
Chapter XI
Forcing Computations to Converge

In this chapter several notions of forcing over £-closed structures are studied. Only
set forcing is examined. The term "set forcing" refers to forcing relations that are
elements of the ground structure. Forcing over an £-closed structure poses
questions peculiar to ^-recursion theory. How can computations be forced to
converge or diverge? There does not appear to be a uniform answer. Much depends
on the nature of the forcing relation under scrutiny. The two major examples
studied below are countably closed, and countable chain, forcing. Both preserve
^-closure, yet do so in different ways. An example of set forcing that does not
preserve E-closure is given in Section 1. Note that set forcing over a Σ x admissible
set always preserves Σ x admissibility.

As an application of forcing it will be shown that certain naturally enumerable
sets are not E-recursively enumerable. Recall that 2 ω n £ ( ω ) is ^-recursively
enumerable in ω (cf. Exercise 5.16.X). It will be seen that 2 2 < o n£(2 ω ) is not E-
recursively enumerable in 2ω, b for any be2ω if £(2ω)N(card (2ω) is regular) (cf.
Exercise 2.5).

1. Set Forcing over L(κ)

Assume L(κ) is £-closed and not Σ x admissible. Thus there is a greatest cardinal in
the sense of L(κ) (cf. Part C) denoted by gc(κ). It is convenient to think of the
generic object G as a subset of gc(/c). The primary question is: if G is generic, is
L{κ, G) £-closed? For a "no" answer, let L(κ) be E(ωx\ and G a Levy-collapse of
ω1 to ω. Then L(κ, G) - L(κ, b) for some b ^ ω. If L(κ, b) is E-closed, then
L(κ, b) = E(b) is Σ x admissible, and so L(κ) is Σx admissible, an absurdity by
Exercise 5.15.X.

Thus set forcing over E(ωx) must preserve ω1 if it is to preserve is-closure. It
turns out that preserving ω x does not guarantee that ^-closure will be preserved,
but something close to that is true. This point is discussed further at the end of the
present chapter.

1.1 The Forcing Language. Suppose G ^ gc(/c) as above. It follows from
Proposition 2.8.X that the members of L(κ, G) are just those sets of the form
{e} (a, G) such that a e L(κ) and | [e] (a, G)\<κ. The terms of the forcing language,
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S£ (fc, G), are designed to name the elements of L(κ9 G). Unavoidably some do not;
they refer to divergent computations. The primitive terms are ^ and a for each
a e L(κ). A general term is of the form {e} (tί, . . . , tn)9 where t{ (1 < ί < ή) is a term.
By composition every term is equivalent to one of the form [e] (q9 &).

The other primitives are: ε; | |; set variables x, y9 z,. . . ranging over L(κ9 G);
ordinal variables β, γ9 δ9 . . . ranging over κ9 quantifiers and propositional con-
nectives.

The formulas of 5£(κ9^) are as follows.

(i) l{e}(ί?> ̂ ) l = £• ® s a γ s that the computation indicated converges and has
height σ{< K). (i) is a typical ranked formula,

(ii) (Eδ)[\{e}(q9 <&)\ = δ]. This says that the computation indicated converges
and has height less than K. A typical unranked formula,

(iii) xe{e}(a,&). Here is a formula whose meaning is elusive. If {e}(a, G)
converges and has height σ <κ9 then {e} (α, ̂ ) names [e] (α, G). Otherwise
{e} (a, $) does not name any member of L(κ, G).

1.2 The Forcing Relation. Let 9 = <P, > > be a notion of forcing that belongs to
L(κ); in short 9 e L(κ). The elements of P, denoted by p9 q9 r, . . ., are called forcing
conditions. If p > q9 then p is said to be extended by q; intuitively, q says more
about ^ than p does.

9 determines a forcing relation IV defined by effective transfinite recursion on
σ < K. Three formal entities are defined simultaneously:

(b)
(c) q\\-se{e}(g,9).

(b) is a set of terms adequate for naming all the elements of [e] (α, G) if G is generic,
peG and (a) holds. In (c), s is a member of (b), and q extends the p mentioned in (b).

At the ground level (σ = 0) take [e](α, <S) to be <S for simplicity. Then for all p
and q9

p9 e9 a9 %9 0) = {δ\δ < gc(κ)}, and
f̂ I hδ E {e} (a, &) iff (q I h δ e &) is a ground zero forcing fact.

(Assume ^ includes a list of all ground zero forcing facts of the form q I \-δe& or

Above ground level (σ > 0) take e to be 2m 3" (scheme T of 2.5.X). The definition

of

(1) p\\-\{2m 3n}(q9$)\ = σ

has three clauses:

(2) {Ey)7<slp\\-\{m}{q99)\ = γ};

(3) plh(x)(£τ) τ < £ [xe{m}(α,^)^ |{n}(x) | = τ] ;

(4) p l h ( τ ) τ < σ [ | { m } ( α , ^ ) | = τ v (Ex)[xe{m}(α,^) & |{n}(x)| > τ]] .
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To make sense out of (2)-(4), recall some fundamental aspects of forcing:

p I h (Ex) & (x) iff p I h & (c) for a suitable term c;

J^ iff (<?)„>,
) ^ i f fplh~(Ex)

Then note that the y of (2) is less than σ, hence ^"(p, m, α, ̂ , y) was defined prior to
stage σ. The subformula, x e {m} (α, ̂ ) , gains a meaning by letting x range over the
terms in ̂ ~(p, m, α, ̂ , y). If s is such a term, then

q\\-se{m}(q,$)

was defined prior to stage σ for all q > p.
Next define

F {p, 2m 3W, α, Sί, σ} = {{n}(s)|5 e er (p, m, α, », y)}.

Finally, define ^ l h ί e { 2 m 3π}(α, ̂ ) iff for some sG.Tίp, m, α, ̂ ,y),

ί = {n} (s) and

q\Hse{m}(q^) & (£τ)τ<<r(|{n}(s)| = τ)].

Recall from subsection 1.1 that each general term t of $£ (K, ̂ ) is equivalent to a
term of the form {e} (α, ̂ ) . It will often be convenient to replace (α, ̂ ) by ί, as in
Proposition 1.3.

1.3 Proposition. The relations,

p,e, ί, σ) and
q\\-ss{e}(t)9

are E-recursίve in σ, 9 uniformly.

