
Chapter XII
Selection and /c-Sections

Selection theorems, unlike so many results in recursion theory, have the virtue of
being positive. They reveal uniformities not immediately apparent to the most
discerning recursion theorist. They are often based on farfetched computations that
converge slowly. A typical selection theorem addresses the following question.
Suppose A is ^-recursively enumerable in ft, and A n x i s nonempty. Is there a
uniform method for computing an element oΐ Anx from ft, xΊ More generally,
since x may not be effectively wellorderable, is there a uniform procedure for
computing a nonempty y ^ Anx from ft, xΊ As a rule y is obtained by computing
an ordinal θ such that the set of all computations from ft of length at most θ suffices
to enumerate some elements of A n x.

Let Selection (x) denote the following principle: there exists a partial ^-recursive
function / such that for all e < ω and all ft,

(1) (Ez)zex[{e}(z,ft)j]~/(e,ft)I & (Ez)zex[|{e}(z, ft)| <f(e, ft)].

Gandy selection, Theorem 4.1.X, is equivalent to Selection (ω).
Selection (2ω) and Selection (ωx) are false. If the first were true, then E(2ω) would

be Σx admissible, but the existence of Moschovakis witnesses in E(2ω) gives rise to a
Σf(2ω) map from ω x 2ω onto E(2ω). Connections between selection and admissibil-
ity are made in Section 2 below.

Restricting the enumeration parameter ft of (1) can make a difference, and even
more so the introduction of a special parameter p into / For example, Grilliot
selection, established in Section 1, implies (1) when

x = 2ω, be22ω and p = 22ω.

(The f(e, ft) of (1) is replaced by f(e, ft, p).)
To sum up prematurely, a selection theorem involves a fixed set x and a

collection C of procedures for enumerating elements of x. C is defined in terms of
Godel numbers e, enumeration parameters ft, and additional predicates R. A
typical member of C is {e}R(z, ft), where z ranges over x. The selection theorem
asserts the existence of a uniform method of computing a nonempty y ^ x such
that {c}R(z, b)l for all zey. y is completed from x, ft, p; R, where p is a special
parameter independent of ft and R.
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1. Grilliot Selection

Let/and g be functions with domain x and range ^ ω x (2* x {2*}). For simplicity
assume x is transitive, closed under pairing and ω ^ x. Define g<f by

(z)2ejc[#(z) is an immediate subcomputation instruction of/(z)].

Let min / = min {| /(z) | \z e x}.
Assume min/< oo. It was Grilliot's idea to compute min/ from / 2X by

recursion on the ordinals less than min/ The recursion equation he had in mind
was

(1) min / = max+ (min g).
9<f

An immediate obstacle to the recursion is:

{G\Q < / } is n o t ^-recursive in / 2X.

It is overcome by approximating {g\g < / } ^-recursively in/ 2X. For each ordinal
β, g < βfis the /J-th approximation of g < / g < ̂ /means: for all z e x, g(z) is seen to
be an immediate subcomputation instruction of /(z) by referring to the set of all
computations (from /2*) of length at most β.f(z) is of the form O, <M, 2 X >>, but
from now on 2X will often be suppressed. For example, suppose /(z) is <2m 3", M>.
Then <2m, ι/> is seen to be an immediate subcomputation instruction of f(z)
without any reference to computations. If | <2m, w> | < oo and y e {m} (u), then <n, y}
is seen to be an immediate subcomputation instruction of /(z) by referring to
computations of length < |<2m, u}\. Note that Exercise 1.6 makes it safe to regard
every subcomputation instruction as being of the form <d, u> for some u £ x. It
follows from Lemma 2.7.X that

{g\θ < βf} <*/, 2* uniformly in βj9 2X.

If β is too small, then the use of < β in place of < in (1) may produce a false
minimum, a value less than min /

Harrington and MacQueen [1976] completed Grilliot's idea. They introduced a
notion of iteration that has proved valuable in the study of selection. Their idea is
to apply (1) to generate a positive contribution to min/ A sufficiently long
sequence of such contributions adds up to min/ An ordinal computed at a given
stage can serve as β at the next stage.

The proof of Theorem 1.1 makes use of a set-theoretic choice principle, ACX:

(f)ί(z)zex(f(z) Φ φ)

AC2o> holds if V9 the class of all sets, satisfies ZFC. ΛC2ω need not hold in L(2ω), the
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natural setting for the axiom of determinateness. Nonetheless, ZF implies
Theorem 1.1 holds for x = 2ω in L(2ω) (cf. Exercise 1.2).

1.1 Theorem (Grilliot 1969, Harrington & MacQueen 1976). Let / : x - > ω
x (2X x {2*}) and suppose \f(z)\ < oo for some zex. Then

( min I f(z) \ ) < Ef, 2X uniformly.

Proof. Note that x <Ef Let θ be the supremum of all ordinals β such that there
exists a map of x onto β. Observe that θ <E2X thanks to the assumptions on x
made at the beginning of Section 1.

t(y) is defined by recursion on γ < θ with the intention that t(y) equal min / for all
sufficiently large y. Thus min/ will be sup {φ) |y < θ}.

Stage y. Let t~(y) = sup{ί(<5)|<5 < y}.
Case I: Γ(y)> min/ Set t(y) = min/
Case II: t~(y) < min/ Set

(1) φ ) = max + {min0|0 <'-<'>/ & Γ(y)<mmg}.

If case II holds and there is a g that satisfies the rightside condition of (1), then
t~(y) < t(y). To find such a g, ACX is invoked. For each z e x, the sought-after g has
the following properties: g(z) is seen to be an immediate subcomputation instruc-
tion of f(z) by examining computations of length < t~(y); t~(y) < \g(z)\. To check
there exists a suitable choice for g(z\ let /(z) be <2m 3", u). <m, u) is seen to be an
immediate subcomputation instruction of f(z) without any examination of com-
putations. If t~(y) < |<m, M>|, then <m, u) can serve as g(z). Otherwise there is a
y e {m} (u) such that t~(y) <\<n, y}\. If there were no such y9 then \f(z)\ would be
less than m i n /

Suppose case II holds for every y < θ. Then a partial map of x onto θ exists,
contrary to the definition of θ. For each ZEX, let f(z) be <2m2 3"% MZ>. Call z
troublesome if/(z)t but |<mz, uz}\ < oo. Fix y < θ. If t~(y) > |<mz, MZ>| for every
troublesome z, then t(y + 1) > min/by reasoning as in the previous paragraph.
Let z be troublesome and such that t~(y) < |<mz, uz)\ and |<mz, uz}\ has the least
possible value. Then t(y) > |<mz, uz>|. Map z to y. D

1.2 Exercise. Show Theorem 1.1 holds for x = 2ω in ZF plus V = L(2ω). (Replace
ACX by a "blurred" choice principle.)

The proof of Theorem 1.1 is unaffected by the presence of an additional class R
(cf. Section 5.XI for {e}R(u)). If the values of / are <e, w; R}, then min/can be
computed as above from / 2X; R.

A more sage observation concerns the role of 2X in the proof of 1.1. The true
power set of x is not needed. For example, let x be an ordinal less than some
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cardinal in the sense of L(κ). Thus TC(x) = x and (2X n L(κ))eL(κ). The proof of
1.1 can now be repeated with the understanding that/, g, . . . are functions in L(κ).
θ becomes x + , the next cardinal after x in L(κ). If an additional class R is present,
then some caution is necessary. R might blow up 2X to a "proper class"; that is,
2X n L(κ; R) might not be an element of L(κ; R) (cf. Section 5.XI for the definition of
L(κ; R)). Of course L(κ; R) had better be £-closed relative to R. There can be
trouble even if R c Xm All goes well if L(κ; R) n 2X is an element of L(κ; R). (These
matters are discussed further in Section 5.)

