
7. Selected Topics

As the title suggests this chapter is a collection of various more advanced
topics. The first section, on bounded and unbounded theories, both contains
useful facts about a natural class of theories and illustrates how the regular
type machinery can be used to classify the models of a theory with relatively
simple invariants. The second section delves more deeply into the properties
of our notions of rank in some very special theories such as the uncountably
categorical ones.

7.1 Bounded and Unbounded Theories

We work in a stable theory throughout the section.

Definition 7.1.1. (i) The theory T is called bounded if there are < \€\ dom-
ination equivalence classes of nonalgebraic stationary types; T is unbounded
if it is not bounded.

(ii) The theory T is unidimensional if any two nonalgebraic types are
nonorthogonal.

Shelah (and many others) call unbounded theories multidimensional and
bounded theories nonmultidimensional or nmd, for short. There are many
examples of such theories:

Lemma 7.1.1. The theory of any infinite module is bounded.

Proof. Let £ be the universal domain of the relevant theory. By Proposi-
tion 5.3.2 and Lemma 5.3.9 an element p of £i(£) is the translate of the
generic type in stab(p), a group f\ —definable over 0. Certainly p is domina-
tion equivalent to this generic type. Since there are < 2'τ ' many such groups
this is a bound on the number of domination equivalence classes. The same
argument establishes this bound for types in other sorts (i.e., n—types in the
1—sorted theory of the module), proving the lemma.

We will say little here about bounded theories which are properly stable.
The superstable ones become easier to handle using

Lemma 7.1.2. The following are equivalent for a superstable theory T:
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(1) Every nonalgebraic type is nonorthogonal to 0.
(2) Every regular type is nonorthogonal to 0.
(3) For every stationary type p and f G Aut(<£) fixing acl($) pointwise,

P S /(P).
(4) T is bounded.

Proof. (1) = > (2) holds trivially.
(2) = > (3) Suppose (2) holds. Let p G S(A) be stationary and / G Aut(£)

which fixes acl($) pointwise.

Claim. To prove (3) it suffices to consider the case when A is independent
from f(A).

Suppose the property in the claim to be true. For the given stationary p G
S(A) and / there is a g G Aut(C) fixing αd(0) such that g(A) X A and
g(A) vL f{A), hence p, g(p) and f(p) are all domination equivalent, proving
the claim.

Assuming now that A X f(A) let go® ®(Zn be a product of regular types
domination equivalent to p. We can take A large enough so that qι G 5(A), for
i < n, while still assuming that A X f(A). Since each qι is nonorthogonal to
0, Proposition 5.6.2 says that qι is nonorthogonal to /((ft), hence qι • /(g^)
(since they have weight 1). Domination equivalence is preserved under 0 so
p, qo 0 . . . (8) ς n , f(qo)®...<® f(qn) and /(p) are all domination equivalent,
as desired.

(3) = > (4) This is clear since there are < 2' τ ' many nonalgebraic station-
ary types up parallelism and conjugacy over acl($).

(4) ^=> (1) This is left as an exercise.

Definition 7.1.2. For T a bounded super stable theory let DIM(T), called
the set of dimensions of T denote the set of equivalence classes of regular
types with respect to nonorthogonality. The cardinality of DIM{T) is called
the width of T (or the number of dimensions of T) and denoted ND{T).

Corollary 7.1.1. Given a bounded super stable theory T, the width of T is
< 2'τl and < \T\ when T is totally transcendental.

Proof. This follows immediately from Lemma 7.1.2.

These definitions explain the term unidimensional theory; it is a bounded
theory with 1 dimension (when the theory is superstable). As the following
shows we have already encountered numerous examples of unidimensional
theories (for countable theories the right hand side is simply the definition of
"uncountably categorical").

Proposition 7.1.1. A t.t. theory T is X—categorical for all λ > \T\ if and
only ifT is unidimensional.
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Proof. (==>) The categoricity assumption and Proposition 6.4.4(iii) implies
that all SR types are nonorthogonal, hence all nonalgebraic stationary types
are nonorthogonal.

(<=) Let i V D M b e models of T and φ is a nonalgebraic formula over
M. Corollary 6.4.2 and the unidimensionality of T directly yield an a e
N\M satisfying φ (with tp(a/M) strongly regular). Thus, T does not have
a Vaughtian pair. For countable theories Theorem 3.1.2 immediately implies
the uncountable categoricity of T. For arbitrary t.t. theories we simply repeat
the proof of that earlier theorem using deeper results about t.t. theories (such
as the existence of prime models over sets) when necessary.

There are, however, rather simple countable unidimensional theories
which are not uncountably categorical:

Example 7.1.1. (A weakly minimal unidimensional theory) We begin by let-
ting G be the direct product of No many copies of the group Z2. Let Hi, for
1 < i < ω, be the subgroup consisting of the elements whose first i coor-
dinates are 0. Let M = (G, +,0, Hi)i<ω in the language consisting of +, 0
and predicate symbols Pi interpreted by the H^s, and let T = Th(M) (as a
1—sorted theory). It is easy to show that this theory is quantifier eliminable.
Thus, for £ the universe, Γ\i<ω ^(^) = ^° 1S a v e c^or space over Z2 and
there is no other structure on this group induced by the formulas (every vec-
tor space automorphism of <£° extends to an automorphism of <£). Thus the
type p| f Pi(x) is minimal. For an arbitrary element α, the set of realizations
of stp(a) is simply a 4- C°. It follows immediately that € is a weakly minimal
set and any nonalgebraic element of SΊ(C) is a translate of the generic in €°.
Thus, all nonalgebraic stationary types are nonorthogonal to the generic type
of <£°. Since the generic of €° is minimal, all nonalgebraic stationary types
are nonorthogonal.

Example 7.1.2. The theory of the group of integers, (Z, +) is also weakly
minimal, unidimensional and not t.t. (See the analysis in [BBGK73].)

Remark 7.1.1. Hrushovski showed in [Hru90b] that every stable unidimen-
sional theory is superstable.

For bounded theories the Decomposition Theorem (Theorem 6.3.6) can be
strengthened by limiting the collection of needed regular types.

Lemma 7.1.3. IfT is a bounded superstable theory and M is any a—model,
then for all stationary types p there are regular types qo,..., qn E S(M) such
that p • go ® ® Qn-

Proof. In a bounded superstable theory every regular type is nonorthogonal
to 0. By Lemma 5.6.5 every regular type is nonorthogonal to one in S(M),
from which the lemma follows.
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This leads us to what can be viewed as a basis for an arbitrary a—model
(or model in the t.t. case) with respect to a fixed set of regular types.

Proposition 7.1.2. (i) Let M be an a—model of a bounded super'stable the-
ory T and N C M an a—prime model over 0. If C C M is a maximal
N—independent set of realizations of regular types over N then M is a—prime
over NUC (in fact, there is no a-model M', i V u C c M ' C M).

(ii) Let M be a model of a bounded t.t. theory and N C M a prime model
over 0. // C C M is a maximal N—independent set of realizations of strongly
regular types over N then M is prime over NUC and minimal over NUC.

Proof (i) Suppose, to the contrary, that M' C M is an a—model containing
NUC. There is an a G M\M' with p = tp(a/Mf) regular. Since T is bounded
we can take p to be based on JV, hence a is independent from M' D C over
N. This contradicts the maximality of C to prove that M' = M. Since M
contains a model a—prime over N U C we also conclude that M is a—prime
over NUC.

(ii) This is proved exactly like (i), using Proposition 6.4.1 and Corol-
lary 6.4.2 when necessary.

Part (ii) of the proposition gives a decomposition theorem for bounded
t.t. theories which generalizes Theorem 6.3.6 more directly than Proposi-
tion 6.4.2.

Corollary 7.1.2. In a bounded t.t. theory a complete nonalgebraic stationary
type over a model is RK-equivalent to a finite (g)—product of SR types.