Proof. By effective transfinite recursion on σ. The definition given in subsection 1.2
is such a recursion. At stage σ all quantifiers in the definition are bounded either by
9 or by sets defined at earlier stages. Recall the proofs of Lemmas 2.6 and 2.7 of
Chapter X. D

1.4 The Tree of Possibilities. In subsection 1.2 a downward view of forcing com-
putations to converge was adopted. This view parallels the downward view of
convergence of Chapter X. It is possible to develop an upward approach based on
hierarchies. The latter makes forcing over an E-closed L(κ) look very much like
forcing over L in conventional set-theoretic presentations. The downward view of
computation seems closer than the upward to the nature of computation. An
instruction is given and then pursued without any foreknowledge of convergence.



262 XL Forcing Computations to Converge

The upward approach deals only with convergent computations. It builds long
ones by combining short ones. One advantage of proceeding downward is that it
leads to the all important concept of divergence witness. Another is that most
arguments for preserving ^-closure in generic extensions turn on a related concept.

To study divergence witnesses in generic extensions, a forcing counterpart of >C7,
the universal computation tree, is needed. It is denoted by >v and is called the tree
of possibilities. A node on >v is a triple </?, e, ί>> where p is a forcing condition,
e < ω and ί is a term of <£(κ, <&). >v below </?, e, ί> corresponds to >υ

below <e, ί> for all generic G that satisfy p. A preliminary definition of
<p,e, ί> >v(q,n,s) is

(1) p>q and

(I h * refers to weak forcing; p | h * ^ iff pI h ~
To make (1) precise, >υ has to be expressed within the forcing language J?(κ,
Suppose e = 2m 3n.

(2) (a) p\H<2m r9ty>u{m,tyι

plhsG{m}(ί), then p l h [ < 2 m 3w, ί> > t 7 <n,s>].

Formula (2) holds for all p, t and s, and indicates how to define p I \- [<n, s> is an
immediate subcomputation instruction of <e, £>]. The idea is to mimic the definit-
ion of immediate subcomputation instruction given in subsection 2.1.X with the
help of the forcing definitions given in subsection 1.2. Then p I \-a >v b iff there exist
αo> . . . , an such that ao = a,b = an and

P11~ Lai +1 is a n immed. subcomp. instruc. of α j for all i < n.

The most pressing question about >v is: if plh*(£σ)[|{e}(ί)l = σ|, does it follow
that >y below <p, e, ί> is wellfounded?

An affirmative answer would be useful, since the key properties of I \- could then
be established by induction on the well-founded parts of > κ , as in the next lemma.
The answer is yes and no. Yes for countably closed forcing, and no for countable
chain condition forcing, both of which preserve ^-closure.

1.5 Lemma. Suppose p\\~*(Eσ)[_\{e}(t)\ = σ] and >v is wellfounded below

<p,β,ί>. Then

p\^*\{e}(t)\<y

for some γ <Ep, t, 0* (uniformly).

Proof γ is computed by effective transfinite recursion on >v below (p,e,t}.
Roughly, y is the height of the wellfounded subtree of >v below <p, e, ί>. As usual
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e is 2m 3" (scheme T of the proof of Lemma 2.5.X). By recursion

for δ <Ep, t, 0>, since <p, e, ί> > κ <p, m, ί>
Define (p',σ}eKby

p>p' & σ<(5 & p'\\-\{m}(t)\ = σ.

K makes explicit all the values of |{m}(ί)| allowed by p. By Proposition 1.3,
K<Ep,U0>.

Fix <p\ σ)eK and seT(p'9 m, ί, σ). Then

Define qeJ(p\σ, s) by

p'>q &

If qeJ(p\σ,s\ then *lh*(£/0[|{n}(s) = «• Again by 1.3,

J(p\σ,s)<Ep\σ,s, t,0>.

For each qeJ(p\σ, s) there is by recursion some p <Eq, s, 0* such that

By Corollary 4.5.X to Gandy's selection principle, p can be construed as a partial
^-recursive function of q9 s and 9. As q varies over J(pf, σ, s), p is bounded by
some

As s varies over ^"(/?', m, ί, σ), Pj(P',σ,S) is bounded by some

Finally, as <//, σ> varies over X, priP'im,t,σ) is bounded by some p x < p, ί, 9. Let y
be the strict supremum of δ and pκ. D

1.6 Effective Bounding. Suppose 0>eL(κ) is a notion of forcing such that: if

(1) *

then p I h * | [e] (t)\ < y for some γ <Ep, t, 0* (uniformly). Then & is said to satisfy
effective bounding. According to Lemma 1.5, if >v is wellfounded below <p, e9 ί>
whenever (1) holds, then & satisfies effective bounding.
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G is said to be ^-generic if for every sentence 3F of $£ (/c, ̂ ) ,

or

G is viewed both as a subset of gc(X), and as a consistent set of forcing conditions.
Thus δeG iff q\\-δeG for some g e G. If G is ^-generic, then for every sentence #",

(2) L(/c,G)hJF iff ( E p ) p e G [ p l h F ] .

(2) is proved in a standard fashion by induction on the rank and complexity of &
(cf. Part A, Chapter IV).

1.7 Lemma. If & satisfies effective bounding and G is ^-generic, then L(κ, G) is
Enclosed.

Proof Suppose not. Then for some e and aeL(κ\

{e}(a,G)l and \{e}(a, G)\ > K.

7<e,<α,G>> must h&ve a node z such that \TZ\ = K. SO it is safe to assume

(1) \{e}(a,G)\ = κ.

Since G is generic there is a peG such that p forces (1). Let e be 2m 3W. Then

for some σ <Ep, a, Θ> by effective bounding, p also forces

(2)

In (2) x ranges over T(p, m, α, ̂ , σ), which is ^-recursive in p, a, Θ> according to
Proposition 1.3.

