XVIII. More on Proper Forcing

§0. Introduction

From the last eight chapters you may have gotten the impression that we are
done with properness, but this is not so. First, we turn to the problem of
not adding reals; remember that by V §7, VIII §4, for CS iterations of proper
forcing notions not adding reals, the limit does not add reals, provided that
two additional conditions hold: one is D-completeness (for, say, a simple 2-
completeness system) and the second is (< w;)-properness (see V §2). Now,
the first restriction is justified by the weak diamond (see V 5.1, 5.1A and AP
§1); that is not to say that we have to demand exactly D-completeness, but
certainly we have to demand something in this direction. However, there was
nothing there to justify the second demand: a-proper for every a. In the first
section, (following [Sh:177]), we show that we cannot just omit it, even if we
use an Nj-completeness system. It is natural to hope that this counterexample
will lead to a principle like the weak diamond (so provable from CH). Thus
the construction of this counterexample leads to questions like: Assuming CH,
can we find (Cs : § < w1), Cs an unbounded subset of 4, say of order type w,
such that for every club E of w;, for stationarily many limit 6 < w;, Cs C E or
0 =sup(Cs N E) or (Vo € §)[min(E \ &) < min(Cjs \ (a + 1)]? (They are kin to
“the guessing clubs”, the existence of which for, e.g. Ry, follows from ZFC, see

[Sh:g].) It interests us as the theorems (and proofs) from V, VIII §4 do not give
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us the consistency of their negation with CH. However, those statements do not
follow from ZFC + CH; for this we prove in the second section a preservation
theorem for CS iterations of proper forcing not adding reals. Again we have two
conditions (called there (4)2 or (4)x, and (5)). The first, (4)2, is done “against”
the weak diamond, and is weaker than the older D-completeness, but this is
just a side gain. The second condition says our forcing remains proper even if
we force with “forcing notion from our family, in particular not adding reals”.
Note that for forcing notions of cardinality N, this is a very mild condition.
So, the results of §1 remain the only restrictions on theorems on preservation
by CS iteration, and there is a gap between them and the results of §2.

Then, in the third section we turn to other preservation theorems, giving an
alternative to the theorem from VI §1 — §3, and dealing with some examples.
(For a simplification of possibility A in 3.3, see [Go]).

Finally, in the fourth section we turn to the problem of a unique P-point. In
VI §4 we have proved that there may be no P-point; remember, a P-point
F is a nonprincipal ultrafilter on w such that if A, € F for n < w then for
some A € F we have A\, A Coe An (A Cae An means A\ A, is finite). Now,
to prove the consistency of “there is a unique object” is typically harder then
proving there is no one. Unique here means up to permutations of w. In VI §5
we have proved a weaker result: there may be a unique Ramsey ultrafilter, but
there could have been many P-points above it which were not isomorphic. We

continue this and prove the consistency of “there is a unique P-point”.
§1. No New Reals: A Counterexample
and New Questions

1.1 Lemma. Suppose V satisfies 2% = R;,2% = R,, and for some 4 C wy,

every B C w; belongs to L[A] and for limit § < wy,

Ls;[AN 6] = “0 is countable”.
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Then we can define a countable support iteration Q@ = (P;,Q; : i < i*) such
that the following conditions hold: ~
(a) Each Q; is proper and I-p, “Q; has power R;”.
(b) Each Q; is D-complete for some simple ®;-completeness system D
(hence does not add reals).

(¢) Forcing with P;~ = LimQ adds reals.

Proof. We shall define Q; by induction on i < i*, i* < w?, so that conditions
(a) and (b) are satisfied, and C; is a @;-name of a closed unbounded subset
of wi. Let (f§ : € < w1) € L[A] be a list of all functions f which are from
d to d for some limit § < wy, and let h : wy — wy, h € L[A], be defined by
h(a) =Min{f: 8 > a and Lg[ANa] = “la] = Re"}.

Suppose we have defined Q; for every j < 7; then P; is defined, is proper
(as each Qj, j <, is proper, and III 3.2) and has a dense subset of power Ny
(by III 4.1). Let G; C P; be generic, so, clearly, there is a B; C wy such that in
V[Gi], every subset of wy belongs to L[A, B;|. The following now follows:

1.1A Fact. In V[G], every countable N < (H(®2), €, A, B;) is isomorphic to
Ls[AN 6, B; N 4] for some B < h(5), where 6 = 6(N) = w; N N.
We shall assume also that V[G;] has the same reals as V' (otherwise we
already have an example).
We now define by induction on o < wy, a set T, = T such that the
following conditions are satisfied:
(i) Each f € T, is the characteristic function of a closed subset of some
successor ordinal 3 < a, i.e., Dom(f) = B, and f~1({1}) is a closed subset
of 8 and is included in the set of accumulation points of () i< C;. Ify < a,
then T, C T,.
(ii) If f € Ta,y +1 < Dom(f), then f[(y+ 1) € T, and even f[(y +1) € T
fory+1<pf<a.
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(iii) If f € Ty, Dom(f) = B, B < v < a, y asuccessor, then f' = fUOg ) € Ta,
i.e., Dom(f’) = v, and

ey ) F(E), ifi<pB,
f@‘{o, ifB<E<n.

(iv) I £, g € T, £(8) # 9(8), then F~1({1}) N g1 ({1}) \ A s finite.

(v) If f € Toy ¥ > B = Dom(f), v +1 < a, v is an accumulation point of
j<: C; and the order type of F~1({1}) has the form & + 2 or is > 0 and
<w, then f' = f U0 U{(y,1)} € Ta.

(vi) If f € Ta, 6 +1 = Dom(f), ¢ limit, and f(B) = 1 for arbitrarily large
B < &, then Min{¢ : f[6 = f£} is larger than Min{¢ : 6 < £ € C;} (for
Jj<i).

(vii) If § +1 < «, § is an accumulation point of ._,Cj, &* < wq, and

j<i
f € TsN Ls[AN ¢, then there is a g € Ty, 0§ + 1 = Dom(g), such that for
every J € Ly(5)[ANd, B;Nd] (an open dense subset of T5sNL;[ANd] (ordered
by inclusion)), for some v < § we have gly € J and g[é ¢ {ff : £ < &*}
and f = g/Dom(f).

