
4. Fine Structure of Uncountably Categorical
Theories

In the preceding chapter, for T a countable uncountably categorical theory, we
solved problems concerning the number of models of T in a fixed cardinality.
However, this study leaves many unanswered questions about uncountably
categorical theories, and raises others. Here are a few such questions.

- In [Vauβl] Vaught asked if an uncountably categorical theory can be finitely
axiomatizable. (It was through ZiΓber's work on this problem that geomet-
rical stability theory, the area in which the subject matter of this chapter
belongs, was born.)

- Can we isolate a broad class of uncountably categorical theories which have
a strongly minimal formula (or at least a formula of Morley rank 1) over
0? (While working on the Baldwin-Lachlan Theorem we recognized that
an easier proof would be possible in such theories.)

- Are there strongly minimal sets which are radically different from the ex-
amples given in Example 3.1.1?

What is surprising is that work on each of these questions has given
insight into the others. The issues underlying this connection are the following
imprecisely worded problems concerning the definable relations in models of
uncountably categorical theories. Recall that algebraic closure restricted to
the subsets of strongly minimal set defines a pregeometry.

(1) Find a natural and meaningful dividing line between "simple" prege-
ometries and "complex" pregeometries among those which occur as
the pregeometry on a strongly minimal set.

(2) Prove that whenever the pregeometry on a strongly minimal set is
simple, the Morley rank dependence relation on tuples is also simple
in a meaningful way.

In order to formulate the properties which will meet these requirements we
need the notion of Meq (M a model), which is developed in the next section.
In the expansion Meq we have not only the elements of M but elements which
act as names for the definable relations in M. This expansion is used in most
of model theory today.
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4.1 Te«

Most of the theorems we have proved so far make few distinctions between tu-
ples from a model and elements of the model, the standard hypothesis being:
"Let a be a tuple from M and ...". It is a slight deficiency in our notion of a
model that we cannot use more uniform terminology for elements of M and
tuples from M. Another annoyance is the nonuniqueness of the parameters
involved in defining sets. As we look more deeply at the relationships between
the definable subsets of a model a natural question (in a t.t. theory) might be:
Given a definable set D = φ(<ε, α), what is the Morley rank of the type of the
parameters used to define DΊ This is an ambiguous question since there may
be a and b with D — φ(M, a) = φ{M, b) and MR(ά) Φ MR(b). Both of these
deficiencies are removed by expanding the model M to Meq. Shelah calls the
additional elements "imaginary elements", in analogy to numbers which we
add to the reals to form the complex numbers. As with the complex numbers,
the most efficient proof of a theorem about the real elements of a theory may
involve imaginaries. This expansion is formulated using many-sorted logic.

It is common in mathematics for the universe of a structure to consist of
several disjoint classes of elements. A simple example is a projective plane
V which consists of a set P of "points", a set L of "lines" and a binary
incidence relation ε between points and lines. In expressing properties of these
planes variables are restricted to ranging over either points or lines. Adopt
the convention that p, p ' , . . . denote arbitrary points and /, /',... denote lines.
Then, one of the axioms for a projective plane can be stated as: \fp\/p'3l(pεlΛ
p'εl). To formulate this plane as a model of a first-order language we would
add unary predicates PQ and L$ and let the universe be the disjoint union of
the interpretations of these two. In any useful formula involving the variable
v we would have an occurrence of Po{v) or Lo(υ). The following approach
offers a more natural formalization.

Let / be a nonempty set whose elements are called sorts. The logical
symbols of I—sorted logic are the same as first-order logic, except that for
each sort i there are variables υ\, v\,... of sort i (and each variable is tagged
with a sort). An I—sorted language L consists of predicate, constant and
function symbols. For each n—ary predicate symbol P there is an n—tuple of
sorts (zi,..., in) and P is said to be a predicate of sort (z'i,..., in). Similarly,
a constant symbol is of a particular sort and the arguments of a function
symbol have specified sorts. We leave it to the reader to define the terms and
formulas of L. (For example, if P is a predicate symbol of sort (ii,... ,in)
and xι,...,xn are variables of sorts z'i,..., in, respectively, then Px\... xn

is an atomic formula.)
An /—sorted structure M consists of the following.

1. For each i € / there is a nonempty set Mi called the universe of sort / .
2. For each predicate symbol P of sort ( ή , . . . , in) there is a relation PM C

Miχ x ... x M i n .
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3. For a constant symbol c of sort i there is an element cM of M^.
4. For each function symbol / of sort . . . (the obvious clause).

The definitions of truth and satisfaction are the predictable ones, given that
W means "for all elements of Mi" The submodel and elementary submodel
relations are defined much like the 1—sorted versions, as are elementary maps
and isomorphisms. (Ordinary first-order logic as described in Chapter 1 is
called 1—sorted logic.)

Let T be a complete /—sorted theory. Given σ = ( i i , . . . ,in) a sequence
of sorts, 5σ(0) denotes the set of complete types in a sequence of variables
of sorts i i , . . . , in. In situations where we used 5n(0) in a 1-sorted theory we
will use Sσ(0) in an /—sorted theory. 5(0) denotes (J σ Sσ(Φ).

So far, we have only stated definitions and theorems for 1-sorted logic.
However, everything we have done extends trivially to many-sorted logics. For
example, the term categorical in λ is defined by exactly the same statement.
We chose to work in 1-sorted logic only to simplify the notation. We will,
however, freely apply past results to many-sorted theories and models.

It is possible to transform a many-sorted structure into an ordinary one-
sorted structure much as we did above for projective planes. The reader is
referred to [End72] for the details.

For L a language and T a theory in L, Leq and Teq are defined as follows.
As before, we assume for notational simplicity alone that L and T are 1-
sorted. Let E be the set of all formulas E(x,y) such that for some n and
every model M of T, E defines an equivalence relation on Mn. Let I = {%E '•
E € S } be a collection of (distinct) sorts. For each E G £ let JE be a function
symbol taking n—tuples from the sort i= into the sort IE Finally, let Leq be
the /—sorted language which contains {JE E G ε} and for each element
of L a corresponding element whose arguments are required to range over
the sort z=. (For example, if P is an n—ary relation symbol of L then Leq

contains a relation symbol P of sort ( i = , . . . ,z = ), where there are n copies
of z=.) The axioms for Teq are the axioms for T restricted to the sort z=,
together with all statements expressing: /# is a surjective map of n—tuples
from i= onto %E such that \/xy(E(x,y) <—• fεix) — fE(y))- From hereon we
will identify T with its copy on i= in Teq.

Statements made in Teq can always be reduced to statements in T. This
is made precise in the following lemma, which is proved by induction on
formulas (left to the reader).

L e m m a 4.1.1. For any formula φ(vo, ,vn) of Leq, with Vj a variable of
sort %Ei, there is a formula φ*(wo,..., wn) of L such that

Teq (= VlDo . . . Wn( φUEo (Wθ), , fEn (βn)) < • V?*(™0, , Wn) ).

Let T be a complete theory in L with universal domain (£. Let <Leq be an
expansion of € to a model of Teq. (For E a formula defining an equivalence
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relation on n-tuples let (£eq)iE = £n/E(£) = the E(C)-equivalence classes
on <£n, and let /# be the quotient map.) Notice that €eq is obtained from
(£ simply by closing under the functions of the language Leq. This observa-
tion makes it clear that €eq is the unique model N of Teq with (£ = Ni=.
Furthermore, an automorphism / of <£ can be extended uniquely to an au-
tomorphism of £eq. Given A C € let Aeq denote the closure of A under the
maps /#, E £ S.

Corollary 4.1.1. Let T be a complete theory in L with universal domain €.
(i) Teq is complete.
(ii) Any relation on (£ definable in <ίeq is definable in (£.
(in) <Leq is a saturated model ofTeq.
(iv) Teq is λ-stable if and only ifT is λ-stable (for all λ > \T\).
(v) Teq is t.t. if and only ifT is t.t. Also, for φ a formula ofT, MR(φ),

computed in T, is the same as MR(φ), computed in Teq.

Proof (i) and (ii) follow immediately from Lemma 4.1.1.
(iii) To see that €eq is a saturated model let A C €eq have cardinality

< \£eq\ andp e Sι(A). Let B be asubset of £ of cardinality < |A| + |T| < |£e<? |
such that A C Beq. Supposing that the variable in p ranges over the sort iβ
there is a type q over B (in L) such that if b realizes q then fβ (b) realizes p.
Since € is saturated, q (hence p) is realized in €eq.

(iv) follows from much that same argument used to prove (iii). (v) is left
to the reader.

Thus, we can use €eq as the universal domain of Teq.
Not only does this expansion to €eq not add any new structure to <£, but

there is a one-to-one correspondence between the elementary submodels of
the two models. The reader can verify that if M is an elementary submodel
of € then Meq is an elementary submodel of £eq. Conversely, if N -< €eq then
N = Meq for some elementary submodel M of <£.

Definition 4.1.1. Let T be a complete theory, possibly many-sorted, with
universal domain (£.

(i) If D is a definable set in €n (for some n), d is called a name for D if
f(D) = D Φ=Φ f(d) = d, for all f G Aut(C).

(ii) If every definable set has a name in £, we say that T has built-in
imaginary elements.

Proposition 4.1.1. Given a complete theory T, Teq has built-in imaginar-
ies.

Proof. Let £ be the universal domain of T and D = φ(<£, α), where φ(x,y)
is a formula of L. Let E(y,yf) be the equivalence relation: E(y,y') <ί=>
Vx(φ(x, y) <-> φ(x, y')). Then, for all b and c, \= £(ά, b) <=ϊ φ(£, b) = φ{£, c).
An automorphism of €eq permutes the set D if and only if it fixes ά/E. Thus,
Teq has a name for every definable set in C. We leave it to the reader to show
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that if D is a definable subset of (£ e ς r)n, for some n, then there is also a name
for D in €eq. This proves the proposition.

This is the fundamental property of Teq arising in most applications.
Instead of "T has built-in imaginaries" we may say T has imaginaries or
T has elimination of imaginaries. By the proposition, Teq has imaginaries,
for any complete theory Γ. However, we use this term even when the theory
is not Teq for some other theory. For example, when k is an algebraically
closed field and we restrict keq to the structure whose sorts are the sets kn,
n < ω, we obtain a theory with elimination of imaginaries. (This was proved
by Poizat in [Poi83b]; see also [Hod93, 4.4.6].) Informally, the passage from
<£ to £eq is described as "adding names for definable sets".

Definition 4.1.2. Let T be a complete theory with universal domain (£. For
A a set the definable closure of A, denoted dcl(A) is {a : for all 6, tp(b/A) =
tp(a/A) = > a = b}. Sets B andC are interdefinable over A if dcl(BuA) =
dcl(CuA).

Of course, A C del (A) C acl(A). Note: a G dcl(A) if and only if there is a
formula φ(v) over A such that (= 3\υφ(υ) and \= φ(a).

Recall that a formula φ is almost over A if it has finitely many conju-
gates over A, up to equivalence. Thus, if φ is almost over A in (£eςf there
are finitely many elements which are the names for the conjugates over A of

). Continuing with this observation yields

Lemma 4.1.2. Suppose that T has built-in imaginary elements.
(i) d is a name for the definable set D if and only if D is definable over

d and d G dcl(A) for any set A such that D is definable over A.
(ii) A formula φ is almost over a set A if and only if φ(£) is definable

over acl(A).

Proof, (i) Let d be a name for D. By Lemma 3.3.8(i), D is definable over d.
Suppose that D is definable over A, and / is an automorphism of £ fixing A.
Then f(D) = £>, so f(d) = d, from which it follows that d G dcl(A). To prove
the converse, let e be a name for D. Since D is definable over e, d G dcl(e).
By the first part of the proof, e G dcl(d); i.e., dcl(d) = dcl(e). Thus, d is a
name for D.

(ii) Suppose that φ{<£) is definable over a C acl(A). Since there are only
finitely many possible images of a under automorphisms that fix A, there are
only finitely many conjugates of φ over A.

Conversely, suppose that φ is almost over A and a is a name for φ(€). If
/ is an automorphism of <£, f(a) is a name for f(φ(€)). Thus, {/(α) : / G
Aut(£) fixes ^4} is finite, implying that a G acl(A).

This lemma is one indication of how working in teq smooths out certain
arguments. Intuitively, the parameters defining a formula which is almost
over A are closely tied to A. However, to make this precise in the original
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theory we needed to introduce an equivalence relation over A having finitely
many classes, using this to show, e.g., that when φ is almost over A and M
is a model D A there is a formula ψ over M equivalent to φ. If we work in
£eq we simply observe that every model containing A also contains acl(A),
from which it is clear that a formula almost over A is equivalent to a formula
over any model containing A.

When working in £eq we can also replace finite tuples by elements in
most settings without changing the validity of an argument. For a a finite
sequence let 6 be a name for α as a definable set over α. Then, del (a) = dcl(b).
Proving a property about a definable relation satisfied by α quickly reduces
to proving a similar property about a formula satisfied by b. Along the same
lines, proving a property of the definable subsets of <Leq implicitly proves the
same property for the definable relations on <teq. In settings where we would
have said "Given a tuple a from Ceq ..." we will say "Given a in €eq ..."
Other advantages of working in <teq will be uncovered in later applications.

From hereon, unless stated otherwise, we restrict our attention to
theories with built-in imaginaries.

The term "T is a theory" will mean "T is a theory with built-in imagi-
nary elements". Since Teq of any theory has built-in imaginaries any theory
appears as a sort in a theory with built-in imaginaries. If we want to know
what a certain theorem says about an ordinary 1-sorted theory, when it is
proved for theories with built-in imaginaries, we need only read off what the
result says about a particular sort of the theory. In jargon this assumption
is known as "working in Te<?" or "working in £eq". The only time we may
abandon this convention is when we are analyzing a natural example, such as
a module or one of the theories built on equivalence relations. Then we may
become sloppy and say, e.g., "Let T be the the theory of (Z, +)." Even in this
setting, where "element" means an element of £, we assume the elements of
£eq are available in proofs.

This passage from ordinary theories into theories with imaginaries has the
following effect on our standard examples. Suppose that T = TQQ, where Γo is
a theory of equivalence relations. Then for E one of the equivalence relations
and a an element (of the right sort), /#(α) is an element of the universe.

Now suppose T = TQ9, where To is a theory of (infinite) vector spaces, and
V denotes the universal domain of Γo. Let W be a linear (hence definable)
subspace of Vn. There is a sort of £ consisting of Vn/W. Since dimension
and Morley rank are the same in a vector space we can write the expected
identity, MR(W) + MR(Vn/W) = MR{Vn), for these definable sets. In
general, for G any group, Geq contains the quotient of Gn by any definable
normal subgroup. For example, when G = GLn(if) (where K is some field)
PGLn(Uf), which is the quotient of G by its center, is definable in Geq.
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Historical Notes. All of this is by Shelah [She90], although Teq was first
treated as a many-sorted theory (in writing) by Makkai [Mak84].

4.1.1 Totally Transcendental Theories Revisited

In this subsection totally transcendental theories are studied further under
the built-in imaginaries hypothesis. Previous results are restated to set the
current viewpoint and to emphasize items particularly relevant to his chapter.
Also, the proof of Theorem 3.3. l(i) is completed and a new tool (the canonical
parameter) is introduced.

The first lemma is little more than a combination of previous results
stated under the built-in imaginaries requirement.

Lemma 4.1.3. Let £ be the universal domain of a t.t. theory, a an element
and A a set. Then,

(i) tp(a/acl(A)) is stationary.
(ii) Moreover, there is an e G dcl(A U {a}) Π acl(A) such that deg(α/^4 U

W) = i

Proof, (i) Let p* G S(€) be a free extension of tp(a/acl(A)). By Theo-
rem 3.3.1(ii), there is a defining scheme for p* consisting of formulas almost
over A. Any formula almost over A is equivalent to a formula over acl(A),
by Lemma 4.1.2(ii). Thus, p* is definable over acl(A). We conclude from
Theorem 3.3.l(i) that tp(a/acl(A)) is stationary.

(ii) By Exercise 4.1.5, tp(a/acl(A)) is implied by tp(a/dcl(A U {a}) Π
acl(A)). Since the theory is t.t. there is a finite B C dcl(A U {a}) Π acl(A)
such that 1 = deg(a/dcl(Au{a})Πacl(A)) = deg(a/B). In other words there
is an e G dcl{A U {a}) Π acl(A) such that deg(a/A U {e}) = 1.

Lemma 4.1.4. Let T be t.t., p G S(<£) and A a set. If p does not split over
A then p is a free extension of p \ A and p \ A is stationary.

Proof. Let B = acl(A). By Lemmas 3.3.2(iii), p \ B is a free extension of
p \ A. Hence, to show that p is a free extension of p \ A it suffices to show
that p is a free extension of p \ B. Suppose, to the contrary, that for some
6, p \ (B U {b}) is not a free extension of p \ B. Let r = tp(b/B), which is
stationary by the previous lemma, and let / be an infinite Morley sequence in
r over B. Let a realize p \ (BUI). Let J be a finite subset of / such that a is
independent from / over BuJ and let c G /\ J. Then c is independent from
a over B U J, in fact, c is independent from a over B (by the transitivity of
independence). Since p does not split over B, tp(a/BU{c}) = p \ (BU{c}) is
conjugate top \ (BU{b}) over B. Thus, a depends on c over B, a contradiction
which proves that p is a free extension of p \ A.

Turning to the stationarity of p \ A, observe that p \ A has a unique
extension over B (since p does not split over ^4). Hence, if q G S(£) is a free
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extension of p \ A, q D p \ B. Since p \ B is stationary, q must be p. In other
words, p \ A is stationary, proving the lemma.

This completes the proof of Theorem 3.3.1(i).

In this chapter it is more natural to work with sets of realizations of types
than types; i.e., /\—definable sets (see Definition 3.5.10).

It is worth restating some previously defined notions in an equivalent form
involving definable sets. For any sets A and B, A Δ B denotes the symmetric
difference of A and B.

Let <£ be the universal domain of a totally transcendental theory. Let D
be an f\ —definable set, specifically, D =

— MR(D) and deg(D), the Morley rank and degree of D, are defined to be
MR(p) and deg(p), respectively.

Now suppose D to be the definable set <£>(£).

— D is called a strongly minimal set if φ is strongly minimal.
— D is a strongly minimal set if and only if every definable subset of D is

finite or cofinite.
— D has Morley rank > a if for all β < a there are definable subsets Xi of

£>, for i < ω, such that (a) MR(Xi) > β and (b) MR(Xi Π Xά) < β, for
i < j < ω.

— If D has Morley rank α, then the degree of D is the maximal k such that
there are definable subsets Xι,... ,Xk of D satisfying (a) MR(Xi) = α,
for i = 1,..., fc, and (b) MR(Xt Π Xά) < β, for 1 < i < j < k.

Let D be /\ —definable over A and have Morley rank α. There may be
elements of D which belong to A—definable sets of Morley rank < α. For
example, some elements of the universal domain of algebraically closed fields
of characteristic 0 are in acl($), namely the algebraic elements. Motivated by
the terminology used in algebraic geometry we attach the label "generic" to
the elements of D having maximal Morley rank over A.

Definition 4.1.3. Let € be the universal domain of a totally transcendental
theory, D a subset which is /\ —definable over A, B D A and a G D. We call
a generic over B if MR(a/B) = MR(D); otherwise a is nongeneric over B.

Remark J^ΛΛ. If G is an ω—stable group, A a set and a £ G, then a is generic
over A in the sense of Definition 3.5.6 if and only if a is generic over A in the
sense of Definition 4.1.3.

For example, if D is an 0—definable strongly minimal set, a E D is generic
over B if and only if a £ acl(B). For any /\ —definable set D and set β, D
contains an element generic over B (because every type in a t.t. theory has
a free extension). Intuitively, "most" of the elements of D are generic over
any set B. In fact, if X and Y are definable over B and X LY contains only
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elements nongeneric over B, then X and Y are "almost equal". The "almost
equal" relation between sets is explicitly denned as follows.

Definition 4.1.4. Let (Γ be the universal domain of a totally transcendental
theory, X an f\—definable set over A, Y an /\ — definable set over B and
a = max{MR(X),MR(Y)}. We write X ~* Y if for all a G X Δ Y,
MR(a/AuB) < a. The restriction o/~* to sets of degree 1 is denoted ~. That
is, if X, Y, A and B are as above and, additionally, deg(X) = deg(y) = 1,
X ~Y ifforallaeX A Y, MR(a/A U B) < a.

Remark 4-1-2. The detailed verifications of the following are left to the
reader. Let X, Y, A and B be as in the definition of ~*.

(i) If X ~* y, then MR(X) = MR(Y). (Suppose, to the contrary, that
MR(X) < MR(Y) = a. Then any element of Y generic over A U B is in
X ΔY; i.e., MR(Y \X) = a; contradiction.)

(ii) Suppose that MR{X) = MR(Y) = a. The domains A and B play
no active role in the definition. That is to say, for sets A' D A and B' D B,
X ~* Y (over A and B) if and only if X ~* Y (over A' and Bf). (There is an
a € X Δ y such that MR(a/A UB) = aiϊ and only if there is an a e X Δ Y
such that MR{a/A! U £') = a.)

(iii) If X = p(€) and y = g(C) both have degree 1, then X ~ y if and
only if p and <? have the same free extension in S(<£). (This follows quickly
from (ii).)

(iv) rsj is an equivalence relation on the /\ —definable sets of degree 1.

Since € has built-in imaginaries, the quotient set of any definable equiv-
alence relation is a definable subset of £. This property was used to show
that every definable set X in (£ has a name in (£; i.e., an element x such that
for all / e Aut(C), f(X) = X if and only if /(x) = x. While - is not a
definable equivalence relation we will show that for each ~ —class, € contains
an element that acts like a "name" for the class (formalized as follows).

Definition 4.1.5. Let € be the universal domain of a t.t. theory and let X be
an f\ —definable set of degree 1. An element c G £ is a canonical parameter
ofX if

V/ G Aut(C), f(X) - X if and only if /(c) = c.
If X = p(C) a canonical parameter of X is also called a canonical parameter
ofp-

Remark 4.1.3. (i) By Remark 4.1.2(iii), degree 1 sets X = p(C) and Y = q(C)
are ~ —equivalent if and only if p and q have the same free extension in S(<£).
Thus, for / G Aut(C) and p* the free extension ofp in 5(£), f(X) ~ X if
and only if f(p*) = p*. So, a canonical parameter of X is an element c such
that

V/ G Aut(C), /(p*) = p* if and only if f(c) = c. (4.1)

This equivalence is the key to the proof of the next theorem.
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(ii) If X is a degree 1 set and c and d are both canonical parameters of
X, then dcl(c) = dcl(d). (If / G Aut(C) and f(c) = c, then /(X) - X and
/(d) = d. Thus, d G dd(c). Similarly, c G dd(d).)

(iii) While a degree 1 set will not have a unique canonical parameter, by
virtue of (ii), any two such are interdefinable over 0. Thus, it is common to
say the canonical parameter instead of a canonical parameter.

Theorem 4.1.1. Let € be the universal domain of a t.t. theory and X an
/\ —definable set of degree 1. Then X has a canonical parameter.

Proof. Suppose X is p(<£) and let p* be the free extension of p in

Claim. A canonical parameter for X exists if there is a formula φ such that

(*) V/ G Aut(C), /(p*) = p* if and only if f{φ) = φ.

By the previous remark an element c is a canonical parameter for X if it
satisfies (4.1). If φ satisfies (*), a name c for φ(<£) satisfies (4.1), proving the
claim.

The definability of types is the key to finding such a φ. Let φ(x,ά) be a
formula in p with MR(φ(x,a)) = MR(p) = a and deg(φ(x,a)) = 1, where
φ(x, y) is over 0. By the definability of types in t.t. theories (Theorem 3.3.1)
there is a formula φ(y) such that for all b G £, φ{x,b) G p if and only if

Claim. For all / G Aut(C), f(p*) = p* if and only if f(φ) = φ.

Let / G Aut (£). First suppose that /(p*) = p*. Then

= f({b: ^(x,6)Gp*»

= {b: φ,b)ef(p*)}

- {b: φ(x,b)ep*}

On the other hand, if f(φ(<£)) — ψ(<£), then φ(x,f(a)) is in p* as well as in
/(p*). Since MR(p*) = MR(φ(xJ(a))) = MΛ(/(p*)) anddeg(^(x,/(α))) =
1, /(p*) must be p*. This proves the claim and the theorem.

Corollary 4.1.2. Let € be the universal domain of a t.t. theory, X = p(<£)
a set of degree 1, p* the free extension of p in S(€) and c the canonical
parameter of X.

(i) Ifp* is definable over A, then c G dcl(A).
(ii) Ifp is over A, then c G del (A).

Proof (i) Since p* is definable over A, f(p*) = p* for any / G Aut(C) which
fixes A pointwise (by Theorem 3.3.1 and Lemma 3.1.8). Hence, /(c) = c for
any / G Aut(C) which fixes A pointwise. We conclude that c G dcl(A).

(ii) Since p has degree 1, p* f A has degree 1. Thus, p* is definable over
A and we conclude from (i) that c G del (A).
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Corollary 4.1.3. Let <£ be the universal domain of a t.t. theory, X = r(<£)
an /\-definable set of degree I, p* G S(<£) the free extension of r and c a
canonical parameter of X.

(i) IfY is an f\ —definable set of degree 1 and Y ~ X, then c is a canonical
parameter ofY.

(ii) p* is definable over c.
(Hi) There is a degree 1 formula φ(v,c) over c such that p* is the unique

free extension ofφ{x,c). Moreover, if q is any type over c of degree 1 having
p* as a free extension, then for all f G Aut(C), /(<?(£)) ~ q(<£) if and only if

Proof (i) Let Y = r'(C) and / G Aut(C). Since Y ~ X, p* is the free
extension of r' in 5(£). Thus, Y ~ f(Y) if and only if p* = /(p*). Since
P* — f(p*) if a n ( l o nly if c = /(c), c is a canonical parameter of Y.

(ii) Let ψ(x,y) be a formula over 0 and let θ(y) be a formula such that
φ(x, a) ep* < ^ μ θ{a). Ii f e Aut(C) fixes c, /(p*) = p*, hence /(6>(€)) =
θ(<£). In other words, θ is invariant under the automorphisms of £ which fix
c. By Lemma 3.3.8(i), θ is equivalent to a formula over c.

(iii) Since p* is definable over c, p* is the unique free extension of p* \ c.
Hence, there is a formula φ(v,c) £ p* \ c with MR(φ(υ,c)) = MR{p*) and
deg((^(f, c)) = 1. Now let ^ be any type over c of degree 1 such that p* is a
free extension of q. For any / G Aut(<£),

^ /(«(<£)) =

completing the proof.

Remark 4-1-4- Let 1 be an /\ —definable set of degree 1 and c the canonical
parameter of X. There is (over c) a definable Y of degree 1 such that Y ~ X
and for all / G Aut(C), f(Y) ~ Y ii and only if f(Y) = Y. In this way the
set Y acts as a canonical representative for its ~ —class.

The next result only ties together numerous previous results to give easily
referenced tools for later use.

Lemma 4.1.5. Let £ be the universal domain of a t.t. theory, a an element
and A a set.

(i) Let B be an algebraically closed set containing A. Then, a is indepen-
dent from B over A if and only if the canonical parameter c oftp(a/B) is in
acl(A).

(ii) Letp = tp(a/acl(A)) and c the canonical parameter of p. Then, there
is a Money sequence I in p such that c G dcl(I).
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Proof, (i) First notice that tp(a/B) is stationary, by Lemma 4.1.3, hence
it does have a canonical parameter. Let p* be the unique free extension of
tp(a/B) in 5(C). If a is independent from B over A, p* is a free extension of
p* f A, hence c G αcZ(A) by Corollary 4.1.2(i).

Conversely, if c € ad (A) then p* is definable over αcZ(A) (since p* is
definable over c). Thus, α is independent from B over A by Theorem 3.3.1.

(ii) Let p* be the free extension of tp(a/B) in 5(£). By Corollary 3.3.3,
there is a Morley sequence Imp such that p* is definable over /. Thus
c G dcl(I) by Corollary 4.1.2.