Now proceed as in the proof of Lemma 1.5. Obtain a bound p0 <Ep, a, 0* on the
possible values of |{n}(s)| as s ranges over ^~(p,m9a,g,σ). Then p forces
I {e} (a,&)\ to be at most sup+ (p 0 , σ). The latter is less than K, since it is ^-recursive
in elements of L(κ). D

In the next Section it will be shown that every countably closed notion of forcing
satisfies effective bounding. The approach taken consists of proving >v is well-
founded below </?, e, ί> whenever 1.6(1) holds, and then applying Lemma 1.5. This
approach fails for countable chain condition notions of forcing, which nonetheless
will be seen to satisfy effective bounding.
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2. Countably Closed Forcing

Again assume L(κ) is £-closed and not Σ x admissible. Let έ?εL(κ) be a notion of
forcing. 9 is said to be countably closed if for every (λn\pn)eL(κ):

(Ό [A, 2> Λ. +1 ] -> (Eq) (n) [pn > q].

For an example, assume L(κ) N [cf (gc(κ)) > ω]. (Recall that "gc" denotes
greatest cardinal and "cf" cofinality.) Let P be the set of all p e L(κ) such that p is a
function from some δ < gc(κ) into 2. Then PeL(κ), since P ^ L(gc(/c)). Say p > q if
domp c domq and p(x) = q(x) for all x < domp. 9 is countably closed because
gc(κ) has uncountable cofinality in L(κ). For q take u {pn\n < ω}.

Countably closed forcing over an £-closed structure originated in Sacks [1980]
in the setting of Kleene recursion in 3 £ . Slaman was the first to point out the role of
countable closure in Sacks [1980]. A slightly abstract account of countably closed
forcing over an £-closed structure can be found in Sacks-Slaman [1987], as well as
an extension of the method to class forcing.

Warning: there is an assumption not made explicit in the statement of
Theorem 2.1 and needed in its proof for the application of Lemma 5.3.X. 9, and all
peP, are effectively equivalent to sets of ordinals.

Theorem 2.1. Suppose L(κ) is E-closed, but not Σ x admissible, and &> is a countably
closed notion of forcing in L(κ). Then every ^-generic extension ofL(κ) is E-closed.

Proof By Lemmas 1.5 and 1.7 it is enough to show >v is wellfounded below
<p, e, £> when

(1) p\\-*(Eσ)l\{e}(t)\ = σl

The idea is to convert an infinite descending path, if there is one, below <p, e, ί>
into &q<p that forces the existence of a Moschovakis witness to the divergence of
{e}(t).

The proof of Lemma 1.5 includes an effective procedure for computing γ from
p, β, ί, 9 by recursion on >v below <p, e, £>. The procedure is welldefined whether
or not >γ is wellfounded below <p, e, ί> Consequently Lemma 1.5 can be re-
phrased as follows.

There exists a {g} such that if (1) holds and >v is well-founded below <p, e, ί>,
then

{g}(p9e,t)l and p\ί*\{e}(t)\ < {g}(p,e,t).

(For simplicity, argument 9 of {#} is suppressed.)
Observe that if {g} (p, e, t)[, then >v is wellfounded below <p, e, ί>. This is so

because the computation of the value of {g} (p, e, t) assigns an ordinal rank to each
node (p\e',t'y of >v below <p, e, t}. That rank is {g}(p\ e\ t'). In short, {g}
cannot finish if there is an oo descending path below <p, e, ί>.
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Suppose {g} (p, e, ί)ΐ The plan is to compare >v below <p, e, ί> with >υ below
(g, <p, e, ί>>. There is a witness, λn\zn9 to the divergence of {g} (p, e, t) inside L(/c)
by Theorem 5.7.X. In addition

zo = (g,(p,e,t}} and zn>vzn+1.

The proof of Lemma 1.5 defines {#} in such a way that {g} (p, e, ί)ΐ if and only if
there exists some < q\ m', s> such that

(2) {g}(q\m\s)Ί, and

(3) <#', m', s> lies immediately below </?, e, ί> in >v.

It follows that z must contain some information of the sort expressed by (2) and (3).
Thus there is an n and a < q\ m', s> such that

and <g', m\ s> satisfies (2) and (3). Continuing in this fashion extracts a sequence
λr\ wΓ from Aπ|zπ such that w0 = <p, e, ί> and for all r:

wr is of the form (pr, er, ίr>,

Since ^ is countably closed, there is a q such that pr> q for all r. Then g weakly
forces λr\(er, tr) to be a Moschovakis witness to {e}(ί)ΐ •

2.2 Non-enumerability. A typical application of countably closed forcing is the
proof that certain naturally enumerable sets are not ^-recursively enumerable. For
example, it follows from Theorem 2.3 that E(ωγ) is not E-recursively enumerable in
any beE(ωι). The case for regarding E{ωι) as naturally enumerable is as follows.
Begin with ω1 and iterate first order definability. At a limit stage λ, look back and
see if there is an x already enumerated and an e such that | [e] (x)\ = λ. If so, collect
everything already enumerated and continue. Otherwise stop. The procedure is
predicative in nature, because |{e}(x)| = λ only if all the immediate subcom-
putations of {e} (x) converge and have been enumerated prior to stage λ. This way
of laying out £(0^) is close in spirit to a standard way of laying out all finite
computations in classical recursion theory.

Theorem 2.4, together with Corollary 4.6.X, explain why E(ω) is ^-recursively
enumerable. Recall that gc(κ) is the greatest cardinal in the sense of L(/c), if there is
one.
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2.3 Theorem (Sacks 1986). Assume L(κ) is not Σ1 admissible and

L(κ) N [gc(κ ) is regular].

Then 2 g c ( κ ) n L(κ) is not E-recursively enumerable in any b e L(κ).

Proof. Recall the forcing conditions defined at the beginning of Section 2. Suppose
(in hope of a contradiction) that for some b e L(κ),

2*°™nL(κ)={x\{e}(b9x)l}.

By Theorem 2.1 the null condition φ weakly forces L(κ,&) to be £-closed. By
Theorem 5.7.X, φ weakly forces L{κ, &) to admit divergence witnesses. Thus φ
weakly forces (£(5)[|{e}(ί)l = δ v (Ew) (weL(δ) & w is a divergence witness to
M(0T)] f°Γ every term t. Hence either (1) or (2) holds:

(1) Φ\\-*(Eσ)l\{e}(b99)\ = σ].