A representation theorem for the models in a class /C is a result yielding
a function J(—) from /C into a collection of sets such that for all M, N G /C,
M ^ N «=» J(M) = 1(N). The set J(M) is called an isomorphism
invariant of M in /C. A representation theorem is a structure theorem when
the isomorphism invariant is set-theoretically "simple". The reader is referred
to [She85] for a discussion of the complicated matter of making the term
"simple" more precise. Here we accept as simple invariants: cardinal numbers,
sequences of cardinals of length < 2'τ ' and quotients of such objects by
equivalence relations. Following are some examples of structure theorems.

1. A vector space is determined up to isomorphism by its dimension.
2. A divisible abelian group can be written as a direct sum of copies of Q

and Zpoo (for various primes p). The isomorphism type of the group is
determined by the number of copies of each of these groups in any such
decomposition.

3. Fixing a strongly minimal formula φ over the prime model the isomor-
phism type of a model M of an uncountably categorical theory T is
determined by the dimension in M of a conjugate of φ. (This is Morley's
Categoricity Theorem when M is uncountable, and the Baldwin-Lachlan
Theorem in general.)
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Proposition 7.1.2(ii) is a good first approximation of a structure theorem
for the models of a bounded t.t. theory Γ. Let M (= T and fix a copy of
the prime model Mo in M. For i G DIM(T) let di(M) be dim(p, M), where
p is any SR type in S(Mo) whose nonorthogonality class is i (the choice of
p does not effect this dimension). Let XMΌ(M) be (di(M) : i G DIM(T)).
Now let TV, TV' be two models containing Mo such that lMo(N) = XMo{Nr).
Then there are Mo—independent sets C C TV and C" C TV' such that
C = UiGD/M(T) ̂ ij where C* is a basis for a regular type over Mo whose
nonorthogonality class is 2, and similarly for C". For each class i G DIM(T)
we can choose C* and C2 to be sets of realizations of the same type over Mo
Thus, there is an elementary map / fixing Mo and taking C onto C". By
Proposition 7.1.2, / extends to an isomorphism of TV onto TV'. Summarizing
these statements, when TV, TV' are models containing Mo with XMO(N) =
TMO(N'), TV is isomorphic to TV' over Mo. However, these invariants only
characterize the models up to isomorphism over Mo rather than over 0. We
might tag a model M with the set of all XM0 (M), as MQ ranges over all copies
of the prime model in M, however there may be |M| ' T ' many such models
leading to a set-theoretically complicated (hence not very useful) "invariant".
The situation is analogous to our picture of the models of an uncountably
categorical theory prior to the Baldwin-Lachlan Theorem. For M a countable
model of such a theory there is a realizing an isolated type and strongly min-
imal formula φ over a such that dim(φ(M)) = dim(</?(TV)) = > M = N for
any TV containing α. It is conceivable, though, that there is a countable model
TV containing a with άim(φ(M)) Φ dim(<̂ (TV)) which is still isomorphic to
M (by a map not fixing a). This will happen exactly when there is an a' in
M realizing tp(a) such that the dimension in M of the conjugate of φ over a'
is different from the dimension of ψ in M. This is shown to be impossible in
the proof of the Baldwin-Lachlan Theorem. Proposition 7.1.2(ii) generalizes
Morley's Categoricity Theorem, while the following refined study of dimen-
sions generalizes the Baldwin-Lachlan Theorem (which actually follows from
the next lemma).

7.1.1 Bounded ω—stable Theories

In this subsection we restrict our attention to the models of a bounded t.t.
theory. Similar results can be proved for the class of a—models in a super-
stable theory (left to the reader).

Lemma 7.1.4. Let T be a t.t. theory and p G S(a) an SR type nonorthog-
onal to 0 with tp(a) isolated. Then for any model M of T containing a and
conjugate p' G S(a') of p over M which is nonorthogonal to p, dim(p, M) =
dim(pr,M). In particular, when stp(a) = stp(a'), p and p' have the same
dimension in M.

Proof. We adopt the notation pt for the conjugate of p over b when 6 realizes
tp(a). Notice that every conjugate of p is nonorthogonal to 0. By Lemma 7.1.2,
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all conjugates of p over αd(0) are nonorthogonal, hence the last sentence of
the lemma follows from the first part.

Let M be a model containing a and choose a! realizing tp(a).

Claim. If a' realizes stp(a), dim(p, M) = dim(pα/,M).

First consider the case when a X a'. Let N C M be a prime model over
{a,af}. Since a and o! are independent realizations of the same strong type
the pairs ao! and a'a have the same type over 0. Any elementary map on
{a,a'} extends to an automorphism of N. Thus, dim(p,N) = dim(pa',N).
Since p and pa> are nonorthogonal SR types, dim(p|AΓ, M) = dim(pa'\N, M).
By the additivity of dimension for SR types (Lemma 6.4.3), dim(p, M) —
dim(pα/,M), as required.

Turn to the general case of an arbitrary realization o! of stp(a). Let b
be a realization of stp(a) which is independent from M and N a prime
model over M U {&}. By the previous paragraph, dim(p, N) = dim(pb, N) —
dim(pα/, N). Since any SR type in S(M) has finite dimension in N (bounded
by wt(b)) we derive the equality of dim(p,M) and dim(pα/,M) from the
equations dim(p|M, N) = dim(pα/|M, N) and dim(p|M, N) -|-dim(p, M) =
dim(pα/ |M, N) + dim(pα/, M).

Now take αx to be an arbitrary realization of tp(a) in M such that pjLpa'.
Since α and α' realize an isolated type over acl(β), as well as over 0, there is a
prime model N <Z M containing elements b and £/ realizing stp(a) and stp(a'),
respectively. Since there is an automorphism of N taking btob', dim(pδ, N) =
dim(p6', JV). Since p and pα/ are nonorthogonal and both are nonorthogonal
to 0, the conjugates over b and b' are nonorthogonal. Thus, the additivity
of dimension again gives the equality of dim(p5, M) and dim(p&/, M). By the
first part of the proof, dim(p, M) = dimQv, M).

For the remainder of the subsection, T is a bounded ω—stable the-

ory.

For i G DIM(T) we want to give meaning to the term "the dimension of
i in a model M". To do this we make a selection of representative types qι
satisfying:

1. qi is SR of nonorthogonality class i and dom(qi) realizes an isolated type;
2. if z, j e DIM(T) and there is a conjugate of qi nonorthogonal to q^ then

qi is conjugate to qj.

Also fix {qi : i £ DIM(T)} for the remainder of the subsection. For
i G DIM(T) and M a model we let dim(2,M) denote dim(ri,M) where
Ti is a conjugate over αd(0) of qi which is over M. By Lemma 7.1.4 this di-
mension is independent of the choice of Ti (any r, rf conjugate over αd(0) to
qi have the same dimension in any model containing dom(r)Udom(r')). If N
is a submodel of M we define dim(i|iV, M) to be dim(ri|JV, M), where r{ is a
conjugate over αd(0) to <& which is over N. As a preliminary step to finding
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invariants for models with respect to isomorphism (over 0) we define 1\(M),
called the pre-inυariant of M, to be the function / from DIM(T) into the
class of cardinals such that f{ϊ) = dim(i,M), for i G DIM(T). It is imme-
diate from the definition that X\{M) = Γ̂i(iV) when M and N are models
isomorphic over acl(ty), but not necessarily when M and TV are isomorphic
over 0. We will deal with this deficiency later, first taking care of

Lemma 7.1.5. Given models M, N ofT, ifli(M) = Ii(N), then M ^ TV,
in fact, M and N are isomorphic over acl(Φ).

Proof. The basic approach is fairly clear. We choose prime models MQ C
M and TVo C N and bases J^, K% for the distinguished representative of
i G DIM(T) over these prime models in M, N. Since the dimensions of the
regular types match up in M and N we should be able to lift an isomorphism
between Mo and No to one taking Jι onto Kι. However, it's possible for
dim(i,M) = dim(i,N) to be No, while dim(z|M0,M) = No and dim(z|7Vo,iV)
is finite. By choosing the prime models carefully (using the following claim)
we will eliminate this irregularity.

Claim. For Mi a prime model there is a prime model M[ D Mi such that
for all i G DIM(T) with dim(z,Mi) infinite, dim(z|Mi,M{) is also infinite.