(viii) For f € Ty, if § = sup(d N f~1({1})) (hence f(§) = 1), § < B, and
f(B) = 1, then for every j < i, for some v < f3, the characteristic
function of C; restricted to ¢ is fJ; and if 4, f1 and S satisfy this then
f1(0 +1) UO0s41,8) U 1ig,a41) belongs to T .

Let us carry the induction.
Case A. o is limit, or @ =y + 1, «y limit. Let T, = Uﬁ<a TgorT, = Uﬂ<7 Tp.
Case B. a < w. Let T, = {f : f a function from 8 < a to {0}}.

Case C. o= B+3 > w. Let Tq = Tp42U{f : Dom(f) = 8+2, fI(B+1) € Tp2,
provided that (viii) is satisfied }.

Case D. o = 6 + 2, ¢ limit, § € acc (ﬂj<iCj) (acc- denotes the set of
accumulation points). This is the main case. Let {f{ : £ < w} be a list of
Ts N Ls[A N 8], each appearing Ry times, and {J* : £ < w} be a list of
all open dense subsets J of (T5 N Ls[A N 4], C) which satisfy: J belongs to
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LpslANné, Binédlor J ={f e TsNLs[AN4]: f ¢ fi} for some & < h(9).
We now define by induction on n < w, an ordinal g, = ﬂf;‘" < 6 and a finite
set F, = F>* C {f € Ts N Ls[AN§] : B, = Dom(f)} such that

(%) (¥f € Fo)(3g € Fny1)(f C g) and

if n>1, (Vf,9 € Fn) (F1Bac1 # 91Bn—1 = F{1}) Ng7 ({1}) C Ba-1) .

Subcase a. If n = 0 mod 3, then Br41 = Br + 1 and Fryq = {f U {(Bn,0)} :
feF,};and if n =0, then F,, = 0 and 3, = 0.

Subcase B. If n = 1 mod 3, then Bpy1 = Bn + 1; let f, = f(‘sn_l)/3 and
Br = Dom(f(‘sn_l)/g) if Dom(f(‘sn_l)/?,) is < Bn, and let f] = 0, 3% = 0 otherwise;

now let

Fry1={fU0;, 8. : fE€F}U{f,U0p: 5., )}

Subcase v. If n = 2 mod 3, (n —2)/3 = m? + k, k < 2m, then every f € F,,41
belongs to Jx = J,f ", Note that we have to take care to satisfy (x); hence lett
F, = {fp : £ < |Fn|}, and define G} for £ < |F,| and gy for £ < |Fy,| by
induction on £ : 8§ = By; if 7 is defined, choose gz, fg" UO(g, gp) € 97 € Tk,
and 87, , = Dom(g}). Now let

Brn+1 = ﬂﬁ:‘” and Fryg = {g? U 0[ﬂ;‘+1,ﬁn+1) < an|}

Note that only in Subcase 7, do we have a free choice, and we eliminate
it by choosing the first candidate for Fy,4+; by the canonical well-ordering of
L[A, B;], and we also require that (jf’i : £ < w) be the first such sequence in
the canonical well ordering of Ls[AN§, B;N4]. So we have finished defining the
F,’s and we let

Ts+2 =Ts U{f :Dom(f) =6+ 1and : either f = f' U0, 541y,
where f’ € Ts, v = Dom(f’) or for some k < w,
(Vn > k)[f1Bn € Fn] and
F(8) =1 6 = supf~({1})}.

tof course, we suppress the dependency of By, f;*,a,g; on § and i.
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It is easy to check that that T542 is as required. (Case 3 in the definition

of F,, enables us to satisfy demand (vii)).

Case E. o = § + 2, 6 limit, § ¢ acc (ﬂj<iCj). Let To = Ts U {f : Dom(f) =
6+1,(3g € Ts)[g C f & fI((6 + 1) \ Dom(g)) is zero |}.

So we have defined T, = T} for a < wi, and let Q; € V[G;] be Ua<w, T
ordered by inclusion; and it is easy to see that Q; is as required (in (a) and (b)
of 1.1). Let C; = U{f~1({1}) : f € G}, so IFg, “C; is a club of w;”.

So Q = (Rj,gi : i < w?) is defined, and it is easy to see that we can
replace (in V[G;]) B; by C* = (C; : j < i). Let G C P,2 be generic, and
C,; the interpretation of C;. Let f; be the characteristic function of C;, and
C def Nicus
We shall suppose that forcing by P,z does not add reals, and shall deduce that
(fi 11 <w?) € V, which is clearly false, as I-g, “Co ¢ V.

Ci, and {a¢ : ¢ < w1} an enumeration of C (in increasing order).

By the assumption the sequence (f;lag : i < w?) belongs to V, and we
shall show how to compute (fila¢ : i < w?) for every ¢, by induction on (; as
the computation is done in V' we get the desired contradiction. More formally,

there is a function F' in V such that
(filagpr i < w?) = F[(f,-[a( 1< wz)].

So suppose (f;la¢ : i < w?) is given, and let, for i < w?:

B Min (Gi\ (ac +1)), &< Min{¢ : filac = f2}.

By demand (i) in the definition of the T’s C; C acc (ﬂ <i Cj). So clearly
Bj < Bi, for j < i and B; € Cj for j < i. Also by demand (vi) on the T%’s,
Bj < & for j < i, and by demand (viii) on the T%’s &; < f; for j < i. We
can conclude that Sup{f; : i < wn} = Sup{{; : i < wn} for all n € w;
but from (fila¢ : i < w?) we can compute 7, def Sup{& : i < wn}. As
Bi € Cj for j < i, v, € C; when j < wn, and clearly 7, < Yn+1, so we have
v def Un<w ¥n € Nj<u2 Cj- By the definition of the a¢’s, v = a¢11. As we know
T N Ls[A], and we know {7, : n <w} C Co; fol7 is uniquely determined (by
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demand (iv)). Similarly we continue to reconstruct f; [y by induction on i < w?
(see end of Case D in the construction - the canonical choice), thus finishing

the proof. Ura

1.2 Remark. The w? in 1.1. is best possible.

1.3 Lemma. (1) Fixing (f3 : a < wy),alissof F = {f: f: (B+1) —

{0,1}, F71({1}), closed, B < wi(f € V, of course) } ( so we are assuming CH)