The next theorem is an excellent example of the power of Grilliot's idea despite
the absence of the true power set operation.

1.3 Theorem (Normann). Suppose x is an unbounded subset of p and p is a regular
cardinal in the sense of E(x). If δ < p and C ^ δ is nonempty and E-recursίvely
enumerable in x, then some element of C is E-recursive in δ, x uniformly.

Proof Suppose C is
{z\z<δ & {e}(z9x)l}.

Let /(z) be <e, <z, x>> for all z < δ. To find an element of C, it suffices to compute
min/as in the proof of Theorem 1.1 with some small changes. All functions such
as / and g now map δ into ω x (p x {x}). θ becomes p. Since p is regular, HajnaΓs
theorem implies each bounded subset of p in E(x) belongs to L(ρ, x). Hence
{did <βf}εE(x) for all βeE(x\ and is in fact £-recursive in /?, x, /
uniformly. D

1.4 Corollary (Normann). Suppose WeE(2ω) is a wellordering of2ω whose height is a
regular cardinal in the sense of E(2ω). If a, ce2ω and C ^ {b\b <wa] is nonempty
and E-recursively enumerable in c, 2ω, then some beC is E-recursive in α, c, W
uniformly.

Corollary 1.4 was devised by Normann for the sake of his work on Post's
problem for £(2ω), and has also proved useful in forcing arguments over E(2ω). Not
much is known about the role of regularity in 1.4. There is a model of ZFC, due to
Slaman 1983, in which there is a wellordering Woϊ2ω in E(2ω) of singular height in
the sense of £(2ω), and in which the conclusion of 1.4 holds. It is not known if there
is a model of ZFC in which there is a singular Win E(2ω) as in Slaman's model, but
in which the conclusion of 1.4 fails.

In Section 5 of this Chapter, Theorem 1.3 and Corollary 1.4 will be strengthened
so as to allow an additional predicate. The Hajnal argument fails in the presence of
an additional predicate, and consequently the Grilliot approach also fails.

1.5-1.6 Exercises.

1.5. Show E(ω^J does not obey less-than-ω2 selection.
1.6. Assume z is transitive, closed under pairing, and ω ^ z. Suppose vez. Show

each immediate subcomputation instruction of <e, <>, z>> is equivalent to one
of the form (d, <w, z » for some uez. (cf. 2.8.X, 4.11.X and 2.7.XI.
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2. Moschovakis Selection

Recall that Gandy selection implies E(ω) is Σ t admissible, or restated, E(R(ω)) is
Σ x admissible. (R(0) = 0, R(oc + 1) = 2*(α), and fl(/l) is u {Λ(α)|α < /I} for limit λ.)
Moschovakis combined Gandy and Grilliot selection to show E(R(oc)) is Σ1

admissible if α has cofinality ω inside E(R(<x)).
keE(R(oc)) is said to be an ω-sequence through α if dom k = ω and sup range

k = (X.

2.1 Theorem (Moschovakis). Suppose

E(R(oc)) 1= [cofinality α = ω].

Let keE(R(cή) be an ω-sequence through a. Assume f: R(cή —κox R(OL) X {#(α)}. //
|/(x)| < oo for some xeR((x), then

min \f(x)λ <Ef R{*\ k (uniformly).

Proof. A typical value of/is (e, w, Λ(α)>, where ueR(a). For simplicity suppress
the parameter R(OL). The immediate subcomputation instructions of <e, u) are of
the form <c, t;>, where c < ω and ye£(K(α)). The "Grilliot aspect" of the proof
below requires that v be construed effectively as an element of R((x) and that can be
managed by a one-one map of [e] (u) into R(α). Exercise 2.7 supplies such a map by
an effective transfinite recursion on |{e}(w)|. Thus the set of immediate sub-
computation instructions of f(x) can be written as

{f(x)(y)\yeSx^R(a)}.

For example, consider f(x) = <2m 3M,u>. Take 0 to be in Sx and /(x)(0) to be
<2m, w>. If {m}(w)|, then f(x)(y) ranges over {<n, y}\ye{m}(u)} as y ranges over
Sx-{0}.

The procedure for computing min/ has countably many cases. If m i n / < oo,
then at least one case yields m i n / Gandy selection weaves the cases into a single
procedure. The intention is to compute min f by a recursion on the ordinals less
than min / referred to below as the main recursion.
Case </,;>. Assume: i <j9

(1) m i n / = |/(x o ) | for some xoeR(k(i))9

\f(xo)\ = sup+ {\f(x0)(y)\\yeSXonR(k(j))}.

The method of Theorem 1.1 is used to build up min/from min gig <f) via the
main recursion. Now g <f means:

dom g = R(k(i))

(x)lxedom g^g(x)eSxnR(k(j))l
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For each x e R{k(ϊ)\ let S* be the set of all yeSxn R{k(j)) such that f(x) (y) is seen
to be an immediate subcomputation instruction of f(x) by examining com-
putations of height at most β. g < βfnow means:

Π{S£\xeR(k(ΐ))} can be viewed as a subset of R(k(j))R(m\ hence as a small subset
of R(oc). It follows that {g\g < βf} is ^-recursive in/, β, R(at) uniformly. Thus the
Grilliot idea, as described in Section 1, applies to this case because R(oc) is closed
under the power set operation. Let θ be the supremum oΐ\W\ for all wellfounded W
in R(oc). Then R(k(ί)) cannot be mapped onto 0, and so the argument of
Theorem 1.1 can be repeated with R(k(ί)) in place of x.
Case <i, 0>. Assume (1) holds. Let

= sup+ {|/(x)(jθ| \yeSxnR(k(j))}.

Assume |/(xo)|_,- < l/(xo)l f°Γ ^j < ω- For each; < ω, let f(x)j be a computation
instruction such that

Define g </by:

dom g = R(k(i)) and

(x)(xeR(W)-*g(x)e{f(x)j\j <ω}.

Now proceed as in case <i,j>. Observe that ωR(k(i)) can be construed as a small
subset of R{oc); hence {g\g <βf} is ^-recursive in /, /?, R(oc) uniformly.

The above cases give rise to a function t with domain ω2 such that: t is partial E-
recursive in /, K(α), k; if case (ij) holds, then t(ij) | and equals min/ If min/< oo,
then Gandy selection computes an i and; such that ί(i,j) |. D

2.2 Grilliot Selection Functions. For each <<?, b}eE{x\ let

KZb = {z\{e}(z,x,b)l}nTC(x).

f is said to be a Grilliot selection function for E(x) if for all O, b} in E(x):

Kϊ,b ΦΦ-+Φ Φfifi, b)eE(x) n 2*U.

Note that / chooses a nonempty subset, rather than an element of, X* b. If some
wellordering of TC(x) is ^-recursive in x, then / makes it possible to choose an
element of K*\b.

2.3 Lemma. Let f be a Grilliot selection function for E(x). Iffis partial E-recursive
in some bsE(x\ then E(x) is Σx admissible.
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Proof. Let g be a many-valued Σf { x ) map with domain d. The task at hand is to
find an reE(x) so that g(v) has a value in r for all ved. For simplicity assume
ΓC(x) = (ΓC(x))< ω. Let t be a partial E-recursive (in x) map of ω x TC(x) onto
£(x). t is a restriction of a universal partial ^-recursive function. With the help of
ί, the range of g can be thought of as a subset of TC(x). Let D be a ΔQ F formula
such that

g(υ) = w iff J5(x)l=(Ey)D(ι;,w,y).