Let i G DIM{T) be such that dim(r^, Mi) is infinite, where rι is conjugate
to qi over acl(Φ). Let a realize n|Mi, N a prime model over Mi U {a} and
/ a basis for r* in M\. For any b G Mi there is an a' G / realizing tp(a/b)
(since / is infinite) hence tp(ab) is isolated. Thus, iV is atomic (hence prime)
over Mi U {a}. Iterating this process infinitely many times for each element
of DIM{T) results in M[.

Given the original choice of the prime model Mo C M let MQ D MO be
a prime model as in the claim. Let / be an isomorphism of MQ onto Mo
and MQ = /(Mo). Thus, replacing Mo by MQ' if necessary we can assume
that whenever dim(i, Mo) is infinite, dim(i|Mo, M) is infinite. Choose a prime
model No C N with the same property. Now let i G DIM(T). Since Ji(M) =
2i(7V) the additivity of dimensions for SR types implies that dim(z,Mo) +
dim(z|M0,M) = dim(z, No) + dim(i|iV0, N). If dim(2,M0) = dim(z,iVo) is
finite we conclude automatically that dim(z|Mo,M) = dim(i|7Vo,iV). If the
dimension of i is infinite in a prime model, then the choice of Mo and iVo
forces dim(2jM0,M) = dim(2|7V0,iV).

The models Mo and No are isomorphic over acl{$) via some map /. For
i G DIM(T), let Jι be a basis in M for r*|Mo, where r* is as usual. Let
Ki be a basis in N for /(ri)|JV0. Since r» J_ rά when i φ j G DIM(T), J =
UieDiM(τ) Ji ^s Mo—independent. Similarly, K = \JiKi is Mo—independent.
Thus, / extends to an elementary map g which takes J onto K. Because M is
prime over Mo U J, and iV is prime over NoUK, g extends to an isomorphism
of M onto N.
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Thus, the pre-invariants characterize the models up to isomorphism over
acl(Φ). However, the pre-invariants may not be be preserved under arbitrary
isomorphisms. For example, given M D dom(qi), f : M = iV may map qι to
an SR type orthogonal to qι. This behavior is found in the following class of
examples.

Example 7.1.3. Fix n < ω. Let Γo be the theory of an equivalence relation
E with exactly n classes, each infinite, and let X be the set of classes of
E. We define T by adding structure to X. Let G be an arbitrary group of
permutations of X and add relations on X so that in the resulting universe
C, { / Γ X : / G Aut(C)} = G. For x G X the formula v/E = x defines a
strongly minimal set and distinct elements of X give rise to orthogonal sets.
Thus, there is a one-to-one correspondence between DIM(T) and X. Let G
act on DIM(T) through this correspondence. Pre-invariants correspond to
isomorphic models if and only if they are conjugate with respect to G.

Motivated by this example we define an action of Aut((£) on the pre-
invariants so that models are isomorphic when they have conjugate pre-
invariants. We will then take as the invariant of M the conjugacy class of
a pre-invariant of M. The details follow.

Any conjugate of one of the ^'s is SR, hence lies in one of the nonorthogo-
nality classes that make up DIM(T). Define an action of Aut((£) on DIM(T)
by: for / G Aut(C) and i G DIM(T), f(i) is the unique j such that f(qi)jLqj.
Set-theoretically a pre-invariant is a function from DIM(T) into the class of
cardinals. The action of Aut(£) on DIM(T) can be extended to the class of
pre-invariants by:

Given pre-invariants φ, φ' and / G Aut(<£), f(φ) = φ' if φ = φ' o /.

Lemma 7.1.6. /// is an isomorphism from the model M onto the model A/",
then for i € DIM(T), Ii(M)(<) = Ii(W)(/(i)); i.e., /(Ii(M)) -

Proof. By Lemma 7.1.4, when r̂  is over M and conjugate to qι over acl(β),
dim(/(r0,7V) = dim(/(z),7V). Thus, dim(z, M) = dim(/(ΐ),iV), proving that

Define an equivalence relation ~ by: given pre-invariants 0, φ'', φ ~ φl if
there is an / G Aut(C) such that f(φ) = φ1 that is, the ~ -classes are the
orbits under the action of Aut(C) on the pre-invariants. Finally,

Definition 7.1.3. Define the invariant of M to be I(M) = J i ( M ) / ~ .

Remember that to qualify as a structure theorem the assigned invariants
must be set-theoretically simple in some intuitive way. Let G be the group
of permutations of DIM(T) (and the class of pre-invariants) induced by
Aut(<£) as above. Since any element of Aut(<£) which is the identity on acl($)
is the identity on DIM(T), G can be identified with a quotient group of the
automorphism group of αd(0). Thus, \G\ < 2*° and for any pre-invariant φ,
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the corresponding invariant is Gφ. We accept this as sufficient evidence of
the set-theoretic simplicity of the invariants for the models of T.

Theorem 7.1.1 (Structure Theorem). Models M and N are isomorphic
if and only ifl(M) = I(N).

Proof. See Lemma 7.1.6 for a proof that isomorphic models have conjugate
pre-invariants; i.e., the same invariant. On the other hand, if 1(M) = T(N),
then there is a model Nf isomorphic to N such that Ti(N') = Xχ(M). By
Lemma 7.1.5, N' and M are isomorphic.

Since invariants are set-theoretically simple we can call the result a "Struc-
ture Theorem".

This completes the assignment of invariants to a bounded t.t. theory.
Recall that the spectrum function of T is the function /(—, T) assigning to an
infinite cardinal λ the number of models of T of cardinality λ. The assignment
of invariants lets us compute exactly the spectrum function for T. This is an
example of how the Structure Theorem leads to additional information about
the models of the theory. The number J(λ, Γ) may depend on the group G
(defined above) and properties of i G DIM(T) such as "there is a model M
and r ei such that dim(r, M) is finite". Note: we have not yet discussed the
possible values of the pre-invariant functions.

Definition 7.1.4. Let p be a stationary type over a finite set A in a stable
theory. Then p is called eventually nonisolated (e.n.i.) if there is a finite
B D A such that p\B is nonisolated. Otherwise, p is n.e.n.i.

IfT is a bounded ω—stable theory as above we calli G DIM(T) eventually
nonisolated (e.n.i.) if there is an r G i which is e.n.i.

Observe that being e.n.i. is preserved under conjugacy of types.

Lemma 7.1.7. Let T be a bounded ω—stable theory.
(i) i G DIM(T) is e.n.i. if and only if for any r G i and model M D

dom(r), dim(r, M) is finite.
(ii) If i is e.n.i. and MQ is a prime model then, for some k < ω,

dim(i,Mo) = k and for any cardinal K > k there is a model M with
dim(z,M) = K.

Proof. Both (i) and (ii) follow easily from two claims which are at the heart
of the connection between dimension and being e.n.i.

Claim. Let r be an SR type over a finite set A, M D A a model and q an SR
type over a finite set A' C M which is nonorthogonal to r. Then dim(r, M)
is infinite if and only if dim(ςr, M) is infinite.

Without loss of generality, A! — A and M is the prime model over A.
There are α, b realizing r|M, q\M, respectively, such that tp(a/M\J {b}) and
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tp(b/M\J {a}) are both isolated. Let B C M, A C B, be a finite set on which
tp(ab/M) is based (in which case tp(b/B U {a}) is isolated). Let / be a basis
for r in M, J a basis for g in M and suppose / is infinite. For any finite
C C M, C D B, there is an αo € ί realizing tp(a/C). For any such αo there
is a 60 € M such that tp(aobo/C) = tp(ab/C), in particular, 60 realizes ς|C.
It follows that J is infinite, proving the claim.

Claim. Let r be an SR type over a finite set A. Then r is e.n.i. if and only if
dim(r, M) is infinite in any model M D A.

First suppose that r is e.n.i. and B D A is a finite set such that r |B
is nonisolated. Let M be a prime model over B and 7 a basis for r in M.
If 7 is infinite there is an a € / realizing r\B. This contradicts that r\B is
nonisolated and M is prime over £, so 7 is finite.

Now suppose that r is n.e.n.i. and M D A is a model. If J C M is a finite
Morley sequence in r over A, then r|(7U-A) is isolated, hence realized in M.
Thus, dim(r, M) is infinite, proving the claim.