Corollary 4.1.4. Let <£ be the universal domain of a t.t. theory and α, b
elements of <£. There is a c such that

(1) c G acl(a),
(2) b is independent from a over c,
(3) tp(b/c) is stationary, and
(4) there is a finite c—independent set {bo,... ,bn} of realizations of

tp(b/c) such that c G dcl(bo,..., bn).

A final word about notation:

Notation. In this chapter we may state a result about 0—definable sets in
a t.t. theory, instead of A—definable sets for an arbitrary A. However, if £ is
the universal domain of a t.t. theory and A is a finite set then £^, the model
with constants added to the language for the elements of A, is also t.t. Thus,
a statement proved for the 0—definable sets in an arbitrary t.t. theory is true
of all definable sets in an arbitrary t.t. theory. (Except, of course, statements
explicitly mentioning the parameters over which the set is defined.)

4.1.2 De(* for a Strongly Minimal D

In subsequent sections much attention will be given to definable relations on
a fixed definable set D and the canonical parameters of degree 1 relations on
D, especially when D is strongly minimal. The elements of €eq most relevant
to D are isolated in

Definition 4.1.6. Let <£ be the universal domain of a t.t. theory and let D be
a set which is f\ -definable over A. Then Deq = { x G £eq : x G dcl(DuA) }.

L e m m a 4.1.6. Let D be an A—definable set in the universal domain of a
t.t. theory and X a degree 1 definable relation on D. Then the canonical
parameter of X is in Deq.

Proof. By Proposition 3.3.3 there is a B C D such that X is definable over
A U B. By Corollary 4.1.2(ii), c G dcl(A U B).
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Let Dbea, strongly minimal set. Recall from Remark 3.1.4 that dimension
on D satisfies

(Additivity) For α and b finite sequences from D,
dim(αδ) = άim(ά/b) -f dim(b).

Since dim(α) = MR(ά) when a is a finite sequence from D (by Lemma 3.3.4),
Morley rank on D satisfies the corresponding additivity condition. In fact,
the elements of Deq are tied closely enough to D to prove

Proposition 4.1.2. Let £ be the universal domain of a t.t. theory and let D
be a strongly minimal set, definable over A. Then for all α, 6 € Deq

MR(ab/A) = MR(a/{b} U A) + MR(b/A).

Proof. Without loss of generality, A = 0. Let c and J be finite sequences
from D such that a G dcl(c) and b G dcl(d). Let CQ be a maximal subsequence
of c which is independent from a and c\ = c \ CQ. By the maximality of c~o,
any e G c\ is in αc/(α, Co). Hence, α and ci are interalgebraic over CQ. By
Lemma 3.3.2(ii), MR(a/co) = MR(CI/CQ). The sequence c can be chosen so
that Co is independent from {6, d}. (Given coc~i = c let eo be a realization of
r = tp(δo/acl(Φ)) independent from {α, 6, d}. Since r is stationary, tp(eo/a) =
tp(c~o/a). Thus there is an e~\ from D such that α G dcl(e~oeι) and ei C
αcZ(eo, α).) Similarly, for Jo a maximal subsequence of d which is independent
from b and d\ = d\ d0, b is interalgebraic with ά\ over J o and MR(b/do) =
MR(dι/do). Without loss of generality, Jo is independent from {a,c,b}.

The following sequence of equations shows that MR(ab) = MR(a/b) +
MR(b). (The details are left to the reader.)

1. MR(ab) = MR(ab/codo) = MRfadiJcodo);
2. MR(a/b) = MR(a/bd0) = MR(a/bd) = MR(a/bdcq) (since c0 is inde-

pendent from {α, 6, d}) and MR(a/bdc0) = MR(c~ι/bdco) = MR(cι/dδo);
3. MR(b) = MR(b/doco) = MRfa
4. Mi?(cidi/co<io) = MR(cι/dco) +

This proves the proposition.

When working with sequences from a strongly minimal set we prefer
dim(—) over MR(-) to emphasize the additivity property. Because of the
previous proposition we can use dim(—) to denote Morley rank on Deq and
keep the property that dim(—) is additive where it is defined:

Definition 4.1.7. Let € be the universal domain of a t.t. theory and let D
be a strongly minimal set. For a a finite sequence from Deq we define dim(α)
to be MR(a).

Historical Notes. All of this is by Shelah [She90], although Teq was first
treated as a many-sorted theory (in writing) by Makkai [Mak84].
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Exercise 4.1.1. Prove Lemma 4.1.1.

Exercise 4.1.2. Show that p G S(A) (in <£) has a unique extension over Aeq

(in £eq). Use this observation to show that when T is t.t. and p is a type,
MR(p) is the same, whether computed in T or Teq.

Exercise 4.1.3. Prove that Teq is quantifier eliminable whenever T is quan-
tifier eliminable.

Exercise 4.1.4. Suppose that T has built-in imaginaries and A is a finite
set. Show that there is an a and a formula φ(x,a) such that b G A if and only
if |= φ(b,a).

Exercise 4.1.5. Let £ be the universal domain of a complete theory, A a
set, a an element and A' = acl(A) Πdcl(Au{a}). Show that tp{a/A') implies
tp(a/acl(A)). (We are working in πιteq here.)

Exercise 4.1.6. Let T be the 1—sorted theory in a language with a single
binary relation E saying that E is an equivalence relation with infinitely
many infinite classes and no finite classes. Let €/E denote the sort in £eq

consisting of the E—classes of the elements of (£. Prove that <t/E is strongly
minimal. (HINT: Use automorphisms of €eq.)

4.2 The Pregeometries on Strongly Minimal Sets

In this section we introduce the property, namely local modularity, which di-
vides the "geometrically simple" and "geometrically complex" strongly min-
imal sets. This property will be defined in the context of arbitrary pregeome-
tries.

Definition 4.2.1. Let (5, cί) be a pregeometry. The localization of 5 at A C
S is defined to be the pregeometry {S,c£'), where cί'(X) = cί(X U A) for
all X C S. (The reader can verify that S is indeed a pregeometry under
d!.) An isomorphism between {S,cί) and another pregeometry (So,c£o) is
simply a bisection f from S onto So which respects the closure operators; i.e.,
X C S is closed if and only if f(X) is a closed subset of SQ. AS usual, an
isomorphism of a pregeometry onto itself is called an automorphism. S is
said to be homogeneous if for any closed A C S and α, b G S\A, there is an
automorphism of S which is the identity on A and maps a to b.

In the exercises the reader is asked to verify that the pregeometry on a
strongly minimal set is homogeneous. Now to the more substantive defini-
tions.

Definition 4.2.2. Let (5, cί) be a pregeometry.
(i) S is trivial if for all nonempty X C S, cί(X) = \J{ ci(a) : a£X}.
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(ii) S is modular if for all closed X,YcS,

dim(X) + dim(Y) = dim(X UY)+ dim(X Π Y) (Modularity Law). (4.2)

(in) S is projective if S is nontriυial and for all α, b G S and X C S such
that a e c£(X U {b}), there is a c G c£(X) such that a e c£({b, c}).

(iv) S is locally modular (locally projective) if for some a £ S the local-
ization of S at {a} is modular (projective).

(v) For any of the properties defined in (i)-(iv), a strongly minimal set
D = φ(d) is said to have the property if the pregeometry associated to D has
the property. Similarly with strongly minimal formulas and types containing
strongly minimal formulas.

Remark J^.2.1. Let (S,c£) be a pregeometry.
(i) It is easy to show that S possesses one of the properties defined above

if and only if the geometry associated to S also has that property. (See
Exercise 4.2.2.) Also, each of the properties is invariant under isomorphism
(in the class of pregeometries).

(ii) If S is trivial then S is modular.
(iii) The Modularity Law is equivalent to

Any two closed subsets X and Y of S are independent over X ΠY.

Proof Without loss of generality, X and Y have finite dimension. By the
additivity of dimension (see Exercise 3.1.8), dim(X U Y) = dim(X/Y) +
dim(y). X and Y are independent over X Π Y if and only if dim(X/Y) =
άim(X/X Π Y). Thus, X and Y are independent over X Π Y if and only if

dim(XUF) = dimpf/X ΠY) + dimF

Example 4-2.1. (i) Let D be the universal domain of the theory in the empty
language with only infinite models. Then D is a trivial strongly minimal set.

(ii) Let F be a division ring, V a vector space over F and (—) the linear
span operator on V. Then, S = (V, (-)) is a modular pregeometry. If V has
dimension > 2, S is nontrivial and projective. The geometry associated to V,
P, is called a projective geometry over F.

A remark about the dimension of P is in order. As a geometry, the di-
mension of P equals the dimension of V. Strictly in the context of projective
geometries over a division ring, however, it is customary to define the dimen-
sion of P to be dim(V) — 1 (or oo, if dim(Vr) = oo). For example, a projective
plane over R has dimension 2 as a real projective space, but dimension 3 as
a geometry. In this book, dim(P) will always denote the dimension of P as a
geometry (hence dim(P) = 3 when P is a projective plane).

Turning to model-theoretic considerations, formulate V as a structure
in the natural language of vector spaces and suppose that it is infinite. Let
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ci(—) be algebraic closure on V. It was proved earlier that Th(V) is quantifier-
eliminable, hence ci(-) = (-) and Th(V) is strongly minimal. Thus, V (when
it's the universal domain of its theory) is a modular and projective strongly
minimal set.

(iii) Affine spaces provide examples of locally modular strongly minimal
sets which are not modular, however it will take some time to formulate these
structures as strongly minimal sets. Remember (from Definition 3.5.2) that
a group action (G, X) is called regular if for each pair x, y G X there is a
unique g G G such that gx = y. Notice that if X is a coset of the group G in
a supergroup of G, then the group operation defines a regular group action
of G on X.

Let V be a vector space of dimension > 1 over a division ring F. Following
[BM67], an affine space derived from V is defined to be a regular group action
of V on a set P. For a fixed group G, if G acts regularly on both X and Y,
then (G, X) and (G,Y) are isomorphic as group actions. Thus, all affine
spaces derived from V are isomorphic. An affine space over F is an affine
space derived from some vector space over F.

Let W be a vector space over F properly containing V, a G W and
A = a + V. As stated above, (V, A) is a regular group action under +, hence
an affine space derived from V. There are various ways to formulate an affine
space as a structure in a first-order language. The most natural formulation
is in a two-sorted language L* with the symbols needed to define a vector
space on the first sort and a binary operator • such that given v\ in the first
sort and V2 in the second sort, V\ *V2 is an element of the second sort. Then,
interpreting the first sort by V, the second sort by A and • by the group
action turns (V, A) into a structure for L*. It is easy to show that the theory
of M = (V, A) is quantifier-eliminable in this language. From hereon suppose
(V, A) is the universal domain of its theory in L*.

The relations on V definable in M are simply those definable in the vector
space V. For any x e A there is a bijection between V and A definable over x
(see the definition of a regular group action). Thus, A is a strongly minimal set
and the localization of A at any element x is isomorphic (as a pregeometry)
to the pregeometry on V. Since V is modular we conclude that A is locally
modular.

Claim. When a £V, A = a + V is not modular.

Let cί denote algebraic closure restricted to A and (in the proof of the claim)
let dim(—) be dimension in the pregeometry (A,c£). Let b be an element of
A, x a nonzero element of V and c an element of A which is independent from
{6, x + b}. Let X = ci(b, x + b),Y = c£(c, x + c) and notice that dim(X) =
dim(y) = 2 and dim(X U7) = 3. If dim(X Π Y) were 2 = dim(X) we would
have X = F, contradicting that dim(X U7) = 3. Thus dim(X Π Y) < 1.
Since x G acl(X) Π acl(Y) any element of X Π Y \ c£(0) is interalgebraic
with x. By the elimination of quantifiers in the model (V, A), no element of
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V is algebraic in an element of A. Thus, dim(X Π Y) = 0, proving that the
modularity law (4.2) fails for X and Y. This proves the claim.

The (1—sorted) structure A1 whose universe is A and whose definable re-
lations are those definable in M is also known as an aίfine space over F. A
natural 1—sorted language in which Th(Af) is quantifier-eliminable is spec-
ified as follows. Let V, W and A be the objects defined above. We need to
find relations on A from which the vector space V and the action of V on A
can be recovered. Replace the action of V on A by the ternary operation /:

f(x, y,z) = x + y - z, for all x, y, z G A.

The action of F on V induces a family of binary operators ga, a G F, on A
given by the rule:

ga(x, y) — OLX + (1 - a)y, for all x, y G A.

It is left to the reader to see that A in the language {/,#<*}α€F is quantifier-
eliminable and has the same definable relations as A'. Note: The vector space
V and its action on A are definable in {A')eq. (See Exercise 4.2.3.)

(iv) (A strongly minimal set which is not locally projective.) Let K be
the universal domain for the theory of algebraically closed fields of some fixed
characteristic. It was noted previously that K is a strongly minimal set on
which field-theoretic closure is the same as algebraic closure. To see that K is
not even close to being locally projective, let {α, CQ, . . . , cn} be an algebraically
independent set of elements of K and let b = coαn + c n _iα n ~ 1 + .. . + ciα + co.
Not only is there no d G αc/(co,..., cn)ΠK such that b € acl(a, d), but there is
no set {do,...,dn-i} C αc/(co,... ,cn)Γ\K such that b G acl(a,do,...,dn-i)
In particular, this shows that no localization of K at a finite set is projective.

In the example the only nontrivial modular strongly minimal set (a vector
space) is also projective. The next lemma shows that this is no accident.

Lemma 4.2.1. A pregeometry (S,ct) is modular if and only if

(P) for all a,beSandXcS such that a G c£(XU{b}), there is ace cί(X)
such that a G c£({b,c}).

Thus, a pregeometry is projective if and only if it is nontrivial and modular.

Proof The proof of this lemma is elementary but will serve to familiarize the
reader with the definitions. First, suppose that 5 is modular, X C 5 is closed
and a G c£(X U {b}). We need to find a c G X such that a G c£({b, c}). Let
V = c£({a, b}) and assume, without loss of generality, that both a and b are
not in X, hence dim(Y/X) = 1. If a G c£({b}) we are done, so we can also
assume that dim(Y) = 2. By the Modularity Law on 5, dim(X ΠY) = 1.
Let c be an element of ( I n 7 ) \ c£(0). Since b (£ X, c <£ c£({b}), hence
a G cί({b, c}) by the exchange property.

Now suppose that 5 satisfies (P).
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Claim. For all closed X, Y C 5, if c G c^(X U F) then there are a G X and
6 G F such that c G

This is proved by induction on dim(X U F), which we can assume to be
finite. Let c G c£(X U F). Without loss of generality, there are a G Y and a
closed Z CY such that a £ ci(X U Z), F = c£(Z U {a}) and c £ c£(X U Z).
Since 5 satisfies (P) and c G cί(X U Z U {α}) there is a 6 G cί(X U Z) such
that c G c£({α,6}). The conditions on Z force dim(X U Z) to be less than
dim(XUF), hence the inductive hypothesis yields d e X and e G Z such that
b G c£({d, e}). Thus, c G c£({d, α, e}). Since a and e are both in the closed set
Y the projectivity of S produces an element f GY such that c G c^({d, /}).
This proves the claim.

Assume, towards a contradiction, that S is not modular and let X and
Y be closed subsets of 5 which are dependent over X ΠY = Z. From this
dependence we get a closed F', Z C Y1 C Y and an a G V such that
α G c£(X U Y') \ Y'. By the claim there are 6 G 7 ' and ce X such that α G
c£({6, c}). Since a £Y' the exchange property implies that c G c£({α, 6}) C F.
Thus, c G Z C F', contradicting that a <£Yf. This proves the lemma.

A natural problem is: Characterize the infinite projective geometries
which are (a) isomorphic to a strongly minimal set, or at least (b) isomorphic
to the geometry associated to a strongly minimal set. In this introductory
section only a fraction of what is known will be stated. The restrictions on the
geometries are less stringent in part (b) of the problem, so it is discussed first.
In the main example above we showed that any infinite projective geometry
over a division ring F is the geometry associated to some model of a strongly
minimal theory, namely a vector space over F. The following classical result
(see, e.g., [Hal59]) shows the converse to be true (when the dimension of the
strongly minimal set is sufficiently large).

Lemma 4.2.2. Let P be a projective geometry of dimension > 4 in which
each closed set of dimension 2 contains at least 3 elements. Then P is iso-
morphic to projective geometry over some division ring F.

Let D b e a strongly minimal set such that the geometry associated to D
is isomorphic to projective geometry P over a division ring F. The geometry
P is derived from a vector space V as outlined in Example 4.2.1. It is natural
to ask if V is 0-definable in Deq, or at least definable in Deq over some set
of parameters. This, and similar questions on representing strongly minimal
sets using groups, will be investigated throughout this chapter.

A pregeometry (5, cί) is locally finite if for all closed X C S of finite
dimension there is a finite Ac X such that X = \J{ cl{a) : a e A}. (Thus,
(5, cί) is locally finite if in the associated geometry the closure of a finite set
is finite.)

The strongest classical result about locally projective, locally finite ge-
ometries is
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Lemma 4.2.3 (Doyen-Hubaut). Let P be a locally projective, locally fi-
nite, geometry of dimension > 4 in which all closed sets of dimension 2 have
the same cardinality. Then P is affine or projective geometry over a finite
field.

Let D b e a locally projective, locally finite, strongly minimal set and let
P be the geometry associated to D. Then all closed sets of dimension 2 in
P have the same cardinality because D (hence P) is homogeneous. Thus, P
is affine or projective geometry over some finite field. Again, the problem of
defining the relevant affine space or vector space in Deq is difficult and will
be discussed later.

4.2.1 Plane Curves

From a model-theoretic standpoint a deficiency of the definition of modularity
is that it is stated in terms of closed sets, which are potentially undefinable
objects. Our next goal is to find an equivalent of modularity which is a
property of definable relations and rank instead of closed sets and dimension.
This will make it easier to study modularity and local modularity with model-
theoretic techniques.

Definition 4.2.3. Let D be a strongly minimal set, definable over 0 in the
universal domain £ of a t.t. theory. A strongly minimal subset of D2 is called
a plane curve in D. If C and C are plane curves in D we write C « C ,
and say that C and C are equivalent curves, if the symmetric difference of
C and C is finite. Slightly abusing the terminology, we identify a « —class
of plane curves and say that C and C are the same plane curve if C ~ C.
A strongly minimal formula φ such that φ{D) is a plane curve in D is also
called a plane curve in D.

Remark 4-2.2. Let D b e a strongly minimal set as in the definition and C, C
plane curves in D. Then, C « C if and only if, in the notation of Defini-
tion 4.1.4, C ~ C . The new notation is introduced only to emphasize that
the relation will only be applied to plane curves. By Corollary 4.1.3, C and C
are considered to be the same plane curve if and only if they have the same
canonical parameter. Furthermore, there is a plane curve Co ~ C which acts
as a canonical representative for the « —class of C in the sense that, for all
/ G Aut(<£), /(Co) ~ Co if and only if /(Co) = Co- Often we will express the
equivalence of C and C by saying "C equals C (up to a finite set)."

Example J^.2.2. (i) Let D be a trivial strongly minimal set defined over the
empty set in the universal domain of a t.t. theory. Let C be a plane curve
in D, defined over A C D, and let (α,6) £ C \ acl(A). Since tp(ab/A) is
strongly minimal, {α, 6, A} cannot be independent, and this set cannot be
pairwise independent since D is trivial. First suppose that a € acl(A). Then,
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the reader can verify that C equals {(c,d) G D2 : c = a} (up to a finite
set). Similarly, when b G acl(A). Now suppose that a depends on 6; i.e., a
and b are interalgebraic and (α, b) is independent from A over 0. Thus, there
is a strongly minimal set C" which is equal to C up to a finite set and has
finitely many conjugates over 0, equivalently, the canonical parameter of C
is in αd(0). The reader can verify that these are the only plane curves in D.

(ii) Let V be the universal domain of infinite vector spaces over some
division ring F. Let C be a plane curve in V, defined over A C V. Then,
up to a finite set, C is defined by a linear equation f(x,y) = 0 of the form
αx + /fy + 70^0 + ... + 7nQ>n = 0, where α 0 , . . . , an G A, α, /?, 70,..., 7n 6 F
and the nullity of /(#, y) = 0 is 1. The element b = 7oαo + ... + 7n«n is a
canonical parameter of C.

Thus, any plane curve C in V is defined (up to a finite set) by an equation
of the form ax + βy = 6, where α, β G F and 6 G V.

(iii) Let K be the universal domain of algebraically closed fields of a
fixed characteristic, and let C be a plane curve in K. Then, C is de-
fined (up to a finite set) by an equation of the form f(x,y) = 0, where
/ is an irreducible polynomial over K. (This follows from the elimination
of quantifiers and some basic facts about varieties found in, for example,
[Har80, 1.1.13].) Let {co,..., cn} be algebraically independent. The equation
y = cnx

n + cn-\xn~ι + .. . + C1X + C0 defines a plane curve C whose canonical
parameter is interdefinable with the set {co,... ,cn}. In particular, for each
n < ω there is a plane curve whose canonical parameter has dimension = n.

In the example each plane curve in a modular strongly minimal set is
relatively simple in that its canonical parameter has dimension < 1. Strongly
minimal sets with this property deserve a special name.

Definition 4.2.4. Let D be an A—definable strongly minimal set in a t.t.
theory with universal domain <£. D is called linear if for every plane curve C
in D the canonical parameter of C has dimension (over A) < 1. If D = φ(<£)
is linear, φ is also called linear.

An algebraically closed field K (which is not locally modular) fails to be
linear, in fact, for any k < ω there is a plane curve in K whose canonical
parameter has dimension > k. (See (iii) in the previous example.)

The next lemma not only connects local modularity and linearity but
shows that for D a strongly minimal set, if any localization of D is modular
then D is locally modular.

Lemma 4.2.4. Let D be a strongly minimal set over A* in a t.t. theory with
universal domain <£. The following are equivalent.

(1) D is linear.
(2) D is locally modular.
(3) For some set AD A*, the localization of D at A is modular.
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Proof. Without loss of generality, A* = 0.
(1) = > (2). Assume D to be linear and let e be any element of D\αd(0).

We need to show that the localization of D at e (denoted £)e) is modular. It
suffices to show that De satisfies (P) of Lemma 4.2.1. To this end, let B be
a subset of D and a,beD such that α 6 αc/(i? U {&, e}). To satisfy (P) we
need a

(o) d G acl(B U {e}) Π D such that α e acl(b, d, e).

If 6 G αc/(β U {e}) or a G acl(b,e) we are done. Thus we can assume that
6 £ acl(B U {e}) and {α, 6, e} is independent. Letting £ ' = acl(B U {e}),
p = tp(ab/B') is strongly minimal. Let c be a canonical parameter of p. By
the linearity of D, dim(c) < 1. The element d satisfying (o) is found via

Claim, (i) a G acl(b,c).
(ii) There is a d £ D such that ad(c, e) — acl{d, e).

From the data: c is the canonical parameter of p, MR(b/B U {e}) = 1 and
MR(ab/B U {e}) = 1, we derive MR(b/c) = MR{ab/c) = 1, establishing
(i). Since α G αc/(6, c) \ acl(b), a depends on c over 6. Combining this depen-
dence with dim(c) < 1 yields: c G αc/(α, 6), c is independent from b and c is
independent from e. Since D is strongly minimal there is an automorphism
/ of the universe such that /(c) = c and f(b) = e. Setting d = f(a) yields
an element meeting the requirements in (ii) and completes the proof of the
claim.

Simply because c is the canonical parameter of a free extension of a type
over B U {e}, c G acl(B U {e}). Thus, d G acl(B U {e}) and a G acl(b,d,e)
(by the claim); i.e., (o) holds for this d. This completes the proof that De

satisfies (P), hence D is locally modular.
(2) => (3). This case is trivially true.
(3) => (1). This case is proved in the two steps delineated in

Claim, (i) If the localization of D at some set B is linear, then D is linear,
(ii) A modular strongly minimal set is linear.

Suppose that D is not linear. Then, there are (α, b) G D2 and c such
that p = tp(ab/c) is strongly minimal, c is the canonical parameter of p and
dim(c) > 1. By applying an automorphism to (a,b,c) if necessary, we can
require B to be independent from (a,b,c). The type q = tp(ab/B U {c})
is simply a free extension of p, hence q is strongly minimal with canonical
parameter c. Since dim(c/i?) > 1, the localization of D at B is not linear,
proving (i).

Turning to (ii) let Do be a modular strongly minimal set (in the uni-
versal domain of some t.t. theory). Let α, b G Do and C C Do such
that p = tp(ab/C) is strongly minimal. First suppose a G acl(C). Then
1 = dim(αδ/C) = dim(α6/C U {a}) = dim(αδ/α); i.e., the free extension of p
over CU{a} is definable over acl(a). The canonical parameter of p is algebraic
in a (by Lemma 4.1.5), hence has dimension < 1. Similarly, if b G acl(C).
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We are left with the case when a and b are not in acl(C). Then a G
acl{C U {&}), so the modularity of Do yields a c G αcZ(C) Π Do such that
a G αc/(6, c). Prom dim(α&/C) = dim(α&/CU{c}) = dim(αfc/c) we conclude as
above that a canonical parameter of p has dimension < 1 since it is algebraic
in c. This completes the proof of (i), the claim and this final case of the
lemma.

As a first application of the lemma we show that it is impossible for an
uncountably categorical theory to contain both a locally modular strongly
minimal set and a strongly minimal set which is not locally modular.

Lemma 4.2.5. Let D\ and D2 be strongly minimal sets in the universal
domain £ of an uncountably categorical theory. Then D\ is locally modular
if and only if D2 is locally modular.

Proof. Let M be an Ho—saturated model over which both D\ and D2 are
definable. Assume that Ό\ is locally modular. By Lemma 4.2.4, for D any
strongly minimal set over M, D is locally modular if and only if the local-
ization of D over M is locally modular. Let D[ be the localization of Dι over
M (for i = 1, 2). Then, D[ is locally modular and it suffices to show that
D2 is locally modular. Let a\ be any element of D[ \ M. By Exercise 3.3.18,
there is an element a2 G D2 which is inter algebraic with a\ over M. It follows
that the geometry associated to D[ is isomorphic to the geometry associated
to D2. Hence D2 is locally modular (see Remark 4.2.l(i)). This proves the
lemma.

A plane curve can be thought of as an element of the universe by identify-
ing it with its canonical parameter. This identification supports the following
concept.

Definition 4.2.5. For D a strongly minimal set in a t.t. theory, a definable
(/\ —definable) family of plane curves in D is a definable (/\ —definable) set
X such that each element of X is the canonical parameter of a plane curve.

Such families are common in the study of both vector spaces and alge-
braically closed fields. For instance, in Example 4.2.2(ii), the collection of
equations {ax + βy = b : b e V} (for fixed a, β G F) is a definable fam-
ily of plane curves (since b is the canonical parameter of ax + βy = b). In
Example 4.2.2(iii), where K denotes the universal domain of algebraically
closed fields of a given characteristic, let C be the plane curve defined by
y = anx

n + an^ιxn~1 + ... + a\x + α0, where α 0 , . . . , an are arbitrary ele-
ments. Since (α 0 , . . . , an) is the canonical parameter of C a definable family of
plane curves is obtained by letting the coefficients vary over all n + 1—tuples
in A".

An elementary but fundamental fact about plane curves is

Lemma 4.2.6. Let D be an 0—definable strongly minimal set in a t.t. theory,
C a plane curve in D, c the canonical parameter of C and a a generic of C.
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(i) The following are equivalent:

(1) dim(α) = 2.
(2) dim(c) > 0.
(3) a depends on c.
(4) C is not contained in an 0—definable set of Money rank 1.

(ii) Ifάim(a) = 2, dim(c/α) = dim(c) — 1.
(in) Ifdim(a) = 2, C may be chosen (from among the collection of equiv-

alent plane curves) so that b £ C =>- dim(6) = 2.
(iv) Suppose that k = dim(c) > 0 and let {αi,..., ak} be a set of generics

ofC independent over c. Then, {αi,..., ak} is an independent set of generics
ofD2.

Proof, (i) Since a is a generic of a strongly minimal subset of D2, dim(α/c) =
1 and dim(α) < 2. Thus, dim(α) = 2 if and only if a depends on c. From here,
part (i) follows from simple facts about canonical parameters.

