c. Now, defining

54 =  ^ log ^ i(c ) , (19)

where the function ipx (c) can bee chosen as the ground state of the eigenvalue 
equation Lxip(c) — \ijj{c). Then we have

^2(c) = (d-gx) ipx (c) =  W ( f a (c), (c))

Therefore, the function g2 can be written as

g 2 —

a  w U x ( c ) . M c ) )
d x l°g 0 !(c)

(20)

(21)
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Similarly we can write

V’s(c) =  (d -  g2)(d -  gi)ipi(c) =
^ ( ^ i ( c ) , 0i(c),£ i(c)

W ( M c) , M c)
(22)

hence the function g3 take the following forni

gs =  log — — —— —
dx w [ M c ) , M c )

(23)

Now, considering the relation

gi +  g2 +  <?3 +  <?4 — o , (24)

and using (19), (21) and (23) we obtain

f)
~ d x  lo§ W (^,1(c)’<̂1(c) ’^1(c)) ’ (25)

and consequently the ground state of the eigenvalue equation L-, — \  ib(c)
corresponding to A =  c is

^ 4(c) =  — --------- ------------- s- • (26)
V k(^i(c),0i(c),^i(c))

Now, using the relations (16) and (17) we can determine the set of functions 
Xi, i =  2, 3,4 in terms of the functions X 1, i. e.

o 2

X2 =  X l + 4 9 ^  log* (c)’ <27>
Q 2

V  =  X, +  4 —  l0g w (v .(c ) ,  &(<=)) , (28)
Q 2

V  =  X, +  4 —  log IF (v>, (c), & (c), 6  (c)J . (29)

Even though there are not the expressions like the above ones for the set of 
functions YL and Z L, i =  2,3,4, they can be determined in terms of the functions 
9i, g2 and g3.
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4. Hierarchy of Fourth Order Operators

In this section we introduce the following hierarchy of fourth order linear dif­
ferential operators

r 1 T 2 7" 3 7" 4 —  r 1 . 7-2 7-3 7- 4 _  7-1 .
-^o ’ ■L/0 ’ - 0̂ 5 - 0̂   L 1 ! - ^ 15- ^ 15- ^ !    ■‘-'2 >

7"1 7"2 T3 T-4
Jn L i +1 (30)

where, the set of operators L \ , j  — 1, 2, 3,4 and z =  1, 2, 3 , . . .  can be factor­
ized in the following form

L l  = A*A*nA lA \  +  ,
L l = A l A i A l A l  + cn ,
T, 3 -  A2 /I1 44 43 , (3 ^
r 4 — 43 2̂ 41 44

with

K  = d - g rm  r = (32)

From the identity L ]ri =  L'( . , we have

{d -  gl){d -  gl){d -  gh){d -  gi) + cn
=  (d ~ gAn+ l) id -  g3n+1)(<9 -  gl+l)(d -  gl+1) +  Cn+1 . (33)

Now, using the prescription of previous section, the set of functions gln, i — 
1, 2, 3 can be determined as

d
3ln =  f a  log ^ l{cn) ,

2 d l ^ ( ^ ( c n) , ^ ( c n) 
=  & log -

=  m log

1pnCr

d , 3 F (^ ( c n) , ^ ( c ra) ,^ ( c ) n)

(34)

(35)

(36)

where the set of functions ?/4(cn), olJ/'n) and C!J/'n) are three linearly inde­
pendent solutions of the eigenvalue equation L* =  Av/A corresponding to 
the eigenvalue A — cn. Now, if we assume that the set of functions A7,, and 
Zq are arbitrary constants, then the eigen spectrum of the eigenvalue equation 
L ẑ/A — A?/A can be determined right away. Hence taking its three linearly
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independent eigen functions 0d(co), 0d(co) and Cd(co) together, and using the 
relations (34), (35) and (36), we get

Similarly for A 
obtain

d

d

d
—  lo g ^ ( c o ) ,

d wUl{ca),<t>l{cQ)
dx  l0g ^ c 0)

d ^ (^o(co),0o (co),Co(co)
dx °S W('iJjq(cq), 0o(co))

(37)

(38)

(39)

Ci from the set functions 0d(ci), 4>\{ci) and Co(ci)> we

^ o (ci)

^ o (ci)

^ o (ci)

i y ( ^ ( c 0) , ^ ( c i ) )