(i) follows immediately from the two claims.
The proof of (ii) is left as Exercise 7.1.4.

Let Δ\ be the e.n.i. dimensions in DIM(T), Δ2 the n.e.n.i. dimensions
and δ{ = \Δi\, for i = 1,2. For simplicity we will compute the function
/*(—,T), where /*(λ,Γ) is the number of models of cardinality < λ. The
"subtraction" needed to compute /(—,T) is left to the reader.

Lemma 7.1.8. LetΦa be the set of pre-invaήants of models ofT of cardinal-
ity < Nα and Φa/G the orbits of pre-invariants under G; i.e., the invariants
of models ofT. Then, 7*(Nα,T) = \&a/G\ and \Φa\ = \a + ω\δί x |α + l\δ2.
When \a\ is regular and uncountable, 7*(Kα,T) = \a\.

(The proof is left to the reader.) The actual value of \Φa/G\ depends on
detailed information about G — there is no uniform formula for computing
this cardinal in terms of |G| and \Φa\ — however, for any particular theory
it is easy to determine the value. We can, though, give some rough limits for
some Kα. The group G is infinite only if DIM(T) is infinite, in which case
there are infinitely many conjugacy classes of dimensions. Thus, 7*(NQ,,T) >
|α + 1|*°, in fact J*(Nα,Γ) > |α + u;|*0 if δλ is infinite. We already know that
/*(Nα,T) < \a + ω\δ* x | α + l|4>,soif5i is infinite, 7*(Kα,T) = |α + ω|*°. If,
say, 6χ is finite, but nonzero, and 62 is infinite, then 7*(Nα, Γ) = |α+l | N ° +No
It is easy to construct examples of theories satisfying each of these conditions.
When DIM(T) is finite the group G comes into play. It is natural to ask when
T can have finitely many models in some uncountable cardinal. Of course,
this is possible when T is uncountably categorical, but the above argument
says it's also true exactly when δ\ = 0 and 62 is finite. For example, take
the theory of an infinite and coinfinite predicate symbol P. This theory is
ω—stable, bounded, has no e.n.i. dimensions, two n.e.n.i. dimensions and the
group G consists of the identity. By the above formula, 7*(Nα, T) = \a + 1|2,
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which is finite exactly when a is finite. The reader who constructs other
examples will probably conjecture the following result.

Lemma 7.1.9 (Lachlan). Let T be a bounded ω—stable theory such that in
some uncountable cardinal K, T has more than one but finitely many models
of cardinality K. Then T is ω—categorical.

Proof. It suffices to assume that T is not ω—categorical and prove it has an
e.n.i. dimension. Let { qι : i € DIM(T) } be a family of SR types satisfying
the conditions on page 328. Remember, i e DIM(T) is e.n.i. if and only if
qi is e.n.i. Since T is not ω—categorical there is a nonisolated complete type
po over 0. Let M be a prime model and a a realization of p with a vL M. By
Proposition 7.1.2(ii) there is a finite M—independent set C of realizations of
SR types over M such that tp(C/M U {a}) and tp(a/M U C) are isolated.
Without loss of generality, for each c £ C there is an i £ DIM(T) such that
c realizes q%\M. Let A c M b e finite such that tp(aC/M) is based on A
and tp(a/M U C) is isolated over AuC.By the usual corollary to the Open
Mapping Theorem tp(a/A) is nonisolated. Thus, tp(C/A) is nonisolated. Let
C CC and c e C be such that tp(C'/A) is isolated and p = tp(c/A U C") is
nonisolated. Then p is parallel to some qi, which is hence e.n.i. This proves
the lemma.

This lemma about countable theories with finitely many but more than
one model in some uncountable cardinality can be improved significantly.
Shelah showed in [She90, VIII, 1.7] that any countable theory which is
not ω—stable has > min{22*0,2λ} models in each uncountable cardinal-
ity λ. Moreover, Lachlan proved in [Lac75] that if T is an ω—stable the-
ory with finitely many models in some uncountable cardinality, then T is
ω—categorical and bounded (see Corollary 7.1.3). The best possible result is

A countable theory T has finitely many but more than one model in
some uncountable power if and only if T is ω—stable, ω—categorical
and bounded.

The left-to-right direction uses results by Shelah (to reduce our attention to
ω—stable theories) and a theorem by Lachlan. (Later we will complete Lach-
lan 's contribution by reproducing the proof that such theories are bounded.)
The right-to-left direction reduces to showing that a bounded ω—stable,
ω—categorical theory has finitely many dimensions. This requires the deep
"geometrical" results found in [CHL85].

We leave it to the reader to investigate other properties of the spectrum
functions of bounded ω—stable theories on his one.

Besides calculating the possible spectrum functions this analysis of SR
types in a bounded ω—stable theory leads to Proposition 7.1.3. Some back-
ground is needed to understand this result.
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As mentioned earlier this study of bounded t.t. theories can be viewed as
a generalization of the Baldwin-Lachlan Theorem. One part of their analysis
was to prove the homogeneity of all countable models of an uncountably cat-
egorical theory. The following trivial example shows that not every bounded
ω—stable theory has this property.

Example 7.1.4- (A bounded ω—stable theory with a nonhomogeneous count-
able model) Let L = {Pi : i < ω}L){E}, where E is a binary relation symbol
and Pi is unary. Let M be a structure for L in which { Pi(M) : i < ω } form
a pairwise disjoint family of infinite sets, and E defines an equivalence rela-
tion on M with two classes, each class containing infinitely many elements
of Pi(M) for all % < ω. Then T = Th{M) is a bounded ω-stable theory. A
countable model N in which one E—class is contained in \Ji<ωPi(N) and
the other contains an element not in any Pi(N), is not homogeneous. (For a
fixed i e ω, let α, b e Pi{N) such that |= ^E(a,b). Then tp(a) = tp(b) but
there is no automorphism of N mapping a to b.)

Of course, if we added constants to the language for the ϋ?—classes in
this example every model would be No—homogeneous, in other words, every
model of the theory is NQ —homogeneous over acl(Φ). We'll see shortly that
this is always true in a bounded ω—stable theory.

Definition 7.1.5. A model M is almost ft—homogeneous (where K, > \T\) if
M is HI—homogeneous over αd(0); i.e., M is K—homogeneous in the language
with constants for acl($).

The usual conventions for K—homogeneous models are adopted for almost
K—homogeneous models, for example, M is almost homogeneous if it is almost
IMI —homogeneous.

Proposition 7.1.3. If T is a bounded t.t. theory, then every model of T is
almost HQ—homogeneous.

Proof. Given α, b and c in M with stp(a) = stp(b) we must find a d G M
such that stp(bd) = stp(ac). We can enlarge a and b by adjoining elements
realizing isolated types over {a} U acl(ψ) and {b} U acl(ί)) to require that M
contains e = {e0,..., en} such that e is a—independent, qι = tp(ei/a) is SR,
both tp(c/ae) and tp(e/ac) are isolated, and tp(c/a) \= stp(c/a). Let / be an
automorphism fixing αd(0) and mapping a to 6. Then, qι is conjugate to r* =
f{q%) over αd(0) so they have the same dimension in M (by Lemma 7.1.4).
Thus, there is e' = {eo,..., e'n} such that stp(ae) = stp(be'). Since tp(c/ae)
is isolated there is a d € M with tp(aec) — tp(befd). Since tp(c/a) f= stp(c/a),
tp(d/b) (= stp(d/b). Thus, stp(bd) = stp(ac), as required.

Almost No—homogeneous models do have some of the same relative
uniqueness and universality conditions as NQ—homogeneous models:
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Lemma 7.1.10. Let T be an ω—stable theory.
(i) If M is an almost No-homogeneous model and N is a countable model

such that every type over 0 realized in N is realized in M, then N can be
elementarily embedded into M.

(ii) If M and N are countable almost homogeneous models realizing the
same types over 0, then M = N.

Proof Both parts of the lemma follow quickly from

Claim. Let TV be a countable model and M a model such that every element
of 5(0) realized in N is realized in M. Then there is a model Nf = N such
that every element of S(acl(Φ)) realized in TV' is realized in M.