(ii) Assuming that dim(α) = 2, dim(αc) = dim(α/c)-fdim(c) — l+dim(c).
Also, dim(αc) = dim(c/α) + dim(α) = dim(c/α) + 2, so dim(c/α) = dim(c) —1.

(iii) By (i) a depends on c. Thus, there is a formula φ(x, c) G p = tp(a/c)
such that any b G φ(C, c) depends on c. We may chose φ(x, c) to be strongly
minimal, hence defining a plane curve C equivalent to C. Then, b G C =>
b depends on c => dim(6) = 2 (by (i)).

(iv) Let p G S(c) be the (strongly minimal) type realized by generic
elements of C. Since {αi,..., α^} is a Morley sequence in p and all Morley
sequences in p are conjugate it suffices to find one Morley sequence in p of
length k which is an independent set of generics of D2. Let / C C be an
infinite Morley sequence in p. By Corollary 3.3.3, p is definable over /, hence
c G acl(I). Let B = {6i,...,6n}

 D e a minimal subset of / in which c is
algebraic. By (i) each bι is a generic of D2. To complete the proof of (iv) we
need only show

Claim. B is independent and n = k.

Assume, to the contrary, that B is dependent. Then bn depends on B' =
{bι,..., bn-ι} (since B is indiscernible). Since dim(6n) = 2, the dependence
of bn on B' forces ά\m(bn/Br) to be 1. Since B is a Morley sequence in
p, dim(&n/i3/ U {c}) = 1, hence bn and c are independent over B'. Since
c G acl(B), this independence forces c to be algebraic in B\ contradicting
the minimality assumption on B. Thus B is independent.

The following straightforward dimension calculation shows that n = k.
We know that dim(c) = k and dim(Z? U {c}) = dim(J3) = 2n (since B is an
independent set of generics of D2 and c G acl(B)). Furthermore, dim(J5 U
{c}) = dim(B/c) + dim(c) = n + k (since B is a Morley sequence in a strongly
minimal type over c). Thus n = fc, completing the proof of (iv).
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A linear strongly minimal set is relatively simple in that a localization
at some element is modular. How does linearity effect the behavior of the
collection of all plane curves simply as a family of subsets of D2Ί

Lemma 4.2.7. Let D be a linear strongly minimal set and C a plane curve
in D with canonical parameter c.

(i) If a e C and dim(α/c) = 1, then c £ acl(a).
(ii) IfC φ C is another plane curve in D, dim(C Π C) < 2.

Proof, (i) Certainly, this is true when c £ αd(0). In the remaining case
dim(c) = 1 and dim(α) = 2, hence c £ acl(a) by Lemma 4.2.6(ii).

(ii) Let d be a canonical parameter for C. Since C and C are distinct
plane curves, CnC C acl(c, d). If dim(c) = dim(c/) = 0 then CΠC' C αd(0),
so (ii) holds in this case. Now suppose c or c' has dimension > 0, say dim(c) =
1. Certainly, dim(C Π C) < 1 if C Π C C αd(c), hence we can assume there
is an a £ C Π C with dim(α/c) = 1. By Lemma 4.2.6(i), dim(α) = 2 and
c depends on α, hence c £ acl(a). Applying the same lemma to the curve
C (which also contains α), d £ acl(a). Thus, C Π C C acl(c,d) C acl(a),
proving that dim(C Π C) < 2 in this final case.

Remark 4-2.3. When D is a linear strongly minimal set and C, C are arbi-
trary plane curves in D, it is quite possible for C Π C to be empty.

A collection of plane curves in a strongly minimal set is said to be indepen-
dent if the corresponding collection of canonical parameters is independent.

The next lemma shows that the plane curves in a nonlinear strongly min-
imal set can have rather complicated intersections. First an example to illus-
trate this situation.

Example 4-2.3. Let D be the universal domain of algebraically closed fields
of characteristic 0. Let C* be the plane curve defined by the equation y =
ax + 6, where a and b are algebraically independent. Let X be the family of
conjugates of C* over 0. If C is a plane curve in X defined by y = a'x + 6',
then the pair (ar,b') is a canonical parameter for C. Thus, each element of
X has a canonical parameter of dimension 2. As a collection of subsets of D2

the family X has the following two properties.

- If C and C" are independent elements of X then dim(C Π C") > 2. (This
may fail in a linear strongly minimal set.)

- If a and b are independent generic elements of D 2 , there is an element of
X containing both a and b. (In the linear case no plane curve can contain
an independent pair of generics of D2.)

- If a is a generic of D2 there are infinitely many elements of X containing
a.

Lemma 4.2.8. Suppose that D is an 0—definable strongly minimal set in a
t.t. theory containing the canonical parameter c* of a plane curve C* in D
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such that dim(c*) = k > 1. Let X be the collection of conjugates of C* over
αd(0).

(i) If C and C are independent elements of X, then dim(C Π C) > 2.
(it) If α, b is an independent pair of generics of D2 there is a C G X

containing both a and b.
(Hi) For a € D2 generic, Y = {C G X : a is a generic of C} is infinite.

Proof (i) Since any two independent pairs of elements from X are conjugate
over αd(0), it suffices to find one independent pair of elements of X whose
intersection has dimension > 2. Let C be a generic of X with canonical
parameter c, and let a G C be generic over c. Since dim(c) > 0, dim(α) = 2.
By Lemma 4.2.6, dim(c/α) = A: —1. Let d be a realization of ίp(c/{α}UαcZ(0))
which is independent from c over a. Let C be the element of X with canonical
parameter d'. Since a G C'ΠC and dim(α) = 2, to complete the proof of (i) it
suffices to show that d is independent from c over 0. Since dim(c//c) > k — 1 >
0, C is distinct from C. Hence, CΓ\C is finite, in particular a G acl(c, d). By
the additivity of dimension, dim(c'cα) = dim(c'/ca) + dim(c/a) + dim(a) =
(Jfc-l) + (fc-l)H-2 = 2k. Also, dim(c'ca) = dim(a/c/c) + dim(c/c) = dim^c).
Hence, dim(c/c) = 2k, proving that d and c are independent, as required.

(ii) Since all independent pairs of generics of D2 are conjugate over acl(Φ)
and X is /\ —definable over acl(β) it suffices to find one C G X which contains
an independent pair {α, 6} of generics of D2. Since the canonical parameter
of any C G X has dimension > 1 this follows directly from Lemma 4.2.6.

(iii) The proof that Y is infinite is left as an exercise to the reader. This
proves the lemma.

Lemma 4.2.4 is such a basic result in the geometry of strongly minimal
sets that from hereon it will be quoted tacitly. The term "linear" will be
dropped in favor of the exclusive use of "locally modular".

Returning to the introductory discussion at the beginning of the chapter,
it is local modularity that we will use as the dividing line between geometri-
cally simple and geometrically complex strongly minimal sets. This choice for
the dividing line is supported by the previous two lemmas and will be further
justified in later sections. In these later sections we see that an uncountably
categorical universal domain containing a strongly minimal set which is not
locally modular is recognizably more complicated than one which does not.

How common are locally modular strongly minimal sets? Many of the
examples of strongly minimal sets we've given so far are trivial, vector spaces
or affine spaces. The next theorem suggests that this is not simply due to a
lack of imagination; locally modular strongly minimal sets are the rule under
some model-theoretic hypotheses.

Theorem 4.2.1 (Cherlin-Mills-Zil'ber). A strongly minimal set in an
#o—categorical theory is locally modular.
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For £ a universal domain a definable algebraically closed field K is called
pure if every relation on K definable in £ is definable in the field language
on K. Motivated by the known examples ZiΓber asked in [Zil84c]:

Is there a strongly minimal set D which is not locally modular and
does not have a definable pure algebraically closed field in DeqΊ

This was answered affirmatively by Hrushovski in [Hru90a]:

Theorem 4.2.2. There is a strongly minimal set D which is not locally mod-
ular such that Deq does not contain an infinite definable group.

Later (in Section 4.3.2) we will see that any nontrivial locally modular
strongly minimal set D has a definable group in Deq which is close to being
a vector space.

In this chapter we only scratch the surface of what is known about strongly
minimal sets. The reader is referred to Pillay's book [Pil] for further results.

Historical Notes. Local modularity, as a property of a strongly minimal
set, was isolated by ZiΓber in [Zil80]. Lemma 4.2.4 is an alternate version
of a theorem in ZiΓber's [Zil84a], Theorem 4.2.1 was proved independently
by Cherlin, Mills and ZiΓber; a good history can be found in [CHL85]. This
result is an essential ingredient in the proof that a totally categorical theory
is not finitely axiomatizable [CHL85].

Exercise 4.2.1. Prove Lemma 4.2.8(iii).

Exercise 4.2.2. Let 5 be a pregeometry. Show that 5 possesses one of the
properties in Definition 4.2.2 if and only if the geometry associated to S
possesses the property.

Exercise 4.2.3. Following the notation of the end of Example 4.2.1(iii),
show that he vector space V and its action on A are definable in (A')eq.

4.3 Global Geometrical Considerations

In this section we turn our attention from strongly minimal sets to the entire
universe of an uncountably categorical theory. This study, which will occupy
the remainder of the chapter, will be organized around the following ad-
mittedly vague questions. We begin with the premise that strongly minimal
theories are the simplest uncountably categorical theories.

1. To what degree is every uncountably categorical universe built from
strongly minimal sets?
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2. If Ό\ and D2 are strongly minimal sets in an uncountably categorical
universe, can we characterize the possible relations between elements
from D\ and elements from D2? In other words, how much freedom
do we have in specifying an uncountably categorical universe containing
both £>i and D2Ί

3. If some strongly minimal set in the universe is locally modular, do we
obtain sharper answers to the first two questions?

We first address Question 1 motivated by the behavior illustrated in the
following examples.

Example 4-3.1. (i) This is a rather trivial example, but it defines what we
consider to be the ideal situation. Let D be the universe of a strongly minimal
theory and X = Dn for some n. In this theory the set X (which has Morley
rank n) can easily be decomposed in terms of strongly minimal sets. Ex-
plicitly, there are definable functions (the coordinate maps) TΓ* : X —• D
(1 < i < ή) such that for any a G D, a is in the definable closure of

(ii) In this second example, the coordinatizing strongly minimal sets are
a little harder to find. To begin with, let F be a field with more than two
elements, V an infinite vector space over F and X = V2. Let a and β be
distinct nonzero elements of F. Define a binary relation R(υ, w) on X by the
formula: for a = (£1,2/1), b = (x2,y2) € X, R(a,b) <<==> y\ - axi = y2 - ax2.
Similarly, S(υ,w) is defined on X by: for a = (xi,yi), b — (£2,2/2) £ X,
S(a, b) <==> y\ — βx\ = y2 — P%2- Let M be the model with universe X in
a language consisting of two binary predicate symbols interpreted by R and
5, respectively. The reader can show that Th(M) is quantifier eliminable,
uncountably categorical, the universal domain € has Morley rank 2, and for
any element α, R(<t, a) and 5(£, a) are strongly minimal. The sets of the
form R(£, a) and S(£, α), as a ranges over elements of £, will be called curves
of type R and type 5, respectively. The canonical parameters of curves of
type R form a strongly minimal set Ό\ over 0, and similarly the canonical
parameters of curves of type S make up a strongly minimal set D2. The sets
Dι and D2 provide us with a coordinatization of the universe as follows. Let
a be an element of <£. There is a unique curve C\ of type R containing a
and a unique curve C2 of type S containing α. Let c* G A be the canonical
parameter of C*, for i = 1,2. The axioms for T imply that a is the unique
element of C\ Π C2, hence a G dcl(cι,c2) and (cι,c2) G dcl{a). In this way
the universe is decomposed into strongly minimal sets.

(iii) In this example (as in the previous two) the universe is the alge-
braic closure of a strongly minimal set (and some finite set of parameters).
Here, however the coordinatizing strongly minimal sets are necessarily not
0—definable. Let P be the projective plane over an infinite division ring F
formulated in a language with a ternary relation symbol / and the interpre-
tation: /(α, 6, c) if and only if α, b and c are collinear, for all a, b, c £ P. To
keep the notation simple, assume P to be the universal domain of Th(P).
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Then, P has Morley rank 2 and for each aφb G P, /(P, α, 6) (which is called
a line of P) is strongly minimal. Let X be any line in P, ί the canonical
parameter of X, and αi / α2 two elements of P \ X. The following claim
shows that P is almost strongly minimal.

Claim. For all α G P there are xi, X2 G X such that a and (xi,X2) are
interdefinable over A = {£,αi,α2}.

For a given α G P let ίi be the line containing a and α̂ , for i = 1, 2. Let
Xi be the element in the intersection of ί and ίi. Since ^ is the unique line
containing α* and x̂ , and α is the unique element in the intersection of t\
and ^2J α is m the definable closure of A U {xi,X2} By a similar argument
Xi is in the definable closure of A U {α}, proving the claim.

The next claim shows that there is no coordinatizing strongly minimal
set over αc/(0).

Claim. There is no strongly minimal subset D of Peq such that D is definable
over acl(Φ) (in Peq) and for some aeP, acl(a) ΠDφ ad(Q).

A basic fact about any projective plane over a division ring is that its auto-
morphism group is 2—transitive. In other words, for any a\ φ a<ι and b\ φ 62
in P, there is an automorphism α of P such that a{aι) = 6̂ , for i = 1, 2.
Suppose, to the contrary, that D is a strongly minimal subset of Peq which
is definable over acl($), and a G P is such that acl(a) Π D φ αd(0). The
2—transitivity of Aut(P) implies that MR(a) = 2. Hence, a cannot be alge-
braic in any x G (acl(a) Π D ) \ acl($). This yields & b G P, b φ a, such that
x G acl(b). If c in P is independent from a over 0, then acl(a)Πacl(c) = acl(jb).
This contradicts the existence of an α G Aut(P) such that α(α) = a and
a(b) = c, to prove the claim.

(iv) In this example, the universe can still be viewed as being constructed
from strongly minimal sets, however, no finite collection of strongly minimal
sets suffices. Let M = @i<ω{^)i') the direct sum of Ho copies of the additive
group Z4 = Z/4Z. Let M* be the universal domain of Th(M). The theory of
M* is quantifier-eliminable and categorical in every infinite cardinality. By
this quantifier-eliminability, 2M* is a vector space over Z2 with no additional
definable relations. In particular, 2M* is a strongly minimal set. Furthermore,
for each a G M*, {be M* : 26 = 2a } = α+2M*, is strongly minimal. In this
way, M* is constructed from strongly minimal sets: Given a G M*, 2a is in
the strongly minimal set 2M* and a is in a strongly minimal set definable over
2a. More globally, this could be written as M* = \Jxe2M* i & ^ ^ * : 26 = x },
the union of a strongly minimal family of strongly minimal sets.

It is left as an exercise to the reader to see that there is not a collection
of strongly minimal sets Du..., Dn over a finite A C M* such that every
a G M* is interalgebraic with a subset of D\ U ... U Dn over A. In this sense
infinitely many strongly minimal sets are needed to construct M*.

These examples help us formulate in a more specific way the question
raised under 1 at the beginning of the section, and place limits on the possible
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answers. Let <£ be the universal domain of an uncountably categorical theory.
In the ideal situation there are (in €eq) strongly minimal sets Z>i,..., Dn, with
each Di definable over acl(β), such that each element a is interdefinable with
a subset C(a) of D\ U... UDn. We think of C{a) as a "set of coordinates for a
with respect to £>i,..., Dn". This ideal is attained in the first two examples,
but fails in (iii) and (iv). In the projective plane we must settle for strongly
minimal sets which are not definable over acl(Φ). In the model M* of (iv)
no finitely many strongly minimal sets suffice to "coordinatize" the entire
model. However, each a G M* is interdefinable with the set {α, 2α}, and both
tp(2a) and tp(a/2a) are strongly minimal. In other words, M* is the union
of a strongly minimal family of strongly minimal sets. These facts leave us
with the hope that some useful reduction to strongly minimal sets will be
possible. The final results (Proposition 4.3.2 and Corollary 4.3.4) will require
a few preliminary definitions and lemmas.

In (i)-(iii) of the previous example, while the universe is not strongly
minimal, it is the algebraic closure of a strongly minimal set over some finite
set.

Definition 4.3.1. The complete theory T is called almost strongly minimal
if there is a strongly minimal set D, definable over a set A, such that £ =
acl(DuA).

Lemma 4.3.1. The countable complete theory T is almost strongly minimal
if and only if

(*) there is a formula φ(x, y) over 0 and an isolated type q G 5(0) such
that for any model M there is an a G q(M) such that φ(x, a) is strongly
minimal and M = acl(φ(M, a) U {a}).

Proof That (*) implies T is almost strongly minimal is clear. Conversely,
suppose T is almost strongly minimal, A is a set and ψ(x,ά) is a strongly
minimal formula over A such that £ = acl(φ(€,ά) U A). Let D = ψ(<ε,a).
By compactness we may take A to be finite. The proof is carried out in the
following steps.

(a) For any strongly minimal formula θ(x) there is a set B D A such
that θ is over B and for any b G θ(<£) \ acl(B) there is a c G D
interalgebraic with b over B.

(b) Γisω-stable.
(c) T is uncountably categorical.
(d) There is a sequence b realizing an isolated type, a strongly minimal
formula φ(x, b) and a set B D b such that € = acl(φ(€, b) U B).

(e) There is a sequence c D b realizing an isolated type such that € =
acl(φ(<ε,b)Uc).

(a) First let BQ be any set containing A and the parameters in θ. Let b be
any element of θ(€) \ acl(B) and d C D such that b G acl(dU A). Without
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loss of generality, d is of the form dod
f', where d0 G D \ acl(B0 U d1) and

b £ acl(BoUd'). Let B = BoUd'. Since do is in a strongly minimal set over B
and b depends on do over B, do and 6 are inter algebraic over B. All elements
of θ(£) \ acl(B) realize the same type over B (since θ is strongly minimal),
hence every element of θ(€)\acl(B) is interalgebraic over B with an element
of £>, proving (a).

(b) Let M be a countable model of T containing A. For any a there is a
d C D such that α G acl(M U J). Since D is strongly minimal {tp(d/M) :
d C D is finite} is countable. Thus, S\{M) is countable. This proves that T
is ω—stable.

(c) By Theorem 3.1.2 and (b) it suffices to show that T has no Vaughtian pair.
Assume to the contrary that T has a Vaughtian pair. By Lemma 3.1.7 there
is a Vaughtian pair (M,N) where M D N are ^o~saturated and N D A.
For an arbitrary a G M \ N there is a d C ^(M, α) such that α G αc/(Ju A).
Since α φ N, d <£_ N, hence ψ(M) <£_ N. By Corollary 3.1.2 there is a strongly
minimal formula θ over N such that (M, iV, θ) is a Vaughtian triple. Let c be
an element of ψ(M) \ N. By (a) and the Ho—saturation of N there is a set
B C N and a b satisfying θ such that b and c are interalgebraic over B. Then
6 G Θ(M) C iV, contradicting the fact that c £ N and proving (c).

(d) Since T is uncountably categorical there is a strongly minimal formula
φ(x,b), where tp(b) is isolated. By (a) there is a set B D b U A such that
D C acl{φ{£, b) U B). Thus, € = acl(φ{€, b) U 5).

(e) By compactness there are formulas ^o(#»27o>co),.. ,ij)n(x,yn,Cn) such
that

(1) for all dι C <p(<£,6), ψi(x,di,Ci) is algebraic and
(2) for any α there is an i < n and a ϊ C φ{£,b) such that

h^Mα, di,cι).

Taking the disjunction of the ^ ' s gives one formula σ(x, y, c) such that

(*) σ(x,(ϊ,_c) is algebraic (for all J c <p(<£,6)) and for any α, |= σ(a,d,c) (for
some J c

There is a b—definable set Z containing c such that (*) holds for any c! G Z.
Thus, (*) holds for some c realizing an isolated type over 6, hence an isolated
type over 0.

This proves the lemma.

Corollary 4.3.1. A countable almost strongly minimal theory is uncountably
categorical.

Note: There is an uncountably categorical theory which is not almost strongly
minimal.See Example 4.3.1(iv).

Almost strongly minimal theories arise naturally in the study of ω—stable
groups:
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Proposition 4.3.1. IfG is a simple group of finite Money rank, then Th(G)
is almost strongly minimal.

Proof. Let D b e a strongly minimal set in G. Let C = {D Π aQ : a G G, Q
is a definable subgroup of G and D Π aQ is infinite}. Since D is strongly
minimal, each element of C is cofinite in D. Thus, C is closed under finite
intersections. By Proposition 3.5.1, f]C is equal to some DΠaQ € C. Clearly,
D Π aQ is indecomposable. Let g0 e DΠaQ and B = gQ1(DΠ aQ). Then i?
is indecomposable, strongly minimal and contains the identity 1.

Now let B = {g~xBg : g G G} and N = the group generated by \JB.
Since each element of B is indecomposable and contains 1, ZiΓber's Indecom-
posability Theorem says that TV = B\ ... B^ for some B\,..., B^ G B. Since
N is normal (and not {1}) and G is simple, G = B\ ... B^. Thus, for some
9ii i9k £ G, each element of G is of the form g^bigi ... g^bkgk, for
some &i,... ,6fc G 5. A fortiori, for A = {(ji,..., <7fc,#,α}, G = αcZ(̂ l U £>).
Thus, G is almost strongly minimal, proving the proposition.

Definition 4.3.2. Let € be the universal domain of a t.t. theory. A subset
X of £, definable over A, is said to be almost strongly minimal over A if the
restriction of € to X is an almost strongly minimal theory. Equivalently, X
is almost strongly minimal over A if there is a B C X and a D C X which is
strongly minimal over B\J A, such that X C acl{D U B U A). A formula over
A is almost strongly minimal if the set it defines is almost strongly minimal
over A. A type over A is almost strongly minimal if it contains an almost
strongly minimal formula over A.

The next few results are used to show that elements in various rela-
tionships to almost strongly minimal sets are themselves elements of almost
strongly minimal sets. The first lemma shows that we needn't be careful to
choose a strongly minimal subset of X in verifying that X is almost strongly
minimal.

Lemma 4.3.2. Let £ be the universal domain of an uncountably categorical
theory. Let X be a subset of € definable over A such that for some B D A
there is an almost strongly minimal set D over B with X C acl(D U B).
Then, X is almost strongly minimal.

Proof. To keep the notation simple suppose that A = 0. We will prove the
lemma in the case when D is strongly minimal, leaving the proof of the full
result to the reader. By Corollary 3.1.2, there is a set B' and a strongly
minimal set D ' c l definable over B1. In fact, by Proposition 3.3.3, we can
require B' to also be a subset of X. Exercise 3.3.18 yields a set C D B U B'
such that acl(D UC) = acl{D' U G). Thus, X C acl{D' U G). Since D ' c l ,
Proposition 3.3.3 can again be applied to find a C C X such that X C
acl{D' U G;). This proves the lemma.
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Note that any definable subset of an almost strongly minimal set is finite
or almost strongly minimal (see Exercise 4.3.1).

In the next two results we see that almost strong minimality is preserved
under finite unions and algebraic closure.

Lemma 4.3.3. Let € be the universal domain of an uncountably categorical
theory and let X\,... ,Xn be almost strongly minimal subsets of €. Then,
Xι U . . . U Xn is almost strongly minimal.

Proof Simply from the definition, there are strongly minimal sets Di C X%,
for 1 < i < n, and a set A over which each Di is definable such that Xi C
acl(DiUA). Again quoting Exercise 3.3.18, we can take A to be large enough
so that Di C acl{D\ U A), for each i. By Lemma 4.3.2, X\ U... L)Xn is almost
strongly minimal.

Lemma 4.3.4. Let £ be the universal domain of an uncountably categorical
theory. Let A C B be sets, X an almost strongly minimal set over B, and
a an element which is independent from B over A and algebraic in X U B.
Then, a is an element of an almost strongly minimal set over A.

Proof. Observe that we can, without loss of generality, take both A and B
to be finite. Let A' D A be a finite subset of acl(A) such that tp{a/Af) = p is
stationary.

Claim. There is a finite set B' D A1 and an almost strongly minimal set X'
over B1 such that p{£) C acl(Bf U X1).

By Proposition 3.4.1 there is a k such that whenever {bo,...,&&} is in-
dependent over A\ a is independent from some bi over A'. Let {Bo,..., Bk}
be a set of realizations of tp(B/Af) which is independent over A!. For i < k
there is an fa G Aut(<£) which maps B to Bi and is the identity on A'. Let
Xi = fa(X), an almost strongly minimal set over Bi. Let a' be any realization
of p. In the next paragraph we prove

af eacl{BiUXi). (4.3)

For some z, a' is independent from Bi over A!. Since p is stationary,
the unique free extension of p over € does not split over A!. Thus, a'Bi is
conjugate over A1 to aB. (Let / i be an automorphism of £ which fixes A'
pointwise and maps a' to a. Then, fι(Bi) and B realize the same type over
Ar U {α}, hence there is an automorphism f<ι of € which is the identity on
A' U {a} and maps fι(Bi) to B. The automorphism /2/1 is the identity on
A' and maps a'Bi to aB.) By this conjugacy, a1 G acl(Bi U Xi), as required.

To complete the proof of the claim let B' = Bo U . . . U Bk and X' = Xo U
...UXfc. By Lemma 4.3.3, X' is almost strongly minimal. For c an arbitrary
realization of p, (4.3) applied with a1 = c, shows that c G acl{Bf U X'). This
proves the claim.
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By a compactness argument there is a formula ^o(^) £ P such that
ΨQ(£) C acl(B' U X'). By Lemma 4.3.2, ^o(C) is almost strongly minimal.
Let ψθ) 5 ^ n b e a list of the (finitely many) conjugates of ψo over A. Then,
y = Ψo(£) U ... U V>n(£) is definable over A, almost strongly minimal (by
Lemma 4.3.3) and contains α, completing the proof of the lemma.

The reader should think of the next proposition in two parts. First, we
find in del (A U {a}) an element of an almost strongly minimal set (which
we think of as a "coordinate" for a over A). Secondly, there is a coordinate
for a which significantly effects the relations between a and other elements
of the universe. This result is central to our understanding of uncountably
categorical theories.

Proposition 4.3.2. Let (£ be the universal domain of an uncountably cate-
gorical theory. Then for all sets A and a φ acl(A) there is a d € dcl(AU {a})
such that d is an element of an almost strongly minimal set over A, and ad
is dominated by d over A.

Proof. To simplify the notation, take A to be the empty set. First we will
find an element in acl(a) (rather than del (a)) which meets the other re-
quirements. Let M be an Ho—saturated model which is independent from
α. By Corollary 3.4.1, there is a strongly minimal set D over M and a se-
quence c = (ci,..., Cfc) from D such that a is dominated by c over M and
c C acl(M U {a}). Let B C M be a finite set such that ac is independent
from M over B. (Hence, a is dominated by c over B and c C acl(B U {a}).)
By Corollary 4.1.4 there is an element b such that

(1) b e acl(a),
(2) a is independent from B U {c} over 6, and
(3) b G acl(c~oBo,..., c~kBk), for some set {COBQ, . . . , c^Bk} of realiza-
tions of tp(cB/a) which is independent over a.

Claim, ab is dominated by b over 0.

Let C be a set which is independent from b. It suffices to show that C
is independent from a for some conjugate C of C over {α, 6}, hence we can
assume that C is independent from B over {α, b}. Since B is independent
from {α, 6}, 5 is independent from C U {6}. That is,

{C, i?, 6} is independent. (4-4)

By (2) and the fact that c C acl(B U {α}), c C acl(B U {6}). Thus, C
is also independent from c over B. Since α is dominated by c over 5, C
is independent from α over B. (by (1)). By (4.4) and the transitivity of
independence, C is independent from BU{a}. Combining this with (1) shows
that C is independent from ab.

Claim, b is an element of an almost strongly minimal set over 0.



158 4. Fine Structure of Uncountably Categorical Theories

Lemma 4.3.4 will be used to prove the claim. Let Dι be the strongly
minimal set over Bi which is conjugate to D (for i < fc), Bf = Bo U . . . U Bk
and X = Do U . . . U Dk- Then X is almost strongly minimal by Lemma 4.3.3.
Since Bi realizes tp(B/a), Bi is independent from a for each i < k. Since
{BQ, , Bk} is independent over α, Bf = Bo U. . . U-B& is independent from a
(by the transitivity of independence). Thus, b is independent from B' (because
b G acl(a)). By (3), b G acl{B' U X), hence b belongs to an almost strongly
minimal set over A, by Lemma 4.3.4.