^o(co)
fh (^ o (c 0) , ^ ( c 0) , ^ ( c i ) )

i y ( ^ ( c o),0o(co))

^ ( ^ ( c o ) ,  ^o(co), €o(ci )5 ^ ( ci)) 

^ f^ o (co ), <̂ o(co), ^o(ci))

(40)

(41)

(42)

Obviously the relations (40), (41) and (42) hold true for the set of functions 
0o(ci) and Cd (c ,), too, where all we need only is to replace the function ^o(ci) 
with 0o(ci) ar>0 Co (o A respectively. Now, for n — 1 using (42) and taking the 
fact that Hq =  H{, we get

Q  Vhf0,J(co),0j(co),Co(co),0o(ci)
pi =  — log ---------7---------------------------

dx  Vh(0^(Co),0j(co),Co(Co)
(43)

Indeed we choose the function 0 |(c i)  — 0o(ci) as the ground state of eigen­
value equation L\ip\ — A0|. Also

2 j . j  hh(0^(co) ,0^(Co),Cd(Co),0o(Cl),0o(Ci))
02 = ( d -  gDcf)] = V ,-------------------------------------, (44)

H/ (0d(Co),0d(Co),Cd(Co),0d(Cl))

which leads to

2 d hk(0d(cO) ,0d(cO),Cd(Co),0d(Cl) ^ o ( Cl)) 
91 =  & log w  0d(cO),0d(cO),Cd(Co),0d(Cl)

(45)
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Finally, the function can be written as

=  {d -  gl)(d -  g\)&

Therefore, for the function g{ we get the following expression

(46)

al
d

log
w

9 ^  W  (v>0 (Co ), 00 (Co ), £() (Co ) , ^0 (Cl ), 00 (Cl ))
• (47)

Repeating the above procedure and using

VF(0l5. . . , ^ )
= W((f>1,...,<j>n, f , g ) ,  (48)

we can evaluate all gn, and we have
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O3
n

T y ( ^ ( c 0) , ^ ( c 0),Co(c0) ,- - .  

w  (^o(cQ), 0o(co), ^o(c0), . . .

Cn)-)£,o (cn)J

6 v̂ JT- ) ,0 o (O )

(54)

Now, using the identity L \+1 =  L An, we obtain

d
Xn+1 =  Xn +  4 —  ( ^  +  ^  +  < )̂

^  a 2 , ^ (^o (co ), ^ ( c 0), ^ ( c 0), - - -
— x n +  4 —— log

(55)

5. Solitary Solutions of Coupled KdV Differential Equations

In this section using the results of previous section, we will obtain solutions of 
KdV and Hirota Satsuma differential equations. We choose the operators such
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that, they satisfy g\ +  g2 =  0 and gl + <4 =  0. We can choose

9n = ~ Vl  , 92n =  ,

9n _  W 5 9n Vn i

and then we can write

=  (d +  0 ( 3  -  0 ( 3  -  vl){d  +  O  +  Cn ,
=  (d + 0 ( 3  -  0 ( 3  -  0 ( 3  +  O  +  cn , 

L 3n = ( d -  0 ( 3  +  0 ( 3  +  0 ( 3  -  O  +  cn , 
L n = { d -  vl){d -  0 ( 3  +  0 ( 3  +  O  +  cn .

By defining the functions [5]

1/ i 2
- " 2\̂nx- w*

Un —1
“ 2('O 4" O

f  — v 4 -4- 'iPJn un ' un i

- (O2 - (O2),
- (O2 + (O2),
h =  iP — iP,vn unxunx unx *

(62)

(63)

(64)

they reduce to

L \  =  <94 +  2und2 +  2(unx +  <pnx)<9 +  w2
2 | | _j_P̂n ' ^nxx ~T~ P̂ nxx ~T~ ?

L2 =  34 +  (2hn -  f nx -  f l ) d 2 +  {2hnx -  f nxx -  2f nf nx)d
-U h ̂  f  h -|- h f  +  r~  ,vn ' Jn,vnx ' ,vnjnx i 5

L 3n =  a 4 +  2un<92 +  2(unx -  <£>nx)d +  w2 -  (/?2

4“ 'U'nxx ^nxx 4“ Cn 5
O  — 34 +  (2 hn +  3 fnx — f l ) d 2 +  (2hnx +  S fnxx — 2 fnf nx)d +  hr

+  fnxxx + hn f ’nPnx 4“ 4“ Cn .