Let Q be the set of elements of 5(αc/(0)) realized in M. Let N = { α̂  : i <
ω},bi = (αo, .., (ii) and pi = tp(bi), a type in a sequence vι of z +1 variables.
Since T is ω—stable each pi has finitely many extensions over acl($). Since
each pi is realized in M there is qι G ζ>, an extension of piΊ such that for
infinitely many (hence all) j > i there is an element of Q extending pj whose
restriction to vι is qι. In fact, (by Kδnig's Lemma) we can choose the < '̂s so
that qι is the restriction to Vi of g i +i. Thus, there is a set { c* : i < ω} C M
such that (co,..., Ci) realizes <&. The model N' = { Q : i < ω } is the desired
isomorphic copy of N, proving the claim.

Since an almost No—homogeneous model is No—homogeneous over acl(Q)
both (i) and (ii) follow from Corollaries 2.2.2 and 2.2.4.

7.1.2 Unbounded Theories

This subsection is a continuation of our study of how the isomorphism type of
a model M of an ω—theory is tied to the dimensions of the regular types over
M. For p e S(A) and B a set conjugate to A over 0, ps denotes a type over
B conjugate to A. In Lemma 7.1.8 we calculated the spectrum function for a
bounded ω—stable theory. We showed, for example, that when |α| is regular
and uncountable, /*(Hα,Γ) = |α|, a number significantly smaller than the
maximum possible value, 2*a (in general). In other words, having a bounded
number of SR types, up to nonorthogonality, leads to relatively few models.
In the next proposition we give a comparatively large lower bound to the
spectrum function of an unbounded ω—stable theory.

Proposition 7.1.4. IfT is an unbounded ω—stable theory, then for all a >
0, l + 1 l

Proof Let κa = \a + U; | | Q : + 1 1 . By Lemma 7.1.2 and Proposition 6.4.1 there
is an SR type p G S(a) which is orthogonal to 0. Let q = stp(a). Let A be
the collection of all functions / from { β : β < a } into { λ : λ is a cardinal
< Nα } such that f(a) = Kα. Note, \A\ = κa. For each f e A we construct
as follows a model Mf of cardinality #a so that for / φ g G Λ, Mf ψ Mg.
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Fix f e Λ. For β < a let Jβ be a Morley sequence in q of cardinality
chosen so that J = \Jβ<a Jβ is also independent. First let Mo be a prime
model over J (which has cardinality Nα). Given b e J and / a basis for pb

in Mo, / is independent from J over b since p^ is orthogonal to q. Thus,
/ is indiscernible over J, which is hence countable by Theorem 5.5.1. Thus,
dim(pb, Mo) is countable for all b G J. By iterated use of Proposition 6.4.4(iii)
there is a model M\ D MQ of cardinality Kα such that for each β < a and
b G J/3, dim(pfe,Mi) = N .̂ Let X = {pb : b G J } . Finally, by (iv) of
Proposition 6.4.4 there is a model M/ D Mi of cardinality Nα such that
dim(p'|Mi, M/) = 0 for all p' e X and dim(r, M/) = Nα, for any SR type r
over a finite subset of M/ which is orthogonal to each element of X.

We now verify that distinct elements of A give rise to nonisomorphic
models. Suppose that F : Mg = M/, where f,geΛ, and J C M/ is a
Morley sequence in q as in the above construction. It suffices to show that
g(β) < f(β) for all β < a. Simply by the definition of Λ, /(α) = #(α). Let
β < a and c a realization of g in M5 with dim(pc, Mg) = N/j. By construction,
any conjugate of p over M/ which is orthogonal to each type in { p& : 6 G J }
has dimension Nα. Thus, by Proposition 6.4.4(ii), F(pc) is nonorthogonal to
one of these p&'s, in fact, F(pc)jLpb, for some b G J/?. Since p is orthogonal
to 0, when d, d' G q(£) are independent, p^ J_ pd>. Thus, if J ' is a Morley
sequence in q such that dim(pc,Mp) = tt^ for all c G J', F induces an
injection φ : 3' —• Jβ defined by: for c € J', φ(c) is the element b of Jβ
such that F(c) X b. We conclude that g(β) < f(β), as required to prove the
proposition.

Corollary 7.1.3. If T is an ω—stable theory with finitely many models in
some uncountable cardinal, then T is ω—categorical and bounded.

(See Lemma 7.1.9 and subsequent remarks concerning this corollary.)

Historical Notes. Unbounded theories are defined as multi-dimensional
theories in [She90, V.5.2], although unidimensional theories are defined ear-
lier in [She90, V.2.2]. Lemma 7.1.2 is stated explicitly as [Las86, 9.7]. Propo-
sition 7.1.1 is [She90, IX.1.8]. The main idea in Proposition 7.1.2 is found in
Section 4 of [BL83] (Lemma 4.5, in particular) and is stated more explicitly
as [Las86, 9.13]. Most of the results in the subsection on bounded ω—stable
theories are found in [She90, IX,2.3], [BL83] and [Las86]. Proposition 7.1.3 is
Corollary 5.3 of [BL83]. Lemma 7.1.10(ii) is due to Pillay [Pil82]. Lachlan's
Lemma 7.1.9 is found in [Lac75]. Proposition 7.1.4 is implicit in Section 5 of
[She90, V].

Exercise 7.1.1. Prove (4) => (1) in Lemma 7.1.2.

Exercise 7.1.2. Prove the following fact using the same ideas used to prove
Proposition 7.1.2.
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If T is a bounded t.t. theory, M is an a—model and C is an
M—independent set of realizations of SR types over M, then a prime
model over M U C is an a—model.

(This is due to Pillay. HINT: Take a prime model N over MuC, an a—prime
model Nf over MUC containing N, and show that N' must equal TV.)

Exercise 7.1.3. Following the methods used to analyze bounded ω—stable
theories develop a theory of invariants for the class of a—models in a bounded
countable superstable theory and prove the resulting structure theorem.

Exercise 7.1.4. Prove (ii) in Lemma 7.1.7.

Exercise 7.1.5. State and prove an analogue of Proposition 7.1.4 which
holds relative to the class of a—models in a bounded countable superstable
theory.

7.2 More on Ranks

This section is devoted to refining our knowledge of Morley rank, oo—rank and
U—rank in some special superstable theories. In particular, we will prove the
"definability of Morley rank" and the equivalence of Morley rank and [/—rank
in uncountably categorical theories. We will also prove corresponding results
about oo—rank in unidimensional superstable theories.

See Definition 6.1.3 for the definition of a "notion of rank". Given a com-
plete theory T, a map R which takes a formula of T to an ordinal is a
notion of rank on formulas if the map R! which takes a complete type p to
inf { R(φ) : ψ G p } is a notion of rank.

Definition 7.2.1. Given a complete theory T, a notion of rank R on formu-
las in is said to be definable if for all formulas φ(x,a),

there is a θ e tp{a) such that (= θ(b) = > R(φ(x,a)) = R(φ(x,b)). (7.1)

When θ satisfies (7.1) and R(φ(x, a)) = a we say θ proves that R(φ(x, a)) =
a.

One instance of the definability of Morley rank in uncountably cate-
gorical theories played an important role in our proofs of Morley's Cat-
egoricity Theorem and the Baldwin-Lachlan Theorem. Specifically, for T
such a theory and φ(x,y) a formula there is a formula θ(y) such that
MR(φ(x,ά)) = 0 <=> \= θ{a) (see Lemma 3.1.12). This fact was of crit-
ical importance in showing that there is a strongly minimal formula over
the prime model. The definability of Morley rank has numerous applications
in the study of uncountably categorical theories. Of equal importance is the
equality of Morley rank and [/—rank and the fact that these ranks are always
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finite (proven below). This implies that Morley rank has the same additivity
properties as [/-rank (Corollary 6.1.1); i.e., MR(ab) = MR(a/b) + MR(b),
for all a and b.

Uncountable categoricity is an important hypothesis in obtaining the de-
finability of Morley rank. Example 3.1.3 produces a simple ω-stable theory
in which this definability fails. (There is an a such that E(x,a) is nonal-
gebraic, but for any θ G tp(a) there is a b satisfying θ such that E(x, b) is
algebraic.)

