Subject Index

A

Aberth, 5, 194
ad hoc computability [see computability, counterexamples]
adjoint (definition), 125-126
Ahlfors, 61
analytic continuation, 60-64
analytic functions, 50-51, 59-64 [see also computability]
axioms (for computability)

- Banach space, 1, 3, 5, 11, 77-82 [Note. The axioms are used in the proof of virtually every theorem from Chapter 2 onwards. This is understood. We do not list all the pages, since such a list would grow so long that it would cease to be informative.]
- Banach space (statement), 81
- computability structure, $1,3,5,77-82$, 85-87 [Note. Again, this notion permeates the book. Only the most important references are listed.]
- computability structure (definition), 80
- Hilbert space [same as for a Banach space]

B
Banach/Mazur [see computability]
Banach space [see axioms, computability, First Main Theorem]
Banach space (definition), 8
Bishop, 4, 192, 194
Blum, 192
bounded operators, $1-2,93-94,96,123$, 128, 150-184 [see also First Main Theorem]
bounded operators (definition), 96
Bridges, 194
Brouwer, 4, 192

C
C, 8 [see also computability, Chapter 0]
$C^{n}, 8$ [see also computability]
$C^{\infty}, 8$ [see also computability]
$C_{o}, 8$ [see also computability]
Caldwell, 12, 26, 62 [see also computability]
Cauchy integral formula, 12, 60
characteristic function (definition), 8
Closed Graph Theorem (classical, noneffective), 97,108
closed operators, 93-94, 96-100 [see also First Main Theorem]
closed operators (definition), 96-97
Closure Criterion (First/Second), 98-100, 105, 108, 110, 116
CompNorm (in proof of the Second Main Theorem), 165-166
compact operators, $123,129,133,136$
comparisons (between real numbers/ rationals), $14-15,23$
Composition Property, 81
computability [For the underlying notion of computability on a Banach space, see "axioms, Banach space." The derived notions, for standard Banach spaces and related topics, are listed below. Theorems are listed elsewhere.]

- ad hoc, 5, 80, 90-92, 124, 134-142, 146-147
- analytic functions, 59-60
-Banach/Mazur, 28, 64-65
- Banach space [see axioms]
$-C^{n}, 50-59,104-105,117$
- $C^{\infty}, 50,54-57,60$
- $C_{o}, 84,91,107-108,111,118-119$
- Caldwell/Pour-El, 12, 24-28 [see also Definition B and Chapter 0 computabity]
- Chapter 0 (an alternative designation for computability in the sense of Definitions A and B), 50, 79, 82-83, 94-95, 104-106, 115-116, 118-120, 149, 161-162
- complex numbers 14, 27
- continuous functions [same as Chapter 0 computability]
- Definition A, 12, 25-28, 28 (again in Section 4), 33, 36-37, 40, 44
- Definition B, 12, 25-28, 33, 36-37, 39, 44
- Definitions A and B (equivalence of), 36-37, 44-49
- double sequence, 18,80
- energy norm, 95-96, 116-118
- Grzegorczyk/Lacombe, 4-5, 12, 2428 [see also Definition A and Chapter 0 computability]
- Hilbert space [see axioms]
- inner products, 136-138
— intrinsic, 79, 82-85, 90-91
$-L^{p}, 5,83-85,94-95,107-114$
- $\ell^{p}, 85,94,107-111$
- $L^{\infty}, 89-90$
- $\ell_{o}^{\infty}, 85,107-108,110$
- open sets, 193
- operators [see effectively determined operators]
- real numbers, 11, 13-17, 20
- rectangles, 25, 27
- sequences of rational numbers, 12,14 , 24
- sequences of real numbers, 11-12, 1724
- sequences on a Banach space [see axioms]
- sequential (for continuous functions), $25,28-29,32,34-35,40,51,55,64$, 67-68, 71-72
- Sobolev spaces, 5, 95-96
- structure [see axioms]
- ($0, \infty$), 27-28
continuous functions [see computability]
convolution, 69-70
counterexamples (involving)
- ad hoc computability, 90-92, 134139, 146
- analytic continuation for noncompact domains/sequences of functions, 6263
- converse parts (iii) and (iv) of the Second Main Theorem, 188-191
- creation and destruction of eigenvalues, 130-132
- derivatives, 51, 55, 58-59, 104-105
- derivatives of a sequence of functions, 59
- eigenvectors [see Eigenvector Theorem]
- entire functions, 62
- Fourier series, 105, 110
- Intermediate Value Theorem for sequences of functions, 42
- isometry of nonequivalent computability structures, 146
- $L^{\infty}, 89-90$
- non closed operators, 105
- non normal operators, 132-133
- noncompact domains, 58, 62
- noncomputable real numbers, 12,20 , 129-130, 132-133, 135
- noneffective convergence, $11-12,16$, 19-20, 22-23, 105
- norm of an effectively determined operator, 129
- separable but not effectively separable Banach spaces, 88
- sequences of eigenvalues, 129, 189191
- sequences of n-th derivatives, 55
- sequences of real numbers, 19-20, 2224
- sequences of step functions, 112
- sequentially computable continuous functions, 67
- unbounded operators [see First Main Theorem]
- wave equation, 68-69, 72-73, 115116,120
Cook, 192
Cutland, 7