and h : w; — w;, we can repeat the construction in the proof of 1.1 (omitting

the assumption on A), and its conclusion holds provided that

(¥)1 () if x is large enough, T' C {filv: v <wi,a <wi}, T € N < (H(x), €,
<), N countable, 7 € N a dense subset of (T,C), then J NN € {J} :
£ < h(6)} where § = wy NN, and {J{ : £ < w;} is a list of all subsets of
{(valv:v,a <6}
(B) moreover, after CS iteration of length i < w? of forcing notions of this
form ((T,C)), giving generic sets G;(j < i), («) continues to hold with
{J? : £ < h(5)} replaced with the family of subsets of {f[y : v,& < 6}
definable in (U {filv:v,a<d8}U{(7,a,J3): v <d,a < h(7)},Gj)i<is

or, at least

(¥)2 for each § < wy, we have §° = (g,‘; : 1) a sequence of successor length < w?,
each n(7) is in “2) such that:
(@) 95y : 6 = {0,1}, (g5 (;))"*({1}) is an unbounded subset of § (and if
n,v have length ¢ + 1, n[i # v[i, then (gg(i))_l({l}) N (gﬁ(i))’l({l}) is
bounded in §).
(B) Suppose i < w?, x large enough, N < (H(x), €, <}), N countable, § =
NNw, Q= (Pj,Qj : j <1i) € N defined as in 1.1, is a CS iteration, each
Q; proper satisfying (i) - (viii) from the proof of 1.1 (with (vii) rephrased in
terms of {J{ : £ < k(8)}), P; adds no reals, and (gfl(j) : j < 1) is generic for
P, N N, then for at least one v € “’2,92 ~, I8 (N[gf’(j) : j < 1], Q;)-generic.

(2) If Q* is adding R; Cohen reals, and V =CH then V?" = (¥)s.

Proof of 1.8 (1) Same proof as 1.1.
(2) Left to the reader. Note: let Q@ = {f : f a finite function from w; to {0,1}},
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let f* be the generic function; now in V[f*], if
N < (H(x)v[f'],G,V N H(x), f*,<}) countable,

then N € V[f*[(N N w;)]. So for &, defining §°, we have to consider only
N € V[f*14], so f*[[6,w1) is “free” to be used for defining 3.

1.4 Lemma. (1) We could weaken the demands on V' (in 1.1) to V [=CH,
provided that we also waive the requirement I-p, “|Qi] =N;".
(2) Assume CH and
(¥)3 there are C = (Cs : § < wy limit) and h : w — w such that:
(a) Cs is an unbounded subset of § of order type w
(B) for every club E of wy, Sh(E,C) < {6 < w1 :CsNE is unbounded in
8, and, moreover, for arbitrarily large a € Cs,|Cs N Min(Cs N E \ a)| >
h(laNCjs|)} contains a club of wlT,
() h diverges to infinity.
Then the conclusion of 1.1 holds except that we weaken condition (a) to: Q;
satisfies the No-pic and is proper.
(3) Assume CH (for clarity). There is a forcing notion @, |Q| = 2™, Q is
R;-complete satisfying Ro-pic, and IFg “(x)3”

Proof of 1.4(1): By (2) and (3).

Proof of 1.4(2): The proof is similar to the proof of 1.1. The main difference
is that defining T}, , for § € acc (ﬂJ <i C’j), we do not choose the members
f of Ts41 such that & = supf~1({1}) by “inverse limit construction” i.e.,
by constructing the F,’s, but by induction on ( < w;. W.lLo.g. h is non
decreasing Choose (h; : i < w;), h; : w — w diverging to oo, non decreasing,
[i < j = for every k large enough, hj(k) < hi(k) < h(k)] and [i,w1,k <
w = hit1(£)/hi(€ + k) goes to infinity]; why can we? choose h; by induction

on i < wiy, for each i we diagonalize. Defining Q;, we shall assume that in

f SoitCe N < (H(x),E,<}), §=NnNw <w,andd e Si(E,C), then:
if £ € N is a club of w; then Cs N E is unbounded below §.
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V[Gp,], (C, h;) still exemplify ()3. So, for limit i, we have to repeat the proof
of preservation of properness and preserve (x)s.

We now define the Q;’s. First, we define Q?: initiating the construction in
the proof of 1.1, in Case D we have to change somewhat (to guarantee that
forcing with Q; preserves “C exemplifies (*)3”). We choose by induction on
( < wi, a function fg’i : & — § such that: (letting Cs = {8% : n < w},
increasing in n)

() for each v < 6 we have

Py eTin{fity: €< 6).

(B) The set Yc‘s’i ={n: fg’i[[ﬂfl, 0 1) # O[ﬂivﬁiﬂ)} satisfies: for n large enough
if n < m are successive members of Yg’i then n + hoi(n) < m < n+ hgir1(n).
(7) if € < ¢ then Y* N YY" is finite.

(8) if (J; : £ < w) is a list of dense subsets of Tj N {ff1v: € < &,7 < 6}, each
satisfying ® s, (see below), then for some (, for every n € Y(‘s’i: if m <n and
there is g, fg’i 188, Cge Tgﬂ{fg My : &7 <0}, 9 € pen Ji» then fg'i satisfies

this for such maximal m(< n):

DTN N (Bo41 \ BY)I-

Where
®g if fe TEN{fEly:€<d,v<d}and

As g ={aeCs: iffgf'eTgﬂ{fg['y:§<a,'y<a}thenfor

some f” € J we have f' C f" € Ty N {ff1v:€ <o,y <6}

then for infinitely many a € Cs we have

{8 €Cs:a<pand (o, 8) C As,g} 2 h(|CsNnl)
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How? First choose inductively m; such that: m; + i+ 1 < mijy; < w,
and for ¢ large enough m; + i+ 1+ hgi(m; + i+ 1) < mypy, mip1 +1+2 <
m; + hoi+1(m;) (this is possible as k < w = (hoiy1(m)/hoi(m + k) : m < w)
goes to infinity). Second list {j : j < i} as (jk : k¥ < w), and diagonally choose
YC‘M N [mi,m; + ¢ + 1), a singleton. Now, for a € Yf‘i we deal with the J ;c )
where: for each £, for some k no two successive members of g 1{¢} are of
difference > k.

Now, Q9 is defined analogously to the Case D in the proof of Lemma 1.1.
Then Q; is the result of CS iteration starting with Q9, and continuing with
shooting club through Sy, ., [E, C] for every club E C wy, (by initial segments).
(3) Q is forcing C by initial segments and then CS iteration (of length 281) of
shooting club through Sy (E, C) for every club E C w; (by initial segments).