Our first major goal is

Theorem 7.2.1. If T is a unidimensional theory, then
(i) oo—rank is definable in T and
(ii) for all complete types p, R°°(p) = U(p) < ω.

Part (i) is certainly the hardest. This will follow from the slightly more general

Proposition 7.2.1. Suppose that T is a superstable theory in which every
nonalgebraic type of finite oo—rank is nonorthogonal to 0. Then, for all for-
mulas φ(x,a),

(*) if R°°(φ(x, a)) —n < ω, there is a formula θ G tp(a) such that
= > R*>(φ(χ,b)) = n.

Fix T satisfying the hypotheses of the proposition until the completion
of the proof. In the proof we will use the following which was assigned in
Section 6.1 as Exercise 6.1.4 (and proved in [She90, V,7.12(5)]).

Lemma 7.2.1. If R°°{φ(x,a)) > n (where n < ω), then there is a p G S(a)
containing φ(x, a) such that U(p) > n.

(The proof is a relatively easy induction on R°°(φ(x,a)).)
The proposition is proved by induction on rank. Assume that (*) holds

for all formulas of oo—rank < n and n = R°°(φ(x,ά)). The proof of (*)
for φ(x, a) is divided into two similar but distinct parts. In the proofs we
will use the fact that if a' D a and there is a formula θr G tp(af) such that
\=θ'(b) = > R°°(φ(x, b)) = R°°(φ(x,ά)), then there is such a formula over
α. (Simply quantify existentially over the variables satisfied by the elements
of a1 \ α.) This permits us to expand a to a set having additional properties.

Lemma 7.2.2. There is a formula θ G tp(a) such that

= > R°°(φ(χ,b))>n.

Proof Assume the lemma fails. Then, for each θ G tp(a) there is an a! satis-
fying θ such that R°°(φ(x, a1)) < n-1. By Lemma 7.2.1 there is a type q over
acl(a) containing φ and having [/—rank > n. Since U—rank is < oo—rank
for any complete type, U(q) = n. Since q is nonorthogonal to 0, we can pick
a sufficiently large so that
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if c realizes q there is a pair do! realizing stp(ca) such that

a' vL ca, do! X α and d X, c
aa'

(see Propositions 5.6.1 and 5.6.2). Let k = R°°{c/aa'd) and k' = R°°(d/aa'c),
both of which are < n. Without loss of generality, k < kr. Let φ(x, y, x'\ y') G
tp(cada') be such that (= φ(d, b, d!r, b') implies

(2) \=φ(d,b)Λφ(d',b'),
(3) R°°(ψ(x,b,d',b')) < k, and
(4) R°°(ψ(d,b,x',b')) = k'.

(We can require (3) and (4) by the inductive hypothesis. First pick a formula
ψQ(x,y,x',y') such that 3xφ^{x,y,x',y') proves that k = R°°(ψo(x,adaf)).
Choose ψ(x, y, x\ yr) to be a formula implying ψo such that 3x'ψ(x, y, x', yr)
proves that k' = Roo(φ(ac1x

/,a/)). While 3xψ(x,y,x',y') may not prove
that k = R°°(ψ(x, ad a')), the inequality in (3) does hold.) We will obtain a
contradiction by showing that k' + n<k + (n — 1).

Since a' is independent from ca we can apply the Open Mapping The-
orem to find a σ G tp(a') such that every element of 5(0) containing σ
has a nonforking extension containing 3x'ψ(c,a,x',y). Since we assumed
that the lemma fails there is a 6, 6 X cα such that 3x'ψ{c,a,x',b) and
R°°(φ(x,b)) < n - 1. Prom (4) we know that R°°(ψ{c,a,xf,b)) = jfe;, so
by Lemma 7.2.1 there is a d satisfying ^(c, α, x',6) with U(d/cab) = k'.
Now compute U(dc/ab) using the [/-rank identities of Corollary 6.1.1:
U(dc/ab) = U(d/cab) + U{c/ab) = k'+n. We also know that U(c/dab) <kbγ
(3), so U(dc/ab) = U(c/dab) + U(d/ab) < fc+(n-l). This is the contradiction
which proves the lemma.

To complete the proof of Proposition 7.2.1 we prove

Lemma 7.2.3. There is a formula θ e tp(a) such that

Proof. The bulk of the proof is contained in

Claim. For any p = tp(ca), where f= φ(c,α), there i s a n o D α , c ^ ά , and a

^(s, #) G ίp(cα) such that for all 6, R°°(φ(x, b)) < R°°(c/a).

If R°°(c/a) < n the desired formula is obtained by induction, so we can
assume that R°°(c/a) = n. Assume, to the contrary, that there are no such
ά and φ. Since stp(c/a) is nonorthogonal to 0, there are:

— ά D α, c J^ ά, and
a

- do! realizing stp(cά)
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such that
cά vL α', ά sL C'Q! and c X c' .

άά'

Let R°°(c/cfάa!) = k and R°°{c'/cάa!) = fc', where, without loss of generality,
k' < k. By induction, there is a formula ψ(x,y,x',y') E tp{cac'a!) such that
\= ψ(d, 6, d',bf) implies

(5)
(6) R°°(ψ(xXd\V)) = fc, and
(7) XV

(More properly, in (5) we mean that φ(d, b) holds for an appropriate subset
b of 6.) Since do! vL ά the open mapping theorem yields a formula 0(x', y') €
tp{c'a!) = tp(cά) such that r G 5(0) has a nonforking extension containing
3xψ(x, ά, a/, ?/') if and only if θ(x\ yf) G r. Since we have assumed the claim to
fail for p there are b and d such that \= 3xψ(x, ά, d, 6), a X d6 and R°°(d/b)
is > n + 1. Furthermore, by Lemma 7.2.1, we can assume that U(d/b) >
n + 1. By (6) there is a Co satisfying ψ(x,ά,d,b) such that R°°(co/dάb) =
U(co/dάb) = fc. Now compute U(cod/άb) in two ways. If U(d/b) is infinite,
then U(cod/b) is infinite, hence > fc + (n + 1). If I7(d/S) < ω, U{cod/άb) =
U(co/dάb) -f U(d/άb) > k + (n + 1) (by Corollary 6.1.1). On the other hand,
U(cod/άb) = U(d/coάb) + U(co/άb) < fc' + n. This contradicts that fc' < fc,
to prove the claim.

We now continue the proof to. find the desired formula in tp(α). Let M be a
saturated model containing a. Let r € 5(M) be an arbitrary type containing
φ{x, a). By the claim and the saturatedness of M there is an a 6 M, a D α,
and a formula ψ(x,ά) € r such that

(8) β°°(^(x,6)) < R°°(r) < n, for all 6.

By compactness, there is a fc < ω and formulas ψi(x, ά^), z < fc, each satisfy-
ing (8), such that any r 6 S(M) containing φ(x, a) also contains one of these
ψi(x, άi)'s. Let 6(x, ca) = \/i<k ψ%(x, άi), where c = Uάi, and observe that for
any db, R°°(δ(x,db)) < n. Let σ(z) be the formula

3y(Vx(φ(x,z) -> 5(x,$,2j)).

Then σ G ίp(α) and for all 6, (= σ(6) => R°°{φ(x, b)) < n. This proves the
lemma.

This completes the proof of Proposition 7.2.1.

Recall that the major weakness of U—rank is that it is not continuous. In
the class of theories presently under consideration this limitation is removed
in (i) of
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Lemma 7.2.4. Let T be a superstable theory in which each type of finite
U—rank is nonorthogonal to 0. Further suppose that each type of U—rank 1
is nonorthogonal to a formula of oo—rank 1. Then for all complete types p
with U(p) = n < ω

(i) there is a φ G p such that for any complete type q, with φ G q, U(q) <
n, and

(ii) U(p) =

Proof We prove (i) and (ii) simultaneously by induction on rank. Both (i)
and (ii) are clear when U(p) = 0. To make the induction work we need to
handle the rank 1 case separately.