(2) There exist q, w and δ <κ such that

q\\-*lweL(δ,g) & w witnesses {έ?}(&,#)T]

If (1) holds, then there will b e a G ς g φ ) such that {e}(b, G ) | but GφL(κ).
If (2) holds, then there will be a G £ g φ ) such that GeL(κ) but {e}(b, G)f
Assume (1) holds. According to Theorem 2.1

(3) Φ\V*\{e)(b^)\<λ

for some limit λ < L(κ). The language i f λ (^) consists of sentences of rank at most
λ and has enough expressive power to give a complete account of the computation
of [e](ft, G). A more detailed definition of ^λ{^) follows. As usual, only scheme T is
considered. Let e = 2m 3n.

(4) (i) (Eσ)σ<£\{e}(b99)\ = σ] belongs to
(ii) If p<λ and p l h | { 2 m 3w}(ί)| = p, then all of the following belong to

(Eσ)σ<EU{m}(t)\ = σl

(x ranges over the terms in ^ ( p , 2m 3", ί, p).)

(iii) Every instance of every subformula of every sentence in S£\(^) belongs to

Proposition 1.3 implies Lλ(G) e L(κ). Let / e L(κ) be a map from gc(κ) onto Lλ(κ).
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There exists an S e g φ ) such that SφL{κ) but (S n S)EL{K) for all δ < gc(/c).
S is needed in the construction of G to insure that G φ L(κ). If K is countable, then S
is any ω-sequence through gc(/c) not in L(κ). If gc(κ) is a regular L-cardinal, then S
exists because K is not Σ1 admissible, hence less than the next L-cardinal after gc(κ).
Otherwise S is obtained by a Jensenian fine structure argument such as
Theorem 4.1 of Sacks [1986].

The desired G is generic with respect to every sentence of J^ A (^) and encodes S.
The characteristic function of G is a union of forcing conditions pδ of (δ < gc(/c))
defined by recursion on δ.

(5) p0 = φ. py = u {pβ}\β <y} if γ is a limit.

qδ = least q >, pδ such that q\\~fδ or q\\- ~fδ.

Ps+i=Ps~<0> if δeS, pΓ(iy if δφS.

q^(i} = <? u <dom^f, ί>.) Observe that

(6) pδ is a forcing condition (i.e. pδeL(κ)\ and

(7) {pγ\y<δ} <ESnδ, gc(ιc), A,/, 5 (uniformly in (5).

The proof of (6) and (7) is a simultaneous induction on δ. When 5 is a limit, then (6)
follows from (7) because gc(/c) is regular in L(κ) and (S nδ)eL(κ). When <5 is a
successor, then (7) follows from Proposition 1.3.

Hence G is well defined. By (3) and (4) {e}(b9 G ) | . GφL(κ) because SφL(κ) and

(8) S<EG,gc(κ),-λJ.

(8) is a consequence of

(9) <p,, 5 n (5> < £ G, g φ ) , 2,/, έ (uniformly in δ\

and (9) is derived by recursion on δ. (In fact, S and G have the same £ degree
modulo gc(κ), λj)

Now assume (2) holds. Let A be a limit greater than δ. Repeat the construction of
G given in (5) with p0 replaced by q and S by 0. Then G is generic with respect to all
sentences of £fλ(9), and so {e}(b, G ) | According to (7), G <£gc(κ), A,/, hence
GeL(κ). D

The proof of Theorem 2.3 relied heavily on the Σ x inadmissibility of L(κ). The
next result assumes Σt admissibility and generalizes the classic result of Kleene:
2ω n £(ω) is ^-recursively enumerable in ω.

2.4 Theorem. // z is a set of ordinals and E(z) is Σ1 admissible, then E(z) is
E-recursίvely enumerable in some element of E(z).
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Proof. E(z) — L(κ, z) for some K by Proposition 2.10.X. According to
Theorem 5.8.X, there is a y e E(z) such that κ^y > K. Any u e L(κ, z) can be encoded
by some v9 a set of ordinals, in L(/c, z). Hence there is a veL(κ, z) such that v ^ K
and z, y <Eυ. By reflection it is safe to assume v < £ z , y. Since v =Ez,y it follows
that κv

0 = κfrz and κv

r = κz/y. Hence

< • * > * for all x

by Lemma 5.5.X(iv).
Assume xeE(z) with the intention of computing O(x) from v, x. O(x) is the

unique δ such that

δ < K < κv/x and xeL(δ + l,z)-L(<5, z).

By reflection O(x) < £ y, x. Gandy selection (Theorem 4.1.X) provides an e such that
for al lxe£(z),

{e}(Ό9x)i and {e}(v9x) = O(x).

£(z) is enumerated as follows. Assume x is arbitrary. Try to compute {e} (t>, x). If
(e)(v, x)i, then enumerate x if E(z) is not a subset of L({e} (v, x), z). D

A partial converse to Theorem 2.4 exists (Sacks [1986]). If γ is an ordinal and
E(γ) is ^-recursively enumerable in some beE(γ\ then E(y) is Σ x admissible. The
argument does not relativize to a set z of ordinals.

Further results on the enumerability of L(κ\ when L(κ) is £-closed, are given in
Sacks [1986]. A complete resolution of the problem is available when L(κ) is not Σ x

admissible. The admissible case is open.
Suppose L(κ) is E-closed and not Σ1 admissible. Then (i) and (ii) are equivalent.
(i) 2gc(κ) nL(κ) is ^-recursively enumerable in some beL(κ).

(ii) L(κ) \= [ω < cofinality (gc(κ)) < gc(κ)]; or L(κ) N [ω = cofinality gc(/c)] and
every amenable subset of gc(κ) belongs to L(κ).

(A set Z c gc(κ ) is amenable (Jensen) if (Z n δ)eL{gc(κ)) for all δ < gc(τc).)
The cofinality ω case is handled by a variant of Green's compactness theorem

[1974]. The uncountable singular cofinality case is managed by fine structure
results of S. Friedman [1981].

2.5-2.6 Exercises

2.5. Suppose

£(2ω)N[card(2ω) = ω 1 ] .