Claim. There is a d G del (a) such that ad is dominated by d over 0 and d is
an element of an almost strongly minimal set over 0.

Let X* be the set of realizations of tp(b/a) in (£. Since X* is finite there
is a name d for X* in <£. Also, X* is definable over α, hence d G dcl(a).
Using: 6 G acl(A U {d}) and d G dc/(^4 U {α}), the reader can verify that
ad is dominated by d over A. Finally, d is an element of an almost strongly
minimal set over A since it is interalgebraic with a finite subset of an almost
strongly minimal set.

This proves the proposition.

Remark 4-3.1. The most important part of the proposition is the existence
of a "coordinate" for a from an almost strongly minimal set. However, that
a is dominated by a coordinate d indicates the strength of the relationship
between the two elements. The corollaries below make use of and reveal the
ramifications of this domination relation.

Corollary 4.3.2. Let a and b be elements of the universe of an uncountably
categorical theory such that a depends on b. Then, there are a' G del (a) and
b' G dcl(b) such that af and b' belong to almost strongly minimal sets and a'
depends on b'.

Proof. By Proposition 4.3.2 there are a1 G dcl(a) and bf G dcl(b) such that
o! and b' belong to almost strongly minimal sets over 0, a is dominated by
a' over 0 and b is dominated by V over 0. Since a jL b these domination
relations force a' to be dependent on &', proving the corollary.

Corollary 4.3.3. Let <t be the universal domain of an uncountably categori-
cal theory. Then £ is almost strongly minimal or there are a and d such that
d G dcl(a), a £ acl(d) and a is dominated by d over 0.

Proof Suppose there are no elements a and d as in the statement. Then,
by Proposition 4.3.2, for any a £ acl($) there is a d interalgebraic with
α such that d belongs to an almost strongly minimal set. Thus, any a £
acl(Φ) belongs to an almost strongly minimal set. By compactness there are
0—definable sets Xo,...,Xk such that the sort of equality in € is Xo U. . . UXk
and each Xι is finite or almost strongly minimal. Thus, € is almost strongly
minimal.
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Proposition 4.3.2 implies that the universe of an uncountably categorical
theory is built from almost strongly minimal sets. This is formalized through
the following concept. For a an ordinal, C — {ci : i < a} an indexed family,
and i < α, Ci denotes { Cj : j < i}.

Definition 4.3.3. Let C = { c* : i < α} be α sequence of elements in the
universe of some complete theory. We call C an almost strongly minimal
construction (asm-construction, for short) if for each i < a, tp(ci/Ci) is
almost strongly minimal or algebraic. A set A is asm-constructible if there is
an enumeration of A which is an asm-construction.

Remark 4.3.2. If C = {c» : i < a} and C = {c[ : i < a'} are both
asm-constructions, then the enumeration of C U C which lists C after all
the elements of C is also an asm-construction. Thus, the union of two asm-
constructible sets is asm-constructible. In fact, the union of any number of
asm-constructible sets is asm-constructible.

Corollary 4.3.4. Let Abe a set in the universe of an uncountably categorical
theory. Then, dcl(A) is asm-constructible.

Proof. This proof is relegated to Exercise 4.3.2. It follows quickly from Propo-
sition 4.3.2.

4.3.1 1—based Theories

We will return to asm-constructibility in arbitrary uncountably categorical
theories in later sections, where the definable relations between different al-
most strongly minimal subsets of the universe are studied. In the remainder
of this section the above results are extended assuming the theory contains
a locally modular strongly minimal set.

A strongly minimal set D is modular if and only if, for all closed
I , F C D, I and Y are independent over X ΓiY. The following definition
and Theorem 4.3.1 extend this property to uncountably categorical theories
which contain a modular strongly minimal set.

Definition 4.3.4. An uncountably categorical theory is called 1—based if for
all subsets A and B of the universal domain £, A is independent from B over
acl(A)Γ)acl(B).

(As usual, if T is 1-based we also call £ 1-based.)

Lemma 4.3.5. The following are equivalent for € the universe of an un-
countably categorical theory.

(1) d is 1-based.
(2) For all a e £ and sets A, a canonical parameter c of tp(a/acl(A))
is in acl(a).
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Proof. First suppose € to be 1-based, let a G £ and A C €. Let p G 5(C) be
the free extension of tp(a/acl(A)) and c a canonical parameter of p. Since € is
1—based, p is a free extension of its restriction to B = αc/(α) Π αd(A), hence
c € acl(B) C acl(a), as desired. Now suppose that (2) holds. To prove that <£
is 1—based it suffices to show that for all elements a and 6, a is independent
from b over acl(a)Πacl(b). For a arbitrary elements α and b let c be a canonical
parameter of tp(a/acl(b)). Then, α is independent from b over c , c G acl(b)
(because the relevant type is definable over acl(b)) and c G acl(a) (by (2)).
Thus, a is independent from b over acl(a) Π acl(b), as required.

Remark 4-3.3. This equivalent definition explains the term "1—based". In
Shelah's terminology, a type over <£ is "based" on a set A if it is definable
over A. An uncountably categorical theory is 1—based when, given a degree
1 type p and q the free extension of p in S((£), <? is based on acl(a) for any
single α realizing p.

Theorem 4.3.1. Given € the universal domain of an uncountably categori-
cal theory, € is 1—based if and only if € contains a locally modular strongly
minimal set.

The proof of this theorem will take several lemmas and propositions.
Starting from the fact that the theorem is true on the restriction to a mod-
ular strongly minimal subset of the universe, we will prove the result for
increasingly general sets.

First we take care of the easier direction of the biconditional:

Lemma 4.3.6. Let £ be the universal domain of an uncountably categorical
theory containing a strongly minimal set D which is not locally modular.
Then, <ί is not 1—based.

Proof For simplicity, suppose D is definable over 0. Since D is not locally
modular there is, by Lemma 4.2.4, a plane curve C in D such that a canonical
parameter c of C has dimension k > 1. Let a be an element of C such that
dim(α/c) = 1. Suppose, towards a contradiction, that a and c are independent
over b G acl(a) Π acl(c). Since c is a canonical parameter of tp(a/acl(c)) D
tp(a/bc) and this type is a free extension of its restriction to 6, Lemma 4.1.5(i)
implies that c G acl(b). Hence, c G acl(a). Using the additivity of dimensions,
2 > dim(α) = dim(αc) = dim(α/c) + dim(c) = 1 + dim(c). Since dim(c) > 1
we have reached the contradiction which proves the lemma.

The next lemma shows that dependence between the elements of a mod-
ular strongly minimal set and other elements of the universe can only occur
in a very simple way. The lemma implies that sets B and C are independent
over acl(B) Π acl(C), when one of B or C is contained in a modular strongly
minimal set (over 0).

Lemma 4.3.7. Let £ be the universal domain of an uncountably categorical
theory, D an A—definable modular strongly minimal set. Then for all sets B,
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B and D are independent over (D Π acl(A U B)) U A. Furthermore, for all
sets C C D, B is independent from C over acl(A U C) Π acl(A U B).

Proof. Without loss of generality, both A and B are finite, and D Π acl{A U
B) = DΠacl(A). By taking A to be 0 we can assume that Ddacl(B) = acl($).
We need to show that £ and D are independent over 0. Assuming, to the
contrary, that B and .D are dependent, there is a sequence a from D such
that dim(ά/B) = dim(α) — 1. As a consequence of Corollary 4.1.4 there is a
set B' C D such that

β ' X α and B vL a.
B B'

Thus, ά\m(ά/Bf) = dim(α) —1. By the modularity of D and Remark 4.2.1(iv),
a and B' are independent over D Π acl(ά) Π acl(B'). Thus, there is a c €
£) Π αc/(α) Π acl(Bf) with dim(c) = 1. Since B' and α are independent over
B, c £ acl(B). This contradicts the fact that acl(B) ΠD = αc/(0), to prove
the first part of the lemma.

Turning to the furthermore clause, let C = D Π acl{A U B). By the first
part of the lemma, C is independent from B over C U A By the modularity
of D, C and C" are independent over acl{AuC)C\acl(AΌCf). The transitivity
of independence now implies that C and B are independent over αcZ(AuC) Π

), completing the proof.

As a first application of this lemma we sharpen the picture of the re-
lationship between two locally modular strongly minimal sets supplied by
Lemma 4.2.5. (This corollary is not directly involved in the proof of the The-
orem 4.3.1, however its central role in the theory justifies the digression.)

Corollary 4.3.5. Let £ be the universal domain of an uncountably categor-
ical theory and Z)χ, D2 strongly minimal sets over 0.

(i) If D\ and D2 are both modular, then for all generic b\ 6 D there is a
62 £ D2 which is interalgebraic with b\.

(ii) Suppose that D\ is locally modular, a\, b\ £ Ό\ are independent gener-
ics and 62 G D<ι is generic. Then, there is an a<ι £ Ό2 such that a\ and a2
are interalgebraic over {61,62}-

Proof (i) Let M be a model. By Exercise 3.3.18, there are aι £ Di\M, for i =
1, 2, such that a\ and <22 are interalgebraic over M. By Proposition 3.3.3, a\
and α2 are interalgebraic over (DιΓ\M)U(D2ΠM). Then, the modularity of D\
and Lemma 4.3.7 yield a &i £ Dλ \acl{ΰ) such that 61 £ αd((Z)2ΠM)U{o2}).
By the same reasoning there is a 62 £ D2\acl(Φ) which is algebraic in 61. This
proves the existence of some pair (61,62) satisfying the necessary conditions.
However, all elements of Dι\acl($) realize the same type over 0, so (i) holds,

(ii) This part follows immediately from (i) once we observe that for D
any locally modular strongly minimal set (over 0) and a £ D\ acl(Φ), the
localization of D at a is modular.
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Lemma 4.3.8. Let £ be the universal domain of an uncountably categorical
theory which contains a locally modular strongly minimal set and let A be
a subset of an almost strongly minimal set over C. Then for all B, A is
independent from B over acl(A U C) Π acl(B U C).

Proof. Without loss of generality, A is finite, and for simplicity, take C to be
0. Let b be a canonical parameter of tp(A/acl(B)). Since b G acl(B) and A
is independent from B over 6, it remains only to show that b G acl(A). Let
M be an Ho—saturated model such that

(a) M is independent from B U AU {&}, and
(b) there is a modular strongly minimal set D, definable over M, and
c C D such that A and c are inter algebraic over M.

By Lemma 4.3.7 there is a d G acl(c U M) Π acl(B U M) such that c and
5 are independent over {d} UM. In fact, A and B are independent over
{d} U M (since A and c are interalgebraic over M). Since MR(A/B) =
MR(A/B U Λf) = MR(A/B U M U {d}) = MR(A/M U {d}), and 6 is a
canonical parameter of tp(A/acl(B)), 6 G αc/(MU{d}). We can conclude that
6 G αd(A) using the facts: d G acl(M U c) = αcZ(M U A), 6 G αcZ(M U {d}),
and A U {b} is independent from M (by (a)). This proves the lemma.

Proof of Theorem 4-3.1. One direction of the "if and only if" is Lemma 4.3.6.
Assume the universal domain contains a a locally modular strongly minimal
set. Let A and B be sets and C = acl(A) Π acl(B). To prove the theorem we
must show that A and B are independent over C. Without loss of generality,
A is finite. By Proposition 4.3.2, there is a d G dcl(AuC) such that Au{d} is
dominated by d over C and d belongs to an almost strongly minimal set over
C. Since acl(A) D αc/(Cu{d}), ad(CU{d})Πacl(CUB) is also C. Thus, by
Lemma 4.3.8, d is independent from B over C. Since A U {d} is dominated
by d over (7, A is independent from i? over C. This proves the theorem.

The following is due in various parts to Cherlin, Harrington, Lachlan and
ZiΓber. It follows from Theorems 4.2.1 and 4.3.1. See [CHL85].

Corollary 4.3.6. A totally categorical theory is 1—based.

From this result ZiΓber, and later Cherlin, Harrington and Lachlan
[CHL85], proved

Theorem 4.3.2. A totally categorical theory is not finitely axiomatizable.

(A considerable amount of work is required to prove the theorem from the
preceding corollary.)

Corollary 4.3.7. Let £ be the universal domain of a uncountably categorical
theory and X an infinite definable subset ofC Then £ is 1—based if and only
if the restriction of £ to X is 1—based.
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Proof. See Exercise 4.3.3.

The following definition and results help to round out our picture of
1—based theories by improving Proposition 4.3.2 and Corollary 4.3.4.

Definition 4.3.5. Let C = {Q : i < a} be a sequence of elements in the
universal domain of a complete theory. We call C a rank 1 construction (τkl-
construction,) if for each i < a, MR(ci/d) < 1. A set A is rkl-constructible
if there is an enumeration of A which is a rkl-construction.

Lemma 4.3.9. Let € be the universal domain of an uncountably categorical
1-based theory, A a set and a £ acl(A). Then there is a c G acl(A U {a})
such that MR(c/A) = 1.

Proof. By Proposition 4.3.2 it suffices to prove

Claim. Let a belong to an almost strongly minimal set over B. Then, there
is a set b = {bo,...,bn} such that MR(bi/B) < 1, for i < n, and a is
inter algebraic with b over B.

Let M D B be an KQ—saturated model which is independent from a over B.
Let D be a strongly minimal set over M and c = {co,... , cn} a subset of
D such that a is interalgebraic with c over M. Since the theory is 1—based,
for each i < n, there is bi G acl(B U {a}) Π acl(M U {Q}) such that a and
M U {ci} are independent over B U {bi}. Let b = {&o, ?^n} For each i,
bi £ acl(B U {a}) and a is independent from M over J5, hence MR{bi/B) =
MR(bi/M). Since 6* e αcZ(M U {<*}) and MR(Ci/M) < 1, MR(bi/M) < 1
and &Ϊ is interalgebraic with Q over M. Because α is interalgebraic with c over
M, α is interalgebraic with b over M, in fact, a is interalgebraic with b over
5. The claim now follows from the fact that MR(bi/B) = MR(bi/M) < 1,
for each i. This proves the lemma.

Remark 4-3.4- The stronger version of the lemma with acl replaced by del is
false. That is, there is a 1—based uncountably categorical theory containing a
set A and a £ acl (A) such that there is no c G dcl(Au{a}) with MR(c/A) = 1.

In [CHL85] the preceding lemma (in the totally categorical context) is
called the Coordinatization Lemma.

Proposition 4.3.3. Let A be a set in the universal domain of a 1—based
uncountably categorical theory. Then acl(A) is rkl-constructible.

Proof. This is immediate by the previous lemma.

Remark 4-3.5. This finally gives us a reasonable picture of the manner in
which the universal domain € of a 1—based theory can be built from sets of
Morley rank 1. For a any element of £ there is a set {co,..., cn} interalgebraic
with a such that MR(ci/Ci) < 1, for i < n.



164 4. Fine Structure of Uncountably Categorical Theories

4.3.2 1—based Groups

This subsection is devoted to the study of definable groups in 1—based
uncountably categorical theories. This examination will both illustrate the
strength of the 1—based condition, and provide us with tools for later use in
1—based theories. A definition is needed to state the key result.

Definition 4.3.6. Let G be an A—definable group in the universe of a com-
plete theory. Let

H — {H : H is a subgroup of Gn, for some n,

which is definable over acl(A) }.

G is called an abelian structure if for every n < ω, every definable subset of
Gn is equal to a boolean combination of cosets of elements ofH.

It is left to the exercises to show that a vector space is an abelian structure.
It will be shown in Section 5.3.2 that a module, formulated in the natural
language for modules over a particular ring, is an abelian structure. (In fact,
later we will see that any locally modular strongly minimal group is not only
an abelian structure, but essentially a vector space over some division ring.)
An abelian structure has an abelian subgroup of finite index, supporting the
use of the term "abelian". (This is proved below in Corollary 4.3.12 in the
context of uncountably categorical theories.)

It is not difficult to show directly that an algebraically closed field is not
an abelian structure, although it also follows from the next theorem and
Theorem 4.3.1.

Theorem 4.3.3. Let G be an infinite definable group in the universal do-
main £ of an uncountably categorical theory. Then, G is an abelian structure
if and only if € is 1 —based.

The following type-oriented equivalent of being an abelian structure is
easier to work with in proofs. We will only prove the lemma in the context
of uncountably categorical theories, although it is true in a much broader
setting. Remember, given an /\—definable group G and a set B, S^(B)
denotes the set of complete n—types over B which extend the type defining
G.

Lemma 4.3.10. Let G be an A—definable group in the universal domain €
of an uncountably categorical theory. Then, G is an abelian structure if and
only if

(*) for any n < ω and p £ S^(G) there is a connected group H C Gn,
definable over acl(A), such that p is a left (or right) translate of the
generic type of H.
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Proof. For simplicity, suppose A = 0. In the proof we use the left translate
version of (*). The proof for right translates is the same.

First assume (*) to be true. Fix &n n < ω and let Hn = { H : H is a
subgroup of Gn which is definable over αd(0)}. We will prove by induction
on Morley rank and degree that

(φ) every definable subset X of Gn is equal to a boolean combination of
cosets of elements of Hn-

Let a = MR(Gn) + 1 and ω* = ω\ {0}. For any definable X C Gn,
(MR(X) ,deg(X)) is an element of the set of pairs a x ω*. Order a x ω
lexicographically; i.e., for /?, 7 < a and m, n G ω*, (β,m) < (7,n) if β < 7
or β = 7 and m < n. The induction will proceed using

if X,Y C Gn are definable, X D Y φ 0 and MR(X) = MR(Y),

then (MR(X \ Y), άeg(X \ Y)) < (MR(X), deg(X)). (4.5)

Let X be a ^-definable subset of Gn. If MR{X) = 0, then X is a fi-
nite union of cosets of {0}, hence (•#) is true in this case. Suppose that
MR(X) = β > 0, deg(X) = jfe, and (#) is true for any definable Y C Gn with
(MR(Y),deg(Y)) < (β,k). Let a be a generic element of X and p G 5n(G)
a free extension of tp(a/acl(B)). Let # £ Sn(G) and # G Gn be such that q
is a generic type of an element H of W and p = gq. By Lemma 3.5.2 we can
take g to be the generic of H°, hence we may as well assume H is connected.
Hence deg(ϋΓ) = deg(gH) = 1 (by Corollary 3.5.3). Since a was chosen to
be a generic of X, β = MR(p) = MR(q) = MR(H). The formula defining
gH is in p, hence MΛ(X Π gH) = β and (by (4.5)) deg(X \ p#) < deg(X).
Since deg(gH) = 1, the same reasoning gives MR(gH \ X) < β. Thus, by
induction, both X \gH and gHΠX = gH\ (gH\X) are equal to a boolean
combination of cosets of elements of 7ί. Since X = (gH Π X) U (X \ gH), we
have proved that X is equal to a boolean combination of cosets of elements
of H.

Turning to the reverse implication, suppose G is an abelian structure and
let p G Sn(G) have Morley rank β. Let H = { H : H is a subgroup of Gn

which is definable over acl(Φ) }.

Claim. There is a connected group H G H and an α G Gn such that
MR(H) = /? and the formula defining aH is in p.

Let <p G p be a formula of Morley rank β and degree 1; X = φ(€), which
we can take to be a subset of Gn. A series of reductions will show that
we can take X to be a coset of some element of H. For H, K G H and
α, b G Gn, if Y = aH Π bK Φ 0, then y is a coset of ί ί Π If, also an element
of Ή. Thus X, which is equal to a boolean combination of elements of 7ί,
can be written as a finite union of sets of the form Y \ (Z\ U ... U Zn),
where Y and Zi , . . . , Zn are cosets of elements of Tί. If X is a finite union
Yι U ... U Yk then some Yi has Morley rank β. So, without loss of generality,



166 4. Fine Structure of Uncountably Categorical Theories

X is equal to aλHι \ (b\Kχ U . . . U bnKn), for some ίfi, -KΊ, ...,KneH and
αi, 6 1 , . . . , bn G Gn. By the same reasoning we can require Hi to be connected.
Without loss of generality, a\H\ Π biKi φ 0, hence a coset of H\ Π Ki, for
1 < i < n. Since # 1 is connected, MR{Hλ Π #») < MR(Hι), for 1 < z < n,
hence MR{bxKi U . . . U &n#n) < MΛ(ffχ). Since MR(X) = β, we conclude
that MR(Hχ) = MR(a\Hι) = /?, completing the proof of the claim.

With α and H as in the claim, let q G Sn(G) be the unique generic type
of H. Then aq is the unique element of Sn(G) having Morley rank β and
containing the formula defining aH. Thus p = ας, completing the proof.

Corollary 4.3.8. Let G be an A—definable abelian structure in the universal
domain £ of an uncountably categorical theory. Let p G Sn(G) have Morley
rank β and canonical parameter c. Then, there is a connected group H C Gn

of Morley rank β, definable over acl(A), and ana G Gn such that the formula
defining aH is in p and a name for aH is interdefinable with c over A.

Proof. By the previous lemma there is a connected group H C G n , definable
over acl(A), and an a G Gn such that the formula defining aH is in p. Let α*
be a name for aH. To show that α* is interdefinable over A with c it suffices
to prove

Claim. If / is an automorphism of € which is the identity on A, then f(p) = p
if and only if /(α*) = a*.

Let Aut^(£) denote the set of automorphisms of £ which are the identity on
A. The formula ψ over α* defining aH has Morley rank /?, degree 1, and is
in p. Thus, if / G Aut^(<£) and /(α*) = α*, then f(p) = p (since p is the
unique extension of ψ or Morley rank β in Sn(G)). Now suppose / G AutA(£)
and /(p) = p. Then, f(ψ) G p, hence aH Π f(aH) has Morley rank /?. The
connected group H cannot have a proper definable subgroup of Morley rank
β, so H = f(H). Consequently, aH = f{aH) and /(α*) = α*, completing the
proof of the claim and the corollary.

Corollary 4.3.9. Let G be an A—definable abelian structure in the universal
domain € of an uncountably categorical theory. Let X C Gn be definable and

H = {H : H is a subgroup of Gn definable over acl(A) }.

Then X is equal to a boolean combination of cosets of elements ofTί.

Proof. See Exercise 4.3.5.

We are now in a position to prove the easy direction of Theorem 4.3.3.

L e m m a 4.3.11. Let £ be the universal domain of an uncountably categorical
theory which contains an infinite definable abelian structure G. Then £ is
1—based.
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Proof. Suppose, to the contrary, that £ is not 1-based. Let G be definable
over A. Since G is infinite there is a strongly minimal D C G definable
over some B D A. Since <t is not 1-based, D is not locally modular (by
Theorem 4.3.1). By Lemma 4.2.4, D has a plane curve C such that the
dimension (over B) of the canonical parameter c of C is > 1. Let a be a
generic element of C over c, p G S(<£) the free extension of tp(a/c), and
observe that c is a canonical parameter of p. Since G is an abelian structure
there is (by Corollary 4.3.8) a connected strongly minimal subgroup H of
G2, definable over acl(A), and a b G G such that C Π bH is also strongly
minimal and c is interalgebraic over A with a name 6* for δϋί. Since α is a
generic of C, α G bH, hence 6* and c are in αcZ(Λ U {a}). This contradicts
Lemma 4.2.8(ii), completing the proof.

The proof of Theorem 4.3.3 will be complete once we have shown

Proposition 4.3.4. Let € be the universal domain of an uncountably cate-
gorical theory which contains an infinite definable group G, and assume £ is
1—based. Then, G satisfies

(*) for any n < ω and p G S^((£) there is a connected group H C Gn

definable over acl(A) such that p is a translate of the generic type of H.

A reasonable amount of work, found in subsequent lemmas, is required
to prove the proposition. Most of the work revolves around stabilizers of
types, introduced in Section 3.5. Indeed, the group H appearing in (*) is the
stabilizer of p. For G an ω—stable group, p G S^(G) can also be viewed as
an element of S^ (G). Thus, the facts proved in Section 3.5 about 1—types
over an ω—stable group G extend transparently to S^(G), for any n < ω.
Also, facts proved about subgroups of G extend immediately to subgroups of
Gn.

Remember, when H is an infinite group defined in the universal domain
<ί of an uncountably categorical theory then £ is 1—based if and only if the
restriction to H is also 1—based. (See Corollary 4.3.7.)

Stabilizers enter our proof via

Lemma 4.3.12. Let G be an ω—stable group, p G Sn(G) and S = stab{p).
Then

(i) MR(S) < MR(p), and
(ii) if MR(S) = MR(p), p is a translate of a generic type of S and S is

connected.

Proof (i) This was proved in Lemma 3.5.1(ii).
(ii) Let A be a finite set over which p is definable and remember that S

is a definable group over A. Let G' be a saturated model containing A, a
a realization of p \ G' — p' and g an element of 5 generic over G' U {a}.
Since tp(a/G' U {g}) = p \ (Gf U {<?}), ga also realizes p \ (G'U {g}). By
assumption, MR(S) = MR(p), hence MR{g/G' U {a}) = MR(p). Since g
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and ga are interdefinable over G' U {α}, MR(ga/Gf U {a}) — MR(p)\ i.e., ga
and a are G'- independent. Thus, tp(ga/Gf U {a}) = p \ (Gf U {a}).

Claim. S is connected.

Assuming that S is not connected there is an element g' of 5, generic over
G'U{α}, such that tp(gf/Gf) φ tp{g/G'). Repeating the above argument, g'a
is also a realization of p \ (Gf U {a}). An automorphism f of G which is the
identity on G' U {a} and maps ga to </α must map g to g'. This contradiction
proves the claim.

Claim. Given r G 5(G) the generic of 5, p' is a right translate of r \ Gf.

Since Gr is saturated there is a 6 G G' realizing p \ A. Since 5 is connected,
r f A has Morley degree 1 (by Corollary 3.5.3). Then, tp(g/G' U {a}) =
r \ {G' U {α}), which is a free extension of r \ A, does not split over A (by
Theorem 3.3.1(i)). Thus, tp(a/A U {#}) = tp{b/A U {#}) and tp(gb/A U {#})
is also p f (A U {#}). Repeating the first paragraph of the proof for b instead
of α, gb realizes p1. Drawing these facts together, for r' = r \ G' = tp(g/G'),
pf = r'b, proving the claim.

By the second claim and Lemma 3.5.1, p is a right translate of the generic
of 5 in 5(G), completing the proof.

Lemma 4.3.13. Let € be the universal domain of an uncountably categorical
theory which contains an infinite definable group G, and assume € is 1—based.
Letpe S£ (£) and S = stab(p). Then, MR(S) = MR(p) and S is definable
over acl(9).

Proof. Without loss of generality, n = 1. Let c be the canonical parameter of
p and let {α, a'} be a Morley sequence over c in p \ c. Let x = a'a~ι and notice
that MR{x) > MR(x/c) > MR(x/{c,a}) = MR(a'/{c,a}) = MR(p). Now
let g G G be generic over cU{α, a'} and let q = pg. Since right translates have
the same stabilizer (Lemma 3.5.1(iii)), stab(q) = S. Proving that MR(S) =
MR(p) = MR(q) has been reduced to verifying that x G stab(q) = S.

Since a and a' realize p \ {c, <?}, ag and a!g realize qo = q \ {c, g}. Since g is
generic over {c, a, a'}, ag is generic over {c, a, a'}, hence x is independent from
ag. The canonical parameter d of q is in acl(ag) (since £ is 1—based) hence x
is independent from {ag, d}. Furthermore, a'g = xag by Corollary 3.5.1. Since
q is the unique free extension of tp(ag/c) we conclude that x G stab(q) = 5,
completing the proof that MR(S) = MR(p).

It remains to show that 5 is definable over acl(Φ). Presently we only know
S is definable over c, by the formula σ(x, c), let's say. By Lemma 4.3.12(ii)
S is connected, so we can take σ to have degree 1. Let q\ = q \ d. Recapping
what was proved above,

(a) d and c are independent.
(b) If e G S is generic over c and b realizes q \ d and is generic over
{e, c} then e b realizes q\.
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(c) For any d! realizing the type of d over acl(ty) independent from c,
the conjugate of q\ over d! is pg' \ d! for some g'.