Claim. If p is a complete type of U—rank 1, then R°°(p) = 1.
Without loss of generality dom(p) = M is an a—model and there are a

realizing p and b such that R°°(b/M) = 1 and a depends on 6 over M, hence
a G acl{MU{b}). Thus, R°°(a/M) < R°°(ab/M) = R°°(b/M) = 1, implying
that R°°(a/M) = 1 (since p is nonalgebraic) to prove the claim.

Turning to (i), if p is a complete type of [/—rank 1 and φ G p has oo—rank
1 then each complete type containing φ has [/—rank < 1, hence U—rank is
continuous on the types of U—rank 1.

Now suppose that U(p) = n-f-l and both (i) and (ii) hold for complete
types of C/—rank < n. We first prove (i) for p. By the Open Mapping Theorem
it suffices to find an appropriate formula in some nonforking extension of p
(see Exercise 7.2.3), thus we can assume dom(p) = M to be an a—model.
By Proposition 6.3.4 (and our freedom to choose M sufficiently large) there
are a realizing p and b dependent on a over M such that U(b/M) = 1. By
the [/—rank identity (Corollary 6.1.1), U(a/M U {b}) = n. By induction,
R°°(a/M U {6}) is also n. Furthermore, (i) holds for tp(b/M). Combining
these facts with Proposition 7.2.1 produces a formula ψ(x,y) G tp(ab/M)
such that

whenever \= 3xψ(x,bf), R°°{ψ(x,b')) = n and U(b'/M) < 1.

Suppose that |= 3yψ(a',y). To complete the proof of (i) it suffices to show
that U{a'/M) < n + 1. Let b' satisfy ψ(a',y). Then R°°(a'/M U {67}) < n,
so U(a'/M U {V}) < n by Lemma 6.1.2(ii). Since U(b'/M) < 1, the ί/-rank
identities imply that U(a'/M) < U(a'b'/M) < U(a'/M U {b'}) + U(V/M) <
n + 1, as required.

Turning to (ii), assume U(p) = n + 1 and β°°(g) = U(q) whenever U(q) <
n. We must now show that R°°(p) = n+1. Let φ G p be such that U(q) < n+1
for any complete type q containing φ. Let Q = { q G S(<£) : φ G q and ^ψ G q
for all φ with oo—rank < n}, which is nonempty since R°°(p) > n + 1
(U—rank is always < oo—rank). Suppose φ is over A. If q G Q, then t/(g) > n
since (ii) holds for types of [/—rank < n. Furthermore, U(q \ A) < n + 1 by
the choice of y?, so each element of Q does not fork over A. Thus, \Q\ < |(£|,
from which we conclude that R°°(φ) = n + 1 to complete the proof of the
lemma.
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Corollary 7.2.1. IfT is unidimensional, then R°°(x = x) < ω.

Proof. Let Φ be the set of all formulas of finite oo—rank (in the same sort as
x). By the previous lemma each type of finite U—rank has finite oo—rank.
Thus, assuming {-></>: φ G Φ } to be consistent results in an element of S(<£)
of infinite U—rank, hence a q of U—rank ω. By Lemma 6.1.3 q is orthogonal
to any type of finite U—rank. This contradiction to the unidimensionality of
the theory proves the corollary.

This completes the proof of Theorem 7.2.1.

When T is a unidimensional t.t. theory we can add Morley rank to the
picture. Sticking to the most interesting case we state the relevant result for
countable theories.

Proposition 7.2.2. // T is an uncountably categorical theory, then for all
complete types p, U(p) = R°°(p) = MR(p) < ω. Furthermore, Morley rank
is definable in T.

Proof We have already shown that [/—rank and oo—rank are equal and finite
in such theories. If we prove that Morley rank is equal to [/—rank in T the
definability of Morley rank will follow from Theorem 7.2.1. Our proof will
closely parallel the proof of Proposition 7.2.1.

We proved above the continuity of [/—rank in T. This is strengthened by
showing

Claim. For all complete p there is a φ G p such that { q G S(€) : φ G q and
U(q) > U(p) } is finite.

This is proved by induction on U(p) = n + 1. (The result is obviously
true when p is algebraic.) Again, we can assume that dom(p) = M is a
saturated model. There are a realizing p and b dependent on a over M such
that tp(b/M) is strongly minimal. By a now standard argument, U(a/M U
{b}) = R°°(a/M U {&}) = n. By the definability of oo—rank and its equality
with U—rank there is a formula ψ(x, y) G tp(ab/M) such that

(9) 3xψ(x, y) is strongly minimal,
(10) { q G S(M U {&}) : ψ(x, b) G q and U{q) > n } is finite, and
(11) for all V satisfying 3x^(x,y), R°°(ψ(x,b')) < n and whenever

t=ψ(a',b'),b' eacl(M\j{a'}).

Suppose that |= 3yψ(a\y) and b' satisfies ψ(a',y). By (9) and (11) U(a'/M\J
{V}) < n and U(a'/M) < n + 1. If U(V/M) = 0, then U{af/M) < n.
Otherwise, tp(b'/M) = tp(b/M) (by (9)) and a! depends on b' over M (by
(11)). Thus, U(a'/M) = n + 1, implying that U(af/MU{b'}) = n and V £ M
(by the usual U—rank computations). Thus, tp(af/MU{bf}) is conjugate over
M to one of the types over M U {b} defined in (10). We conclude that there
are finitely many types in S(M) containing θ(x) = 3yφ(x, y) with U—rank
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n + 1. Since each such type is stationary there are finitely many elements
of 5(<£) containing 0 and having [/—rank n + 1, completing the proof of the
claim.

Using this claim we can prove that U(p) = MR(p) for any complete type
p by an argument similar to that used to obtain (ii) of Lemma 7.2.4. The
details are left to the reader in Exercise 7.2.1.

Contained within the proof of the previous proposition is a proof of

Corollary 7.2.2. // T is a unidimensional theory containing a formula of
Morley rank 1, then T is totally transcendental (hence uncountably categori-
cal).

Historical Notes. The finiteness and definability of Morley rank in an
uncountably categorical theory is due to Baldwin [Bal73] and independently
ZiΓber [Zil74]. Shelah extended these results to superstable unidimensional
theories in [She90, IX. 1.11]. There is a good exposition of these results by
Saffe in [Saf84], although the proof of Theorem 4.5 of that paper does not
work as written. After much prodding by Ambar Chowdhury I wrote down
the proof that appears here. Bradd Hart and, independently, Predrag Tanovic
have also written proofs.

Exercise 7.2.1. Finish the proof of Proposition 7.2.2.

Exercise 7.2.2. Prove Corollary 7.2.2.

Exercise 7.2.3. Let T be superstable, p e S{A), A' D A and p' € S(A')
a nonforking extension of p containing a formula φf such that φ' G q =>•
U(q) < U(pf), for all q e S(A'). Show that there is a φ G p such that
φ e q = » U(q) < U(p), for all q E S(A).
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α-model, 259
abelian structure, 164, 250
αd(-) , 52
affine algebraic
- group, 102
- set, 102
- variety, 102
No —atomic, 57
No—isolated type, 57
No—prime, 57
algebraic
- closure, 52
- formula, 15
- over A, 52
- quadrangle, 192
- triangle, 208
- type, 15
almost homogeneous model, 334
almost orthogonality, 275
almost over A, 84
almost strongly minimal
- set, 155
- theory, 153
atomic, 12
- a—atomic, 269
- model, 12
automorphism, 1
average type, 231

based
- stationary type, 223
basis, 53
- of a type, 273
binding group, 178
- theorem, 179
bounded theory, 323
- invariants, 330
- number of dimensions, 324
- Structure Theorem, 331

canonical base, 227
canonical parameter, 226
Cantor-Bendixson rank, 22
cardinality
- of theory, 2
- of language, 1
categorical theory, 35, 49
- uncountably, 49
CB, see Cantor-Bendixson rank 22
chain of models, 19
- elementary, 19
- union of, 19
Cherlin-Harrington-Lachlan, 162
Cherlm-Mills-ZiΓber Theorem, 149
closed set, 52
closure operator, 52
- exchange, 52
- unitary, 52
commutative sum (on ordinals), 298
commutator subgroup, 111
Compactness Theorem, 3
complete theory, 1
conjugate types, 61
connected component
- u -stable, 106
- stable, 245
consistent, 1
constructible set, 102
construction
- α-, 268
- almost strongly minimal, 159
- rank 1, 163
- *-, 261
coordinatization, 151, 157
- lemma, 163
cut, 60

dcl(-), 129
definability
- of a Z\-type, 218
- of a type, 84, 218
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Definability Lemma, 85
Definability Theorem
- in a stable theory, 218
definable
- in a model, 3
- set, 72
definable automorphism, 178
definable closure, 129
definable-by-p, 244
defining scheme, 84
degree
- Morley, 76
^—multiplicity, 215
zA-rank, 214
Z\-type, 214
- complete, 214
dense
- isolated types, 14
diagram
- type of indiscernibles, 42
- type of model, 30
dimension
- bounded theory, 324
- of type, 286
- pregeometry, 53
domain of a type, 5
domination
- in stable theory, 280
- in t.t. theory, 97