D may have parameters from E(x). Every member of £(x) is E-recursive in x, a for
some a e TC(x% so it is safe to assume that the only parameters are x and a for some
aeTC(x). For each ved, the set

Kv = {z\t(z)l & D(ι;,(ί(z))0,(Φ))i)}

is nonempty and E-recursively enumerable in υ9 x, a. f computes a nonempty
subset of Kv from v. Then the desired r is

{(f(z))ol(Ev)(ze/(t>) & ved)}. D

The next lemma is a partial converse of Lemma 2.3.

Lemma 2.4. Suppose x is a set of ordinals and E(x) is Σ x admissible. Then there
exists a Grilliot selection function for E(x) partial E-recursive via some beE(x).

Proof According to Theorem 5.8.X there is a y e E(x) such that /c?'y φ E(x). Since x
is a set of ordinals, there is a weE(x) such that w is a relation on ordinals and
<x, y} < £ w. (w encodes the ε-relation restricted to ΓC({<x, y}}).) By reflection
there is such a w E-recursive in x, y. Hence κ^y = K™.

Suppose C £ TC(x) is nonempty and ^-recursively enumerable in x, α for some
aeTC(x). κ?'a > κw

r by Lemma 5.5(iv).X. Since C has an element via a com-
putation in E(x) it has one via a computation of height less than κ™'a, hence one
recursive in w, a. Thus a nonempty subset of C can be computed from w, α. D

Corollary 2.5 (Moschovakis). Suppose

E{R(OL)) N [cofinality α = ω].

77u?n E(^(α)) ΪS Σ X admissible.

Proof. Combine Theorem 2.1 and Lemma 2.3. •

2.6 Admissibility of E(R(<x)). Assume α > ω. When is E{R(OL)) Σ X admissible? A
complete answer to this question is presently unavailable. If α is a successor, then
R((ήω £ R(ot), and so R(oc) admits Moschovakis witnesses, and hence is not Σx

admissible (cf. exercise 2.8).
Assume α is a limit. If

(1) E{R{OL)) 1= [cofinality α = ω],
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then E(R(oc)) is Σ x admissible by Corollary 2.5. This result can be stretched a bit.
Let g: λ -• α be a cofinality sequence for α in £(K(α)). The proof of Theorem 2.1 will
work with ω replaced by λ if Gandy selection is replaceable by less-than-/l +

selection, (cf. Exercise 2.11.) The latter principle implies: there exists a uniform
method of computing an element of a subset of λ, if that subset is nonempty and £-
recursively enumerable in some beE(R(tx)).

If cofinality α > ω in V, then E(R(oί)) admits Moschovakis witnesses and hence is
not Σ x admissible. All that is actually needed here is: the Σf(R(tx)) cofinality of α is
greater than ω.

Suppose Σf(K(α)) cofinality of α equals ω and (1) is false. This is a dead zone as far
as the question of Σ x admissibility of E(R(oc)) is concerned.

2.7-2.11 Exercises

2.7. Find a recursive function h such that for all x and u the following holds. If
ueTC{x) and {e]{TC{x\ u) | , then {h{e)}{TC(x)9 u ) | and its value is a one-
one map of {e} (TC(x\ u) into TC(x).

2.8. Show E(R{β + 1)) is not Σί admissible for all β > ω. Show E(R(ωωί)) is not
Σ x admissible.

2.9 (Grilliot). Assume α is a successor and P(x, y) is an ^-recursively enumerable
(in R(oc)) relation on R(oc). Show

(Ey)lyeR(oc-l) & P(x,y)]

is an ̂ -recursively enumerable (in .R(α)) relation on R(oc).

2.10. Let α be ω^r Show there is no uniform method for selecting an element of a
nonempty ^-recursively enumerable (in α) subset of ω\.

2.11. Suppose γ is the greatest cardinal in the sense of E(y), and is singular in E(γ).
Assume less-than-(cofinality y)+-selection holds as defined at the beginning of
Section 4.XI. Show there is a uniform method for selecting an element of a
nonempty ^-recursively enumerable (in p) subset of γ9 where peE(y).

3. Plus-One Theorems

In the manner of Kleene 1959 define

tp(O) = ω,

tp(a + 1) = 2tpia\ and

tp(λ) = u {tp(oc)\a < λ} (limit λ).
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Note that tp(oc) is transitive and tp(oc) ^ tp(β) if α < β. The elements of tp(cc) are
referred to as the objects of type a. tp(oc) is equivalent to R(oc-\-ω). Suppose
0 < δ < α + 2; the δ-section of a type α + 2 F is:

(1) <5-sc(F) = {z|zeίp((5) & z < £ ί p ( α ) ; F } .

Note the semicolon ( ) preceding F in (1). It indicates that F is present as an
additional class. Thus "z <£ί/?(α); F " means z = (e}F(ί/?(α)) for some e (cf.
Section 5.XI for further details of " F'\)

For all α, a+2E is the function from tp(oc + 1) into 2 defined by:

α + 2 F is equivalent to a type α + 2 object. In the language of Kleene 1959 an object
F of type α + 2 is said to be normal ifα + 2E is recursive (in the sense of Kleene) in F.
^-recursion theory has normality built in; equality is an ^-recursive predicate. An
important result of Kleene 1959 is:

(2) 1 - sc(2E) = HYP.

It is reasonable to think of 1 — sc(3E) as a continuation of the hyperarithmetic
hierarchy of reals, since E(tp(δ)) has a hierarchic structure imparted to it by
Proposition 2.10.X. There are difficulties with this point of view, because some of
the reals in 1— sc(3E) result from computations of uncountable length. It is
natural to ask, as Hinman and Shoenfield did, if there exists a type 2 object F whose
1-section is the same as that of 3 F . An affirmative answer means that type 3 objects
are not essential to the definition of 1 -sc(3E). In addition it follows that the
members of 1 — sc(3E) can be arranged in a hierarchy that resembles HYP, since
F(ω; 2E) is similar in form to E(ω;F). F can be regarded as a jump operator, and
then 1— sc(3E) is the result of iterating the F jump through the ordinals
F-recursive in F.

Moschovakis has asked if it is possible to conclude anything about the type of F
from the constitution of its (5-sections (δ < α + 2 = type of F). The answer appears
to be: "very little".

3.1 Theorem (Sacks 1974, 1977). Let F be an object of type α + 2. Assume: δ < α + 2;
δ is a successor; and α is a successor ifδ > 1. Then there exists a G of type δ + 1 such
that

δ - sc(F) = δ - sc{G).

The proof of Theorem 3.1 splits in two: δ > 1 and δ = 1. Proposition 3.5 and
Theorem 3.6 cover δ = 1.
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3.2 Plus-One for δ > 1. The proof is an application of Grilliot selection to an
otherwise straightforward forcing construction. G is going to be a function from
tp(δ) x tp(δ — 1) into 2. Strictly speaking G is not of type δ + 1, but G is certainly
equivalent to an object of type δ + 1. For each such G and xeί/?((5), let

(1) g(x) = {y\yetp(δ-l) & G(x, >;) = ()}.

Thus # maps tp(δ) into ί/?(<5). For any set b and class C the structure L(jS, b; C) is
defined by recursion on β.

L(0, 6; C) = TC(b).

L(β + 1, b; C) = set of all sets first order definable over L{β, b\ C); "XEC"
is added to the atomic formulas of ZF.

L(λ,b;C) = v{L(β9b;C)\β < λ}.

For example, if xeL(β, tp{δ - 1); G), then g(x)eL(β + 1, ίp(<5 - 1); G).
Let γ be the ordertype of a wellfounded relation whose field is tp(δ — 1), and

which is ̂ -recursive in tp(oc); F. Let λι

δ

p±f F be the sup of all such y's. κ# ( < 5 ~ 1 ) ; G'is
going to be λ ^ F. The plan is to construct L{κx

o

piδ~1); G, ίp(5 - 1); G) in countably
many steps.

p,q,r9... are forcing conditions, p specifies an object of the form L(β, t(δ — 1);
H\ where H maps tp(δ) x ίp(<5 - 1) into 2. The specification includes the diagram of
L(β, tp(δ — l); H), the set of all sentences true in L(β, tp(δ — 1); H) in the language
of ZF with names for H and all the members oϊL(β, tp(δ — 1); H). p of course does
not specify all of if, but only the partial object

(2) L(β,tp(δ-l);H)nH.