Uia

1.5 Claim. Under the assumptions of 1.1 for £ < w; additively indecomposable,

we can add to the conclusion: for {( < € and i < *, the forcing notion @; is

¢-proper.

Proof. We again assume G; C P; generic is given; hence (C; : j < i) (which
serve as B; too) is also given and by induction on o we define T?, so that
in the definition of T} we use A and (C; Na : j < i) only (and the list
{f¢ : £ <wi} € L[A]), so that a variant of (i) - (viii) holds. The changes are:
(iv) if f, g € T¢, f(i) # g(4), then f~1({1}) Ng~'({1}) \ i has order-type
<E.
(vii)’ In addition to (vii), if (§¢ : ¢ < ¢*) is an increasing sequence of
accumulation points of (;, Cj, (6 : £ < () € Ls.,,[A N b¢yq), for
¢ <¢* feTj NLs[ANb), fm € T¢.,, for m < m* and m* < w,
¢* <, then there is g € T¢. .5, f C g, Dom(g) = ¢* + 1, such that
the following conditions hold:
(o) For every J € Ly (s)[ANd, B;N4] (an open dense subset of TN Ls[ANJ]
(ordered by inclusion)) for some v < 4, gly € J, where § € {6; : ¢ < ¢*}.
(B) g71({1}) \ {6¢ : ¢ < ¢*} is a bounded subset of 5;-.
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() For every m < m*, g ({1}) N £z ({1}) \ {d¢ : ¢ < ¢*} € Dom(f).
In the proof of Case D, we use the canonical well-ordering of H(R;)%4] on
our assignments (for the existence of g € T}, ,, Dom(g) = § +1), and construct

a witness, preserving and using (vii)'. Ois

1.6 Discussion. 1) Also 1.3, 1.4 can be generalized to this context.

2) We have shown that just excluding the forcing notions like the one from
Example V.5.1 (by demanding D-completeness for a simple 2-completeness
system) is not enough to ensure that CS iteration of proper forcing does not
add reals. In VIII §4, on the other hand, we have quite weak restrictions on
such Q; ensuring Lim(P;, Q; : i < @) does not add reals. However, the examples
above (1.1-1.4) lead naturally to forcing notions which fall in between (and the

corresponding consistency problems), which we now proceed to represent.

1.7 Problem. Let f5 : 6 — 6 for any limit § < wj. Is there f : w3 — w;
such that for every § < wy, for arbitrarily large a < 4, fs(a) < f(a)? Le., the
problem is, assuming CH, whether it is possible that for every such (f5 : § < w1)
there is a suitable f [negative answer follows from $,, and c.c.c. forcing

preserves a negative answer].

1.7A Definition. For any sequence f = (f5s : § < w1), f5 : 6 — &, let
P}Q = {g : g a function from some a < w; into wy, such that for every (limit)
§ < a, for arbitrarily large 8 < 4, f5(8) < g(B)};

ordered by inclusion.

1.7B Discussion. Now if CH + Ax[forcing notions of the form P?] holds in
some universe, the answer to 1.7 is yes ( in that universe). So it is enough
to show that if we iterate, with countable support, such forcing notions, then
no real is added. A positive answer follows by 1.8 below and next section.
A negative answer could have been viewed as proving a very weak form of

diamond. The situation is similar for the other problems here.
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1.8 Problem. Let Cs C § be an unbounded subset of §, for § < w;. Is there a
closed unbounded C C w; such that for no §, Cs C C? Consider in particular
the cases when we restrict ourselves to:

(a) Cs has order-type w, 6 = Sup Cj,

(b)e Cs has order-type &, § = Sup Cs and £ limit,
(c¢) Cs has order-type < 6, § = Sup Cs,
(d) Cs = @ mod Ds, D; a filter on &, § = Sup Cs, for a given D = (Ds :
§ <wi).

1.8A Definition. For C = (Cs : § < w),Cs C 6, let PL={f:fa
function from some a + 1 < wy to {0,1}, f~1({1}) is closed and for no § < a,

Cs C F1{1h}-

Order: inclusion.
We may consider also

1.8B Definition. For D = (Ds : § < w;), Ds a filter on 6, let
PL ={f : f a function from some o +1 < w; to {0,1}
such that f~1({1}) is closed and for no § < a,
F7Y{1H) N é = 6 mod Ds}

Order: inclusion.
1.9 Problem. Let Cs be an unbounded subset of §, for § < w;. Is there a

closed unbounded C' C w; such that for every §, C N Cjs is a bounded subset of

6, when we restrict ourselves as in 1.87

1.9A Definition. For a sequence C' = (Cs : § < w;), Cs an unbounded subset
of 4, let

ch‘ = {g :g a function from some a +1 < w; to {0,1}, such that
g~ 1({1}) is closed and for every § < a, Sup[Cs N g~ ({1})] < 6}
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Order: inclusion.

1.9B Definition. For a sequence D = (Ds : § < w1), Ds a filter on 4, let
P2 = {g : g a function from some o+ 1 < w; to {0,1} such that g~'({1}) is
closed and for every § < a, g~ 1({1}) N § = 0 mod Ds}

1.10 Claim. 1) P$, P} and P% (when one of the Cases (a)-(d) from 1.8 holds)
are proper and D-complete for some simple N;-completeness systems and

2) P2, P} is strongly proper.

3) P(% is proper (and does not add reals) even in V€ if forcing by Q adds no
reals (for P2, P} this follows by part 2).

Proof. Left to the reader.

1.11 Definition. For each § < wy, let F; be a function, from Dom(Fs) = {f : f
a function from some a+1 < & to {0,1} such that f~1({1}) is closed } to w. Let
Cs C 4 be an unbounded subset of § of order type w and C = (Cs : § < wy).
Let

Pe p = {g: g a function from some o + 1 < w; to {0,1}
g7 1({1}) is closed and for every 6 < « for
some n; : if 8 € Cs,|Cs N B| > ng, and
Min(Cs \ (8+1)) > Min (g~ ({1}) \ (8 + 1)) and
B <v€Cs,Min (Cs \ (v +1)) > Min (g7 1({1}) \ (v + 1)), then
Iy N Cs| > Fs(g1(Min (Cs \ (8 + 1))}

1.11A Claim. Pg ¢ (for F,C as in definition 1.11) is proper, D-complete for
some simple N;-completeness system and

® it is proper not adding reals even after forcing by any proper forcing
notion not adding reals.