Show E(2ω)n22ω is not ^-recursively enumerable in any be2ω. Normann
selection, Corollary 1.4.XII, makes it possible to replace [card (2ω) = ω x ] by
[card (2ω) is regular].
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2.6. Suppose L(κ) is E-closed but not Σ1 admissible. Let 9 be a countably closed,
set notion of forcing in L(κ). (Heed the warning just before Theorem 2.1.) Show
for all aeL(κ)

(p)(Eq)(p>q & q\ \- [κ?>a < κf^\

3. Enumerable Forcing Relations

Assume L(κ) is £-closed but not Σ x admissible. Let &eL(κ) be a set notion of
forcing as in Section 1. Recall the concept of effective bounding from sub-
section 1.6: if

(1) p\\-*(Eσ)l\{e}(q,<Z)\ = σl

then plh*|{e}(α, <&)\ < y_ for some y<Ep, a, Θ> (uniformly). According to
Lemma 1.7, L(κ, G) is E-closed if G is ^-generic and & satisfies effective bounding.
Another consequence of effective bounding is: relation (1) is ^-recursively enumer-
able on L(κ). More intuitively, the forcing relation restricted to "r.e. sentences" is
"r.e.". This last follows from effective bounding via Corollary 4.4.X. The purpose of
the present section is to prove the converse. The result clarifies the nature of forcing
over £-closed structures, but does not help to show any particular notion of forcing
preserves E-closure.

The notion of recursive enumerability on L(κ) is boldface; any member of L(κ)
can occur as a parameter. For simplicity it is assumed in Theorem 3.1 that the only
parameter needed for the enumeration of relation (1) above is 0*. This assumption is
in agreement with the definition of effective bounding, which requires γ to be
computed from /?, a, 0>.

Throughout the present section it is taken for granted that G, ̂ , and all peP, are
equivalent to sets of ordinals in some uniform, effective fashion. Thus it is safe to
apply 5.3-5.6 of Chapter X.

3.1 Theorem (Sacks & Slaman). Assume L(κ) is E-closed but not Σ x admissible. Let
^EL(K) be a set notion of forcing. Then (ί) = (ii).

(i) 0* satisfies effective bounding.
(ii) The relation, p I h *(£σ)[| {e} (q,&)\ = σ], is E-recursίvely enumerable on L{κ).

Proof (i) implies (ii) by Corollary 4.4.X.
Assume (ii) holds. For simplicity suppress 0*. Suppose in hope of a contradiction

that (1) holds

(1)
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Gandy selection implies there is an e* such that:

{e*}{p9a,G)l iff

Gandy chooses the shortest computation, so (1) is equivalent to

(p5 Q, &)\ = σ]. Then (ii) implies

(2) (1) is ̂ -recursively enumerable on L(κ).

Let / be such that on L(κ):

(3) {f}{p,e9b)l iff

p\\-*(Eσ)l\{e}{b99)\ = σl

There exists a recursive function t such that

0 if some w <E α, p, G is a

{t(c)} (<p, α>, G) ~ witness to {/} (p, c, <p, έi»T,

undefined otherwise.

Let e0 be a fixed point of t. Then

(4) {eo}{<P, α>, G)l iff some w < £ α , p, G is a witness to {/} (p, e 0, <P? fl»T

To see that

(5) }

assume otherwise. Then by (3),

Choose a generic G o ep. Then {eo}((p, a), G o ) | , and by (4), {/}(p, ̂ 0» <P. β»T
So (5) is true. It follows from Lemma 5.3.X that there is a witness w to (5) such that
w <Eκa

r*
p. Consider a generic Gxep. By (1),

K < ^

By reflection there is a witness w to (5) £-recursive in p, α, G x . By (4),

(6) {eo}«P,a\G1)l

Note that (6) holds thanks to a computation of height h <Eκ^p < K. Thus

(7) \{eo}{<P9ay9G1)\<κ.
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Since (7) holds for all generic Gίep9 it follows that

p\\-*(Eσ)l\{eo}«p9a>99)\ = σi

But then (3) contradicts (5) with <p, α> in place of b. Hence supposition (1) was
false, and so

(8) not[plh*(£σ)(σ = \{e}{q, 9)\ > κfp-)]

is proved for all e, p and a.
Now (i) can be proved. Assume

p\\-*{Eσ)l\{e}{q,9)\ = σl

By Lemma 3.2 below, it suffices to show

(9) p\\-*\{e}{a,9)\<κϊ*.

Suppose (9) fails in order to contradict (8). So there is a q < p such that

(11) q\\-*\{e}{a,V)\>KfZ.

For q < p, the negation of (11) is equivalent to

(12) (Ey)ly<κγ & (Er), a r (r lH{β}(α,3) | = y)].

By Proposition 1.3, " r I h | {e} (a, Φ)\ = 7" is ̂ -recursive in y. By reflection, (12) is i>
recursively enumerable in α, p. (Recaϊl that parameter 9 is being suppressed.)
Hence (11), for q < p, is co-£-recursively enumerable in a, p. Kechris's basis
theorem (5.1.X) supplies aqo<P such that (11) holds and K?'p'qo < < p . But then

q0 \\-*(Eσ)(σ = \{e}(q, 9)\

which contradicts (8) with p replaced by q0 and a by <α,p>. •

The next lemma relates bounds on κr to bounds on κ0 in generic extensions. It is
a useful general fact about forcing over £-closed structures.

3.2 Lemma. Assume L(κ) is E-closed but not Σ x admissible. Let 0>eL(κ) be a set

notion of forcing. If

then
p\\-*\{e} (0

for some γ <Ep,a,0>.
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Proof. By Lemma 5.5.X,

(1) κp/a^ < κ p

r > a ' q ^

for all qeP.

Assume e = 2m 3\ Then

(2) (

Clearly the δ of (2) is less than κP'a^. It follows from (1) and reflection that the r and
δ of (2) can be taken to be ̂ -recursive in p, a, q, 0>. By Corollary 4.5.X to Gandy
selection, r and δ can be taken to be partial E-recursive functions of p, a, q, έP.Asq
ranges over all possible extensions of p, δ is bounded by some <50 <Ep, α, 0>. Hence

p\\-*\{m}(q,$)\<δ0.

Fix q < p and suppose

(3) \]

for some δ. Then δ <Eq, p, α, & by Proposition 1.3, since δ < δ0. Let K[ be the set
of all r < q such that

r\\-te{m}(a,<#) (te^(q, m, α, % δ)).

For each reK^ there is an s < r such that

s 11- I{n} (ί)| = σ for some σ < κ^a^.

The argument given above for δ0 is now repeated three times. As q ranges over Kqy

σ is bounded by some σ0 < £ ί , q, p, α, ̂ . As t ranges over 3~{q,m, α, ̂ , ̂ ), σ0 is
bounded by some σx <Eq, p, α, ̂ . As ̂ f ranges over all extensions of p that satisfy
(3), σx is bounded by some σ2 < £ p , a, 0*.