Denote (2) by Hp. If p specifies L(β, tp(δ - 1); H\ then

L(β, tp(δ - 1); if) = L(β, tp(δ - 1); Hp).

A forcing condition p must have the following properties.

(3) (i) p specifies L(βp9 tp(δ - 1); Hp).

(ii) p is first order definable over L(δ, tp(a); F) for some δ <Etp(oc); F. The first
order definition takes only ίp(α) and F as parameters; thus it is specifiable
by a Gόdel number < ω. (Hence p <Etp(oc); F.)

(iii) p has a top; namely, for some e

(4) \{e}H>(tp(δ-l))\=βP.

The presence of a partial, rather than total, object in (4) is legitimate. The
computation of {e}Hp(tp(δ — 1)) calls values of Hp only for arguments in L(βp9

tp(δ-l);Hp).
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Clause (3)(iii) insures that βp <Etp(δ - 1); Hp.
Define p > q to be: βp < βq and Hq[ p = Hp.
The forcing relation I \- treats the logical connectives in standard fashion. In

addition:

p\\-{e}*(z)i iff L(βp9tp(δ-\);Hp)ϊ{e}*(z)l

(zeL(βp, tp(δ — 1); Hp\ <& is interpreted as Hp and z as z.)

^(z)ί iff ( *

A generic sequence { p j n < ω } is constructed by stages. u { p j w < ω } will
specify L ^ 6 ' 1 ) ; G, ίp(<5 - 1); G).
Sta#e 0. p0 = 0 .
Stage n + 1. Let e = (n)^
Case 7: n is even. The purpose of this case is to settle whether or not
{e}^(tp(δ — 1)) converges.

Subcase la: there is a p < pn such that

(4b) p\^{ef(tp(δ-\))l

Such a p can be chosen to be p π + 1 via Gandy selection, since (4b) is ^-recursively
enumerable.

Subcase lb\ otherwise. Then p n + 1 is pn.
Case 2: n is odd. Let ze be the e-th member of the (5-section of F. The purpose of
this case is to add ze to the ^-section of G. According to (3)(iii) there is an m such
that

(5) \{m}HHtp(δ-l))\ = βPn.

Let xn denote L(βPn, tp{δ - 1); HPή). (5) implies xn is E-recursive in tp(δ — 1); HPn.
As in Exercise 3.8, there is a y n c tp(δ — 1) such that ynφxn and yn is first order
definable over xn. The definition in question is lightface; its only parameter is
tp(δ — 1) and it treats HPn as an additional predicate. Extend pn to pnVl so that

(6) βPn+ί=βPΛl and

Then ze can be computed from tp(δ — 1); HPn+ι with the aid of (5) and (6).

Let p^ = limpπ, β^ = supj?Pn and H00 = u {HPn\n < ω}. Thus p^ specifies

, ί p ^ - l ) ; ^ ) . Clause (ii) of (3) implies β^^λ^^. To see that
/?oo > λγlaliF

9 let ze be a wellfounded relation on tp(δ — 1) ̂ -recursive in ίp(α); F.
Case 2 insures that ze <Etp(δ — 1); HPn for some n. Case 1 guarantees that \ze\, the
ordertype of ze9 is computed from ίp(ί — 1); HPn for some n. Hence \ze\ < βn for
some n.
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Let G = Hao on domain H^, and 0 elsewhere. Then κ # * ~ 1 ) ; G > β^ and by
case 2, the ^-section of F is the set of all z e tp(δ) such that z <E tp(δ — 1); G via a
computation of height <jff00.

It remains only to show τco(<5~1);G < β^. Suppose not. Then for some d,

oo>\{d}G(tp(δ-l))\>β«.
Let

(7a) y0 = I {d}G(tp(δ - 1))|, and let r specify L(γθ9 tp(δ - 1); G).

Observe that r satisfies clauses (i) and (iii) of (3) (with r in place of p\ and also (7b)
and (8).

(7b) r is first order definable over L(δ, ίp(α); F) for some (5.

(8) r < E b, tp(oc); F for some b e tp(ί).

κtp(ct);F c a n s e r v e as δ in (7), partly because any object of the form

L(y,tp(δ-1);G) ' (γ <κpδ-»' G)

can be construed as an object of type α. H^ was defined over κtg(a):F. The b of (8) is a
map from ω into ω such that for all n, /?„ = {ί?(n)}F(ίp(α)). r is not quite a forcing
condition; nonetheless it makes sense to say

(9) r\\-{df(t(δ-l))l

Fix n so that (n)1 = d and n is even. Let Q be the set of all q < pn that satisfy (3)(i)
and (3) (iii) (with q in place of p\ and (7) (with q in place of r). Then

It follows from Lemma 3.3 (simple reflection), a consequence of Grilliot selection,
that

Kr ^_ KQ

Consequently there is a qeQ such that q <Etp(a); F. One such q can be found by
first minimizing the δ of (7b) and then minimizing the Gόdel number of the
required first order definition. But then subcase (la) of stage n + 1 guarantees that

\{d}G(tP(δ ~l))\<βao. •
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Lemma 3.3 (Sacks 1974). Assume α is a successor and F is an object of type α + 2.
Then

j.tp(ix);F -> ^a,tp(a);F

for all a e tp(oc — 1). (Simple reflection)

Proof Theorem 1.1 (Grilliot selection) is easily revised to show: let / map tp(oc — 1)
to values of the form {e}F(y9 tp(<x)) (yetp(oc)) and suppose \f(z)\ < oo for some
zetp(oi— 1); then

λ <Eftp(oc);F.

Let y be a ΣfF sentence whose only parameters are tp(oc) and F. Suppose

(Ea)[αeίp(α-1) & L(κa

0>
tpM'>F, ίp(α); F)ϊ ST\

Thus there is an aetp(oc — 1) and a δ <Ea, tp(oc); F such that

L{δ9tp{α);F)ϊSr.

Grilliot selection implies the least such δ is ^-recursive in tp(oc); F. D

3.4 Plus-One for δ = 1. Suppose Z is a countable subset of tp(l) (= 2ω). Z is said to
be an abstract 1-section if there is a Σ x admissible set A satisfying Σx dependent
choice and such that Z = 2ω n A. Note that Z is an abstract 1-section iffZ^, the set
of sets coded by reals in Z, satisfies Σ t dependent choice and hence is Σ t admissible
(cf. Exercise 3.9). Proposition 3.5 and Theorem 3.6 imply the plus-one theorem for

3.5 Proposition. // F is an object of type α + 2, then 1 — sc(F) is an abstract 1-
section.

Proof Let w be a real and y SL set. Let "w codes / ' mean: w codes the diagram of
<ΓC({y}), ε>. Then the relation, w codes y, is ^-recursively enumerable.

Let A be the set of sets coded by reals in 1 — sc(F). Suppose

for some aeA and ΣfFD. The set

(1) { w | w e l - s c ( F ) & w codes y & D(q9y)}

is ^-recursively enumerable in a, tp(oc); F uniformly. By Gandy selection there is a
method for computing an element of (1) from α, ίp(α); F uniformly. The method,
iterated ω times, establishes Σί DC in A. D

3.6 Theorem (Sacks 1970). IfZ is an abstract 1-section, then there exists a type 2 G
such that 1 - sc(G) = Z.
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Proof. G is going to be a function from 2ω x ω into 2. The construction of G
roughly resembles that of Section 3.2. The reflection argument that concludes 3.2
will be replaced by an application of Σ x dependent choice within ZA, the set of all
sets coded by reals in Z. Consequently the details of the forcing argument now
matter more than they did in 3.2. As before a forcing condition p has the following
properties.