Ehrenfeucht-Mostowski model, 45
elementarily equivalent, 2
elementary class, 2
elementary embedding, 4
elementary map, 12
elimination of quantifiers, 6
elimination of imaginaries, 129
*—endomorphism, 171
*—endomorphism ring, 171
exchange property, 52

finitely generated set, 176
foreign, 184
formula, 1
- algebraic, 15
- almost over a set, 84
- over a set, 3
- positive primitive, 251
- weakly minimal, 296
free, 73
free extension, 76
freeness relation, 73
full over a set, 265

fundamental generator, 176
fundamental order, 233

general linear group, 102
generating function, 176
generic
- composition, 199
- element, 224
- ω-stable, 108
- stable, 246
- map, 194
- - generic equality, 195
- germ, 196
- type
- α -stable, 106
- stable, 246
geometry, 52
germ, 195, 196
group
- α -stable, 100
- - abelian subgroup, 108
- - connected, 106
- abelian structure, 164, 250
- abelian-by-finite, 170
- action, 103
- faithful, 103
- - regular, 103
- - sharply transitive, 103
- transitive, 103
- connected, 107
- /\ -definable, 243
- simple, 155
- stable, 243
- connected, 245
group action
- /\ -definable, 243
- stable, 243

heir
- strong, 59, 63
Hessenberg sum, 298
homogeneous model, 27
- almost, 334
- countable, 17
- Λ, 27
- strongly, 32
*—homomorphism, 171
*—homomorphism group, 171
hull, 43
- Skolem, 45

imaginary elements, 129
implies (relation on types), 5
indecomposable set, 110
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independent
- forking, 217
- Morley rank, 76
indiscernible sequence, 40
indiscernible set, 40
- average type of, 231
inter algebraic, 52
inter definable, 129
internal, 185
invariant
- cardinal, 68
- set of formulas, 244
isolated type, 5
- (α,«)-, 268
isolated types are dense, 14
isomorphism, 1
isomorphism invariant, 68, 326

Λ(T), 238

Lachlan, 290, 333
Ladder Theorem, 178
language, 1
- many-sorted, 3, 126
L(X), 2
linearity, 144
locus, 185
Los-Vaught Test, 35, 50
Lδwenheim-Skolem Theorem, 3, 4

many-sorted logic, 126
matrix groups, 102
minimal
- set, 296
- type, 296
minimal model, 16
minimal set
- Dichotomy Theorem, 301
- linear, 302
model, 1
Mod(T), 2
modularity law, 139
monster model, 71
Morley degree, 76
Morley rank, 75
- independent, 76
Morley sequence
- in stable, 230
- in t.t., 81
multidimensional theory, 323
multiplicity, 240
- Δ, 215

nonforking, 216

omit, 4
Omitting Types Theorem, 6
1-based theory, 304
1-based theory
- stable, 249
- uncountably categorical, 159
Open Mapping Theorem, 226
order property, 220, 230
orthogonality, 275
- to a set, 278

Pairs Lemma
- t.t., 77
parallel types, 223
perfect space, 26
plane curve, 143, 302
- definable family, 146
pp—formula, 251
pre-weight, 283
pregeometry, 52
- basis, 53
- dimension, 53
- homogeneous, 138
- independence, 53
- isomorphism, 138
- localization, 138
- locally modular, 139
- modular, 139
- projective, 139
- trivial, 139
prime model, 11
- (α,«)— prime, 267
- a—prime, 267
- nonatomic, 266
- over a set, 15
- relative to a class, 267
- strictly, 261, 268

Ramsey's Theorem, 42
rank
- Cantor-Bendixson, 22
- connected, 297
- continuous, 297
- definability of, 337
- oo—rank, 294
- Morley, 75
- notion of, 297
- ί/-rank, 294
- additivity, 298
- identity, 299
realize, 4
regular decomposition, 310
regular type, 305
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- additivity of dimension, 307
- Decomposition Theorem, 310
- existence, 309
relativization, 89
represent
- formula in a type, 233
representation class, 233
representation theorem, 326
restricted universe, 89
restriction
- of type, 57
RK-equivalent, 320
Rudin-Keisler order, 320
Ryll-Nardzewski Theorem, 36

saturated model, 27, 63, 70
- α-, 259
- almost Ac—, 259
- countable, 17
- «, 27
scattered space, 26
sentence, 1
Skolem
- axioms, 44
- functions, 44
- T has, 44
- hull, 45
splits, 59
stability
- first stability cardinal, 238
- spectrum, 238
- theorem, 239
stabilizer, 103
- in ω—stable group, 104
- in stable group, 244
stable, 50, 216
- group, 243
- group action, 243
- theory, 216
- - properly, 241
stationary
- in stable, 217
- in t.t., 76
Stone space, 6
strong heir, 59, 63
strong type, 224
strongly homogeneous model, 32
strongly minimal
- formula, 51
- set, 72
- - No — categorical, 149
- - linear, 144
- - locally modular, 139

- - modular, 139
- - plane curve, 143
- projective, 139
- - pseudomodular, 193
- trivial, 139
strongly regular type, 314
- additivity of dimension, 321
structure, 1
structure theorem, 68, 326
submodel, 3
- elementary, 3
superstable theory, 241
- properly, 241
symmetry, 74
Symmetry Lemma
- in stable, 222
- in t.t., 82

Tarski-Vaught Test, 4
theory, 1
- No -categorical, 35-36
- «—categorical, 35, 49
- λ—stable, 50
- almost strongly minimal, 153
- bounded, 323
- complete, 2
- multidimensional, 323
-based
- stable, 249
- - uncountably categorical, 159
- restricted, 89
- stable, 216
- properly, 241
- superstable, 241
- properly, 241
- totally categorical, 162
- totally transcendental (t.t.), 76
- trivial, 208
- uncountably categorical, 49
- unidimensional, 304, 323
Th(M), 2
topology
- Noetherian, 102
- Zariski, 102
totally transcendental (t.t.) theory, 76
transitive
- group action, 103
translation, 104
triangle
- algebraic, 208
type, 4
- No—isolated, 57
- α-isolated, 268
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- almost orthogonality, 275
- applying map to, 61
- based on A, 223
- basis, 273
- complete, 5
- conjugacy, 61
- definability, 84, 85
- domain, 5
- equivalence, 5
- eventually nonisolated, 331
- forks over .A, 216
- generic
- - ω—stable, 106
- isolated, 5
- minimal, 296
- orthogonality, 275
- (g> product, 275
- over definable set, 180
- parallel, 223
- pre-weight, 283
- regular, 305
- splitting of a, 59
- *-type, 275
- strong, 224
- strongly regular, 314
- weight, 283
type diagram
- of indiscernibles, 42
- of model, 30

unbounded theory, 335
unidimensional theory, 304, 323
universal domain, 71
universal model, 27
- countable, 17
- «, 27
universe, 71

variables
- object, 214
- parameter, 214
Vaught's Conjecture, 39
Vaughtian pair, 58, 65
Vaughtian triple, 58

van der Waerden, 74
weakly minimal, 296
weight, 283
- additivity of, 285
width of bounded theory, 324

ZiPber, 162
Zil'ber's configuration, 192
Zil'ber's Indecomposability Theorem,
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