Let 7 be max(σ2 , ̂ 0 ) + l ^

3.3 Exercise. Formulate and prove a theorem similar to 3.1 for class forcing.

4. Countable-Chain-Condition Forcing

Let L(κ) be £-closed and ^eL(κ ) be a set notion of forcing, lϊ p,qeP and

~ ( E r ) [ p > r & q>rl
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then p and q are said to be incompatible. A set of mutually incompatible conditions
is called an antichain. 9 is said to satisfy the countable chain condition (c.c.c.) in L(κ)
if every antichain in L(κ) is countable in L(κ). In a moment it will be shown that
c.c.c. forcing preserves ^-closure. It will be seen from the proof that c.c.c. forcing
differs radically from countably closed forcing. The former preserves the κr spec-
trum, but the latter does not (cf. Corollary 4.4 and Exercise 2.6).

The standard argument from set theory that finitely supported, iterated c.c.c.
forcing is c.c.c. works without change inside L(κ). An application of this fact to a
problem in ^-recursion is given in Section 5.

The next theorem proves more than is promised above. Let p be a regular
cardinal in the sense of L(κ). 0> is said to satisfy the p-chain condition in L(κ) if every
antichain in L(κ) has cardinality less than p. (Note that the ωx-chain condition is
equivalent to the countable chain condition.) Selection plays a part in the study of
forcing relations that fulfill the p-chain condition. Let y be a cardinal in the sense of
L(κ). L(κ) is said to obey less-than-y selection if there exists a partial ^-recursive (in
y and possibly another parameter) function / such that for all e < ω, δ < γ and
peL{κ):

{Ex)x<Λl{e}(p9x)i2^U(e9δ9p)i & {e}(PJ(e,δ,p))H

Thanks to Gandy selection, E(ω\) obeys less-than-ωx selection (cf. Exercise 4.6). In
contrast £(ω£ t ) does not obey less-than-ω2 selection (cf. Exercise XII. 1.5). A
theorem of Normann implies E(y) obeys less-than-y selection when y is a regular
cardinal of L (cf. Theorem XII. 1.3).

To grasp more quickly the proof of Theorem 4.1, assume L(κ) is £(ω x ) and
p = ω. Then only cases 0 and 2 apply.

4.1 Theorem (Sacks 1986). Let L(κ) be E-closed and Θ> e L(κ) a set notion of forcing.
Assume 0* satisfies the p-chain condition, and L(κ) obeys less-than-p selection. If
there exist r and δ such that

p>r and r\\-\{e}(t)\=δ9

then there exist such r and δ E-recursive in p, ί, ^ , p (and background parameters).

Proof. Let c < K be such that ί, ^ , p e L(c), and gc exists, the greatest cardinal in the
sense of L(c). All cofinalities below are in the sense of L(c). For simplicity 9 and all
background parameters such as gc or those needed for less-than-p selection are
suppressed. (As usual 9 and all peP come effectively coded as relations on
ordinals.) Define

min(p, e91) ~ min(Er)p> r [r I h | {e}(t)\ = 5].
δ

An effective transfinite recursion on min(p, e, t), henceforth called the main recur-
sion, will show that min (p, e, t) is £-recursive in p, ί, p uniformly. Proving the
theorem is equivalent to computing min(p, e, t) by Proposition 1.3.
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Assume e = 2m 3" and min (p, e, t) is defined. Then min (p, m, ί) is defined and, by

the main recursion, equals some "{O<EP, t, p. Let

for some θ <Ep,t, p such that θ < gc.
For each i < θ, Qt will be a set of conditions that settles the fate of t,. For all

(la) p > q;

(lb) q\\-t,e{m}(t) or « Ih t,#{m}(t);

(lc) if q\\-tie{m}(t),thcnq\\-(Eδ)U{n}(ti)\ = δl

Initially all β 's are empty. The final β/s will be such that

(2) {\QiΦ0
i < θ

Intuitively (2) means there is a condition r such that for all i, the conditions in Qt are

dense in r. More precisely, (2) means

(Er)^! )Γ > Γi (i). < θ(Eq)to eQi&ruq are compatible).

The βi's are built up simultaneously by recursion on β < θ, henceforth called the
beta-recursion. During stage β conditions are added to β f for various ί < β. At the
end of stage β

Stage β. There are four cases.
Case 0: β < p. A subrecursion of length p adds conditions to Qt for various i < β. At
stage βγ(y < p) at most one q is added to at most one Qt.
Stage βy. Suppose n {Qt \ i < β) = 0 after all the additions prior to stage β, and
prior to stage βy; otherwise go to the next stage. It is safe to assume each Qt already
contains all q < p such that

q\\-tiφ{m}(t),

because all such g's can be added to β f at stage β0. Qt can be treated as if it were a
condition by taking

Qi > r to mean fai),.^ (Eq)(qeQi & qί9 q are compatible).

Thus (2) means (Er)(0 (Q£ > r), and for all i < β the steps taken at stage β0 imply
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unless p — Qt is not a condition (that is, there is no q < p — Qt). Since min(p, e,1) is
defined, there is an r < p such that for all i,

But p = u {p — Qi\i < /?}, so there must be an i < β such that

(3) mm(p-Qhn,ti)

is defined. According to the main recursion, (3), if defined, is ̂ -recursive in p — Qi5

th p uniformly. Note that p — Qt and tt are ^-recursive in certain parameters and i
uniformly. Consequently less-than-p selection makes it possible to compute an
i < p for which (3) is defined; call it i0 and let δ0 be the value of (3) when i = i0.
From <50 a q0 can be computed via Proposition 1.3 such that

P-Qi0>qo & qoU-tioe{m}(t) & qio\\- {n}(tio)\ < δ_0.

Add q0 to Qio.
For each i < /?, the conditions added to Qt as y increases from 0 to p, are

mutually incompatible. Since β < p, it follows from the p-chain condition that
for all sufficiently large y, nothing is added to any Q£(i < β). Thus for all sufficiently
large γ, n{Qt\i < β} is nonempty at stage βγ, hence nonempty at the end of
stage β.