(1) (i) p specifies L(βp, ω; Hp\ and L(βp, ω; Hp) N (x) (x is countable),
(ii) peZA.

(iii) p has a top; namely, for some m

\{m}H'(ω)\ = βp.

The second half of (i) can be deleted (cf. Exercise 3.11). The forcing relation I \- is
defined as in 3.2 with some extra clauses for bounding scheme situations.

(2) plh{2c 3d}*(ω)| iff

(3) Plh{c}»| and

(4) * *

By Exercise 2.7 it is safe to regard {c}G(ω) as a subset of ω. Thus if (3) holds, then (4)
means:

(5) («),*,(Oic e(Er),k r[rlh*{c}*(a>) or r\\-{df(ω,i)U

The generic sequence {pn\n < ω] is constructed by stages as in 3.2.
Stage 0. p0 = 0.
Stage n+ 1. let e = (n)ί.
Case 1: n is even.

Subcase la: there is a p < pn such that

p\\-{ef(ω)l.

Any such p will do for pn+1.
Subcase 1b: otherwise. If e is not of the form 2C 3d let pn + x be pn. Otherwise there

is a q such that either

(6) 4lh{cf(ω)ΐ

or for some i < ω,

(7) *H-{c}*(ωH and

q\\-ie{c}*(ω) and

Any such q will do for pn +!.
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Case 2: n is odd. Let ze be the e-th element of Z. Let xn denote L(βPn, ω; HPn). Since
pn has a top, βPn is the length of a computation from ω; HPn. As in Exercise 3.8, there
is a yn c a) such that yπ ^ xn and yπ is first order definable over xn. The definition in
question is lightface; its only parameter is ω and it treats HPn as an additional
atomic predicate. Extend pn to pn + 1 so that

(8) βpn+ι = βPΛl and HPn+ί(yn9y) = 0~yeze.

Then ze can be computed from ω; HPn+ί.

Let /?«, = limpπ, /*«, = suρjSPn and Ho0 = u {HPn\n < oo}. Thus p,, specifies
n

Liβ^^ω H^). Let λ% be the least ordinal not in ZA. Clause (ii) of (1) implies
βoo < λξ. To check that β^ > λ%, let z ^ Z ^ be a wellfounded relation on ω. Case 2
insures zβ <Eω; Hpn for some M. Case 1 guarantees that \ze\, the ordertype of ze9 is
computed from ω; //Pn from some n, hence |zβ | < βpn for some M.

Let G = H^ on the domain of if ^ and 0 elsewhere. Then κ%; G > β^, and by
case 2,

It need only be shown that κ%; G < β^. Suppose not. Then there is an e such that

(9) *\{e*

Since β^ is a limit, e can be presumed to be 2C 3d. Go to stage n + 1 for n even and
(n)ι = e. If subcase (lb) holds, then either (6) or (7) holds (with pn + 1 in place of q),
contrary to (9). Hence subcase (la) holds. Thus

p Λ + 1 IH{c}» |</ϊ P n + 1 ,

and (5) holds with pn + 1in place of q. The matrix of (5) is Σ x over ZA. Since Σ x DC
holds in ZA, there is a function v̂  lη in ZA such that pπ + 1 = r0 and

(10) ( O i e ω [ r f > r ί + 1 & {ri + 1\\-iφ{c}* or r £ + 1 lh{d}*(ω,OI)].

Let roo = u {rt\i < ω}. r^ specifies L(βroo, ω; Hrao). r^ is an excellent candidate for a
condition that forces

thereby contradicting (9). The only difficulty is the possibility that r^ does not have
a top. It is handled by "minimizing" βr.. For each i, require that no proper initial
segment of ri+1 satisfy the matrix of (10). A proper initial segment of ri+ί is a
condition that specifies a proper initial segment of L(βr.+ί,ω;Hr.+ι). It follows
that λi\rι is Σ x definable over L(βrao, ω; HrJ but is not a member of it. Therefore
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L(βroo, ω;HFao) is not Σ1 admissible, hence not £-closed by Gandy selection
(cf. Exercise 3.10). In other words r^ has a top. D

3.7 Extended Plus-One. Suppose 1 < δ < α + 2 and F is a type α + 2 object. The
extended (5-section of F is denoted by ex — δ — sc(F% and equals

{z\zetp(δ) & ( E b ) b e ί p ( , _ υ (z<Eb,tp(z);F)}.

If δ = 1, then ex — <5 —sc = δ — sc. The extended 2-section of 3E is simply
2 2 ω n £(2ω) and conveys the same information as E(2ω). It is hard not to ask: does
there exist a type 3 G such that

ex - 2 - sc{G) = ex-2- sc(*E)Ί

Harrington has obtained a negative answer by assuming AD. On the other hand a
positive answer follows from 2ω = ωί. Normann has obtained a positive answer if
(i) 2ω = ω2 and Martin's axiom holds, or if (ii) there is a wellordering W of 2ω in
E(22ω) such that | W\ is regular inside E(22ω). Slaman has found a generic extension
of L in which: (a) the answer is yes, and (b) there is a wellordering Fof 2ω in E(22ω)
such that I V\ is a singular cardinal in E(22ω).

At this writing it is not known if there is a generic extension of L in which the
answer is no and some wellordering of 2ω belongs to £(2 2 ω).

Hoole (1982) defines an abstract extended 2-section and shows every such is the
extended 2-section of a type 3 object.

3.8-3.12 Exercises

3.8. Suppose β = \{e]{x)\. Show there is a y ^ TC({x}) such that yφL(β,
TC({x})) and y is first order definable over L(β, Tc({x})) via a definition
whose only parameter is x.

3.9. Let w be a real and y a set. w is said to code y if w is a binary relation
isomorphic to (TC({y}\ ε>. Suppose Z is an abstract 1-section. Show ZA,
the set of all sets coded by reals in Z, satisfies Σ1 DC:

(x)(Ey)R(x, y) ^ (EΪ)(n)n<ωR(f(n)J(n + 1)),

where R is Σ x over ZA.

3.10. Suppose the structure L(β, ω; H) is E(ω; H); show it is Σ x admissible.

3.11. Show that the second half of 3.6(l)(i) follows from the first half and 3.6(1)
(ii)-(iii). (Forcing condition simplification.)

3.12. Let D\ be the set of all lightface Δ^ subsets of ω. Show that D\ is the
1-section of some type 2 object. (Also true for D\ when n > 2.)
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4. Harrington's Plus-Two Theorem

Assume δ < α + 2, δ is a successor, and F is a type α + 2 object. The δ-envelope of F
is denoted by δ — en(F\ and is defined (following Moschovakis) to be

(1) {z I z e tp(δ) & z is F-r.e. in ίp(<5 - 1), ίp(α); F }.

Note the occurrence of "ίp((5 — 1)" on the extreme right of (1); it is superfluous if
δ <Etp(oc); F; thus it is omitted if δ < ω. The ^-envelope carries the same in-
formation about F as the complete ^-recursively enumerable (in tp(δ — 1), ίp(α); F)
subset of tp(δ — 1). Early on Moschovakis observed that the 1-envelope of 3 F is not
the 1-envelope of any type 2 object (cf. Exercise 4.5). It follows from Harrington's
plus-two theorem that the 1-envelope of 4 F is the 1-envelope of a type 3 object. His
argument requires Theorem 4.1, a reflection result analogous to Corollary 8.2.III.