We will show that σ(υ, c) is equivalent to any conjugate of itself over αd(0).
Let c' be any realization of tp{c/acl(βή). Choose d' realizing tp{d/acl{$))

independent from {c, c'}. Let q[ be the conjugate of q\ over d! and b a realiza-
tion of q[ independent from {c, c'} over d!. Let q" G S^(C) be the unique free
extension of q[. By (c) and Corollary 3.5.1, q[ is a right translate of p, hence
S = σ(G) is stab{q'{). Since stab{q'{) is definable over d', σ(v, c) is equivalent
to a formula over dl'. By the stationarity of types over acl(Φ), c' and c have
the same type over d\ hence σ(υ, c') is equivalent to the same formula over d!.
This proves the equivalence of σ(v, c) and σ(υ, c'), hence σ(v, c) is equivalent
to a formula over acl(Φ).

This proves the lemma.

Combining Lemmas 4.3.10, 4.3.12 and 4.3.13 completes the
proof of Theorem 4.3.3.

The following comes in handy when proving facts about the definable
subsets of an abelian structure. (It is standard to use additive notation in an
abelian structure.)

Corollary 4.3.10. Let G be a 1—based uncountably categorical group, a G G
and p the unique free extension of p' = tp{a/acl($)). There is a connected
group S definable over acl(Φ) (namely, the stabilizer of p) such that for any
realization b of p',

(1) b-aeS, and
(2) if b is independent from a, b — a is a generic of S.

Proof. Let S be the stabilizer of p, which by Lemma 4.3.13 is connected,
definable over acl($) and has Morley rank a = MR(p).

Part (2) will be proved first (in a round about way). Let b be a realization
of p' independent from α. Given c e S generic over α, c + a realizes pf. Let c
be a generic element of S which is independent from α. Since c and c + a are
interalgebraic over α, MR(c+a/a) = MR(c/a) = α; i.e., c+a is independent
from a. Since p' is stationary, b and c+a have the same type over αd(0)U{α}.
Thus, tp(b—α/αc/(0)U{α}) = tp(c/acl(Φ), hence b—a is a generic of S, proving

(2).
Now assume only that b realizes p''. Let d be a realization of p independent

from both a and b. By (2), both a — d and d — b are generic elements of 5.
Thus, a — b = a — d + d — 6 is in 5, completing the proof of the corollary.

As stated earlier, the most basic example of an abelian structure is an in-
finite vector space. In fact, it will be shown later that any module (formulated
in the natural language for modules over a fixed ring) is an abelian structure.
The next group of results investigates the degree to which every (uncount-
ably categorical) abelian structure is a module, culminating in a proof that a
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strongly minimal abelian structure is (nearly) a vector space over a division
ring of definable endomorphisms.

Corollary 4.3.11. Let G be a 1—based uncountably categorical group. Then,
any connected definable subgroup of Gn is definable over acl(Φ).

Proof. Let H be a connected definable subgroup of Gn and let p G Sn(G) be
the generic type of H. H is the stabilizer of p (by Corollary 3.5.3), hence H
is definable over acl(Φ) (by Lemma 4.3.13).

Definition 4.3.7. A group is called abelian-by-finite if it has a definable
abelian subgroup of finite index.

Corollary 4.3.12. A 1—based uncountably categorical group G is abelian-
by-finite.

Proof. If G° is abelian, G is abelian-by-finite, so we may take G to be con-
nected. We will show that Z(G) = the center of G, has finite index in G
hence is all of G.

For a G G let Ha = { (g, a~ιga) : g G G }, a definable subgroup of G2.

Claim. Ha is connected.

Let n = MR(G). If (#, h) G Ha, h is interalgebraic with g over α. Hence,
MR(Ha) is also n. Suppose K is a definable subgroup of Ha of finite index,
and let Ko, K\ be the projections of K onto the first and second coordinates,
respectively. Then, n = MR(K) = MR(KQ) = MR(Kι), so, by the connect-
edness of G, Ko = G. For any g G G there is a unique x G Ha whose first
coordinate is x. Thus, K must be all of Ha, proving the claim.

By Lemma 4.3.11, Ha is definable over acl(Φ), for any a G G. A com-
pactness argument shows that { Ha : a G G } is some finite set of groups
{Hai,..., Hak}. For α, b G G, αZ(G) = 6Z(G) if and only if Ha = Hb, hence
Z(G) has finite index in G. Since G is connected we conclude that G is
abelian, as desired.

Definition 4.3.8. Let G be a group which is /\— definable over A. Then,
G~ denotes acl(A) Γ\G. If B and C are subsets of G or elements of G, we
write B=* C if B + G" =C + G~.

With notation as in the definition, G~ is a subgroup of G, which is de-
finable exactly when it is finite. The equivalence relation =* is simply the
inverse image of equality under the quotient map from G into G/G~.

Showing that a strongly minimal abelian structure is close to being a
vector space requires the introduction of definable homomorphisms, accom-
plished as follows.

Definition 4.3.9. Let Go and G\ be A—definable groups (in the univer-
sal domain € of a complete theory). A subgroup H of Go x G\ is called a
*—homomorphism of Go into G\ if
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- H is definable,
- the projection of H onto the first coordinate is all of Go, and
- { a G Gλ : (0, a) G H } = K is finite.

H is a *—endomorphism of Go if it is a *—homomorphism of Go into Go-
H is a *—isomorphism of Go onto G\ if the projection of H onto the second
coordinate is G\ and {a e Go - (α,0) G H} is finite.

With notation as in the definition, the *-homomorphism H is the
graph of a definable homomorphism σ# : Go —• G\/K, and, if H is
B—definable, K is also B—definable. This homomorphism will also be called
a *—homomorphism of Go into G\. For a G Go, 07/(α) denotes the appropri-
ate coset of K (hence a finite subset of G\). Several elementary results and
definitions are collected in

Definition 4.3.10. Let G, H and K be 0—definable abelian groups in the
universal domain of a complete theory. Let A = { σ : σ is a *—homomorphism
from G into H} and B = {σ : σ is a *—homomorphism from H into K}.
Addition on A is defined by the rule:

for σ, τ e A and a G G, (σ + r){a) = σ(a) + τ(a),

with the + on the right-hand side denoting addition on sets.
Multiplication between A and B is defined by:

for σ G β, r G A and a G G, σ τ(a) = σ(τ(a)).

(We will largely be interested in multiplication when G = H = K.)
For σ, r G A we write σ =* r if the graphs of σ and r are =* as subsets

ofG x H; i.e., σ =* r if for all a G G, σ(a) =* τ(a).
Let Hom*(G,H) = A/=*; i.e., Hom*(G,H) is the set of equivalence

classes of elements of A with respect to the equivalence relation = * . Let
End*(G) denote Horn* (G,G). The + operation extends to Horn* (G,H) and
• extends to End*(G) in the obvious ways (for example, (σ/=*) + ( τ / = * ) =
(σ-\-τ)/=*). An element of Horn* (G,H) is also called a *—homomorphism
from G into H and an element of End* (G) is called a *—endomorphism of
G.

Most statements made below involving a *—homomorphism σ remain
valid after replacing σ by any *—homomorphism r =* σ. This excuses the
abuse of calling an element of Hom*(G, H) a *—homomorphism. If G and H
are 0—definable groups, a G G and a G Horn* (G,H) we write a(a) =* b if
there is a *—homomorphism σ such that a is σ/=* and σ(a) =* b.

Remark J^.S.β. Let G and i ί be 0—definable abelian groups in the universal
domain of a complete theory. Suppose that σ is a *—isomorphism from G
onto H and let S C G x H be the graph of σ. Let S " 1 denote the inverse of
S as a binary relation. Then, S " 1 is the graph of a *—isomorphism r from
H into G and r σ is a *—endomorphism of G which is =* the identity on G.
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The straightforward proof of the following lemma is left to the reader.

L e m m a 4.3.14. Let G and H be definable abelian groups in the universal
domain of a complete theory. Under the operations + and defined above,

(i) Horn* (G, H) is an abelian group, and
(ii) End*(G) is a ring.

Definition 4.3.11. For G and H definable abelian groups, Hom*(G, H) is
called the group of *—homomorphisms from G into H and End*(G) is the
*—endomorphism ring of G.

If G and H are 0—definable abelian groups, a G G and a G Hom*(G, H),
then b =* a(a) =>• b G acl(a). The next proposition shows (surprisingly)
that all algebraic closure in a generic element of a connected 1—based group
is witnessed by *—homomorphisms.

Proposition 4.3.5. (i) Let G and H be 0—definable groups in a I—based un-
countably categorical theory with G connected. Let Abe a set, a an element of
G generic over A andb G acl(Au{a})Γ\H. Then, there is a *—homomorphism
σ from G into H such that σ is definable over αd(0) and σ(a) =* b' for some
d, for some d independent from A with MR{d) = MR(b). Furthermore, if
A = 0 we may take d to be b.

(ii) Suppose, in addition, that G = Go x . . . x Gn and a = (αo, . . . , an),
where G\ is a connected group definable over acl($) and aι G G\, for i < n.
Then, there are Oi G Hom*(G, H), for i <n, such that σ(α) =* Σi<n σi(ai)-

Proof (i) Let G be the 0—definable group G x H. Let p = tp((α, b)/acl(A)),
X = p((£), and 5 the stabilizer of the unique free extension of p in S(G).

Claim. S is the graph of a *—homomorphism σ from G into H, definable
over acl(Φ).

Let K = {y : (0,2/) e S}. Since b G acl(A U {α}), K is finite. For (α',6')
an element of X A—independent from (α,6), (α, b) — (α',67) G S by Corol-
lary 4.3.10. Hence, the projection of 5 onto the first coordinate contains a
generic element, namely a — a1'. Since G is connected, the projection of S
onto the first coordinate must be all of G. Since the stabilizer of any type in
a 1—based group is definable over acl(Q), σ is definable over acl(Q), proving
the claim.

Since a is independent from A any d G σ(α) is independent from A.
Moreover, MR(d) = MR(b) since p is a translate of the generic type of 5.

Now suppose A = 0.

Claim. There is an element —c =* b such that —c G σ(α).

There is an element c such that (—α, c) G S. Since (—α, c) = (0, b + c) — (α, 6),
(0, b + c) and (α, b) have the same coset with respect to S. Since S is definable
over acl(Φ) the difference of any two realizations of q = ίp((0, b + c)/αd(0))
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is in S. Since the group K is finite, the set of realizations of q is finite; i.e.,
b + c G H~. This completes the proof of the claim and (i) of the proposition,

(ii) Remember from Exercise 3.5.8 that a is a generic of G if and only if
di is a generic of d (for i < ή) and {αo,..., α n } is independent. Let S and σ
be defined as in the proof of (i), bearing in mind that S is now a subgroup of
Go x . . . x Gn x H. For i < n, let Si = {(x,y): (0, . . . ,0,x,0, . . . ,0,y) G K},
where x is in the coordinate corresponding to G*. As in the proof of (i), for
each i < n, Si is the graph of a *—homomorphism σ̂  from Gι into H. It is
easily verified that Σi<nσi(ai) = * σ(α)> proving the proposition.

Corollary 4.3.13. Let G be a 1—based uncountably categorical group. Any
element of End* (G) is definable overacl(0).

(This corollary follows immediately from the preceding proposition.)

Theorem 4.3.4. Let G be a 1—based strongly minimal group.
(i) R = End* (G) is a division ring.
(ii) Let b, α o , . . . , α n G G and suppose that b depends on {αo,..., α n } .

Then, there are ao,.. , an G R such that b =* Σi<n aiai-

Proof, (i) Let σ G R be nonzero. Both K = ker{σ) and H = the range of σ
are 0—definable subgroups of G. Since G is strongly minimal it has no infinite
proper definable subgroup. Since σ is nonzero, this implies that K is a finite
subgroup of G~ and H = G. Thus, the inverse of σ (as a relation on G x G)
is the graph of *—endomorphism of G. In other words, every nonzero element
of G is invert ible.

(ii) Since G is strongly minimal, b G αc/(αo,... , α n ) . There are oci G -R,
i < n, such that b =* Σi<n aiai (kv Proposition 4.3.5(ii)) completing the
proof.

The following definition is a natural consequence of the theorem.

Definition 4.3.12. A 1—based strongly minimal group G is called a *—vector
space. If R C End*(G) is a division ring of *—endomorphisms ofG. Then
G is called an R — *—vector space.

An R — *—vector space G, for R = End*(G), falls short of being a
(quantifier-eliminable) vector space only in two ways.

- For σ G R = End*(G) and a £ G, σ(α) may be a finite subset of G
containing more than one element.

- G~ may contain a nonzero element.

Given σ G R and a G G, σ(α) C o + G~, hence σ induces an endomorphism
of the group G/G~. Moreover, G/G~ is an R—vector space. When G~ = {0}
this observation and Theorem 4.3.4 yield
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Corollary 4.3.14. Let G be a 1—based strongly minimal such that G~ =
{0}. There is a division ring R of endomorphisms of G, each definable over
acl($), such that G is an R—vector space and every definable relation on G
is equivalent to a boolean combination of R—linear relations.

Proof Left to the reader in Exercise 4.3.6.

Corollary 4.3.15. The pregeometry on a 1—based strongly minimal group
G is projective.

Proof (We know simply from Theorem 4.3.1 that the pregeometry on G is
locally projective.) Let α, 6, Co,. , cn £ G be such that a £ acl(b, Co,..., cn).
By Theorem 4.3.4 there are β,y0,... ,jn G End*(G) such that a =* βb +
7oco + .. .+7nCn Any d =* 7oCo + +7nCn is an element of acl(c0,..., cn)ΠG
such that a £ acl(b, d). This proves the projectivity of G.

Finally, we see that in the context of a 1—based uncountably categorical
theory strongly minimal groups are unique, up to *—isomorphism.

Corollary 4.3.16. Let G and H be 0—definable strongly minimal groups in
the universal domain of a 1—based uncountably categorical theory. Then, there
is a *—isomorphism σ from G onto H which is definable over acl(β).

Proof. By Corollary 4.3.15, G and H are modular strongly minimal sets.
Corollary 4.3.5 yield a £ G\ G~ and b € H \ H~ which are interalgebraic
over 0. There is a *—homomorphism σ from G into H, definable over αd(0),
with σ(a) =* fc, by Proposition 4.3.5(i). Since G and H are strongly minimal,
σ must be a *—isomorphism.

Historical Notes. Proposition 4.3.2 is more or less due to Shelah [She90,
III.5]. In ZiΓber's early writings he worked with the condition "£ does not
contain a definable pseudoplane". This property developed into a statement
about canonical parameters in [CHL85]. Our main result, Theorem 4.3.1, is
equivalent to one by ZiΓber in [Zil84a] and [Zil84b], and in the totally cate-
gorical context, implicit in [CHL85]. A generalization of the theorem, with up
to date definitions, is found in [Bue86]. A weak version of Theorem 4.3.3 can
be extracted from ZiΓber's writings. In its present form the theorem was first
proved (independently) by Hrushovski and Pillay [HP87]. Proposition 4.3.5
and related results are due to Hrushovski in [Hru87].

Exercise 4.3.1. Show that any definable subset of an almost strongly min-
imal set is finite or almost strongly minimal.

Exercise 4.3.2. Prove Corollary 4.3.4.

Exercise 4.3.3. Prove Corollary 4.3.7.
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Exercise 4.3.4. Prove that a vector space is an abelian structure.

Exercise 4.3.5. Prove Corollary 4.3.9

Exercise 4.3.6. Proof Corollary 4.3.14.

Exercise 4.3.7. Let G and H be 0—definable strongly minimal groups in
the universal domain of a 1—based uncountably categorical theory. Show
that End*(G) 9* End*(#) (as rings).

4.4 Automorphism Groups of Constructions

Let (£ be the universal domain of an uncountably categorical theory. We
proved that £ is asm-constructible, in fact, for any a G £ there are Co,..., cn,
with cn = α, such that tp(ci/{co,... , Q_i}) is almost strongly minimal. If
£ is also 1—based it is rkl-constructible. In this way <£ is decomposed in
terms of strongly minimal sets. In this section the structure gleaned from
this decomposition is strengthened by describing, for X\ and X2 two almost
strongly minimal subsets of <£, the definable relations on X\ x X2. We will see
that (among other things) it always possible to choose the almost strongly
minimal sets in a construction (like the one above) to be closely bound to one
another, in a sense to be made precise momentarily. First a few motivating
examples.

Example J^.J^.l. (i) Let D b e a definable set (over 0) in the universal domain
£ of a complete theory. A definable X C Deq is contained in dcl(D). Any
definable relation on XUD reduces to a definable relation on D (in a way the
reader is left to formalize). Notice that the condition Y C dcl(D) is equivalent
to "any / G Aut(<£) which is the identity on D is also the identity on Y\"
Here the definable set X is "tightly bound" to D.

(ii) Let ko be an algebraically closed field of characteristic 0 and k\ a
proper elementary submodel. Let L be the language of fields together with a
unary predicate P and Mo = (ko,kι) the model in L where k\ interprets P
and ko is the universe. Let (k*,£*) be the universal domain of Th(Mo). The
relationship between k* and the definable subset £* is described classically
with the Galois group of k* over P; i.e., the group of field automorphisms
of k* which fix £* pointwise. Below we use such automorphism groups to
describe the relationships between two definable sets.

(iii) Let M be the abelian group φ i < α ; (^4)i and M* the universal domain
of Th(M) (see Example 4.3.1(iv)). Let V = 2M*, a a generic of M* and
H = a + V, which is also definable over 2a G V. For any b G H there is an
automorphism of M* which is the identity on V and maps a to b. Since H C
dcl{V U {&}) for any b G H, there is no nontrivial automorphism of M* which
fixes V U {b} pointwise. In other words, the group Go of all automorphisms
of M* which fix V pointwise acts regularly on H. Let G = { σ : σ = r \ H
for some r G Go }•
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Claim. G ^ ( V , + ) .

For c G V let τc be defined by: τc(x) = x + c, for all a; G H. Observe that τc is
in G. Fixing a G H, any σ G G is determined by σ(α); i.e., if 6 = σ(α) = σ'(α),
where σ' £ G, then σf = σ. Since any 6 G i/ is α + c for some c G ^ , every
σ G G is τc for some c G V. Moreover, τc τ^ = Td+c This proves the claim.

(iv) Let P be the universal domain of the theory of a projective plane over
an algebraically closed field, say the complex numbers. (P is formulated in a
2—sorted language with a single binary relation e. The first sort in P is the
set of "points" of P, the second the set of "lines" of P and xe£ is read "x lies
on P\) Let £\ and £2 be names for two distinct lines, Di the set of points on
£u for i = 1,2. Let Go = {σ G Aut(P) : σ f ( D i U {£^£2}) = the identity }
and G = { σ \ Ό2 : σ G Go }• The reader is asked to show the following in
Exercise 4.4.1.

(a) For any a\ φ (12 and b\ φ 62 in Ό2 \ D\ there is a σ G G such that
σ(αi) = 61 and σ(α2) = &2

(b) Given aλ φ a2 in D2 \ Du D2 C dcl(D1 U {αi,α2}).

In group action terminology the action of G on D2\D\ is sharply 2—transitive.
(It is 2—transitive because there is only one orbit in the set of distinct pairs
from Ό2 \D\. It is sharply 2—transitive because (by (b)) the σ in (a) is
unique.)

The condition stated intuitively as "D2 is closely bound to Di" is formal-
ized in

Definition 4.4.1. Let € be the universal domain of a complete theory. Let
D\ be an A—definable subset of (£ and Ό2 a subset of £ definable over B C
D\\J A. D2 is said to be finitely generated over D\ U A if there are:

(1) a finite b C D2, and
(2) a function f, definable over Bub, taking D™ onto D2, for some n.

When (1) and (2) hold b is called a fundamental generator of Ό2 over Ό\ U A
and f is called the generating function of D2 over Dχ\J A.

In Example 4.4. l(i) X is finitely generated over D with fundamental gen-
erator 0. In Example 4.4.1(ii) k* is not finitely generated over ί*. The coset
H of Example 4.4.1(iii) is finitely generated over V; any b G H is a funda-
mental generator with generating function +. Finally the projective line Ό2
in Example 4.4.1(iv) is finitely generated over Ό\ U {̂ 1,̂ 2} with any pair of
distinct points of Ό2 \ D\ as fundamental generator. It is left to the reader
to describe the corresponding generating function.

Remark J^.J^.l. Let £ be the universal domain of a complete theory, D\ an
0—definable subset of £ and Ό2 a subset of € definable over B C D\. Let £,
Dι and D2 be as in the definition, with Dι 0—definable (for simplicity),

(i) If Ό2 is finite it is finitely generated over D\.
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(ii) If D2 is finitely generated over D\ there is a finite b C D<ι such that
Ό2 C dcl{D\ U b). Thus, if D\ is almost strongly minimal, D^ is also almost
strongly minimal (by Lemma 4.3.2).

(iii) If D2 C D\q there is a definable function / taking Df onto D 2, for
some n. Hence, D2 is finitely generated over D\ with 0 as a fundamental
generator and generating function /.

(iv) Suppose that D2 is finitely generated over D\ and let /, B, n and b
witness this as in the definition. Then, there is a B—definable Y C D\q and
a 5 U b—definable bijection g between Ό2 and Y.

(This shows that there is little difference between a finitely generated set
and an element of Dlq, although parameters outside of Dψ may be needed
to define it.) To prove this fact let E(x,y) be the equivalence relation on D™
defined over B U b by the rule: for all x, y e D^ E(x,y) <=> f(x) = f(y).
Let Y be the set of equivalence classes of E and g the obvious B U b—definable
bijection from Y onto Ό2 derived from /. Since E is a definable relation on
Dι there is a B' C Όx such that E is B'-definable. Hence, Y c D\q.

(v) If D2 is finitely generated over Dι U A and D% is finitely generated
over D2 U B, then D3 is finitely generated over DiUAuB. (The proof is left
to the reader in Exercise 4.4.2.)

(vi) Let D\ be A—definable and Ό2 definable over AuDi. Suppose there
are: b C D2, a definable X C D™ (for some n) and a (A U 6)—definable
function / taking X onto U2> It is easy to find from / a function defined on
all of D™, hence Ό2 is finitely generated over Ό\ U A.

In Example 4.4.1 (iii), where a is a generic of M* and H = a + V, {2α, α}
defines an asm-construction of a. Here, i7 is not only a strongly minimal set
over 2α, but is finitely generated over V (= the strongly minimal set contain-
ing 2a). We will show later that for € the universal domain of an uncount-
ably categorical theory and b G <£, there is an asm-construction Co,..., cn of
b where c$ is an element of an almost strongly minimal set Xi, definable over
Ci = {co,... , Q _ I } , such that, for 1 < i < n, X̂  is finitely generated over
Xi-ι U C*. Thus, we can gain more detailed information about an uncount-
ably categorical theory through the relation "D2 is finitely generated over

The definable relations holding between the elements of two definable sets
are best studied with the following object.

Definition 4.4.2. Let <£ be the universal domain of a complete theory. Let
D\ be an A—definable subset of € and Ό2 a subset of <L, /\—definable over
Ό\ UA. A map σ : D2 —• Ό2 is an automorphism of D2 over D\ U A if σ is
the restriction to Ό2 of an element o/Aut(<£) which is the identity on DiUA.
The collection of all automorphisms of Ό2 over D\VJ A is a group denoted
Au.t(D2/D\ U A). When Ό2 is definable and finitely generated over Ό\ U A,
A\it(D2/Dι U A) is called the binding group of J92 over Ό\ U A. When A = 0
it is omitted.
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In Example 4.4.1(i), Aut(X/D) is trivial and in (ii), Aut(/c*/^*) is
Gal(fc*/f), the Galois group of fc* over f . In the third example, Aut(H/V) 2*
(V, -f). In (i) and (iii), with D\ and D2 the relevant definable sets, D2 is
finitely generated over D\. This degree of control over the relations between
the elements of D2 and D\ is reflected in the simplicity of Aut(D2/Di). In
both (i) and (iii) Aut(D2/Di) is a definable group in the following sense.

Definition 4.4.3. Let <£ be the universal domain of a complete theory. Let
D\ be an A—definable subset of £ and D2 a subset of €, /\—definable over
Dι U A. We say that a G G = Aut(D 2 /Di U A) is definable if a agrees with
a definable function ga on D 2 . In this case a is identified with a name for
ga. G is called definable if every element of G is definable and (G, D2) is a
definable group action.

Remark J^.J^.2. In the definition, when each a G G is definable G C <£ since we
identify a definable function with its name. Remember: (G, D2) is a definable
group action if G and Ό2 are definable sets and both the group operation
and the action of G on D2 are definable.

The goal of this section is the following set of "Ladder Theorems" by
ZiΓber. The first two are improvements of Corollary 4.3.4 and Proposi-
tion 4.3.3, respectively.

Theorem 4.4.1 (Main Ladder Theorem). Let € be the universal do-
main of an uncountably categorical theory and a an element. Then there is
a sequence α o , . . . , α n _i , α n = a and definable sets DQ, . . . , Dn such that for
i <n and Aι = {α 0 , . . . , α^-i},

(1) at G dcl(a);
(2) at G A ;
(3) Do is 0— definable and almost strongly minimal; Di is finite or al-

most strongly minimal and Di is definable over Aι;
(4) Di is finitely generated over Do U . . . U A _ i (when i > 0);
(5) Gi = Aut(A/A) U . . . U A - i ) is definable.

Theorem 4.4.2 (1—based Ladder Theorem I). Let £ be the universal
domain of a 1—based uncountably categorical theory and a an element. Then
there is a sequence α o , . . . , αn_χ, α n = a and definable sets D o , . . . , D n such
that for i < n and Ai = {αo,..., α^_i},

(1) ai G acl(a);
(2) a{ G A ;
(3) Di is finite or strongly minimal and Di is definable over Ai;
(4) Di is finitely generated over Do U . . . U Di_i (when Do U . . . U Di_i

is infinite);
(5) Gi = Aut(Di/D 0 U . . . U A - i ) is definable, has Money rank < 1

and is abelian-by-finite (when D o U . . . U D^_i is infinite).
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An infinite definable abelian group G in a universal domain is called
minimal abelian if there is no infinite definable subgroup of G.

Theorem 4.4.3 (Simple Ladder Theorem). Let £ be the universal do-
main of an uncountably categorical theory and a an element. There is a se-
quence of definable sets Do,..., Dn such that for all i <n

(1) aeDn.
(2) Di is finite or almost strongly minimal and finitely generated over

DQ U . . . U A - i (when Do U . . . U A - i is infinite).
(3) / / A) U . . . U A - i is infinite, d = Aut(A/A> U . . . U A - i ) is
definable. When Gi is infinite it is simple or minimal abelian.

Theorem 4.4.4 (1—based Ladder Theorem II). Let € be the universal
domain of a 1—based uncountably categorical theory and a an element. Then
there is a sequence αo, . . . , α n _i, αn = a and definable sets Do,..., Dn such
that for i < n and Aι = {αo,..., Q>i-ι},

(1) di e acl(a);
(2) α< € A ;
(3) Di is finite or strongly minimal and Di is definable over Ai}-
(4) Di is finitely generated over Do U. . . U A - i (when DoU...U A - i
is infinite);

(5) When £>0U.. .U A - i is infinite both d = Aut(A/A)U. . .U A - i )
and the action ofGi on Di are definable overD0U.. .UA-i Moreover,
when Gi is infinite it is strongly minimal (and abelian).

The 1—based Ladder Theorem I will follow rather quickly from the Main
Ladder Theorem using Proposition 4.3.3. The Simple Ladder Theorem says
that in the sequence of almost strongly minimal sets we can choose Gi =
Aut(A/A) U . . . U A - i ) to be finite, minimal abelian, or simple if we are
willing to sacrifice other properties; namely, that dcl(a)ΠDi is nonempty and
Di is definable over a.

With notation as in the Main Ladder Theorem, {αo> ,αn} is an asm-
construction of a. The existence of a sequence satisfying (l)-(3) was proved
in Corollary 4.3.4. The object of this section is to obtain an asm-construction
with the additional properties specified in (4)-(6). Certain results leading up
to Corollary 4.3.4 (Proposition 4.3.2, for one) will be redone in this section
to emphasize different points and increase the scope of the methods.