D

$\mathscr{D}(T)$ [see domain]
Davis, 7
degrees of unsolvability, 192
density (effective), 82, 85-87
density (not necessarily effective), $82,85,88$
differentiation, $11,40,50-59,60-62,104-$ 105

Dirichlet norm [see computability, energy norm]
distributions, $99-100,108,116$
domain of an operator, 96-104, 125-126
Dunford/Schwartz, 110

E

effective

- convergence, 11-24, 34, 37, 44-49, 56, 72, 81, 86-87, 105-106, 162
- convergence (definitions), $14,18,34$, 81
- generating set, 78-79, 82-87, 93-94, 101, 104, 127 [Note. This notion permeates the book. Only the most important references are listed.]
- generating set (definition), 82
- uniform continuity, 25-27, 29, 32, 34-$35,40,50,53-55,64,67-68,71-72$
- uniform continuity (definition), 25-27
effectively
- determined operator, 2, 123-124, 127-129, 132-134, 138-139, 150, 158-160, 184-185, 187-188
- determined operator (definition), 127
- separable, 78-79, 82, 88-89, 128, 138, 141-142
- separable (definition), 82
eigenvalue, 2, 123-124, 126-127 [see also Second Main Theorem]
eigenvalue (definition), 127
eigenvector, 2, 123-124, 126-127 [see also Eigenvector Theorem]
eigenvector (definition), 127
Eigenvector Theorem, 1-4, 77, 80, 123-124, 133-142
Eigenvector Theorem (statement), 133-134
elementary functions, 21
energy norm [see computability]
exponential time, 192
extremal points, 148

F

Feferman, 192
Feigenbaum's constant, 194
First Main Theorem 1-4, 69, 77, 93-96, 101-120
First Main Theorem (statement), 101
Fourier series, 83, 94-95, 105-106, 108111
Fourier transforms, 3, 95, 108-111
Friedman, 192

G

Gödel, 78
Grzegorczyk, 4, 5, 12, 25, 28, 104, 192-193
[see also computability]
Grzegorczyk hierarchy, 192

H

Hahn Banach Theorem (in Addendum on problems), 194
Halmos, 129, 151-153, 157
heat equation, $3,70,118-119$
Hellwig, 116
Herbrand, 78
higher order recursion theory, 192
Hilbert space [see Second Main Theorem, Eigenvector Theorem]
Hilbert space (definition), 8
Hilbert transform, 109

I

I^{q} [see computable rectangle]
I_{M}^{q} [see computable rectangle]
InEq (in proof of the Second Main Theorem), 178
injection operator, 107-108
Insertion Property, 81
integration, 12, 33, 35, 37-40
intrinsic computability [see computability]
isometries, 125, 145-148 [see also counterexamples]

K

Karp, 192
KdV equation, 194
Kirchhoff's formula, 12, 33, 73, 115-116
Kleene, 7, 25
Ko, 192
Kreisel, 2, 5, 13, 41, 193

L

$L^{p}, 8$ [see also computability]
$\ell^{p}, 8$ [see also computability]
L^{∞} [see computability, counterexamples]
ℓ_{0}^{∞} [see computability]
Lachlan, 5
Lacombe, 4, 5, 12-13, 25, 28, 41, 104, 193
[see also computability]
Laplace's equation, 3, 70, 119
Limit Axiom [see axioms]
Linear Forms Axiom [see axioms]
linear independence [see Effective Independence Lemma]
linear span (definition), 78
Loomis, 151-153

M

$[-M, M]$ (in proof of the Second Main Theorem), 160
Markov, 78, 192
Mazur, 5, 17 [see also computability, Banach/Mazur]
Metakides, 5, 194
modulus of convergence, 16
monotone convergence, 20
Moschovakis, 5
Mostowski, 5, 24
Mycielski, 28
Myhill, 5, 50-53, 105

N

Nagy [see Riesz/Nagy]
Navier-Stokes equation, 194
Nerode, 5, 194
non normal operators, 194 [see also
counterexamples]
nonlinear analysis, 194
Norm Axiom [see axioms]
normal operators, 123, 126, 132-133, 157, 184-187 [see also Second Main Theorem]
normal operators (definition), 126
Not an eigenvalue! (in proof of the Second Main Theorem), 168-169, 176-177

O

operational calculus (for the Spectral Theorem), 152-153, 161-162
operators [see bounded, unbounded, closed, self-adjoint, normal, compact; see also effectively determined operator]
orthonormal basis, 136-137, 140-141
overlapping intervals, $149,162,166-167$, 174

\mathbf{P}

$P=N P$ problem, 192
pairing function (definition), 7
partial derivatives, 58,72
Petrovskii, 115
piecewise linear functions, 83, 112
polynomial space, 192
polynomial time, 192
Post, 78
potential equation [see Laplace's equation] Pour-El, 50, 64-65, 68, 105-106, 111, 118120, 194 [see also Caldwell]
primitive recursive functions, 192
problems, 192-194