Some of the notions occurring in 4.1 and its applications need elaboration. P(X)
is a formula of class-set theory whose only class variable is the free variable X. P(X)
is built up from the atomic formulas of ZF, and additional formulas of the form
y e X, by means of set quantifiers and logical connectives.

Suppose γ < κtpia);F and aetp(a). y is said to be F-constructive in α, tp(cc); F if

γ = \{e}F(a,tp(*))\

for some e. Constructive in α, ίp(α); F implies recursive in a, tp(a); F, but not
conversely (cf. Exercise 4.6). Of course each recursive ordinal is less than some
constructive.

Suppose Aeδ — en(F). Thus

(1) A = {b\{e}F (ft, tp(δ-l\ tp(a); F)j}

for some e. A can be thought of as being enumerated by stages. At stage σ
enumerate all elements of tp(δ — 1) that belong to A according to (1) by virtue of
computations of length σ; the set of all such elements is Aσ. Thus A is enumerated
without repetitions at stages F-constructive in ft, tp(δ — 1), ίp(α); F as b ranges over
A. For all γ define

A<y = κj{Aσ\σ <y).

Let κ^\-lh tpia); F be the supremum of all ordinals F-constructive in b, tp{δ -1),
tp(a); F as b ranges over tp(δ - 1). Thus

A = Avtpiδ-lhtpM F .
κδ-1

Theorem 4.1 (Harrington 1973). Assume δ <oc9δ and a are successors, and F is a
type α + 2 object. Suppose Aeδ — en(F) and betp(δ — l). If

{e}F(A,b,tp(δ-l\tp(oι);F)l
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then
{e}F(A<γ9b,tp(δ-l\tp(a);F)l

for some y E-constructive in (c, tp(δ — \\ tp(oc); F) for some cetp(δ — l) (further
reflection).

If Theorem 4.1 seems too farfetched, let α and δ be 1, F be 3E, and A the
complete, ^-recursively enumerable (in 2ω) subset of ω. Then 4.1 implies

Kr > KQ ' > KQ .

Suppose P(X) is a Σi formula of class-set theory whose only class variable is the
free variable X, and whose only parameters are X and 2ω. If

L(κl\2ω)\=P(A),
then 4.1 implies

L(y,2ω)\=P(A<γ)

for some y £-constructive in 2ω (cf. Corollary 8.2.III) A functions as an additional
atomic predicate above. The integers in A can be regarded as notations for ordinals
cofinal in K2Q, hence P(A) can be rewritten as a Δo formula. Then the truth-value of
P{A<γ) in L(κl\ 2ω) can be checked in L{y, 2ω).

4.2 Proof of Theorem 4.1. Let W be the set of all x such that x is a wellfounded
relation whose field is a type δ object. Since α > 0, W <Etp(oc). For each xe IV, \x\
is the ordinal height of x. If β < \ x |, then x^ is the set of elements of the field of x of
height β.

Let Θδ_ j be the set of ordinals ^-constructive in d, tp{δ — 1), ί/?(α); F as d ranges
over tp(δ — 1), and let t be an order preserving map of Gδ- x onto an initial segment
of ordinals.

A function / with domain Wis computed from b, tp(δ — 1), ίp(α); F as follows.
Three possibilities occur.

(i) (Ec) Ice (A -(field of x)].
(ii) (Eβ)[XβΦArHβ)l

(iii) There is a σ < \x\ such that: xβ = At-i^ for all β < σ; and

(1) {e}(A<σ,b9tp(δ-lltp(<x);F)l.

As in Exercise 2.9, Grilliot selection implies (i), (ii) and (iii) are predicates (of x)
^-recursively enumerable in b, tp{δ — \\ ίp(α); F. At least one of the three is true,
and one such is provided Uy Gandy selection. Define/(x) to be the length of the
computation of the one selected.

Let y0 = sup{/(x)|xe W). Let x 0 be the wellfounded relation on A induced by
the enumeration of A by stages. Then/(x0) was defined by (iii). Hence (1) holds for
some σ <y0. Since γ0 <Eb, tp(δ- 1), ίp(α); F, there is a σ0 > σ such that σ0 is E-
constructive in c, tp(δ — 1), tp(oc); F for some cetp(δ — 1), and A<σ = A<σo. O
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4.3 Theorem (Harrington 1973). Suppose δ < α, δ and α are successors, and F is a
type α + 2 object. Then there exists a type δ + 2 object G such that

δ-en{G) = δ-en(F).

Proof. G will map tp(δ + 1) x tp(δ — 1) into 2. G is defined by stages that correspond
to the stages of the enumeration of Cδ ~1; F, the complete ^-recursively enumerable
(in tp(δ — 1), tp(cή; F) subset of tp(δ — 1). At stage γ all elements of tp(δ — 1) that
belong to Cδ~1;F by virtue of computations of length y are enumerated inCδ~1; F.
Stage 7 is said to exist if there is a computation of length y that puts an element in
Cδ~1;F. As Cδ~1;F is enumerated, the graph of G, restricted to

(1) L(κpTG,tp(δ);Gl

is enumerated in tp(δ — 1), ίp(α); F. ( κ : ^ ) ; G is the supremum of all ordinals E-
constructive in b, tp(δ); G for all betp(δ — 1).) Thus the external aspects of the
construction insure that Cδ~1;G, the complete ^-recursively enumerable (in
tp{δ)\ G) subset of tp(δ — 1), belongs to the ^-envelope of F, and hence that

(2) δ-en(G)^δ-en(F).

Along the way steps are taken to insure that Cδ~1; F belongs to the (5-envelope of G.
Thus the internal aspects of the construction guarantee the converse of (2).

Two difficulties arise: undershoot and overshoot. Undershoot means there is a y
such that stage y exists but G is already defined on (1), that is, Cδ~ί;G is already
defined. Undershoot is possible because G is of lower type than F. Overshoot
means the enumeration of cδ~1;F comes to end before G is defined on (1), that is,
before Cδ~1; G is defined. Both of these difficulties are overcome with the help of
Harrington's reflection theorem (4.1).

Suppose stage y exists. Let

y~ = sup{σ|σ < y & stage σ exists}.

The construction so far has produced

(3) L(βy_, tp(δ); G) = U L{βa, tp{δ); G)

and G restricted to (3). As in Exercise 3.8, if (5) holds, there is a y(βy-) ^ tp(δ) such
that y(βy-) is first order definable over, but not a member of, (3). The definition in
question has tp(δ) as its only parameter and treats G as an additional atomic
predicate; it is "complete Σ^', hence uniform in every sense. G(y(βγ-), b) is not yet
defined for any betp(δ — 1).

Let

(4) Cδ~UF = {b\beCδ~UF & | b | = y}.

(\b\ is the length of the computation that puts b in Cδ~UF.)
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Case 1: y~ <γ and stage γ~ exists. Assume (to be checked at end of each stage)

(5) βy_ is £-constructive in b, tp(δ — 1); G for some betp(δ— 1).

Define

1 if h(=Γδ~1;F

(6a, 6WA,-l»)0 i f

Let βγ = βy_ + ω, and extend G trivially to L(/? r ίp((5); G) by setting G equal to 0
whenever it needs to be defined. It follows from (5) and (6a) that the members of
Cy~UF can be enumerated at stage βy of the enumeration of Cδ~1; G.
Case 2: case 1 does not hold. Let Go be the trivial extension of G from (3) to all of
tp(δ - 1) x tp(δ - 1).