(see 2.13(2)).
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Proof. Left to the reader.

Remark. In 1.11 (and 1.11A) demand

[y N Cs| > F5(ICs N (B + 1)], g[(min(C5 \ (8 + 1))).

§2. Not Adding Reals

We prove here that we can iterate (CS iterations) the forcing notions introduced
at the end of the previous section, and not add reals. The real work is in
Definition 2.2 and Lemma 2.8, but the reader may look at Conclusion 2.12
(or at 2.16). For our aim , naturally, we phrased a condition NNR3, on CS
iterations of proper forcing, saying we add no reals (condition (3)), a quite
weak condition for avoiding “collision” with the weak diamond, and another
condition, (5), intended to avoid collision with the counterexample of §1. It
says each @; stays proper even if we force with forcing notions of the kind we
iterate. Having phrased the condition, the main point is proving it is preserved
by CS iteration, mainly in limit stages.

So, suppose Q has length §, and for each a < § , Q[ is as required. Assume
for simplicity we do not try to kill <I>§‘1’; say, using N;-completeness systems. As
seems natural, we start with a countable N < (H(x),€,<}) and p € PsNN
and try to find ¢, p < q € Ps, ¢ is (N, Ps)-generic and determine Gp, NN, which
should be an old set if we succeed. So, if sup(d " N) = ,,c,, @n, an < an41,
an € N we should try to choose approximations ¢, € Py, , qn+1lan = qn. But,
as we do not have Ni-completeness we cannot do this per se. In V§7 a major
point in the proof is that we have “above” N a sequence N = (N, :1 < i < (),
¢ and each N; countable (letting No = N), N quite “long” in suitable sense,
and we demand g, is (N;, P,, )-generic for “many” i’s. So if e.g. apy+1 = an+1,
i < ¢ such that g, is (N;, P, )-generic, we have only X candidates for members
of the relevant completeness system. However “using N; is destroying it”, “it is

consumed ”, as gn41 is not (N, Py, ,)-generic. Why is this so? In the first step,
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say choosing Gg,NNp, we have no problem; for GQI NNy[Gq,] we have to choose
a common member from all the candidates A to be “a subset of Q1 N No[Gg,]
in the appropriate family D,;”. Now the common member is naturally not in
N;i. We can use stronger induction hypothesis, then use only Rg-completeness
system or even 2-completeness system, so we have for Go, N Ny only finitely
many (or two) candidates, so a common member exists in N;. But after w steps
it is not clear how to guarantee Gp, N Ny € Nj.

One approach, suggested in [Sh:177], is to weaken “Q is a-proper” to “for
p€ QN Ny, N=(N;:1i< a) as usual, there is ¢,p < g € Q, ¢ is (N;, Q)-
generic for “many” ¢ < o”; this work for “easy” cases like interpreting “many”
as “having the same order type”. While this work for e.g. Pé, (from 1.8(a),
1.8A), this does not seem strong enough , but it covers the forcing notion of
V for specializing Aronszajn tree, which the present condition do not. Here we
rather say: having two candidates for G N N1, we demand they are a subset of
(Qo N N) x (Qo N N) generic over Np; for making this work we are carried to
the following.

Here we have N1, Ny < Ny, ¢, is demanded to be (Ny, P, )-generic too;
We have several possibilities, we actually have a finite tree of possibilities for
GPp,, N Np which is generic for an appropriate product of finitely many copies
of P/s, i < ay,. But to proceed with this we have N;, where again we have a
finite tree of possibilities for Gp, N N». But only each one is generic over Na.
Above this we imitate V 4.4. Now g, is (Ng, Py, )-generic for £ = 3,4,5 and for
each P, -name 7 € Ny of an ordinal it allows only finitely many possibilities,
but unlike V 4.4 we do not use w-properness. So we have for each n a “tower”
of six models. For higher £ < 5, ¢, “knows” less on Ny, but our knowledge goes
down “slowly” so moving from n to n + 1, taking care of ¢, the knowledge on
GPp,, NNy is enough to move ahead. Probably this explanation is meaningless
for many readers, but will be helpful if read in the end or middle of reading
the proof.

Note that §1 (particularly 1.5) show the impossibility of too good iteration

theorems (say CS, of proper forcing not adding reals) but do not block consis-
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tency of appropriate forcing axiom with CH as we may instead of forcing with

candidates, spoil their being candidates (as in III, V).

2.1 Definition. 1) For a finite tree t (i.e. t = (|t|, <?),|t| a finite set, < a
partial order on [t| such that for z € ¢, {y : y <* z} is linearly ordered), let

trind o (t) = {a :&@ = (ay : 7 € t), each oy, is an ordinal < a
and 7 < v in t implies o, < a, }

trind <4 U trind g(t
B<a

2) For a given iteration Q = (Pi,Qj 11 < a5 < a), a finite tree t and @ €
trind, (t) let
={p:p=(py:n€t),and for n €t we have p, € Py, and ift = <v
then p, = p,loy }
ordered by
P < q iff for every n € t, Py, = py < gy
3) t Cend S if t is s restricted to the set of members of t and: s = [“p < V7,
v € t] implies [ € t].
4) We write (i) for @ = (o, : 7 € t), when t has one element, say <> and
ac> = 1.
5) For Q an iteration of length o, t a finite tree, & € trind,(t), and model N:
(a) aGen%(N ) = {G : G a subset of P5 N N generic over N such that for
eachn €t,G, def {py : p € G} has an upper bound in Pa,,}
[Note: G can essentially be identified with (G, : 7 € t)].
(b) sGeng(N) = {G : G a subset of P5 N N generic over N which has an
upper bound in Ps}.
(c) Gend(N) = {G: G a subset of P5 N N generic over N'}
6) Ift; Cty,at € trlnd e (te), and p° € Py for £ € {1,2}, and A
then p' < p? means A, ¢, py < piloy

2
net; %n 5 < Ay

2.2 Definition. Q is an NN Ry-iteration for (£, &1, £2) means:
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(1)
(2)

®3)
(4)2

()
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Q is a CS iteration of &-proper forcing (see V2.2).

For £ =0,1,2,& is a stationary subset of Scy, (A¢) for some uncountable
Ae.

Forcing with P, adds no reals for a < £g(Q).

If.