The first major result of the section indicates when we can expect
Aut(D2/D1) to be definable.

Theorem 4.4.5 (Binding Group Theorem). Let € be the universal do-
main of a t.t. theory, D\ an 0— definable set and D2 a D\ — definable set which
is finitely generated over D\. Then Aut(Z>2/A) is a definable group.

The proof of this theorem involves the notion of the type of an element
over a definable set. When £ is a universal domain, a an element and X an
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0—definable subset of € the type of a over X is, by fiat, not a type since X is
not a set. However, many properties of tp(a/X) reduce to properties of types
over sets by the following lemma.

Lemma 4.4.1. Let £ be the universal domain of a t.t. theory T, a an element
and X an 0—definable subset of €.

(i) There is a type r over a such that tp(b/X) — tp(a/X) if and only if b
realizes r.

(ii) r is equivalent to a type over a subset of X of cardinality < \T\.
(Hi) There is XQ C X of cardinality < \T\ such that tp(a/Xo) implies

tp(a/X). In fact, for any set A there is aY C X of cardinality < \T\ + \A\
such that (*) if A is conjugate to B over Y there is an elementary map from
A to B which is the identity on X. (The notation tp(A/Y) \= tp(A/X) will
be used as shorthand for (*).)

(iv) If tp(b/X) = tp(a/X) there is an automorphism of <£ which maps a
to b and is the identity on X.

(v) There is a formula p(x) over a implied by r such that any b realizing
tp(a) U {ρ(x)} realizes r.

Proof (i) Let φ(x,y) be a formula over 0 and Eφ(x,x') the 0—definable
equivalence relation expressing:

for all y from X ( φ(x, y) <-• φ(x', y) ).

Letting Ξ(x,x') = {Eφ(x,x') : φ is a formula over 0} and r = Ξ(x,a)
produces a type meeting the requirements of (i).

Turning to (ii), since £ is assumed to be t.t., tp(a/X) is definable over X
(by Lemma 3.3.11). Thus, given a formula φ(x,y) over 0 there is a formula
Φφ{y) o v e r bφ C X such that

for all y from X{ \= φ(a, y) if and only if f= φφ(y) ).

Then, for φ any formula over 0, Eφ(x,ά) is equivalent to the bφ—definable
relation:

for all y from X(φ(x,y)<—>ψφ(y)).

There are \T\ many sets of the form ϊ>φ, so we have proved (ii).
(iii) This is immediate by (ii).
(iv) Since X has the same cardinality as £ (when it is infinite) we cannot

simply use the homogeneity of £ to find such an automorphism. Instead an
automorphism of € is constructed using

Claim. There is a chain of elementary maps fa, a < K = |C|, such that for
all α,

(1) fa \ X is the identity on X;
(2) fa(a) = b;
(3) for all c G £ there are /?, 7 < K such that c is in the domain of fβ
and c is in the range of fΊ.
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To begin let /o be the elementary map which is the identity on X and
takes a to b. The detailed construction of the chain will be left to the reader.
The essential features are contained in the proof of

(0) If / is an elementary map defined on X U A (for some set A) and c G
<£, then there is an elementary map g extending / which is defined on
XUAU{c}.

By (iii) there is a set Y C X such that tp(A U {c}/Y) (= tp(A U {c}/X).
Since tp(f(A)/Y) = tp(A/Y) there is a d such that tp(f(A) U {d}/Y) =
tp(A U {c}/Y). Since the type of A U {c} over Y implies its type over X the
map g which extends / and takes c to d is elementary. This proves (fj) and
the claim.

To complete the proof we need only observe that g = \Ja<κ fa is an
automorphism of € which is the identity on X and takes a to b.

(v) Let Ξ' = {Ei(x,x') : i < \T\ } be a set of formulas obtained
from Ξ(x,x') by closing under finite conjunctions. Since any formula im-
plied by Ξ'(x,a) is implied by Ei(x,a) for some i, there is an i such
that (MΛ(S'(x,α)),deg(S'(z,α))) = (MΛ(£?i(x,α)),deg(E<(x,α))). Let p =
tp(a).

Claim. Any 6 realizing p U {-^(x, α)} also realizes r.

Assuming the claim to fail there is a j φ i such that p U {Ei(x, a)}
does not imply Ej(x,a). Let 6 be a realization of p U {Ei(x,a)} such that
^ Ej(b,a). Then Ξf̂ Xjα) and Ξ'(x,b) are extensions of pU {^(x, α)} which
are contradictory and have the same Morley rank and degree (since they
are conjugate). This contradicts that Ei(x, a) has the same Morley rank and
degree as Ξ'(x, a), proving the claim and completing the proof of the lemma.

Before getting to the proof of the Binding Group Theorem we show that
when "finitely generated" is replaced by "finite" the proof needs no assump-
tion other than the completeness of the theory. The proof of the lemma helps
to motivate certain steps in the proof of the Binding Group Theorem.

Lemma 4.4.2. Let € be the universal domain of a complete theory, D\ a
definable set and D2 a finite D\ — definable set. Then G = Aut(D2/Dχ) is a
D\ — definable group and the action of G on D2 is also D\ — definable.

Proof. The proof is clear after a few moments thought but we may as well
think aloud. First observe that there is a (finite) set A C Ό\ such that
G = Aut(£>2M) Let D be the set of all enumerations of D2. Identify a, G G
with da = {(c,a(c)) : c G D} and let G = {da : a G G}. Let AutA(£)
denote the set of automorphisms of £ which fix A pointwise. If β G Aut^(C)
then β(da) = dβaβ-i, hence G is invariant under the elements of Aut^(£).
By Lemma 3.3.8(i), G is A—definable. Define on G by: da dβ = daβ (for
a G G). Arguing as above, is invariant under the elements of Aut^(^) hence
• is also A—definable. This proves that the group G (which we identify with
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G) is A—definable. The action of G on D2 is defined by: da * x = a(x). If
β G AutΛ(C), then

(Vx, y G D2)(Wa G G)( da * x = y *=> β(da) * β{x) = β(y) ).

Thus, * is A—definable. We conclude that through map a *-> da from G onto
(5 we can identify the action of G on D2 with (G, , *).

Proof of Theorem 4-4-5 (Binding Group Theorem). Let D2 be B—definable
for B C D\ finite. Let b be a fundamental generator of D2 over D\ with gen-
erating function /(yi,..., ynj 2); i e > f(D\i b) D £>2 Let ^o(^) be a formula
in tp(b/B) such that for any c satisfying -00, /(yi, , 2/n>c) is a function
mapping .D™ onto Ẑ 2 Let c G ψo{£) realize an isolated type in S(B). By
Lemma 4.4.l(v), tp(c/Dι) is isolated by some formula V' Let X = ψ(<£). To
prove the theorem it suffices to show:

Claim. There are r : X —• Aut(D2/Dι) and c—definable operations,

• : X x X —> X and * : I x D 2 —• D 2

such that * defines an action of the group (X, •) on D2 and τ is an isomorphism
of the group action (X, , *) onto A\λt(D2/Dι).

Let θ(x,x',y,y') be a formula (over B) defining the relation:

y, y7 G X, x, x1 G D 2 and 3z eD^(x = f(z, y)Λx' = f(z, y') ).

Let α G Aut(£>2/ΰi) and suppose a(c) = c!. Then for all x,x' G D2,
θ(x,x',c,cf) Φ=̂> x' = α(x), so α is a definable map which we denote
/?c' Notice that βδ> is the unique element of Aut(£>2/-Di) which takes c to
c!. Since ^ isolates a complete type over Di every d G X realizes tp{c/D\).
Hence for any d e X there is an α G A\xt(D2/Dι) such that α(c) = J.

With these facts in hand we can define the necessary mappings and *.
Let r be the bijection from X onto A\it(D2/Dι) such that r(d) is the unique
7 G Aut(i^2/^i) such that /3j = 7. Define the binary operation on X by:
βj _ = βjβ€. Define * : X x D2 —> D2 by: J* α = τ(J)(α). Using the formula
θ(x,x',y,yf) a routine argument shows that and * are both c—definable.
Furthermore, r is a group action isomorphism of (X, , *) onto Aut(£>2/-^i)
This proves the claim, hence the theorem.

Remark 4-4-3- There may be many definable group actions isomorphic to
Aut(£>2/ Di); i e., many binding groups of D2 over D\. In the proof we picked
c to be any element satisfying ψo and realizing an isolated type over B. A
different isolated completion of ψo would lead to a different binding group.
The set of fundamental generators X used as the universe of the binding
group will be called the special set of fundamental generators.
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The proof of the Binding Group Theorem finds, for any c G l ( a special
set of fundamental generators), a copy of the binding group defined on X over
c. In the following corollary we show that while the action of the binding group
generally needs a parameter from X there is a single B—definable group that
works for all c.

Corollary 4.4.1. Let (£ be the universal domain of a t.t. theory, D\ an
0—definable set and D2 a B—definable set, where B C D\, which is finitely
generated over D\. Let c be a fundamental generator of D2 over Ό\ such that
r = tp(c/Dι) is isolated and let X = r(<£). For each c G X let (Gc,mc,*c)
denote the copy of the binding group definable over c, and let τδ denote the
isomorphism of Gδ onto Aut(D2/Dι) (as group actions on D2). Then there
is an B—definable group (G, o) and a formula e(x,y) such that

(1) G C Ό\q.
(2) For each c G X, e(x, c) defines an isomorphism eδ of (G, o) onto

(Gc-, δ ) .
(3) For each c G X let πδ = τδ€c, an isomorphism of (G, o) onto
Aut(D2/Dι). Let *δ be the definable action of G on Ό2 given by:
g * δ x = €c(g) *c χ — 7rc(d)x (for 9 £ G and x G D2Λ Hence πδ is an
isomorphism 0/(G, o,*δ) onto Aut(D2/Dι) as group actions.

(4) For each c G X, *g induces a regular group action of G on X.
(5) If η G Aut(D2/Dι), c G X and d = η(c) (also an element of X)

then for all g eG, πd

 1

Proof Let c G X. Since X C Ό\ (for some fc) X is finitely generated over D\.
In fact, there is a c—definable function / g mapping Df1 (for some ?n) onto X.
By Remark 4.4.1(iii) there is a B—definable G C D\q and a 5 U c—definable
bijection eδ mapping G onto X. Since G δ is defined on X there is definable
binary operation o on G such that eδ is an isomorphism of (G, o) onto (Gδ, c)
Since all elements of X realize the same type over D\ (hence the same type
over D\q) ej is an isomorphism of (G, o) onto (Gj, j) for any ά G X. This
proves (1) and (2).

There is really nothing to prove in (3), its role being solely to set notation
and viewpoint. Turning to (4) remember that X is a subset of D\, hence * δ

defines an action of G on X. Since all elements of X have the same type over
Dι the action is transitive. For any c G X, X C dcl{Dχ U c), hence only the
identity of G can fix c. In other words * g defines a regular action.

(5) Let g G G and # *c c = e. Then by definition of *c> ^ c ^ ) is the unique
element of Aut(D2/£>i) taking c to e. Since 7 is in Aut(Z)2/^i]> 9*dd = 7e.
That is, 7Γj(^) is the unique element of Aut(Z)2/^i) taking d to 7e. From
here it is easy to see that τrj(g) = 1

Remark 4-4-4- This corollary gives us the picture of binding groups most
useful in applications. Specifically, G C D\q is a definable group and there
are
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- a uniformly definable family of group actions { *δ : c G X } and
- a family of maps { πδ : c G X } such that

for each c € X, πδ is an isomorphism of (G, o, *g) onto Aut(D2/Di) (as group
actions on D2). From now on the term "binding group" refers to this copy of
Aut(D2/£>i) contained in D\q.

The Binding Group Theorem allows us to apply all of our knowledge
of CJ—stable groups to binding groups. In particular, when <£ is a 1—based
uncountably categorical theory the binding group is abelian-by-finite. The
strength of this fact will be discussed later in the context of the Ladder
Theorems.

The applicability of the Binding Group Theorem depends on the existence
of "many" sets which are finitely generated over a fixed set. The following
result is the key in the context of uncountably categorical theories.

Theorem 4.4.6. Let € be the universal domain of an uncountably categorical
theory, D an infinite A—definable set and a an element not in acl(A). Then
there is ab G dcl(AU{a})\acl(A) such that b is an element of an A—definable
set which is finitely generated over DO A.

The bulk of the proof of this theorem will be done in the context of
a t.t. theory satisfying an additional condition (which is always true in an
uncountably categorical theory).

Definition 4.4.4. Let <£ be the universal domain of a t.t theory, D an
A—definable set and Y f\—definable over A. Then Y is foreign to D over
A if for any set B D A and any a G Y which is generic over B, a is inde-
pendent from D\J B over A. For q a type over A, q is foreign to D if q(£) is
foreign to D over A.

Notice the potential asymmetry in the foreign relation; Y may be foreign
to D while D is not foreign to Y. This is possible because over a set B we
test for independence using an arbitrary subset of X and a generic element
ofY.

Theorem 4.4.6 will follow quickly from

Proposition 4.4.1. Let <£ be the universal domain of a t.t. theory, D an
A-definable set, p = tp(a/acl($)) and Y = p(C). IfY is not foreign to X
there is ab G dcl(A\J{a})\acl(A) such that b is an element of an A—definable
set which is finitely generated over D U A.

The proof of the proposition will be split between two results involving
the following concept.

Definition 4.4.5. Let £ be the universal domain of a t.t. theory, D an
A—definable set and Y /\ —definable over A. Then Y is said to be D—internal
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over A if for all a G Y there is a B D A such that a is generic over B and
a G dcl(B U D). If q is a type over A and q(<£) is D—internal over A we also
call q D—internal over A.

Remark 4-4-5- Let D be an 0—definable set in the universal domain of a t.t.
theory, and Y /\ —definable over 0. The proofs of the following observations
are left to the reader.

(i) When Y is finitely generated over D, Y is D—internal.
(ii) If Y is D—internal any conjugate of Y over 0 is D—internal.
(iii) p G S(acl(ψ)) is D—internal if for some a realizing p there is a B such

that a is independent from B and a G dcl(B U D).
(iv) If tp(a/acl(®)) is £>-internal and b G dcl(a), then tp(b/acl(V))) is

D—internal.
(v) If tp(ai/acl(ii)) is D—internal for i < n, and b is the name for

{αo,..., an}, then tp(b/acl(®)) is D—internal.

Notation. An /\ —definable set X over A which is the set of realizations
of a complete type over A is called a locus over A. Given an element α, the
locus of a over A is the set of realizations of tp(a/A). Note: the locus of a
over A is the orbit of a under the automorphisms of € which fix A.

Lemma 4.4.3. Let £ be the universal domain of a t.t. theory, D an infinite
A—definable set and Y a set D—internal over A such that Y is a locus over
acl(A). Then there is an A—definable set X D Y such that X is finitely
generated over DO A.

Proof. Without loss of generality, A = 0. The proof proceeds through the
following steps.

(a) Let a* G Y be generic over b* such that α* = /(J, 6*) for some
definable function f(x,b*) and d C D. Let q = tp(b*/αd(0)). Then
for all V realizing q and a' eY generic over 5', a' = f(d!,V) for some
d! C D. Without loss of generality, f(x,b*) is defined on all of Dk for
some k.

(b) Let B = {hi : z < α;} be a Morley sequence in q. Then for any
a eY there is a bi G B such that a = /(J, bι) for some d C D.

(c) There is an n < ω such that

(Vα G r)(3i < n)(3dc D)( a = /(d,6<) ).

(d) For 6 = 6o U ... U bn there is a single b—definable function g(z, b)
such that for any a eY, a = g{ά, b) for some d C D.

(e) There is a definable set X D Y such that the condition in (d) is
true with Y replaced by X.
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Proofs:
(a) Every type in 5(0) is stationary, hence for any b' realizing q and a' GY

generic over &', tp(a'b') = tp(ab*), which is sufficient.
(b) Let a be any element of Y. By Corollary 3.3.1 there is a bι G B which

is independent from α. Then, a = /(J, bi) for some J C D.
(c) By (b) and a compactness argument there is such an n.
(d) This step is accomplished with a simple trick for producing one de-

finable function from finitely many. Without loss of generality, n > 1. Define
the function g(z, b) on Dnk so that for all Jo ...,dn_e_Dk, g(do . •_• dn, b) =
f(di,bi), where i is the minimal index such that /(Ji,δi) φ f(dj,bj) for all
j φ i, if one exits, and i = n, otherwise.

To verify that g(z, b) maps onto Y let a G Y, i < n and di e Dk such that
a = f(di, bi). To obtain Jo,. . . , J n such that a = #(Jo, .., Jn? 5) it suffices
to find dj (for j φ i) such that f(dι,bι) = f(dι>,bι>) for all /, V φ i. Let
c e Y be generic over {6, J ,̂ α}. Then, for each j φ i there is a Jj such that
c = /(Jj,6j). This proves (d).

(e) Letting X = g(Dnk,b) meets the requirement.
This proves the lemma.

The reader should compare the following lemma and its proof to Propo-
sition 4.3.2.

Lemma 4.4.4. Let D be an A—definable set in a t.t. theory and Y a locus
over acl(A). IfY is not foreign to D over A there is ab G dcl(Au{a})\acl(A)
such that p = tp(b/acl(A)) is D—internal over A.

Proof. Without loss of generality, A = 0. Let Ϊ>Q be a finite set independent
from a and Jo C D such that a depends on Jo over 5o By Corollary 4.1.4
there is an element c such that

(1) c G acl(a),
(2) a is independent from 6o Jo over c, and
(3) c G dcl(dobo,..., JfcSfc), for some set B = {Joδo? , Jfcδfc} which is
a Morley sequence over a in tp(bodo/acl(a)).

Let b = 6o ... δfc, J = Jo ... dk and q = tp(c/acl(ψ)). Since a is independent
from 60 and £ is a Morley sequence over α, α is independent from b. Thus, c
is independent from b. Since d C D and c G dd(6J), g is D—internal.

To obtain a realization of a D—internal type which is in dcl(a) instead
of only acl(a) let 6 be a name for the (finite) set of conjugates of c over
α. Since any conjugate of q is D—internal, b is a finite set of elements each
realizing a D—internal type over acl($). By Remark 4.4.5, p = tp(b/acl(Φ))
is D—internal. This proves the lemma.

Proof of Proposition j^.j^.l. The proposition follows immediately from the
combination of Lemma 4.4.3 and Lemma 4.4.4.
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Proof of Theorem 4-4-6- Without loss of generality, A = 0. Let Y be the
locus of a over acl($). It suffices (by Proposition 4.4.1) to show that Y is not
foreign to D. Let M be a countable saturated model and b an element of Y
generic over M. Then there is a c G D such that tp(c/M) is strongly minimal
(by Corollary 3.1.2) and c G acl(M U {6}) (by Exercise 3.3.18). Thus, Y is
not foreign to D.

Our first reward is a proof of the Main Ladder Theorem.

Proof of Theorem 4-4-1- Without loss of generality, a £ acl(0). By Proposi-
tion 4.3.2 there is an element αo € dcl{a) such that αo is in an 0—definable
almost strongly minimal set DQ. NOW suppose αo,..., α* and Do, ,Di have
been defined to satisfy (l)-(5) up to i. If a G acl(Ai) let aι = a and end
the construction. Otherwise there is an aι G dcl(Ai U {α}) \ αcZ(^) and an
A{— definable set Di such that α̂  G D$ and Di is finitely generated over
Do U ... U A - i (by Theorem 4.4.6). Since A» C dcZ(α), α» G dcZ(α). By the
Binding Group Theorem (Theorem 4.4.5) G; = Aut(Di/D0 U ... U A - i ) is
definable, proving the theorem.

Proof of Theorem 4-4-%- The most important additional tool in this proof is
Lemma 4.3.9, which says

(ft) for any set A and a £ acl (A) there is a c G acl (A U {α}) such that
MR(c/A) = 1.

This fact is augmented with the following to obtain sets which are strongly
minimal in addition to having Morley rank 1. (This is just a restatement of
Lemma 4.1.3(ii).)

(tttt) For any a and finite set A there is an e G dcl(AU{a}) Πacl(A) such that
deg(a/AU{e}) = 1.

Let a be any element of the universal domain. The choice of elements α* and
sets Di proceeds as follows through several cases. The construction ends at
the first step in which α̂  is set to a. After defining these objects we will prove
the necessary properties of the binding groups.

Case 1. a £ acl(Ai). Let α̂  = a and Di be the set of realizations of
tp(a/Ai).

Case 2. a φ. acl(Φ) and i = 0. By ((1) there is a c G acl(a) such
that MR{c/%) = 1. If tp(c) is strongly minimal let ao = c and Do be
an 0—definable strongly minimal set containing c. If, on the other hand,
deg(c) > 0 choose e G dcl(c)Πacl(Φ) such that deg(c/e) = 1 (by (tttt)) In this
case we let αo = e, DQ = the set of realizations of tp(e), a\ = c and D\ a
strongly minimal set over αo which contains c.

Case 3. a £ acl(Ai) and DQ U ... U A_i is infinite. By (fl) there is a
c G acl(Ai U {a}) such that MR(c/Ai) = 1. Since D = Do U ... U D t_i is
infinite, Theorem 4.4.6 yields a c Έ dcl(AiU{c})\acl(Ai) such that cf belongs
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to an Ai -definable set which is finitely generated over D. Thus, we may as
well require c to belong to an Ai—definable set of Morley rank 1 which is
finitely generated over D.

If tp(c/Ai) is strongly minimal we let aι = c and A an Ai—definable
strongly minimal set which contains c and is also finitely generated over D.
If deg(c/Ai) > 1 we interpose another element of acl(a) as follows. By (jjjj)
there is an e G dcl(Ai U {c}) Π acl(Ai) such that deg(c/Ai U {e}) = 1; i.e.,
tp(c/Ai U {e}) is strongly minimal. Let α* = e and A the (finite) set of
realizations of tp(e/Ai). Let a*+i = c and A+i an Ai+\— definable strongly
minimal set. Notice that A+i is finitely generated over D 0 U . . . U A

The reader should observe that the described cases encompass all possi-
bilities (until an = a and the construction terminates). It remains to show
that (when Do U ... U A - i is infinite)

(b) d = Aut(A/A) U ... U A - i ) is definable over Do U ... U A - i and has
Morley rank < 1.

When Di is finite this is true by Lemma 4.4.2. Suppose Di is infinite. That
Gi is definable over Do U ... U A - i is simply by Corollary 4.4.1. Let X be a
special set of fundamental generators for Di over Do U ... U A - i and recall
that MR(Gi) = MR(X), which we have assumed is > 0. Since £>0U.. .UA-i
is infinite one of Do,..., A - i is strongly minimal. By Lemma 4.4.5(ii), for
any a E Di\acl(Ai), Di C acl(D0U.. .UA-iU{α}). Since X is a subset of Df
for some k, and all elements of X realize the same type over DoU...U A - i ,
MR(X) = MR(a/D0 U ... U A - i ) < 1. This proves (b) and completes the
proof of the theorem.

We turn now to the Simple Ladder Theorem, which will follow rather
quickly from

Proposition 4.4.2. Let £ be the universal domain of a t.t. theory, D\ an
infinite 0—definable set and D<ι a set which is finitely generated over D\ and
definable over B c D\. Let G be a binding group of D2 over D\.

(i) Suppose that B C C C D\ and f is a C—definable function from
D2 onto a set F. Let H be {h € G : ft is the identity on F}. Then H is
a C— definable normal subgroup of G. Furthermore, H = {1} if and only if
D2 Cdcl(D1UF).

(ii) Conversely, let H be a definable normal subgroup of G. Then there
is a definable set F, finitely generated over D\ such that for any c e X,
Ant(D2/D1 \JF) = πδ(H) and Aut(F/£>i) = Aut(D2/D1)/πδ(H). If H is
B—definable then we can take F to be the set of realizations of an isolated
type over D\.

Proof. For the statement of (i) to make sense the reader must observe that
the action of G on D2 extends in a unique way to an action of G on D2 U F.
Let X be the special set of fundamental generators of D2 over D\. In the
proof we freely draw on the notation used in Corollary 4.4.1. In particular,
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G is a definable group in D[q and for each c £ X, *δ defines an action of G
on D2 and a regular action of G on X.

(i) For any c £ X let φδ(x) be the formula x £ G Λ (Vy € F)(x*cV = y).
Then, if = y>g(C), hence if is definable over CU{c}. Since F is G-definable
and the elements of X all have the same type over D^q', y?δ is equivalent to </?j
for all C , J G I . It follows that H is C—definable. The reader should verify
that H is normal.

If D2 C dcl{D\ U F) then any h £ H must be the identity on D2; i.e.,
if = {1}. On the other hand, if a G D2 and a £ dcl(Dι U F) there is a 6 φ a
realizing tp(a/Dχ U F). By Lemma 4.4.1(iv) there is an h G G which maps a
to 6 and fixes every element of D\ U F\ that is, H φ {1}.

(ii) The set F will be the quotient of X by some Ό\— definable equivalence
relation.

Claim. Let F b e a Ό\ — definable set such that each * g defines an action of
GonY. For each c £ X define an equivalence relation Eδ on Y by:

Eδ(x, y) if and only if 37 G # ( 7 *cX = y)

Then for all c, J G X, Eδ is equivalent to Eg.

Note: For c G X and x G F, £7g(<£,a) =_πδ(H)x. Remember that the
action of Aut(D2/D1) on X is regular. Pick c, J G X and let 7 G Aut(D2/Dι)
be such that J = 7c. By Corollary 4.4.1, for any g G G, τrj(^) = 7 7Γc(̂ ) 7~1.
Since ff is normal πj(fί) = 7 πg(ίί) 7" 1 = πg(JEf). Thus, £j(C,z) =
π^(H)x — 7 Έc(H) - /y~1x = πδ(H)x = Eδ(€, x), proving the claim.

Now apply the claim with X = Y. Let E be the equivalence relation such
that for all x, y G X, E(x, y) holds if and only if there is a c G X such that
Eδ(x, y). Then £" is D\— definable. Let F be the set of E—classes of elements
of X. Since F C dcl(X UDi) any element of Aut(^2/-^i) extends uniquely
to an element of A\xt(F/Dι).

Claim. For any c G X, H = {g G G : g*δx = % for all x E F}.

Fix c G X and *g as an action of H on F. It is immediate from the
definition of E that any g G if is the identity on F. Conversely, suppose that
g *δ x = x ϊoτ all x £ F. Let J be any element of X and e = g *δ d. Since
# fixes every element of F (under *δ) d and e have the same type over F.
Then Jand e must be ϋ?—equivalent (since F is the set of .E—classes), hence
there is an h G H with e = h*δ d. Since the action of G on X is regular we
conclude that g = ft, proving the claim.

Since Aut(D2/F U Γ>i) = {7 G Aut(D2/£>i) : 7 is the identity on F } ,
the claim proves that Aut(£>2/F U £>i) = τrδ(H), for any c G l

Clearly, any element ofAut(F/Dι) extends to an element of Aut(Z>2/-Di)
Thus, the natural embedding of Aut (D2/D1) into Aut(F/£)χ) is surjective.
The kernel of this embedding is πδ(H) hence
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Aut(F/2)i) = Aut(D2/D1)/πc(H).

Finally notice that when H is B—definable, so is the equivalence relation
E. Remember that F = X/E. Since X is B—definable and all elements of X
realize the same complete type over Dι, the same is true of F. This proves
the proposition.

Proof of Theorem 4-4-3- To begin let D$,... ,Dι be a sequence of almost
strongly minimal sets and αo,...,αj = a a sequence of elements meet-
ing the requirements (l)-(5) of Theorem 4.4.1. Suppose, for example, that
G\ = Ant(Dι/Do) is infinite, nonsimple and not minimal abelian. Let H be a
definable normal subgroup of G. By Proposition 4.4.2 there is a Do—definable
set F, finitely generated over Do, such that Aut(F/DQ) = G\/H and
Aut(Di/A) U F) = H. Replace the original sequence Do,Dι,...,Dι by
DQ)F,DI,...,DI. Continuing this process produces a sequence of sets (in
finitely many steps) satisfying (l)-(3) in the statement of the theorem.