Subcase 2a: βy- = /4P-Ί); G o (undershoot). Whether or not subcase 2a holds can be
computed from j?y_, Go, ίp(α). The hierarchy

(6b) L(κ?lδl>G°, tp(δ); G o )

can be viewed as a tp(δ) object. There is a partial ^-recursive (in Go) map of tp(δ)
onto (6b). Hence (6b) is encodable by an element of tp(δ + 1). Thus Subcase 2a
holds iff there is an element of tp(δ + 1) that encodes (6b) and 2a holds within (6b).
In short tp(δ + 1) has the power to compare βy_ with K^lψ G o. Since δ < α, tp(<x)
also has the power. Define G(y(βγ-), b) as in (6a), and then trivially extend G to G1

defined everywhere. Now Theorem 4.1 can be used to show

(7) β^KK'flψ*.

Fix boεCδ

γ~
1;F. The construction assigns non-zero values to G only when required

by (6a). Cδ~1;F is enumerated without repetitions. Thus

(8) βy-=μτlG(y(τ)9b0)=ll

Let A denote Cδ~1;Gi. e is such that the computation of

(9)

proceeds as follows. Enumerate A ^-recursively in tp(δ); G. Let p be the supremum
of all computations that put elements in A. The value of (9), if it converges, is

It follows from (8) that (9) converges to β y _. Theorem 4.1 implies (9) yields the
same result when A is replaced by A<σ for some σ ̂ -constructive in c, tp(δ); Gx for
some c G tp(δ — 1); Gι. Hence (7) holds. Let βγ = σ + ω, and let G be the restriction
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of Gx to L(βγ, tp(δ — 1); Gx). Then (7) is true when Gx is replaced by G; moreover βγ

is ^-constructive in c, tp(δ); G.
Subcase 2b: βγ_ < κ^ίδ){ Go. Hence there is a τ > β~ such that τ is ^-constructive

in b, tp(δ); Go for some b e tp(δ - 1). Let τγ be the least such τ. Define G to agree with
Go on L(τy, tp(δ); Go), and define G(y(τy\ b) as in (6a). Let βy = τy + ω and extend
G trivially to L(/?r ίp((5); G).

To finish the construction, define

βn = sup {0y|y exists}

and extend G trivially to all of tp(δ +1) x tp(δ - 1).
Let Cδ<^ G be that part of Cδ~u G enumerated via computations of height less

than β^. The outward form of the construction implies C < y ; G is ^-recursively
enumerable in tp(δ — 1), ίp(α); F. The only remaining problem is to show C<~y; G is
Qδ-uo (overshoot). Suppose not. Thus there is a τ > β^ such that Cf" 1 ; G ^ 0 .
Let τ ^ be the least such τ and choose bί e Cδ~1; G . Theorem 4.1 shows ftx 6 C<"^ ; G

for some y that exists. There is an e such that

(10) {e]{Cδ-^F,butp{δ-\\tp(μlF)

is computed as follows: enumerate all of Cδ~UF; enumerate C < y j G simul-
taneously; look for the least τ such that bγ e Cδ"1; G. According to Theorem 4.1, (10)
converges when Cδ~1; F is replaced by C<"/ ; F for some γ that exists. Furthermore
[e] can require C<~1; F to be a fairly good imitation of Cδ~1; F; in particular γ " = y.
Consequently case 2b holds at stage y and bίeCδ7β

1;G. D

Harrington noted, and Moldstad 1977 proved, that the plus-one and plus-
two theorems can be combined. For example, there is a type 3 G such that
l-en(G) = 1 -en(*E) and 2-sc(G) = 2-sc( 4 £).

No satisfactory plus-three theorem is known.

4.4 — 4.6 Exercises

4.4 (Harrington). Define

τ 0 — κ0

Show κ}ω > limπτπ.

4.5 (Moschovakis). Show the 1-envelope of 3E is not the 1-envelope of any type 2
object.

4.6 Show that an ordinal ^-recursive in α, tp(a); F need not be ^-constructive
in α, tp((x); F. (astp(cή & α a successor & F of type α + 2.)
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5. Selection with Additional Predicates

The proofs of Normann selection (Theorem 1.3) and Moschovakis selection
(Theorem 2.1) made use of a "power set" hypothesis. In the Normann case, HajnaPs
theorem was invoked to show 2P n E({x9 p}) was an element of E({x, p}). In the
Moschovakis case strong use was made of the fact that

R(k(j))Rm))eR(oϊ)

if k(j) < k(i) < α. In both cases the need for a "power set" hypothesis stemmed
from Grilliot's approach to selection: compute min/by computing min g for all g
"below" / In this section min A is computed by considering subcomputation
instructions of computation instructions in A. Thus functions (or subsets) are
replaced by elements, and so there is no need to know some class of subsets of a set
is a set.

The elemental approach to Moschovakis selection is well exemplified by the
proof of Theorem 5.1. Let x be a set of ordinals. Then E(x) has a greatest cardinal
(in the sense of E(x)) denoted by gc(£(x)). In general gc(£(x)) < supx. For sim-
plicity assume gc(£(x)) = sup x. Let A ^ supx be ^-recursively enumerable in x.
Thus

(1) A = {a\a< supx & {e}(a,x)l}.

If A Φ φ, then define

min^4 to be min{|{e}(α, x)\ \aeA}.

Assume

E(x) 1= [cofinality gc(£(x)) = ω].

The proof of 5.1 uses the elemental approach to compute min A from x and an
ω-sequence through gc(£(x)). Note one last time that there might be a cardinal p
(in the sense of E(x)) such that 2P n E(x) is not a member of E(x). In that event there
is little hope for Grilliot's approach.

Some notational conventions will be helpful in the proof of 5.1. Let α, b, c, . . . be
ordinals less than sup x. α, ft, c, . . . will be used to denote (or encode) computation
instructions, that is, nodes on the universal computation tree < v . If the node is of
the form <e, <α, x>>, then it can be readily encoded as an ordinal less than sup x.
An immediate subcomputation instruction of <e, <α, x>> is of the form <c, v} for
some c < ω and v e E(x). As in the beginning of the proof of Theorem 2.1, υ can be
construed effectively as an element of sup x (cf. Exercise 2.7), and so <c, v} can be
encoded as an element of sup x.

As an example of the above usage,

\a\ = sup+{\b\\b<va}.
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5.1 Theorem (Sacks & Slaman 1987). Let xbea set of ordinals. Suppose in E(x) there
is a strictly ascending sequence {kt \ i < ω} of cardinals (in the sense ofE(x)) such that

supx = sup{kt\i < ω}.

If A ^ x is nonempty and E-recursively enumerable in x, then

min^4 <Ex, {kt\ i < ω} (uniformly).

Proof. The predicate, b is an immediate subcomputation instruction of α, is not
£-recursive in x. A slight modification, b is an immediate subcomputation instruc-
tion of a via β, is. The essential clauses are:

<m, M> is an immediate subcomputation instruction of <2m 3", u) via β;
if |{m}(u)| ^ β and ve{m}(u\ then (n,v} is injmediate subcomputation of

<2m 3",w> viajδ.

The theorem is proved by effective transfinite recursion on min A, henceforth
called the main recursion. There are countably many cases, at least one of which
yields min A. They are woven into one procedure by Gandy selection.
Case OJ >: i <j a n d there is an aoeA n kt such that

min A = min (A n kt) = | a01, and

min A = sup+ {\b\\b < kj&bis an immediate subcomputation instruction of α 0}.

In this case min A is computed by a recursion of length kj+ί. Fix α < kj+1 and
assume β(y) has been computed for y < α. Let

Subcase 1: β~(oc)+ 1 > min(>l n fef). Define j8(α) to be min (A n fef).