(a) N < (H(x), €,<}) is countable, (x regular large enough),

(b) NN A € &,

(c) (@, &, €1, E2) belongs to N,

(d)i* <i<j<a</g(Q),i* € N,ie€ N, je N and i*, i are non-limit,
(e) G* € Genéi> (N),

(f)pe NN P;, pli € G*, and

(g) g0, q1 are upper bounds of G® in P;, and qq[i* = q1 [i*,

then there is G’ € Gen3j>(N), extending G%, plj € G’ and qf, ¢ € P;
such that: g < q[{ I, ¢1 < i i, and for £=0,1, q} is an upper bound to
G'. Let G’ extends G%, mean that [p’ € G’ = p'[i € G| and g§f [i* = gf i*.
Assume i are not limit ordinals, i < j < o, Q" a CS iteration of length 3
satisfying (1) - (4), a < 8,Q = Q'la, Q' satisfies (1)-(4), t a finite tree,
n* € t, & € trindg(t), an =14, s = t[{n : n < n*}, (so Py, is essentially
P;), and let R ef PL/P; (a Pi-name).

If R is an & - proper forcing not adding reals, then

IFp,«r “Pj/P; is a Ey—proper forcing not adding reals” 1.

2.2A Remark. Note that for i < j < £9(Q), 4 non-limit, we have: P;/P; is
(&0 U &1 U &)-proper.

2.3 Definition. Q is an NN Ry, - iteration for (&, &1, &) is defined similarly,

replacing (4)2 by (4)x, below (so, in clause (5) now we mean this (4)) where:

1

Actually, e.g. if Qg, Q1 are proper forcings not adding reals and Q¢ x Q1 is

proper, then Qy X @1 does not add reals; in fact by 2.5 the “not adding reals”

is redundant.
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(4)xo if
(a) N < (H(x),€,<}) is countable, (x regular large enough),
(b) NNA €&y,
(c) (@, &0, &1, E2) belongs to N,
(d) i <j <@, inon-limit,i € N and j € N,
(e) G* € GenéD(N),
(f)pe NN P;, pli € G*,
(g) t € N a finite tree, @ € trind;(t), each o, non-limit,
(h) g € Ps, and if n € t, 0, = 1, then gy, is a bound to G, and
(i) B= (B, :m€t) wherefornet:
g, = op ifa,<i
n=\5 if oy =i
Then there are G' € Gen>?” (N extending G* and 7 € Py, such that:
Q B
() each ry(n € t,an = i) is a bound of G’
B)ya<r.

Before we state and prove the main lemma, we prove a few claims.

2.4 Claim. 1) Suppose z € {2,R}, Q' is an iteration satisfying (1) - (3),(4),
of Definition 2.2 or 2.3, Q = Q'la, 8 = £g(Q’), Q is an NN R,-iteration
for (&,£1,&2), x is regular large enough, N < (H(x), €,<}) is countable,
(Q', &v,E1,E2,a) belongs to N, NN Xy € &, t Ceng s are finite trees,
B € N is in trindg(s), @ = BIt, Rang[Bl(s \ t)] C a, G4 € Gen%(N) and
d=(qn:met) € Psisabove Ga, p € P3N N, and pt € Ga.

Assume in addition:

(*); for each n € t, the forcing notion Ps/Pgi{y.v<n} is E2-proper not
adding reals. '

Then there is a G € Geng(N ) extending G4 (recall, G5 extending G4
means [6 € Gg = aolt € G&] ) to which p belongs and 7 € P5 above Gjp,
g < 7It, (and it follows p < 7).

2) Moreover, if n € ¢, and v <* 7 is maximal such that (3p € s\t)(v < p), then

rollow, an) = gqllow, an).
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Proof. We prove it by induction on the number of elements of s.

By the induction hypothesis, we can show that if t C t; C s&t; # s,
then (x);; holds. Hence, it is easy to reduce the claim to the case s\ ¢t has a
unique element, say 7. Assume first that there is a maximal v € ¢ with v <® g
and let t* = t[{p: p €t, p < v}; so by (x); we know P5/Pg+ is a Eo-proper
forcing not adding reals. Let R be the Pgj«-name Pg/Pg4+. Note that P
is isomorphic to P,,. Let i = oy, j = oy and apply (5) of Definition 2.2 (or of
2.3, of course). We obtain 7 = (r, : p € s).

But why is 7, a condition in Py, and not a Pz-name of such a condition?
As all the influence of Ps/Pg¢- is on the set of dense subsets of P,, in N[Gp,],
which we know (and it is in V) so as we know there is 7, we can inspect each

candidate (not i), we use our demanding ¢ < 7|t rather than § = 7[t. 0o 4

2.5 Claim. If Q satisfies (1), (2), (3) of Definition 2.2, a = £g(Q), t is a
finite tree, B € trind,(t) and Pj is &x-proper, then it does not add reals.
Also, if G5 C P is generic over V, we let G, = {g, : § € Gg}, then
(Gy : n € Dom(&)) determines G5 (hence we do not distinguish strictly ).
Similarly, for “G C P; N N generic over N”.

Proof. Immediate.

2.6 Claim. Let (i) Q be a CS iteration of “w-bounding proper forcing notions.
(i) i < j < £9(Q), No < N; are countable elementary submodels of

(H(x), €,<%), (®Q,1,3) € Ny, x regular large enough, and Ny € N;.
(iii) p € PN Ny, q € B;, pli < q, q is (N1, P;)-generic, and (N, P;)-generic.
(iv) for every pre-dense T C P; from Ny, some finite J C Z N Ny is pre-dense

above q.

Then there is r € Pj, rli = q, p < 7, r is (N1, Pj)-generic and (Np, P;)-
generic such that for every pre-dense 7 C P; from Ny some finite 7 C Z N Ny

is pre-dense above r.

2.6A Remark. This claim is from [Sh:177] and is implicit in VI §1.
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Proof of 2.6. By VI Theorem 0.A, P;, P;/P; are “w-bounding. Let (1, : n <
w) € Ny list all Pj-names of ordinals which belong to Np.