Case 1: g o β > p > cϊ(β). Similar to Case 0. Let β+ be the least cardinal greater
than β in the sense of E(c). A subrecursion of length β+ adds conditions to Qt for
various i < β. Since p > cf (/?), there is a W £ β such that sup W = β and the
ordertype of W is less than p. Define

Then n {QΓ \ieW} = n {Qj \j < β}. Stage βγ (y < p β + ) acts directly on at most
one Qf for some ie W. The restriction of ί to W makes it possible to use less-than-p
selection as in case 0.

The augmentation of some Qt~ (i e W) at stage βy is performed with the aid of
procedure Pt developed at stage i of the beta-recursion. This makes sense because
i < β.Pi9 given an empty Qt~, delivered a non-empty Q[~. Pt did its work by adding
conditions to various Q/s (j < i). Pt is effective because it is based on the main
recursion. Pf converged because: if each Qj is extended to a maximal antichain
QJ < p, then n {QJ\j < ί} must weakly force {Eδ)(j)j<i[\{n}(ti)\ = <5]. Pt slowly
builds up the antichains and stops as soon as their intersection is nonempty.

P+ is a slight extension of P f. It proceeds in precisely the same manner as Pt but
is allowed to begin with a nonempty Ql, denoted by start (Qt~). P* stops when

finish ( β f ) - s t a r t (βΓ) # 0 .
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Thus P* is said to augment Qt~ . P f

+ converges iff such an augmentation is possible,
that is iff

π {QT \j < i}~ start (QDΦ0.

Stage βy (for case 1). Suppose Qβ = 0 after all the additions and augmentations
prior to stage β, and prior to stage βγ; otherwise go to the next stage. The argument
given in Case 0 that (3) is defined now shows P* (Qt~) is defined for some i e W.
Thanks to the main recursion, P?(Qϊ~), if defined, is ^-recursive in certain
parameters and i uniformly. Consequently less-than-p selection computes such an i;
call it i0. Augment Qr to P^iQQ).

Now consider the action of stage βγ as y increases from 0 to β+. Qj(j < β) is
always an antichain, so additions are made to Qj at a set of stages of cardinality less
than p. Hence for all sufficiently large y, nothing is added to any Qj (j < /?), and no
Qt~ (is W) is augmented. Thus for all sufficiently large y, Qβ is nonempty at stage
βy, hence nonempty at the end of stage β.
Case 2: cf (β) > p. According to the β-recursion, Q^ Φ 0 for all i < β. It follows
from the p-chain condition that Qβ φ 0.
Case 3: gc = β & p > cϊ(gc). By Exercise 2.11.XII, there is a uniform method for
choosing an element of a nonempty £-recursively enumerable (in p) subset of /?, for
peE(c). Proceed as in Case 0.

At the end of the β-recursion, the end of stage θ, QQ φ 0. In other words there is
an r 0 < QQ such that

where δ0 is the sup+ of y0 and all the values of (3) computed during the jS-recursion.
The value of min(p, e, ί), needed for the main recursion, is computable from δ0 with
the aid of Proposition 1.3. D

4.2 Countable Chain Selection. The proof of Theorem 4.1 (p-chain condition
forcing) should be contrasted with that of theorem 2.1 (countably closed forcing).
The latter relies on Moschovakis witnesses and reflection phenomena, while the
former is a selection argument that holds for a narrow class of Σx relations.
Consider the special case of L(K) = E(wx) and p = ωγ. Let ^ be a countable-
chain-condition notion of forcing in E{ωι). The relation on p, e and t given by

is Σ x over E(ωί). The proof of Theorem 4.1 shows how to compute an r (if there is
one) that satisfies the matrix of (1) from p, t and 0>. It follows that relation (1) is E-
recursively enumerable on E(ωγ). Thus Theorem 4.1 is a selection theorem that
shows certain Σ x relations, derived recursively from a chain condition, are E-
recursively enumerable.

The absence of κr in the proof of Theorem 4.1 accounts for the difference between
Exercise 2.6 and Corollary 4.4.
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^-genericity was defined in subsection 1.6. The point of Corollary 4.3 is at its
sharpest when

L(κ) \= [gc(κ ) is singular].

4.3 Corollary. Suppose L(κ) is E-closed and£PeL(κ) is a countable-chain-condition,
set notion of forcing. Then every ^-generic extension of L(κ) is E-closed.

Proof. According to Exercise 4.6, Gandy selection implies L(κ) obeys less than
ωx selection. By Theorem 4.1 9 satisfies effective bounding. Now apply
Lemma 1.7. D

4.4 Corollary (Slaman). Let L(κ) be E-closed and 0>eL(κ) a set notion of forcing.
Assume L(κ) = £(gc(κ)), 9 satisfies the p-chain condition, and L(κ) obeys less-than-p
selection. Then

κ?>a<κa

r

for all ^-generic G and aeL(κ). (Parameters p, gc(κ) and Θ> are suppressed.)

Proof For simplicity suppress 0>, p and various background parameters. It suffices
to show

(l) </> I h* ! > ! ' " < < ] .

To prove (1) a maximal antichain is constructed. ry and δy(γ < p) are defined by
recursion on γ. Suppose there are r and δ such that

(la) r is incomparable with rβ for all β < y, and

(lb)

Note that (la) is equivalent to r I \~(β)β <γ(^φrβ). Let < ry, δy > be such an r and δ
computed from

{<rβ,δβ9β>\β<γ}9a

with aid of Theorem 4.1 and Gandy selection. If there are no such r and <5, then
< ry, δγ > is undefined.

The p-chain condition implies < ry, δy > is undefined for some γ < p; let y^ be the
least such, γ^ is the least solution of a predicate co-£-recursively enumerable in a.
By Exercise 5.17.X, a corollary to Kechris's basis theorem (5.1.X), K^7CO < κa

r. Let

y < y 0 0 } .

Then δ^ < E γ^, α, and so δ^ < κa

r. Finally
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4.5-4.6 Exercises

4.5. Let 9 be Cohen forcing with finite conditions on a real. Suppose L(κ) is in-
closed and G £ ω is ̂ -generic over L(κ). Show

κo — κo

for all aeL(κ). (Note: do not assume a c K)

4.6. Let p be ωx in the sense of some £-closed L(κ). Show L(/c) obeys less-than-p

selection.