Subcase 2: β~((x) + 1 < min (A n fc^. Let Zα be the set of all b such that b <kj&
b[ & β~(oί) < \b\ & b is an immediate subcomputation instruction of some α < kt

via jT(α).
To see Zα is nonempty consider the a0 mentioned in the case hypothesis. Suppose

αDis <2m 3Λ, M>. If)S"(α) < |<m, M>|, then <m, M>eZα. This last assertion assumes
that the encoding of nodes on < v by elements of sup x has the property that
<m, M>e/c,. if <2m 3", u>e/c^. Suppose /Γ(α) > | <m, M>|. Then for every ve{m}(u),
<n, v} is an immediate subcomputation instruction of α 0 via j?~(α). Hence the case,
and subcase, hypotheses provide a b in Z α .

Zα is £-recursively enumerable in /Γ(α), x, fef, fe7; and min Zα < min A, hence the
main recursion can be applied to compute minZ α . Define β(oc) to be min Z α .

sup {/J(α)|α < kj+ι} <Ex, ki9 kj9 so it need only be shown that β(oc)
= min (A n k{) for all sufficiently large α. Suppose not. Then subcase 2 holds for all
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α. For each α, there is a ba e Zα n fe7- such that

and (?),<« [fly)

The map αi—>ba is an injection of kj+ί into fc,-.
For the sake of case <i, 0>, define

(1) y(j, a) = sup+ {\b\\b <kj & b is an immediate
subcomputation instruction of a}

with the understanding that y(j, a) has a value iff b j for all b < kj an immediate
subcomputation instruction of a.

Define y(j, α, β) as in (1) with b restricted to immediate subcomputation in-
structions of a via β. y(j, α, β) is a partial ^-recursive approximation of y(j, a).
Case <z, 0>: min A = min (4 n fcf) and
(a) [aeAnki& \a\ = minA ->(j ) j < ω (y(j, α) < minΛ)].
In this case min (An fef) is computed by a recursion of length ki+ί. Fix α < ki + 1

and suppose jS(y) has been computed for all y < a.
Subcase 1: j?~(α)+ 1 > min (A n kt). Define β(<x) to be min(A n fc^.
Subcase 2: β~{oi) + 1 < min(>l n fej. Let 7α be the set of < j , a} such that

7 < ω & a<kt & β-(oc)<y(j,a,β-(oc)).

Ya is nonempty by the same sort of argument used in subcase 2 of case <i,j > to
show Zα is nonempty. Ya is ^-recursively enumerable in β~((x),x,{kj\j<ω}.
Hence the main recursion can compute

β(a) = min{y(Λ a, β'(y))\ <j, a}eYa}.

For all sufficiently large α, jβ(α) is min (4 n fcf). Suppose not. Then subcase 2 holds
for all α. For each α there i s a θ ' , α ) e ω x fcf such that

β{*) = yU,a,β-iμ)) & (y)7 < . (β(y) < j8(α)).

Each such <;, α> is associated with at most two α's. But there are ki + 1 α's
associated with only ω x kt < 7, α>'s, an impossibility. The two α's, α 0 and αx, occur
as follows. Suppose a is <2m 3w, w>. β~(oc0) is less than |<m, M>|. Later, when
jS~(αi) > |<m, w>|, <n, ί;> is an immediate subcomputation instruction of a via
/ T i a j f o r a l l ι>e{m}(rc).

An effective selection procedure is defined above for case q uniformly in q. If
min A < 00, then case q converges for some q. For all q9 if q converges, then it
converges to min A. If some q converges, then Gandy selection computes one. D

The proof of Theorem 5.1 establishes more than has been stated, {k^i < ω} can
be replaced by a singular sequence of length p > ω, if there is an effective method M
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for selecting elements of nonempty subsets of p ^-recursively enumerable in x. M
replaces Gandy selection at the end of the proof of 5.1.

E(x) can be replaced by E(x; R) in the statement of Theorem 5.1 without any
noteworthy changes in the proof of 5.1. Easy relativization to R is typical of the
elemental approach to selection. The assumption that x is a set of ordinals can be
relaxed somewhat. The essential point to remember about the proof of 5.1 is the
non-injectibility of ki+1 into kt.

5.2 Corollary. If x is a set of ordinals and

E(x) 1= [cofinality of greatest cardinal = ω],

then E(x) is Σ x admissible.

Proof. Theorem 5.1 and Lemma 2.3. D

Now the elemental method is used to relativize Normann selection (Theorem
1.3) to an additional predicate.

5.3 Theorem (Griffor & Normann 1982). Let p be a regular cardinal in the sense of
E(p; R). If δ < p and C <= δ is nonempty and E-recursively enumerable in p; R, then
some element of C is E-recursίve in δ, p; R (uniformly).

Proof. Let α, b, c, . . . denote ordinals less than p. Recall the remarks about
notational conventions made immediately prior to Theorem 5.1. They apply to the
present situation. Thus a9b9c9 . . . will be used to denote (or encode) computation
instructions, that is, nodes on < υ. R. If the node is of the form <e,<α, x>> then it
can be encoded by a slight modification of x. If b is a node of the form <2m 3W, u>,
then its immediate predecessors are:

< n, v > for all v e {m} (u) if {m} (u) | .

<m, M> will be denoted by b0, and the <«, t;>'s, if they exist, by bί9b2,. . . 9

ba9 . . . (α < p). (If {m}(u) has cardinality less than p, then some of the bα's are
dummies; the listing, ba (α < p), is derived from the one-one map mentioned in
Exercise 2.7).

Let C = {a\a < δ & {e}R(a)[}. The intent is to compute

m i n C = min{|{ί>}*(α)| |α<<5}

by a recursion on min C henceforth called the main recursion. For simplicity let a
denote node <e, a} of <U;R. Thus minC is min{|α| \aeC}.

β(oc) is computed by recursion on α < p. Let /Γ(α) be sup {j?(y) |y < α}.
Case 1: min C < β~(oc) + 1. Define β((ή = min C.
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Case 2: min C > β~(<x) + 1. Consider an arbitrary a < δ. If | a0 \ > /?~(α), then define
t(a, α) = 0. Suppose | aQ \ < β~(α). Then for all β < p,aβ is seen to be an immediate
subcomputation instruction of a via a computation of length at most j8~(α). Let

It is intended that t(a, α) be defined and equal to β iff

(y)y<β(ayl & \aγ\<β-(cή\ aβ\ and \aβ\>β~(a).

t(a, α) is defined for some aeC, since minC = \a\ for some aeC. Use the main
recursion to compute

(!) j8(α) = min |α f ( β f β ) | .
a < δ

If case 1 holds for some α, then min C = sup{/?(α)| α < p).
Suppose case 2 holds for all α. Let a* be the least a that satisfies (1). {<α, aa)\

α < p} is ^-recursive in x, p; R thanks to the main recursion. The regularity of p in
E(x; R) implies aa equals some fixed α00 for all α e Z , an unbounded subset of p.
Hence

I α 0 0 1 = s u p y

+ < p I αy°° I = s u p y

+

e Z | α ^ γ)\

= supy

+

eZ jβ(y) = supy

+< p )8(y),

and so min C < supy

+< p jS(α). D

Theorem 5.3 extends Normann's result on the extended plus-one hypothesis ((ii)
of subsection 3.7) from 4 £ to an arbitrary type 4 object. It also extends his work on
Post's problem for E(2ω) to E(2ω; R) (cf. Chapter XIII).

There appears to be little left to discover of a general nature about selection.
Suppose p is a cardinal in the sense of E(ρ\ and E(p) is not Σ1 admissible. If p is
regular in E(p\ then selection is false for unbounded ^-recursively enumerable
subsets of p, but true for bounded ones. If p is singular in E(p\ then selection holds
for ^-recursively enumerable subsets of p iff it holds for subsets of p 0 , the cofinality
of p in E(ρ).

According to Exercise 2.10, selection fails for subsets of ω\ E-recursively enu-
merable in cθωί

The study of forcing over E-closed structures leads to new, highly specialized
selection results, e.g. Theorem 4.1.XL