We can find a functions F, H € Ny such that: for every p, a P;-name of a
member of P;/Gp;, and 7, a Pj-name of a ordinal, we have p’ = F(p, 1) is a P;-
name of a member of P;/Gp, satistying p'[Gp,][i = p[Gp,][%, p[GP,] <P P'[Gp]

in P and ¢ = H(p, 1) is a P;-name of an ordinal such that
P/[Gpi] ”_P,-/Gpi “I = U[qpi]”'

Let po = pl[i,5), pn+1 = F(Pr,Tn), on = H(pn,Tn), 50 pn, gn € Ny, and
gn is a P;-name of an ordinal and ((pn,gn) : n < w) € N;. For each n
we can find (p;f,7") € Ny, moreover ((p},") : n < w) belongs to N; such
that 9" is a P;-name of a sequence of finite sets of ordinals which belongs to
Ny (so IFp, “o € V”) pf a P;-name of a member of P;/Gp,, and in V|[Gp,]
P:[GE] is above p,[Gp,] (in P;/Gp,) and is (N[Gp,], P;/Gp,)-generic and
9[Gp,] € N1[Gp,|NV (for any Gp, C P; generic over V). Let ¥ = (v, : m < w),
vm = U v so ¥ € Njis a P-name, IFp, “7 is an w-sequence of finite sets of
ordinarllss”m(we can make I-p, “0 € V” but we not use).

Let (@™ : n < w) list all sequences, @ = (upy, : m < w) € N1, Uy, a finite
set of ordinals. Let 4" = (u, : m < w). Choose (u}, : n < w) € V, a sequence
of finite sets of ordinals, such that:

(%) for each n < w and for every large enough m,u? C uk .
As g, € Ny are Pi-names, by assumption (iv), we can find (v} :n <w) € V

a sequence of finite sets of ordinals such that
q “_Pi “gn e ,U;:'”

Now, clearly it suffices to prove:

® ¢ IFp, “there is a condition r € Pj,r[i = q,[i,7) N Dom(r) = Ny N [i, ), 7 is
(N1, Pj)-generic, r is above some py,, and 7 I-p; [\, Tn € v;, Uuy]”

[as there is a P;-name of such a condition, and we know the domain, there

exists an actual such r € Pj].
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Why ® holds? Let G; C P; be generic over V, ¢ € G;. Then ¥ being a P;-name
from N, satisfies 9[G;] = (vp : n < w) € N1[G;] so v, € N; N Ord, hence for

some (v;, : n < w) € V, and w-sequence of finite sets of ordinals, A v, C v}, so
n<w
w.lo.g. (v : n <w) € Ny; so for some n(x), A5 Un € vy, C uy,. Choose r

= Yn

as (IN1[G1], P;/ P;)-generic such that Dom(r) = N1[G1]N[3,5) = N1N[i, j), and
p:(*) [Gi], Pn(x) < 7, such r exists by the theorem of preservation of properness.
Now r is as required in ®. As we have done it in any V[G;],G; C P; generic

over V,q € Gy, clearly q forces (IFp,) there is such r. Os6

2.7 Claim. Let

(i) @ be a semiproper iteration of “w-bounding forcing notions

(ii) i < j < €g(Q), No < N1 < (H(x),€,<%),{(Q,%,4) € No and Ng € Ny both
countable, and x regular large enough.

(iii) p € PjNNy, q € P;, pli < q, q is (N1, P;)-semi generic and (Ny, P;)-generic,

(iv) for every 7 € Ny a P;-name of a countable ordinal for some finite u,
q'F“Teu.

Then, thereisanr € Pj, r[i = q, p < q, 7 is (N;, P;)-semi generic and (N, P;)-

semi generic such that for every P;-name 7 € Ny of a countable ordinal, for

some finite u, we have 7 Ibp, “7 € u”.

Proof. Same as 2.6 except that: using RCS, the issue of the domain of r

disappears, and the names we deal with are names of countable ordinals. (s 7

2.8 Main Lemma. If z € {2,X0}, Q is a CS iteration of (limit) length &
and for every a < 6, Qla is an NN R-iteration for (&, &1, &), then Q is an
NN R,-iteration for (&, &1, Er).

2.9 Remark. 1) Our main object is usually to preserve clause (3) of Definition
2.2: adding no real.

2) Comparing this with the result is V §7 and in VIII §4, we gain in replacing the
completeness system by condition (4);, which is weaker; but “(< w;)-proper”

seems incomparable with condition (5) which replaces it.
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2.10 Proof of 2.8 . We have to prove the five conditions from Definition 2.2 (or
2.3).

Conditions (1) and (2) are easy (part (1) follows from part (2), for part
(2) see 2.2A and V).

Condition (3) follows from condition (4) (use ¢ = 0,j = 6, T a name of a
real).

So, it is enough to prove:

(a) condition (4) and

(b) condition (5) assuming (3), (4) hold.

2.10A Proof of Condition (5), Assuming Conditions (3), (4). So, forcing with
Ps adds no reals and Q satisfies (1) — (4).

Let i, j be non limit ordinals, i < j < 6, R, Q', s, t, & 7n* be as
in the assumption of (5). So let x be regular large enough, N a countable
elementary submodel of (H(x),€,<}), NN X2 € &,i € N,j € N,R €
N,Q € N,(g0,q1) € Pi * R is (N, P; * R)-generic and force Gp,sg N N to
be G* p € P;N N,pli € G* N P; (equivalently pli < go). It suffices to find
r € P; above go and above p, and r is (N[G?], P;)-generic, and r forces a value
to Gp; N N.

By the assumption, a < § = Q[a is NN R,-iteration for (&, &1, E2);hence
if 5 < & the conclusion holds. So, assume j = 4.

Let Ng = N and choose N; satisfying:

(a) Ny is countable

(B) No < N1 < (H(x),€,<%)

(Y) NinX €&

(8) No € Ny

(€) G*, qo, q1 € N1.

Let i =ip < i1 <ig <+ + <inp < +(n <w) be such that:

in is not limit, i, € No N & and sup[d N No] = sup{in : n < w}.

Let (Z, : n < w) € Np be a list of the P; * R-names of dense subsets of
P;/P; in No.
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Now we choose by induction on n, p”, ¢" such that:
(A) (1) " € B,
(2) ¢™ is (Ng, P, )-generic for £ =0,1,
(3) Dom(gn) = in N Ny
(4) a0 <q°
(5) ¢"*'in = ¢"
(B) (1) p™is (a P;, - name of) a member of P5s N Ny
(2) p*lin < "
(3) p* < ™1, 0 = p
(4) p"*! € I, (more exactly: p"*! € Z,[G?] i.e. ¢"*! Fp., .,
“p"tl e T,[G%]” where
I,[G*={re N:forsomep € G*p' Irp, “reI,”}).
(C) ¢™ IF “G;, N Ny is generic for (NO[G“], (B, /PN No)”.