A much more refined picture can be obtained when the theory is 1—based.
Recall that a definable group in a 1—based theory is abelian-by-finite. Thus,
in a 1—based theory the connected component of any binding group is abelian.
The first part of the next lemma shows the strength of this condition.

Lemma 4.4.5. Let (£ be the universal domain of a 1—based uncountably cat-
egorical theory, D\ an infinite 0—definable set and D2 a set, finitely generated
over D\ and definable over B C D\. Let X be a special set of fundamental
generators of D2 over D\, c G X, (G, ,*c) the binding group of D2 over D\
(presented as in Corollary 4-4-V and πc the isomorphism of (G, ,*g) onto
A\it(D2/Dι). Suppose G is abelian.

(i) There is a B—definable action • of G on D2 such that for all c G X,
* — * c

(ii) Let a G D2 and Y the set of realizations of tp{a/D\). Then Y C
dcI(2?iU{o}).

Proof, (i) For each d G X, πj is a group action isomorphism, hence ^ j x =
πj(<7)z, for all g G G and x G D2. Let d and e be arbitrary elements of
X. There is a 7 G Aut(D2/Di) such that e = η(d) and, more to the point,
πe(g) = 77Γd(5f)7~1 Since G is abelian we conclude that for all g G G and
x G D2, g *j x = g *e x. Since the elements of X realize an isolated type
over Ό\ there is a D\ —definable action • of G on D2 such that • = *j f°r a ^
deX.

(ii) Simply because G is Aut(D2/i3i), Y is the orbit of a under the action
of G. Since G C dcl(Dι) and the action of G on D2 is definable over D\,
Y C dcl(Dι U {α}), as needed to prove the lemma.

Proof of Theorem 4-4-4- Combining Theorem 4.4.2 with Proposition 4.4.2
will prove the theorem. For € as hypothesized and a an arbitrary element
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let αό, . . . , a\ = a and DQ,...,D[ satisfy all of the requirements of Theo-
rem 4.4.2. We will find sets DQ,...,DU and elements α 0 , . . . , an = a satis-
fying the additional requirements of this theorem. These aι and Di will be
chosen so that the α̂  and Dj are among them. Suppose α o , . . . ,αi_i and
D o , . . . , A - i have been found satisfying the conditions of the theorem "up
to i - 1" and let D = Do U... U A - i Suppose j is minimal so that Dj is not
among D o , . . , A - i If -D̂  is finite let α* = α̂  and note that (5) holds for
Gi = Aut(Di/D) by Lemma 4.4.2. Now suppose Dj to be strongly minimal,
in which case H = A\it(Dj/D) has Morley rank 1. As a group H is definable
over Ai by Corollary 4.4.1. If H is strongly minimal, let A = D^ aι = a'j
and Gi = H. Assuming that άeg(H) > 1 let G be the connected component
of H, a strongly minimal normal subgroup of H which is Ai —definable. By
Proposition 4.4.2 there is a definable set F such that

- F is finitely generated over D,
- F is Ai—definable and the elements of F realize the same complete type

over D,
- AutiD'j/D UF)^G and

- Aut(F/D) ^ (H/G).

Since G has finite index in H, F is finite. Let Di = F, A + i = Dp ai any
element of F and ai+\ = oly Then Gi = H/G is finite and Gi+i = G is
strongly minimal.

That a strongly minimal group is abelian is proved in Corollary 3.5.5. We
proved in Lemma 4.4.5(i) that group action of Gi on Di is definable over
-DQ U . . . U Di-ι (since Gi is abelian). This proves the theorem.

Recipe. I'm sure you've worked up quite an appetite by now. After a long
day of mathematics there is nothing like a big plate of lasagna. This recipe
was given to me by Philipp Rothmaler in exchange for a preprint of [Bue87].

First we need a sauce bolognaise. Quickly brown 3/4 lb. of ground beef
with a large chopped onion. Add salt by taste and remove most of the grease.
Add 2 — 3 big chopped tomatoes, 2 — 3 tablesp. of tomato paste and the
spices thyme, oregano, basil, black pepper, paprika and minced garlic (by
taste). Cook under low heat until the tomatoes are saucy. (This could take
quite a while; have a glass of wine and start the next section.)

When the sauce bolognaise is nearly finished it is time for the sauce
bechamel. In a small sauce pan melt 3 tablesp. of butter and stir in 1 — 2
tablesp. of flour to make a smooth paste. Gradually add 1 cup of cold milk
under low heat, stirring until it thickens. Add salt to taste and a few pinches
of nutmeg.

The sauces, uncooked (sic) lasagna noodles and Mozzarella cheese are
layered in a backing dish as follows. In the bottom of the dish put a thin
layer of sauce bechamel, a layer of noodles and more bechamel on top. Then
comes the bolognaise, Mozzarella, noodles, bechamel, bolognaise, etc. End
the layering with a lot of Mozzarella on top. Cook at 350 for 30 minutes.



192 4. Fine Structure of Uncountably Categorical Theories

Historical Notes. With few exceptions the results in this section are due
to ZiΓber. They originally appeared in various papers, but are compiled in
[Zil93]. Binding groups are called liaison groups by some authors, most no-
tably Poizat (see [Poi87]).

Exercise 4.4.1. Prove (a) and (b) in Example 4.4.1(iv).

Exercise 4.4.2. Prove: If D<ι is finitely generated over Ό\ U A and Ό% is
finitely generated over D<ιUB, then D3 is finitely generated over D

4.5 Defining a Group from a Pregeometry

The canonical example of a nontrivial modular strongly minimal set is a
vector space. In fact, for any nontrivial modular strongly minimal set D there
is a vector space V such that the geometry associated to D is isomorphic
(as a geometry) to the geometry associated to V. In this section we show
(roughly) how to find V as a definable group in Deq from the pregeometry
D. More precisely, from a configuration of points, that can always be found
in a nontrivial modular strongly minimal set, a definable strongly minimal
group is constructed. By Theorem 4.3.4 this definable strongly minimal group
is a *—vector space. We will also analyze configurations of points leading to
definable fields. This will lead to a characterization of the strongly minimal
sets D containing a definable field in Deq.

The configuration of points alluded to above is defined as follows. Note
that the elements involved are not assumed to be from a strongly minimal
set.

Definition 4.5.1. Let <£ be the universal domain of an uncountably cate-
gorical theory. A 6—tuple of elements Q = (αi, (22,03,61,62,63) is called an
algebraic quadrangle if the following hold for any {i,j, k} = {1,2,3} and
tijk = {bi,aj,ak}.

(1) Q is pairwise independent and no element of Q is in αd(0).
(2) CLJ € ad(bi,ak).
(3) fceαcίίbjA).
(4) bi is interalgebraic with the canonical parameter oftp(aja,k/acl(bi)).
(5) For{i',j',k'} = {1,2,3}, ίijk is independent from iγj>k* over£ijkn

For A a set and Q a 6—tuple the notion Q is an algebraic quadrangle
over A is defined with the obvious adjustments in (l)-(5).

Remark 4-5.1. There are many variations on the above definition. All are
known under the general heading of "ZiFber's configuration", after Boris
Zil'ber who first isolated the notion and proved a variant of the following
theorem.
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Remark 4-5.2. If Q is an algebraic quadrangle and A is independent from Q,
then Q is an algebraic quadrangle over A. See Exercise 4.5.1.

The roles of the α '̂s and 6 '̂s is symmetric in the definition. Given an
algebraic quadrangle (αi, α 2, α3,6χ, 62,63) and π a permutation of {1,2,3},

( α π ( l ) , α π ( 2 ) , α π ( 3 ) , &π(l) > &π(2) > &TT(3))

is also an algebraic quadrangle.

The main theorem of the section is

Theorem 4.5.1. Let € be the universal domain of an uncountably categorical
theory and Q = (αi, a2, as, bι, 62,63) an algebraic quadrangle. There is a finite
set A independent from Q and A—definable sets X and G satisfying:

(1) There is a generic of X interalgebraic with a\ over A and deg(X) =
1.

(2) MR(G) = MR{b2).
(3) G is a connected definable group and there is a definable faithful

transitive group action of G on X.

Given an arbitrary uncountably categorical theory it is not at all clear that
(£ contains an algebraic quadrangle. However, we will see that a nontrivial
strongly minimal set in 1—based theory contains an algebraic quadrangle,
quickly leading to

Theorem 4.5.2. Let £ be the universal domain of a 1—based uncountably
categorical theory and D a nontrivial strongly minimal set over 0. There is
a finite set A and a strongly minimal group G definable over A such that a
generic of G is interalgebraic over A with an element of D\A.

As an application of Theorems 4.5.1 and 3.5.2 we offer Theorem 4.5.3,
which does not a priori have anything to do with groups.

Definition 4.5.2. Let D be a 0— definable strongly minimal set Then D is
said to be pseudomodular if there is a k < ω such that whenever X U {α, b} C
D and a £ acl(X U {b}), there is a Z C acl(X) Π D of cardinality < k such
that a e acl(Zu{b}).

Remark 4-5.3. A strongly minimal set D is pseudomodular if and only if
there is a A: such that MR(c/Q) < k, for c the canonical parameter of a
plane curve of D. For this reason some authors say pseudolinear instead of
pseudoprojective.

A modular strongly minimal set is pseudomodular with k = 1, while an
algebraically closed field is not pseudomodular. In fact,

Theorem 4.5.3. A pseudomodular strongly minimal set is locally modular.
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Throughout the section we assume the ambient theory to be uncountably
categorical, although many of the results hold in much greater generality.

An algebraic quadrangle will not lead directly to a definable group ac-
tion, but to an /\ —definable collection of maps between /\ —definable sets.
Obtaining a definable group action from this collection of maps requires the
following study.

4.5.1 Germs of Definable Functions

Here a definable function is identified with a name for the defining formula
in £eq. In this way a definable function is considered to be an element of the
universe.

Throughout this section the theory is assumed to be uncount-
ably categorical

(although we may restate this assumption to make results easier to reference).

Remark 4-5.4- (i) Let R be an A—definable binary relation on the universe
and X C dom(R) a locus over A such that the restriction of R to X defines
a function. Then there is an A—definable function / which agrees with R on
X.

(ii) Let g be an A—definable function and a G dom(g) such that tp(a/A)
is stationary. Then tp(g(a)/A) and tp(ag(a)/A) are stationary. (The proof is
left as Exercise 4.5.2.)

Definition 4.5.3. Let (£ be the universal domain of an uncountably cate-
gorical theory, A a set and X, Y infinite loci over A such that deg(X) =
deg(y) = 1. An element g is a generic map of X to Y if g is a definable
function and for all a £ X generic over g, g(a) G Y and {a,g,g(a)} is
pairwise independent over A.

When g is a generic map of X into Y we may also say g maps X to Y
generically.

Remark 4-5.5. In the definition all elements of X and Y are generic over A
since X and Y are loci over A. The assumption that X and Y are infinite is
made only to eliminate trivial cases.

Remark 4-5.6. Let A be a set and X, Y loci over A such that deg(X) =
deg(Y) = 1. Let g be a definable function.

(i) If a and b are elements of X generic over #, then tp(g(a)/A) =
tp(9(b)/A) and this type is stationary. Thus, g maps X into Y generically
if and only if for some a G X generic over g, g(a) G Y and {a,g,g(a)} is
pairwise independent over A.

(ii) If g maps X toY (generically) and c G Y is generic over g then there
is some b G X generic over g such that g(b) = c. Thus, g maps onto the
elements of Y generic over g.
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(iii) Suppose a G X,b G dcl(a, c)Γ\Y and {α, 6, c} is pairwise independent
over A. Then there is an ft G dcl(c) which is a generic map from X into Y
and takes a to b. (See Exercise 4.5.4.)

Let V be an algebraic variety. Morphisms g and ft are called generically
equal if there is an open set U on which g and ft are both defined and
agree. Being generically equal defines an equivalence relation on the "local
morphisms" of V. The class of a morphism g under generic equality is the
"germ of g".

Definition 4.5.4. Let (£ be the universal domain of an uncountably cate-
gorical theory, A a set and X, Y infinite loci over A such that deg(X) =
deg(y) = 1. Let g, h be generic maps of X into Y. We say g is generically
equal to h on X if for all a G X generic over {g, ft}, g{a) = h(a). The set X
is omitted from the term when it is clear from context.

L e m m a 4.5.1. Let X and Y be infinite loci over 0, g a generic map of X
into Y and B a set. If a £ X is generic over B U {g} then g{a) is generic
over B U {g}.

Proof. See Exercise 4.5.3.

L e m m a 4.5.2. Let X, Y and Z be degree 1 infinite loci over A. Let g map X
generically to Y and ft map Y generically to Z. Then hog maps X generically
to Z.

Proof. Without loss of generality, A = 0. Let a G X be generic over {g, ft}.

Claim, (i) g(a) is generic over ft.
(ii) {α, h o g, (ft o g)(a)} is pairwise independent.

(i) By Lemma 4.5.1.
(ii) By (i), h(g(a)) exists and is an element of Z such that {g(a), /ι, h(g(a))}

is pairwise independent. Again by Lemma 4.5.1, h(g(a)) is independent from
{#, h} and independent from a. Thus, {α, h o g, (h o g)(ά)} is pairwise inde-
pendent, proving the claim.

Let o G l b e generic over {g, h} and b G X be generic over hog. Then a is
also generic over hog, so a and b have the same type over hog. Thus, hog{b)
is defined, an element of Z and {6, h o <?, (h o g)(b)} is pairwise independent.
In other words, hog maps X generically to Z.

Generic equality is not generally an equivalence relation, however

Lemma 4.5.3. Let A be a set and X, Y infinite loci over A such that
deg(X) = deg(Y) = 1. Let g be a generic map of X into Y and Z a
B—definable set of generic maps of X into Y which contains g, where B D A.
Then there is a B—definable equivalence relation ~ such that for all ft, k G Z,
ft is generically equal to k if and only if ft ~ k.
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Proof. Let p G S(£) be the unique free extension of the type over A realized
by the elements of X. Since deg(X) = 1, p is definable over B. Since Z is
B—definable there is a formula /(#, z) over B such that for all c G Z, /(#, c)
is a generic map of X into Y with name c. Let ζ(υ) be the formula over B
defining Z and φ(x,y,z) the formula £(?/) Λ ζ(z) A (f(x,y) = f(x,z)). Let
θ(y, z) be the formula over B defining pφ (where p is a type in x). Then, for
all c, d G Z, the following are equivalent:

— c is generically equal to d,
-Ma e X generic over {c, d}, f(a,c) = /(α, d),
- <p(z, c, d) G p,
-M(c,d)-
This proves the lemma.

In algebraic geometry a germ of morphisms is an equivalence class X of
generically equal morphisms. This germ is identified with a generic map g by
defining g(a) to be h(ά) for any h in X such that α is in the domain of h and
a is generic over h. In other words, g is a canonical representative of X. We
define a germ similarly except we must be sensitive to the fact that generic
equality is definable only when restricted to a definable family of generic
maps.

Definition 4.5.5. Let A be a set and X, Y infinite loci over A such that
deg(X) = deg(y) = 1. A generic map g of X into Y is called a germ if

(*) for all h realizing tp(g/A), ifh is generically equal to g on X then h = g.

The next two lemmas give the existence of germs and useful tools for
working with them.

Lemma 4.5.4. Let A be a set and X, Y infinite loci over A such that
deg(X) = deg(y) = 1. Let h be a generic map from X to Y, a G X generic
over h and p G S(€) the unique free extension of tp(ah(a)/A U {h}).

(i) Given a generic map g from X into Y, g is generically equal to h if
and only if for any b G X generic over g, p is also the unique free extension
oftp(bg(b)/Aυ{g}).

(ii) The canonical parameter c of p is interdefinable with a generic map
from X into Y which is generically equal to h.

Proof Without loss of generality, A = 0. That tp(ah(a)/h) is stationary and
hence has a unique free extension in S(<£) is Remark 4.5.4(ii).

(i) See Exercise 4.5.5.
(ii) Note, c G dcl(h) so a is generic over {c, h}. The restriction of p to c is

stationary and {a,h(a)} is independent from h over c.

Claim. h(a) G dcl(a,c).
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Assuming the claim to fail there is a b φ h(a) realizing tp(h(a)/c, a) which is
independent from h over {c, α}, hence ab is independent from h over c. Thus,
tp(ab/c, h) — tp(ah(a)/c, h),sob = h(a). This contradiction proves the claim.

By Remark 4.5.β(iii) there is a g G dcl(c) which is a generic map from
X to y with #(α) = h(a). Since α is generic over {g, h} we conclude that g
is generically equal to h. By (i) p is definable over #, hence c G dcl(g). This
proves the lemma.

Lemma 4.5.5. Let A be a set and X, Y infinite loci over A such that
deg(X) = deg(y) = 1. Given a generic map g of X into Y the following
are equivalent.

(1) g is a germ.
(2) For any generic map h of X into Y which is generically equal to g
there is an a £ X generic over h such that g is a canonical parameter
oftp(ah(a)/Au{h}).

(3) For some set I of generics of X such that lU{g} is A—independent,

g G dcl({(a,g(a)) : aβ I}).

Proof. Without loss of generality A = 0.
(2) = > (1) Let a G X be generic over g. Let p € S(€) be the unique

free extension of tp{ag{a)/g). Let g' be a realization of tp(g) which is gener-
ically equal to g. By Lemma 4.5.4(i) p is also the unique free extension of
tp{bg'(b)/g'), for any b G X generic over g'. Thus, any a G Aut(<£) that maps
g to g' also maps p to itself. By (2) g is a canonical parameter of p, hence
a(g) = g. Thus, g' = g\ i.e., g is a germ.

(1) = > (3) Assume g is a germ and / C X is an infinite #—independent
set of elements generic over g. Let J = {(a,g(a)) : a G / } and suppose gr

realizes tp(g/J). Since / is infinite there is an a G / generic over {#, g1}. Since
g' and g have the same type over J, gf(a) = g(a). Then g' = g (because g is
a germ), hence g G dcl(J).

(3) ==> (2) Let I C X be a set of elements generic over g such that
g G dc/({ (α,<7(α)) : a £ I}. Without loss of generality, I is finite. By
Lemma 4.5.4(ii) there is a map h generically equal to g which is a canon-
ical parameter of po = tp(ag(a)/g), for some a G /. It remains to show that
g G dcl(h). Let J = {(b,g(b)) : 6 G /}. Since every element of J realizes
po and J is #—independent, J is a Morley sequence in po over g. Since /ι is
a canonical parameter of po, J is also a Morley sequence in po over h. In
particular, tp(J/h) is stationary and J is independent from g over /ι. Prom
g G dd(J) we conclude that g G dcl(h).

Corollary 4.5.1. Let X and Y be infinite loci over 0 such that deg(X) =
deg(y) = 1.

(i) Given a generic map g of X into Y there is a germ h G dcl(g) which
is generically equal to g.
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(ii) If R is an /\ — definable set (over $) of generic maps there is an
0 - definable function 7 such that for any f G R, η/(f) is a germ generically
equal to f. Let R' be the f\ —definable set η(R). We can choose 7 so that for
all ft, k G Rf, if h is generically equal to k, then ft = k.

Proof (i) Combine Lemmas 4.5.4 and 4.5.5.
(ii) See Exercise 4.5.6.

Corollary 4.5.2. Let X be an infinite loci over 0 of degree 1. If g is a germ
defined generically on X there is an 0—definable set Z such that Z is a set
of generic maps on X and for all ft, k G Z, if ft and k are generically equal
then ft = k.

Proof Let q = tp(g/A). There is a formula θ G q such that any ft satisfying
θ is a map defined generically on X. By the Definability Lemma there is a
formula σ{y,z) over A such that whenever |= θ(h) Λ θ(k), \= σ(h,k) if and
only if

Vα G X generic over {ft, /c}, ft(α) = k{a) <<=>• ft = k.
Any pair of realizations of q satisfies σ(y, z). The existence of Z now follows
by compactness.

Remark 4-5.7. Given X and Y as usual, there may well be distinct germs
g, ft mapping X generically to Y which are generically equal. By the same
token, when k maps X generically to Y there may be more than one germ
in dcl(k) which is generically equal to k.

Definition 4.5.6. Let £ be the universe of an uncountably categorical theory,
A a set and X, Y loci over A such that deg(X) = άeg(Y) = 1. The set
of germs from X into Y is denoted O(X,Y). Let O(X,X) = O(X) and
Ol{X,Y) the set of invertible elements ofO(X,Y).

Let Z be a degree 1 locus over A. With notation as in the definition,
composition maps O(X, Y) x O(Y, Z) into O(X, Z) in that, given g G O(X, Y)
and ft G O(Y, Z), there is a germ in O(X, Z) generically equal to hog. (So, in
fact, the composition of g and ft followed by the operation of taking a germ
generically equal to the hog maps (#, ft) to an equivalence class of generically
equal germs.) In this sense O(X) is closed under composition. From hereon,
when dealing with germs, composition will be denoted by instead of o.

Our goal is to find a definable group G C O(X) acting on a definable set
Xo D X. As an intermediate step we find an /\ —definable group contained
in O(X). The naive way to find a group contained in O(X) which is at least
Aut(C)—invariant is to close some locus R = r(<£) C Oi(X) under inversion
and composition. While this will yield a group H there is no reasons to think
it is /\ —definable unless there is a finite k such that each element of H is
fti1 . . . hε

k

k, where hi G R and e* = ±1, for i = 1,..., k. We will show that
there is such a bound k (and H is f\ -definable) if R has generic composition
(see Definition 4.5.7).

While not every germ is invertible we do have right cancelation:
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Lemma 4.5.6. Let X, Y and Z be degree 1 infinite loci over 0, h G O(X, Y)
and <7i, gi G C?(Y, Z). If g\-h is generically equal to g2 h then gι is generically
equal to g2> Thus g\ G acl(gι h,h).

Proof. Let a G X be generic over {<7i,#2?M Since gi(h(a)) = g2{h{a)) and
/ι(α) is generic over {#i,#2} (by Lemma 4.5.1), #i is generically equal to #2-

Lemma 4.5.7. Let H be an /\ —definable semigroup in an uncountably cat-
egorical theory which has right cancelation. Then H is a group.

Proof. Recall from Exercise 3.3.15 that (*) given φ(u,v) a formula and A =
{ ai : i < ω } a set such that |= φ{a^ a,j) if and only if i < j , A must be finite.
Given an a G H we must find a b G H such that ba = 1. By compactness it
suffices to show that for any definable X D H (on which is defined) there is
a b G X such that ba = 1. Pick an arbitrary definable X D H. Without loss
of generality, is defined on X x X and satisfies the right cancelation law on
X. Let X\ C X be a definable set such that H C X\ and for all x, y G XL,
x - y £ X. Let u|i? denote the formula (3iί; G XL)(W u = v). For m < n < ω,
a^Ίa71. By (*) there are m < n such that an\am. Using right cancelation on
X we get a b G X such that b - a = 1, completing the proof.

Definition 4.5.7. £e£ X be a degree 1 infinite locus over A and R C
α degree 1 infinite locus over A. We say R has generic composition if for
g, h G R independent, {g h,g, h} is pairwise independent and g h G R.

One preliminary lemma before getting to the main result involving generic
composition (which is essential to the proof of Theorem 4.5.1).

Lemma 4.5.8. Let X be a degree 1 infinite locus over A and R C O(X) a
degree 1 infinite locus over A with generic composition. Then for all f,g,h G
R there are j,k G R such that f g - h = j -k.

Proof. Let #2 be an element of R independent from {f,g,h}. Since R has
generic composition there is a g\ G R such that g = g\- gi and {g, 91,92} is
pairwise independent. By Lemma 4.5.6 g\ G acl(g, 92). Thus, / is independent
from g\ over {#,#2}- Since #2 is independent from {/, g}, f is independent
from g\ over g. From the independence of g and g\ we derive the independence
of / and g\. Let j = /' g\ and k = g2 - h. Since i? has generic composition
both j and k are in i2. The equation f - g - h = j - k completes the proof.

Theorem 4.5.4. Let X be an infinite locus of degree 1 over A in an un-
countably categorical theory and R C O(X) an infinite locus of degree 1 over
A with generic composition. There is an A—definable group H C O(X) which
is connected and has R as its set of generic elements.

Proof. Let Ho = RU {1} and A = 0. Let

H'o = { f : f is a generic map on X and / = g h for some g, h G HQ }.
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Since H'o is f\ —definable Corollary 4.5.1 can be applied to find an 0—definable
function 7 and an f\ -definable set H = η{H'o) such that

- for all / G H'o, η{f) is a germ generically equal to / and
- h = k whenever h, k e H are generically equal.

Without loss of generality, 7(/) = / whenever / G Ho; i.e., R C H. The key
properties of H are highlighted in

Claim, (i) If /, g G H agree generically on X then f = g.
(ii) H is closed under multiplication,
(iii) H has right cancelation.

(i) is part of the definition of H. For (ii) let /, g G H. There are /i, gι G
ίfo, for i = 1,2, such that / is a germ generically equal to /1 f<ι and # is
a germ generically equal to g\ #2- By Lemma 4.5.8 there are h\,h,2 G .fiΓo
such that /i/2<7i#2 = ^1^2 There is a unique h e H generically equal to
hιh,2, which we set equal to / g. H has right cancelation by Lemma 4.5.6,
completing the proof of the claim.

From Lemma 4.5.7 we conclude that H is a group. By Theorem 3.5.3, H
is not only /\ —definable, but definable. Since H is a group each element of
H is invertible. As a consequence

(*) whenever A C H, a G A and b G R is independent from A, b a is
interdefinable with b over A, hence MR(b α/Λ) = MR(b/A) = MR{R).

It remains to show that H is connected and R is the set of generics of H.

Claim. If a G H and 6 G -R is independent from α, then 6 α is in R.

Let c and d be elements of R such that a = c- d and {c,d} is independent
from b. Since i? has generic composition, b c is an element of R. By (*), b c
is generic over {c, d}. Thus, (6 c) d is an element of ϋ; i.e., b - a e R.

Let α be a generic of i/ and 6 G R generic over α. Then b α is generic; it
is also an element of R by the claim, hence the elements of R are generic. For
b, c £ R independent, b-c~ι is a generic in the connected component of H by
basic facts about generics. Moreover, b c~ι G R by the claim. Thus, iϊ is the
set of generics in the connected component of H. Since H° is closed under
multiplication and every element of H is a product of elements of R U {1},
H° = H. This proves the theorem.

We now make the jump from a definable group of generic maps on an
Λ -definable set to a definable group action.

Proposition 4.5.1. Let X be a degree 1 locus over 0 in an uncountably
categorical theory and G C Oi(X) a connected 0- definable group. Then there
is a definable group action (G,XQ,*) for some definable XQ such that

- the action of G on XQ is faithful and transitive;
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- X can be identified with a subset of XQ;
- for any g G G and x G X generic over g, g • x = g(x).

Proof We begin by addressing the problem of the elements of G only being
defined generically on X.

Claim. There is an /\ —definable set Y and a definable operation • such that

- (G, y, •) is a faithful transitive group action,
- X can be identified with a subset of Y, GX = Y, and
- for g G G and x G l generic over g, g • x = g(x).

Consider the set Z of pairs (#, α), where g G G and a £ X. Define an
equivalence relation ~ o n Z by: (g, a) ~ (gf, a') if and only if for every (some)
h G G generic over {g, α, g'', a'}, (hg)a = (hgf)af. (hg G O(X) and a is generic
over hg, so (hg)a is defined.) As usual, by the Definability Lemma, ~ is the
restriction to Z of an 0—definable equivalence relation. Let [g, a] denote the
~ —class of (g, a) G Z and Y the set of equivalence classes. We claim that
given go G G and (g,ά) G Z, if (#,α) ~ (g',a'), then (gog,a) ~ (gog',a').
(Given h e G generic over {<7θj<7Jfl

f/>α>α/}> <̂7o is generic over {g,g\a, α'},
hence (hgo)ga = (hgo)g'af.) Thus, the operation • given by g'*\g, a] = [^ ,̂ α]
defines an action of G on 7 . We may take • to be the restriction to G x Y
of a definable operation.

That the map O H [l,α] is an embedding of X into Y is clear since the
elements of G are invertible germs. The definition of Y shows that any y EY
is g*x for some x £ X and g G G.It follows quickly that (G, Y, *) is a faithful
transitive group action, completing the proof of the claim.