(65)

In (65) the transformation </?n —» — maps the first and third operators into 
each other, while the transformations f n — —f n and hn —> hn +  f n map 
the second operator to the fourth one. Since, we are interested in obtaining the 
solitary solutions of coupled KdV differential equations, we choose the operator 
M l  in the following form [5]

M l — 2d3 +  3und  +  — (un 4- 2(f)n) . (6 6 )
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The Lax’s equations associated with the pairs of operators M l and Lln lead to 
Hirota Satsuma equation

n x x x

'nt n x x x

T" 3uunx 
T 3u n (j)nx ,

^ f n f n x  5 (67)

which are invariant with respect to the transformation 0 —>■ —0. Now, defining 
the operator as [5]

M l = 2d3 +  ^ (2hn -  f nx -  f l ) d  +  ^ (2hnx -  f nxx -  2f nf nx) , (68)

then, the Lax’s equation associated with the pair of operators and L2n ( the 
second operator in (65)) lead to coupled KdV equation

f n t

hnt

2  f n x x x  T" 3f n f n x x  T" f nx 3f n f n x  T" h n f n

+  6 f n K

-L 1 Oh h -1— f\ f  h -L 1 Oh fi vn x  \ ^  J  n' vn x x  i vn J  n x x

+  18/na:^ ni ^ h n f n x  T" 30n x x x x x  T" 3f n f n

+  t S f n x f n x x  ~  $  f n f n x x  ~  ^ f n f n x )  •

_  I  (2h^ \ ^ ,vnxxx

(69)

(70)

The equations (67) are invariant under the transformation 0,( —> ©n, while the 
equations (69) and (70) are invariant under the transformations f n —f n and 
hn —> hn f n. Also, through the above transformations in (66) and (68), the
Lax’s partners of the operators L \  and Tf take the following form

M l  =  2 d 3 +  3u n d  +  jj (u„ -  20 „ ) , (71)

M l  —  2 d 5  +  — (2 h n + 3 f n x  — f l ) d  +  -  (2 h n x  +  -t>fnxx ~  f n f n x ) ■ (72)

We should mention that if we consider £*(cn), y0 (cn) and 00 (cn) as three 
linearly independent solutions of the eigenvalue equation 70 0d =  A00, then 
according to (62), we have

W {^h(Cn)^<H(Cn)) = COI1St /  (73)

that is, in every step we should choose the linearly independent solutions y0 (cn) 
and 00 (cn) with a constant Wronskian. According to (65), the equality L f  —
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L \+1 implies that

<pn_|_i =  const,
1

'U'n+l 2  “h 3 f n x  / n) .
(74)

Hence the solutions of coupled KdV equation give the solution of KdV equation 
via exploiting the relation (74). Now we consider an example. If the potentials 
u0 and ipo are arbitrary constants, then the solutions of the eigenvalue equation 
Ll'ipo — X'tpo for A — ck are

exp[±akx m t\ and exp[±{3kX + nt\ 

where a k and (3k are

1/ 2 "

(75)

(Xk

Pk  =

— Uo +  (̂ Pq +  Co — ck j

( 2 \ 1/2' - u 0 -  (^0 +  Co -  ck J

-  1 / 2  

1 1/2 (76)

Since these solutions should satisfy the time evolution equation t/jlt (ck) = 
A7q Aq (ck) too, they can be written in the form

ak exp[±afc(x +  {2a2k +  3u0)t] and bk exp[±afc(x +  (2/32 +  3u0)t] i l l )

As an example for k — 0 and using (73) we choose p i (c0), <Po(c0) and Co(co) 
in the following form

^o(co) =  cosh(a0(x +  {2a20 +  3u0)t) ,
4>l(co) =  sinh(a0(x +  (2a2 +  3u0)t) , (78)

Co(co) =  cosh(/?o(x +  (2/3g +  3uo)t).

By choosing U0 — —3 and cp0 — 1, in the first step of factorization, using 
the relations (64) and (74) we obtain the following results for the solutions of 
coupled KdV equations and KdV itself

fo =  — tanh[\/2(—x  +  51)] — 2tanh(—2x +  21) , (79)

ho =  — 2V 2 tanh(—2x +  21) tanh[v/2(—x  +  5/)] H--------o------------- 7 5
cosh (—2x +  21)

4
cosh2[\/2(—x  +  5f)]

tp — —3 +

(80)

(81)
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