5. Normann Selection and Singular Cardinals

Several definitions are needed for the sake of an application of countable-chain-
condition forcing over E(ωωι). Let R be an arbitrary class of sets. The Normann
schemes, (l)-(6) of Section l.X, relativize readily to R. Simply replace { } by { }R

throughout (l)-(6), and add a new scheme,

(7) {e}R(xu...,xn) = Rnxί if e = <7,n>.

A partial function/from V into V is partial E-recursive relative to R if there exists
an e such that/(x) ~ {e}R(x) for all xeV. Thus "partial ^-recursive" is equivalent
to "partial ^-recursive relative to the empty set".

Let A be a transitive set. A is said to be E-closed relative to R if

ye A & f(y)l^f(y)eA

for every / partial E-recursive relative to R. The ^-closure of an arbitrary set x
relative to R, in symbols E(x; R\ is the least E-closed (relative to R) y c TC({x}).
Observe that

E(x; R) = E(x; R n E(x; R)).

Assume R c E(2ω) and

£(2ω; R) N [2ω is wellordered].

It follows there is a greatest cardinal in the sense of E(2ω; R); call it gc. Assume

(1) £(2ω;R)h[gc is regular].

Statement (1) is Norman's regularity assumption. It is the principal hypothesis in
Normann's selection theorem and its extensions discussed in the next chapter. One
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such extension has as its conclusion:

(2) If δ < gc and A is ^-recursively enumerable relative to R, then
(Anδ)eE(2ω;R).

(2) is informally put as: every small R-RE class belongs to E(2ω; R). (2) figured
prominently in Normann's study of Post's problem. These matters will be discussed
in greater detail in the next two chapters. The matter at hand is: is (1) necessary for
(2)? The answer is no according to the next result.

5.1 Theorem. There exists a model M ofZFC in which for some R ^ ωωί x 2ω:

and every small R-RE class belongs to E(2ω; R).

Proof. Let L(α) be a model of ZFC, and 3P be Cohen forcing with finite conditions
designed to produce a generic real. ^ ω is the result of iterating 9 with finite
support ωωι times. Let L(κ) be E(ωωι).^ωωeL(κ) and satisfies the countable
chain condition in L(κ). Let R be ^-generic over L(α), hence over L(κ).
Then L(κ,R) = E(R) by Corollary 4.1. Standard set-theoretic arguments show
L(α, R) is a model of ZFC, call it M, with the same cardinals as L(α). Note that
in M, L(κ9 R) = E(2ω; R).

A typical small R-RE class is

(1) Λ = {y\{e}R(y)i & y < δ},

where δ < ωωr To see that AeE(2ω; R\ let

for each y < δ. In L(α): Ay is equivalent to a countable antichain ^4^;
{<y, Aγ }\y < δ} has the same complexity as a bounded subset of ω ω i , hence
belongs to L(ωωι). Then

y <δ & (Ep)\_peA°y & R satisfies p],

and so AeE(2ω;R). D

An application of iterated, countable-chain-condition forcing, deeper than that
of Theorem 5.1, has been made by Slaman [1983]. He shows: if ZFC is consistent,
then ZFC and 2ω = ωωι and the extended plus-one hypothesis is consistent. See
subsection 3.7.XII for the missing definitions. Normann proved the extended plus-
one hypothesis with the aid of his regularity assumption, formula (1) of Section 5.
Slaman [1983] showed that regularity is not essential by an almost-disjoint forcing
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argument based on Harrington [1973]. In Slaman's model,

£(2ω)h[card(2ω) = ω ω J

and the extended plus-one hypothesis holds. It is not known if the hypothesis fails
in some model of ZFC in which

£(2 ω )h[2 ω iswellordered].

6. Further Forcing

Coύntably closed and countable chain condition forcings are special cases of
Axiom A forcing, an invention of Baumgartner. Sacks [199?] shows that Axiom A
forcing preserves E-closure, as does Shelah's proper forcing. Also given is an
example of set forcing that preserves cardinals but not E-closure.

Some results on class forcing over £-closed structures are available. One such
proves Theorem 6.1; the forcing conditions are £-pointed, perfect trees.

6.1 Theorem (Sacks & Slaman [1987]). Let L(κ) be countable, E-closed and not Σx

admissible with greatest cardinal gc(κ ). //

L(/c)h[cf(gφ))>ω],

then for some G <= ω[ ( κ ) , L(κ9 G) = E(G).

A partial converse to Theorem 6.1 is proved in the next chapter, Corollary
5.2.XII. It states: if x is a set of ordinals and

E(x) N [cofinality of the greatest cardinal is ω],

then E(x) is Σ x admissible.
Another use of class forcing over an £-closed structure, inspired by Steel forcing,

has been found by Slaman. At one swoop he settles many questions.

6.2 Theorem (Slaman [1985]). Let L(κ) be countable and E-closed. There exists an
x^2ω such that:

(i) L(κ9x) =
(ii) L(κ, x) does not admit Moschovakis witnesses;

(in) if L(κ) is Σ x admissible but not the E-closure of any yeL(κ), then L(κ, x) is Σx

admissible, but Σ x over L(κ, x) differs from E-recursively enumerable on L(κ, x);
(iv) ifκa

r < κfor all aeL(κ), then κa

r < κfor all aeL(κ, x);
(v) there is no Σ x formula 3F (x) such that for all aeL(κ, x),

but
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The content of 6.2 is considerable, (i) says each countable £-closed ordinal is the
least such relative to some set of reals, (ii) says the ^-closure of a set of reals can be
inadmissible yet not admit Moschovakis witnesses. Thus the assumption that x is a
set of ordinals, in Thoerem 5.7.X, was needed, (v) says there is no uniform (in a)
failure of Σ1 reflection at κa

r + 1 in L(κ, x) for some x ^ 2ω. It is tempting to think
there is a uniform failure having to do with existence of Moschovakis witnesses.
That idea succeeds in E(2ω\ as pointed out by Harrington [1973]. For each a ^ ω,
κa

r'
2ω is the least ordinal that suffices to construct witnesses for all e such that

{e} (a, 2ω)ΐ. The idea also succeeds in E(z) when z is a set of ordinals and E(z) is
inadmissible.

A question not answered by Theorem 6.2 is: is there a set x of ordinals and a
yeE(x) such that E(x) is inadmissible and κy

rφE(x)Ί