Q

quantum mechanics, $2,124,126-127$

R

real analytic functions, 64
real numbers [see computability]
recursive function (description in terms of Turning machines), 6
recursive set (definition), 7
recursive topology, 193
recursively enumerable nonrecursive set, 6 -$7,15,22,52,56,58,62-63,90,102$, $104,113,129-130,135,146,189$
recursively enumerable nonrecursive set (definition), 7
recursively enumerable set (definition), 6-7
recursively inseparable pair of sets, $7,42,65$
recursively inseparable pair of sets (definition), 7
Rice, 5, 11-12, 16-17
Richards, [see Pour-El]
Riemann Mapping Theorem (in Addendum on problems), 193
Riemann surfaces, 193
Riesz Convexity Theorem (classical), 110
Riesz/Nagy, 125-129, 151-153, 157, 190
Robinson, 5, 17
Rogers, 5, 7

S

\mathscr{S} [see axioms, computability structure]
Sanin, 192
Schwartz [see Dunford/Schwartz]
Second Main Theorem, 1-4, 77, 123-124, 128-130, 149-191
Second Main Theorem (statement), 128
see saw construction, 44
self-adjoint operators, $2,123,125-126$, 128-132 [see also Second Main Theorem, Eigenvector Theorem]
self-adjoint operators (definition), 126
sequences [see axioms, computability, counterexamples]

Shepherdson, 5
Shohat/Tamarkin, 87
Shore, 5, 194
Shub [see Blum]
Simpson, 5
Smale [see Blum]
Soare, 7
Sobolev spaces [see computability]
spectral measure, 149, 151-152, 166, 170172
Specker, 5, 11-13, 16, 41
Spectral Theorem (classical, noneffective), 149, 151-157, 170
spectrum, 123-124, 126-127 [see also Second Main Theorem]
spectrum (definition), 126
SpThm (in proof of the Second Main Theorem), 153-157, 172
standard functions, 27
step functions, 5, 79, 84-85, 112-114
subrecursive hierarchies, 192

T

Tamarkin [see Shohat/Tamarkin]
Taylor series, 60-61
Theorems [The redundant terms "computability/noncomputability" have largely been omitted in the indexed list which follows.]

- Analytic Continuation Theorem, 60
- Closure Under Effective Uniform Convergence, 34
- Compact Operators, 129
- Composition of Functions, 28-31
- Creation and Destruction of Eigenvalues, 130
- Differentiation Theorem for $C^{1}, 51$, 104
— Differentiation Theorem for $C^{2}, 53$
- Differentiation Theorem for the Sequence of n-th Derivatives, 55
- Effective Density Lemma, 86
- Effective Independence Lemma, 142
- Effective Modulus Lemma, 65
- Eigenvector Theorem, 133-134
- Entire Function Theorem, 62
- Expansion of Functions, 33
- Fejer's Theorem, 106
- First Main Theorem, 101
- Fourier Series (effective convergence of), 105
- Fourier Series and Transforms (L^{p} computability of), 110
- Heat Equation, 119
- Integration Theorems, 35, 37-39, 104
- Intermediate Value Theorem, 41
- L^{p}-Computability for Varying $p, 107$
- Laplace's Equation, 119
- Max-Min Theorem, 40
- Mean Value Theorem, 44
- Non-Normal Operators (noncomputable eigenvalues), 132
- Operator Norm, 129
- Patching Theorem, 32
- Plancherel Theorem, 111
- Potential Equation [see Laplace's Equation]
— Real Closed Field, 44
- Riemann-Lebesgue Lemma, 111
- Second Main Theorem, 128
- Second Main Theorem (converse parts), 189-190
- Second Main Theorem (for normal operators), 184
- Second Main Theorem (for unbounded operators), 188
- Sequence of Eigenvalues (noncomputability of), 129
- Seqentially Computable but Not Computable Continuous Functions, 67
- Stability Lemma, 87
- Step Functions, 114
- Stieltjes, Hamburger, Carleman Theorem, 87
- Third Main Theorem [see Eigenvector Theorem]
- Translation Invariant Operators, 71
- Waiting Lemma, 15
- Wave Equation Theorem (energy norm), 118
- Wave Equation Theorem (uniform norm), 116
- Wave Equation Theorem (weak solutions), 73
- Weierstrass Approximation Theorem, 45, 86
- Wiener Tauberian Theorem, 87
translation, 69-70
translation invariant operators, 51, 69-73
triangle functions (in proof of the Second Main Theorem), 149, 162-165, 167
Turing, 78
Turing machine, 6

U

unbounded operators, 1-2, 93-94, 123, 157, 187-188 [see also First Main Theorem]
uniform convergence, $12,18-19,33-34,37$, $44-49,56,72,86,105-106,162$
Uniformity in the Exponent Lemma, 158160

W

wave equation, $3,51,65,68-70,72-73$, 115-118, 120 [see also counterexamples, Theorems]
weak solutions, 73
weak topologies, $99-100,108,116$
well understood functions, 112-114

\mathbf{X}

$\left\{x_{n}\right\}$ (in proof of the Second Main
Theorem), 160

Z

Zgymund, 110