Let YQ be an 0—definable set containing Y such that

- • is defined on G x Yo,
- for all x G YQ and g,h G G, # * (h*x) = (pft) • x, and
- g*x = x = * 0 = 1 .

Let 0(υ) be the formula such that (= 0(α) if and only if for x G X generic over
α, (3^ G G)(g * x = a). Since all elements of X are in the same orbit under
the action of G, 0(C) D X. Let ^ = y 0 Π 0(C) and Xo = GY1. The reader
can verify that (G,Xo,*) satisfies all of the conditions of the proposition.

Corollary 4.5.3. Let X be a degree 1 locus over 0 in an uncountably cate-
gorical theory and R C O(X) a degree 1 locus with generic composition. Then
there is an 0— definable group action (H,Xo,*) such that

- He O(X) which is connected and has R as its set of generic elements;
- the action of H on XQ is faithful and transitive;
- X can be identified with a subset of XQ;
- for any g G H and x G X generic over g, g* x — g{x).

Proof. Simply combine Theorem 4.5.4 and Proposition 4.5.1.
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Of course, this corollary is useless unless we can find a locus of germs with
generic composition. Any instance in which we can prove such a locus exists
is a special case of the next proposition.

Proposition 4.5.2. Let X, Y and Z be loci over acl(fy) in an uncountably
categorical theory and suppose there are f G O(X, Y) and g G O(Y, Z), both
invertible, such that {/, g, g-f} is pairwise independent and MR(f), MR(g) <
ω. Then there is a locus (over acl(®)) R C O(X) of invertible germs such
that R has generic composition and MR(R) = MR(f).

Proof. Since {f,g,g /} is pairwise independent and each element of the
set is algebraic in the other two (by the invertibility of / and g) MR(f) =
MR(g) = MR(g /) = a. Let F be the locus of / over αd(0), G the locus of
g over acl(Φ) and H the locus of g / over acl(Φ). Let /o be an element of F
generic over / and R the locus of f^1 / over acl{%). One preliminary claim
before showing that R has generic composition:

Claim. For independent k, I G R there is an independent {mo, mi, ra2,7713} C
F such that k — TTIQ1 mi and / = m^1 m^.

If {/o, Λ, /2> h} C F is independent then k' = f^1 f\ and V = f^1 h a r e

independent elements of R. The claim follows from the conjugacy over αd(0)
of all independent pairs in R.

Thus, to prove generic composition in R it suffices to show

Claim. Given {/o,/i,/2,/3}cF independent there are / 4 , / 5 G F such that
/o"1 Λ Λ"1 h = Λ"1 Λ and {/o"1 Λ,/^ 1 /a,/*"1 /5} is pairwise
independent.

Let g e G be generic over {/0, /1, /b, /s} As a first observation:

{9 ' fo,9 ' /1, /o"1 /1} is pairwise independent. (4.6)

(Since {<?, /o, Λ} is independent MΛ(0./o//<Γ17i) > MR{g-fo/{g, / 0, /1}) =
MΉ(# * /o/{0, /o}) = MJR(# /o). That is, g / 0 is independent from /Q"1 fλ.
Similarly g /1 is independent from Z^"1 /1 and g /o is independent from
0 /iO

Write (f0

 λ fi) as (g - fo)~λ' (g' fi), where (# /o)" 1 is independent from
G? /i)by (4.6). From

- (ft1 - fύΛfϊ1 - h) e R;
-(_9'fo)Λ9 fi)eH;

- Cίi = {/o X f\,9 ' /o} is independent and

- δ2 = {/2"1 * hi 9 ' /1} is independent;

we conclude that tp(άι/αcl((/})) = tp(α2/αcl(Φ)). Thus there is an h G H
independent from g /1 such that f2

l' h = (9'h)~l'h.lt is routine to verify
the independence of g f0 from {g-fι, fe173}, hence (g-fo)'1 is independent
from ft. So, by the conjugacy over αd(0) of {(g /1)" 1, Λ} and {(g /o)" 1 , ft},
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(d'fo)"1 -h is equal to /f1 -/5, for some independent / 4 , / 5 e F. The pairwise
independence of {f^1 -/i, fe1 -/3, /f1 -/5} follows from a rank calculation like
that done at the beginning of the proof. This proves the claim and completes
the proof that R is a locus of invertible germs with generic composition. The
reader should show that any f^-fi^R can be written as l~λ m for some
Z,ra G H with {Z,ra, /i} independent. Thus, MR(f^1 /i) = α. This proves
the proposition.

Corollary 4.5.4. Let X and Y be infinite loci of degree 1 over 0. Suppose
there is an invertible germ in O(X, Y) and there is an n < ω such that
MR(f) < n for all invertible f G O(X,Y). Then there is a locus (over
acl(0)) R C O(X) of invertible germs which has generic composition.

Proof. Let g G O(X, Y) be an invertible germ whose type over 0 has maximal
Morley rank, C the locus of g over acl(Φ) and m = MR(C). Note: any
invertible / G O(X) (or O(Y)) realizes a type of Morley rank < m over 0.
(Without loss of generality, g is independent from /. Then g- f G O(X, Y) is
interalgebraic with / over g, hence n = MR(g) > MR(g /).) Let h G C be
generic over g. Since h~ι g is an invertible germ in O(X), MR{h~ι g) <
m. A rank calculation shows that {g,h~1,h~1 g} is pairwise independent.
Proposition 4.5.2 can be applied to find the locus R.

The main application of Proposition 4.5.2 is

Proposition 4.5.3. Let X and Y be loci of degree 1 over 0 in a 1—based
uncountably categorical theory and suppose there is an invertible germ in
O(X, Y). Then O(X) contains a connected group f\— definable over acl($)
and having Morley rank MR{X).

Using existing results the proof will follow quickly from

Lemma 4.5.9. Let X and Y be infinite loci of degree 1 over 0 in a 1—based
uncountably categorical theory and g G O(X,Y). Then MR(g) = MR(Y).

Proof Let a G X be generic over g, b = g(ά) and recall that {#, α, b} is
pairwise independent simply because g is a generic map. By Lemma 4.5.4(ii)
and the 1—basedness of the theory g G acl(a,b), hence g is interalgebraic
with b over a. Thus, MR(g) = MR(g/a) = MR(b/a) = MR{b) = MR(Y),
proving the lemma.

Proof of Proposition J^.δ.S. Since there is an invertible germ in O(X,Y),
MR(X) = MR(Y). By Lemma 4.5.9 any invertible germ in O(X,Y),
O(Y,X) or O(X) realizes a type of Morley rank MR(Y). Then, given in-
vertible /, g G O(X, Y) independent, a standard rank calculation shows that
ί/" 1^/" 1 * 9} is pairwise independent. By Proposition 4.5.2, O(X) con-
tains a locus R over acl(Φ) with generic composition with MR(R) = MR(f).
There is an αc/(0)—definable connected group G C O(X) which has R as its
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set of generic elements (by Theorem 4.5.4). Noting that MR(G) = MR(X)
completes the proof.

4.5.2 Getting a Group from an Algebraic Quadrangle

In this section Theorem 4.5.1 and its corollaries are proved. Theorem 4.5.4
reduces the problem to finding in O(X) for some X a locus of germs (with
a special relationship to a\) which has generic composition. The theme is to
successively replace the original algebraic quadrangle by a "nicer" quadrangle
until (many of) the algebraic closure relations in the quadrangle are instances
of definable closure. A definition is needed to state the key result. Remember
that every theory in this section is assumed to be uncountably categorical.

The following illustrates the relationship between algebraic quadrangles
and group actions.

Remark 4-5.8. Let K be an algebraically closed field and G the group of
affine transformations on K (see Example 3.5.3). Let h, g £ G be independent
generics and a £ X generic over {/i,g}. Then (a,h(a),g~1h(a),h,g~1,g~1h)
is an algebraic quadrangle. (The verification is left to the reader.)

Definition 4.5.8. Let A be a set and Q = (αi, 02,03,61,62,63), Qf =
( α ^ α ^ , ^ , &i,ί>2^3) algebraic quadrangles over A. Then Q is interalgebraic
with Qf over A if for all 1 < i < 3, aι is interalgebraic with a[ over A and bi
is interalgebraic with b\ over A.

Proposition 4.5.4. Given an algebraic quadrangle Q = (01, 02,03,61,62,63)
there is a finite set A independent from Q and Q1 = (a[,af

2, a3, 6'1? 63,63) an
algebraic quadrangle over A such that

(1) Q and Qf are interalgebraic over A,
(2) a[ and af

3 are interdefinable over AU{bf

2}, and
(3) a2 and a'3 are interdefinable over A U {b[}.

The proposition will be proved in several stages, finding progressively
"nicer" algebraic quadrangles over increasingly large sets of parameters. To
simplify the notation we will replace at each stage the original algebraic
quadrangle Q by the nicer one and absorb the parameters into the language.

L e m m a 4.5.10. If Q = (ai,O2>^3>&i>&2,^3) is an algebraic quadrangle and
for each 1 < i < 3, a[ is interalgebraic with aι over 0 and b\ is interalgebraic
with bi over®, then Q1 — (a[, a ^ o ^ t ί , &r>, ^3) *5 an algebraic quadrangle.

Proof. The proof quickly reduces to showing that, for instance, 63 is interal-
gebraic with the canonical parameter oίtp(a/

1a
f

2/acl(bf

3)). This is not difficult
using that {α^,02,63} is pairwise independent, a[ is interalgebraic with a2

over 63, and the corresponding fact is true in Q. See Exercise 4.5.7.
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Part of the definition of an algebraic quadrangle is that the iijk's are
independent over their intersections. Using the independence of other sets we
can show in addition

L e m m a 4.5.11. Let Q = (01,02,03,61,62,63) be an algebraic quadrangle
and {i,j,k} = {1,2,3}. Then {6j,6fc} is independent from {θj,θfc} over 6̂ .

Proof. The proof is a two line exercise left to the reader.

The next lemma will see extensive use.

L e m m a 4.5.12. Let Q = (01,02,03,61,62,63) be an algebraic quadrangle
and 1 < i < 3. A realization a of tp(aι/Q \ {ai}) is interalgebraic with
cii over 0. Thus, letting e be a name for the (finite) set of realizations of
tp(a{/Q \ {ai}), e is interalgebraic with ai and e G dcl(Q \ {ai}).

Proof. Without loss of generality, i = 3.

Claim, a and 03 are interalgebraic over b\ and interalgebraic over 62.

Since 02 and as are interalgebraic over b\, 02 and a are interalgebraic over
61. Thus, a and as are interalgebraic over b\. Similarly, a is interalgebraic with
as over 62.

Let c be the canonical parameter of ^(003/00/(6162)). Since as is inde-
pendent from {61,62} and a G 00/(03,61), aas is independent from {61,62}
over 61. Thus, c G acl(b\). Similarly, c G 00/(62). Since 61 is independent from
62, c G acl(Φ), hence aas are interalgebraic over 0.

It is clear from the first part of the lemma that e is interalgebraic with
ai. Since e is the name of a set definable over Q \ {α^}, e G dcl(Q \ {ai}),
completing the proof.

Lemma 4.5.13. Let Q = (01,02503,61,62,63) be an algebraic quadrangle.
There are b[Ja

/

2, a'3 and a finite set A such that

(1) A is independent from Q;
(2) Q' = (01,02,03,6^,62,63) is an algebraic quadrangle interalgebraic

with Q over A; and
(3) a'z

Proof Let d<ι be a realization of tpfo/aclffl) which is independent from Q.
Since 62 is independent from {61,02,03},

ίp(d2/{6i,θ2,o3}) =^(6 2 /{6i,θ2,o 3 }),

hence there are ci, d3 so that Qo = (ci, α2,03,61, d2, d3) realizes tp(Q/ΌcZ(0)).
Let 02 be a name for the finite set of realizations of tpfa/Qo \ {02}). Then
02 G dcl(Qo \ {02}) and 02 is interalgebraic with 02 over 0 by Lemma 4.5.12.

Now fix A = {0*2} as a set of parameters, b[ = {61, ds} and 03 = {03, ci}.
Let Q' = (01,03,03,6^,62,63). Then Q' is an algebraic quadrangle over A,
interalgebraic with Q over A, and a'2 G dcl(A U {03,6^}) as desired.
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Lemma 4.5.14. Let Q = (αi,α2,α3,61,62,63) 6e an algebraic quadrangle
in which a2 G dc/(θ3,6i). Then there are bf

2 interalgebraic with 62 and a[
interalgebraic with a\ such that a[ G dc/(θ3,62).

Proof. Since tp(aι/asb2) is algebraic there is a 62 interalgebraic with 62 so
that tp(aι/asbf

2) implies tp(aι/{as}Uacl(b2)). Using Lemma 4.5.11 it follows
that

ίp(αi/{α3,62}) implies tp(a1/{a3,bub
/

2jbs}). (4.7)

Claim. If o realizes tp(aι/{as,bf

2}) then a\ and a are interalgebraic.

Given a realizing tp(αi/{θ3, 62}), a also realizes tp(aι/{a,s, 61,62,63}), by
(4.7). Since a2 G dc/(θ3,6i), a realizes £p(αi/{θ2,03,61,62,63}). The 6—tuple
(01,02,03,61,62,63) forms an algebraic quadrangle, so Lemma 4.5.12 forces
CL\ and o to be interalgebraic as claimed.

Let a[ be the (finite) set of realizations of φ(θi/{θ3,62}), which is hence
in dcZ(θ3,62). By the claim a[ is interalgebraic with αi, proving the lemma.

Lemma 4.5.15. Let Q = (01,02,03,61,62,63) be an algebraic quadrangle in
which a2 G dcZ (03,61) and a\ G dcl(as,b2). Then there is a d3 independent
from Q and there is Qf = (a^a^a^b^b^b^) an algebraic quadrangle over
ds, interalgebraic with Q over d^ such that

(1) a[ and a'3 are interdefinable over {b'2,ds}, and
(2) α2 and a'3 are interdefinable over {6Ί,d3}.

Proof. First let 03 G dcl(Q \ {as}) be interalgebraic with 03 (which ex-
ists by Lemma 4.5.12). Let ds be a realization of tp(bs/acl{$)) which is
independent from Q. Find d\ and c2 so that tp(c2d\ds/acl(b2,aι,as)) =
tp(a2bιbs/acl(b2,aι,as)). Note that a'3 G dcl(ai,c2,di,b2,ds). Let a[ =
(ciι,c2) and 62 = (62,di). Summarizing, we have α^, 03, 62 and ̂ 3 so that

- Qo = (^i, α2,03,61,62,63) is an algebraic quadrangle over 0*3 interalgebraic
with Q over d3,

- a3 G dc/(αi,62,^3), and
(α(>,62,d3).

Similarly we find elements d2 and c\ so that ίp(cid2d3/αd(6iα2α3)) =
^(^16263/00/(610203)). Let o 2 = (o 2, ci) and 6i = (61, d 2 ). Drawing together
the accumulated properties:

— Q' = (oi, o2,03,6i, 62,63) is an algebraic quadrangle over d3 interalgebraic
with Q over d3,

- 03 G dd(oi ,6 2 ,d 3 ) ,

- 03 G dc/(o2,6i,d3), and

- o 2 G d c / ( o ^ 6 i , d 3 ) .

This proves the lemma.
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Proof of Proposition 4-5.4- Combine Lemmas 4.5.13, 4.5.14 and 4.5.15.

A quadrangle with this amount of definable closure produces a group of
germs acting generically on the locus of any of the α '̂s over acl(Φ):

Proposition 4.5.5. Let Q = (αi, a2, as, 6i, 62, 63) be an algebraic quadrangle
in which a2 is interdefinable with a$ over b\ and a\ is interdefinable with a3

over 62 Let X be the locus of aι over acl($). Then there is a connected group
G C O(X), definable over acl(9), such that MR(G) = MR{bi).

Proof. Let X, Y and Z be the loci over acl(β) of a±, a2 and α3, respectively.
Since a\ and a% are interdefinable over 62 and {αi, 03,62} is pairwise indepen-
dent there is / G acl(b2) which is the germ of an invertible generic map from
X into Z with f(a\) = a%. By Lemma 4.5.5 / is the canonical parameter of
tp(Q>io>s/f), which is also the canonical parameter of tp(a\as/acl(b2)). From
one clause in the definition of an algebraic quadrangle / is interalgebraic with

62.

Similarly let g be an invertible germ in Ό(Z, Y) such that g(a3) = a2 and
g is interalgebraic with b\. Then g / is an invertible germ from X to Y, a\
is generic over g / and g f{a{) = a2.

Claim, g / is interalgebraic with 63.

The germ g-f is definable over {61, b2} and a\ is generic over {61,62}? hence
#•/ is interdefinable with the canonical parameter coΐp = tp{a\a2/acl(b\, b2))
by Lemma 4.5.5. Since 63 G acl(bχ, b2) p is also tp(aιa2/acl(bι,b2,bs)). Since
Q is an algebraic quadrangle a\ is interalgebraic with a2 over 63, thus p is
the unique free extension of tp(aιa2/acl(bs)). Hence both c and g / are not
only algebraic in 63 but interalgebraic with 63 as claimed.

By the claim and the pairwise independence of {61,62,63} {f,g,g /}
is pairwise independent. By Proposition 4.5.2 and Theorem 4.5.4 there is a
connected group G C O{X), definable over αd(0), with MR(G) = MR(f) =
MR(bi).

Proof of Theorem 4.5.1. Let Q = (αi, 02,03,61,62,63) be the hypothesized
algebraic quadrangle. By Proposition 4.5.4 there is a finite set A independent
from Q and an algebraic quadrangle Q' = (a[,a2,a^b'^b^b^) over A! such
that

(1) Q and Q' are interalgebraic over A',
(2) a[ and af

3 are interdefinable over A! U {6ί>}, and
(3) o!2 and af

3 are interdefinable over A! U {6Ί}.

Proposition 4.5.5 yields a connected group G of germs acting generically on
X' = the locus of a[ over acl{A') which is definable over acl{A') and has
Morley rank = MR{b2). By Proposition 4.5.1 there are:

- a finite A C acl(A');
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- an A—definable degree 1 set X D Xf;
- an A—definable transitive group action of G on X.

This proves the theorem.

Theorem 4.5.2 will follow from a slightly more general result stated mo-
mentarily. An uncountably categorical theory with universal domain <£ is triv-
ial if for all A there is no set {A§,A\,AΪ\ which is pairwise A—independent
but not A—independent. Note: When <£ is strongly minimal this definition
agrees with the earlier definition of a trivial strongly minimal set. The set
of elements X = {00,01,02} is an algebraic triangle over A if X is pairwise
A—independent and for each i < 2, α* G acl(A U X \ {α^}) \ acl(A).

Theorem 4.5.5. An nontrivial 1—based uncountably categorical theory con-
tains an infinite definable group.

This theorem follows from the next two results.

L e m m a 4.5.16. Let £ be the universal domain of a 1—based uncountably
categorical theory and A, A$, A\ and A<ι sets such that {Ao,^4i, A2) is pair-
wise A—independent but not A—independent. Then there are aι G acl(AiUA),
for i < 2j such that {00,01,02} is an algebraic triangle over A.

Proof. Without loss of generality each Aι is finite and A = 0. Find αo G
acl(Ao) Π acl(Aι U A2) so that AQ is independent from A\ U A2 over αo Also
choose a\ G acl(Aι)Πacl(AoUA2) with A\ independent from AQΌA2 over a\
and 02 G acl(A2) Π acl(Ao U A\) with A2 independent from AQ U A\ over 02.
The pairwise independence of {Λo,^4i, A2} forces {αoj^i?^} to be pairwise
independent. Since αo £ acl(A\ U A2) and A\ is independent from {αo} U A2

over αi, αo G αc/({αi} U A2). Continuing this reasoning αo G αc/(αi,α2).
By the symmetric roles of the α '̂s in this proof, a\ G αd(αo,α2) and 02 G
αc/(αo,αi), proving the lemma.

Proposition 4.5.6. Let <£ be the universal domain of a I—based uncountably
categorical theory containing an algebraic triangle P = {co, ci, C2}. Then there
is a finite set A, independent from P, an A—definable connected group G, an
A—definable set X and an A—definable transitive action ofG on X such that
c\ is interalgebraic over A with a generic of X and MR{G) = MR(X).

Proof An algebraic quadrangle containing P is found as follows. First rename
the elements of P as 62 = Co, a\ = c\ and as = C2. Let b\a2 be a realization of
tpfoai/as) independent from 62^1 over 03. Let 63 be the canonical parameter
of tp(aia2/acl(bι,b2)). We will show that Q — (αi,02,03,61,62,63) is an
algebraic quadrangle.

Claim. 62 is interalgebraic with the canonical parameter of tp{a\03/00/(62))-
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The canonical parameter c of tp{a\a^ /'00/(62)) is in 00/(62) and 62 is indepen-
dent from 0103 over c. Since 62 G 00/(01,03), 62 G acl(c) as claimed.

Since ^(6102/03) = ^(^2^1/^3)? 61 is interalgebraic with the canonical
parameter of ^7(0203/00/(61)). The element 63 was chosen as the canonical
parameter of tp{a\a2/Όc/(63)). The remaining steps in the verification that
Q is an algebraic quadrangle are organized in

(a) {01,02,63} is an algebraic triangle.
(b) {61,62,63} is pairwise independent.
(c) {61,62,63} is an algebraic triangle.
(d) For {i,j,k} = {i',j',k'} = {1,2,3}, 4jfc is independent from 4' j '* '
over 4 j fc Π iiΊ>k> (where ^ j f c = {6*, aj,ak}).

(a) The 03—independence of 0162 and 0261 forces a\ and α2 to be independent
from 6162. Since 63 G 00/(61,62), {^1)^2,63} is pairwise independent. a\ and
α2 are interalgebraic over 63 because these elements are interalgebraic over
6162. The theory is 1—based so 63 G αc/(αi,α2), proving (a).

(b) Again the selection of the elements {αi, 02,03,61,62} yields the inde-
pendence of 61 from a\d2 and 62 from αiα 2 . Thus {61,62,63} is pairwise
independent.

(c) <22 is independent from 616263 and 61 G 00/(62,63,02), so 61 G 00/(62,63).
Similarly 62 G 00/(61,63). It has already been noted that 63 G 00/(61,62),
hence {61,62,63} is an algebraic triangle.

(d) The cases not explicitly verified above are left to the reader.

Thus, Q is an algebraic quadrangle. By Theorem 4.5.1 there are:

— a finite set A independent from Q\
— an A—definable set X of degree 1 containing a generic interalgebraic with

01 over A;
— an A—definable connected group G and A—definable transitive action of

G on X with MR{G) = MR(b2).

Since Miϊ(62) = MR(c0) = MR(a) = MR{aλ) = MR{X), MR(G) =
MR(X). This proves the proposition.

Proof of Theorem J±.5.5. This follows immediately from Lemma 4.5.16 and
Proposition 4.5.6.

Completing our applications to 1—based theories we have:

Proof of Theorem 4-5.2. Being nontrivial D contains a finite B and {co, ci, 02}
which is an algebraic triangle over B. By Proposition 4.5.6 there is a finite
ADB and a connected A—definable group G of Morley rank 1. A connected
group of Morley rank 1 is strongly minimal. Since the theory is uncountably
categorical we can choose A large enough so that an element of G \ acl(A) is
interalgebraic over A with an element of D \ acl(A).
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Corollary 4.5.5. Given a nontriυial locally modular strongly minimal set D
there is a finite set A and a strongly minimal group G over A such that a
generic of G is interalgebraic over A with an element of D \ acl(A) and G
is a *—vector space over some division ring F. Thus the geometry associated
to DA is protective geometry over F.

Proof. The existence of G and its relationship to D is simply by Theo-
rem 4.5.2. By Theorem 4.3.4 G is a *—vector space over the division ring
F = End*(G). The geometry associated to G is a projective geometry over
F. The relation of being interalgebraic over A defines a one-to-one corre-
spondence between the elements of the geometry associated to G and the
geometry associated to DA- In other words the geometry associated to G is
isomorphic to the geometry associated to DA, completing the proof.

Remark 4..5.9. A more sophisticated series of arguments shows that when
D is locally modular and nonmodular there is a strongly minimal group
definable over acl(Φ), an 0-definable equivalence relation E with finite classes
and an αd(0)—definable regular action of G on the strongly minimal set
D' = { a/E : a £ D}. Thus the geometry associated to D' (which is also the
geometry associated to D) is affine geometry over the vector space G/G~.
See [Hru87].

Our final installment in this study of defining groups is Theorem 4.5.3.
This is proved by assuming to the contrary the theory contains a pseudomod-
ular strongly minimal set which is not locally modular, proving the theory
contains an infinite definable field, and that this leads directly to a contra-
diction.

Lemma 4.5.17. Let D be a strongly minimal set such that for some A there
are A—definable operations + and under which D is a field. Then D is not
pseudomodular.

Proof. This follows quickly from Example 4.2.2(iii).

L e m m a 4 .5 .18. Let D be a strongly minimal set, A a finite set, a £ D \

acl(A) and a' £ acl(A U {a}) Π D', for Dr an A—definable strongly minimal

set. Then D is pseudomodular if and only if D1 is pseudomodular.

Proof. See Exercise 4.5.8.

Proof of Theorem Jf.,5.3. Suppose to the contrary t h a t D is pseudomodular,

not locally modular, and k > 1 is the maximum Morley rank of a plane curve

in D. Let ai,a3 £ D and b2 be such t h a t tp(a\a^/b2) is strongly minimal,

62 is the canonical parameter of this type and M # ( 6 2 ) = k. Let a2bι be

a realization of tp(aιb2/a%) independent from a\b2 over 03. Let 63 be t h e

canonical parameter of p = tp(aιa2/acl(bι,b2)). Since p is strongly minimal

63 is the name for a plane curve in D hence MR(bs) < k.
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Claim. Q = (aι,a2,(23,61,62,63) is an algebraic quadrangle.

As a first step 63 G 00/(61,62) because it is the canonical parameter of a
type over acl(bι,b2). From the a^—independence of a\b<ι and 0261, a\a^ is
independent from 616263 over 62. Since α3 G acl(bχ163,01), αiα3 is indepen-
dent from 616263 over 6163. Thus 62 = the canonical parameter oitp{aιa^/b2)
is in αd(61,63). In other words, 62 and 63 are interalgebraic over 61. From
this relation and MR(bs) < k we conclude that MR(bs) = k and {61,62,63}
is pairwise independent. Similarly 61 G 00/(62,63). The remaining steps in
showing that Q is an algebraic quadrangle are left to the reader.

By Theorem 4.5.1 there is a finite set A, an α' G acl{A U {02}) which is a
generic of an A—definable strongly minimal set D' and an A—definable group
G acting transitively on D' such that MR(G) = MR(b2). By Lemma 4.5.18
D' is pseudomodular, while there is a definable field structure on D' (perhaps
with extra parameters) by Theorem 3.5.2. This contradicts Lemma 4.5.17 to
prove the theorem.

Historical Notes. Algebraic quadrangles were developed by Zil'ber in his
proof that a totally categorical theory is not finitely axiomatizable. His most
up to date treatment is found in [ZΠ93]. The proof given here is based on the
more general results proved by Hrushovski. One source for this material is
Bouscaren's article in [NP89]. It is also found in [BH]. A more complete set of
results can be found in [Pil]. Theorem 4.5.3 was first proved (using methods
different from those here) by Buechler and Hrushovski [Bue91].

Exercise 4.5.1. Prove Remark 4.5.2

Exercise 4.5.2. Prove Remark 4.5.4

Exercise 4.5.3. Prove Lemma 4.5.1

Exercise 4.5.4. Prove Remark 4.5.6(iii)

Exercise 4.5.5. Prove Lemma 4.5.4(i).

Exercise 4.5.6. Prove Corollary 4.5.1.

Exercise 4.5.7. Let € be the universal domain of an uncountably categorical
theory and {αi,<22,6} a pairwise independent set such that a\ G acl(a2,b)
is and 6 is interalgebraic with the canonical parameter of tp(a\a2/'acl(b)).
Suppose a\ is interalgebraic with α̂ , for i = 1,2. Prove that 6 is interalgebraic
with the canonical parameter of tp(af

1a
/

2/acl(b)).

Exercise 4.5.8. Prove (ii) of Lemma 4.5.18