Note in (B)(1) that p™ should not depend on Gg.
For n =0 - easy.

For the induction step, defining for n + 1, first note that

(%) I-p,x(Rx(Pi, /P.)] “Piny1/Pi, is €2 — proper not adding reals”.

We get (x) by applying (5) of the Definition with Qlin+1 (which is NNR,-
iteration for (&, &1,£2)),Q, t*,&*, 1™, in, iny1 here standing for Q,Q’, t,
a, n*, i, j there, where: t* is t when we add n™ just above n* and 7"*! just

above 1" and let a*[t = &, ;. = i and a;n“ = ln+1-

To apply condition (5) we have, however, to know that Pg-ju{yn}) is
Ey-proper not adding reals; but this is guaranteed by Claim 2.4.

So, (x) above holds; so, after forcing with P; * [R x (P;,/F;)] (with
q", (90,4q1) in the generic set) we shall find a ¢ € P, /P, generic for

(NO [Ga’GPin/Pi]’ [Pin+1/Pin])'
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(Note: No[G*] had no new members of V, so no new members of P, ,,/P; ).
Now, the forcing with R is irrelevant (except for the information in G* and
G® € V!) So, there is a P; -name of such a ¢, and there is a P;_ -name of a ¢/,
q<q €P,,, /P, ¢ forcing a value to Gp, , N No.
So, there is a ¢’ € Ny, a P;, -name of a condition from P; ,,/P;, satisfying the
above if there is such ¢’ at all.
Now, as in the proof on the preservation of properness, we can choose g, ;1.
In the end, let 7' = ¢® U, ¢"*!1fin,ins1). Now (Z, N Gp, : n < w) is
clearly a Pj-name, so, by condition (3), there is some r, 7/ < r € P;, and r

forces an (old) value to it. Now, this r finishes the proof. Os.104

2.10B Proof of condition (4)x, when we deal with NN Ry,:

So let N, i, j, &, 3, G, p, t, (qn : m € t) are as there. By the assumption
w.lo.g. j=4.

Choose Ny (for £=0,1,2,3,4,5) such that:

(o) every Ny is countable, Ng = N

(B) Ng < Neg1 < (H(x),€,<y) for £=0,1,2,3,4

(7) N1NAL €&, NaNg € &, N3aNAg € &, NsN o € &, NsN Ay € &,

(remember Np N Ay € &)

(0) Ng€ Ngyqfor£=0,1,2,3,4

() ge N, G* € Ny

Let i = dp < 41 < 4g < ... < ip < ...(n < w) be such that: each i, is

non-limit, belongs to Ny N 4, and
sup(6 N Ng) = sup{in : n < w}.

Let (Z, : n < w) € Ny be a list of the dense subsets of Ps which belong
to Np. For simplicity, w.l.o.g. we can assume t is a subset of w>w ordered
by < (being an initial segment), o, = @ < £g(n) = m* (remember only
n <t v = a, < a, was required). Let t* =t N ™" and stipulate t_1 =t \ t*.

Now we define by induction on n < w, pn, q:,‘(n € t*), G&,ty, &", G%, Gy,
(for n € t,) such that:

(A) (1) 2 € P, (fornet?)
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(2) gy is (N, P;,,)-generic for £=0,1,2,3,4,5

(3) For every pre-dense subset Z of P; from N4 for some finite J C
I N Ny, J is pre-dense in P; above g (hence this holds for £ < 4)

(4) gy < ¢f forn e t*

(5) if v €t \t*,v <A my €%, v <Ay € t* then ¢J la, = gy,

(6) gptin = g} for n et

(7) Dom(gy) is in N N

(B) (1) G2 is a generic subset of P;, N Ny over Ny

(2) GrynP, =Gy
(3) Gg = G°
(4) gp Fp,, “Gp,, N No =Gy for n € t*

(C) (1) Pn € No N Ps

(2) P < Pn < Pnt1
(3) Pnt1 €In
(4) Dnlin € G2

(D) (1) t, is a nonempty finite tree, tg = t,tn, Cend tn+1,

(2) @™ =(ap :n € ty),
(3) a* = a™*!t,,a® = @, so we may write a, for off when 7 € t,
(4) if 7 € tpt1 \ tn then there is a v, € t, such that: 7 is an immediate

successor of vy, oy = int1, Ay, = in.

(E) (1) (G} : n € ty) belongs to sGenQ (N1)

(2) GLe N,
(3) GS € Gen§ (Ny)
(4) tn | n <v implies G5, C G},
(5) G5 € N3
(6) G imy—m- S Gb C G¢ for n € (tn \ t) Ut* so £g(n) > m*, of course
(7) if n € ¢* then g I- “for some p € t,\ | tm We have: aff =in,n<dp
m<n
and G;’, CGp,”

If we succeed, then let r, = U Uncw @ Hlin, ing1) (for n € t*, so

an =1 and B, = j = §) and let r, = g, for n € t \ t*, all are members of P;.
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For n € t*,ry, is (No, Ps)-generic and forces Gp;, "N = Gp; N No = ., G%
and (ry : 7 € t) € Pj. So, it is enough to carry the definition.

The case n = 0 is easy (better to define (¢ : 7 € to) € Ps by steps i.e.
choose q?, by induction on £g(n); remember Pj is proper not adding reals as
Qlio is an NNRy,-iteration).

Let us do the induction step: defining for n + 1.

First Step. Choose pn+1 € I, N Np such that p, < ppt+1 and pp41lin € G2.
Straightforward.

Second Step.
First note:

(*)1 the following set is a dense subset of Pgn:

J ={q :q¢' € Ps~, and either for some 7 € t,,a, = i, and
gy ¥, “Gp,, N No # G3”
orthere is a G’ € Genp, ,, (No) such that
Pn+ilint1 € G,G' NP, = G% and:
netyn&ay=1i =g lkp, “in P /P theset G’

has an upper bound”}.

This follows by (4)x, for Qlin+1 (which is an NN Ry,-iteration).
Also

(%)2 there is a ¢’ € J which belongs to (Gf, inEty) (le.net, =>q, €GP
and ' € Psn) such that [y € t, & oy = in = g, is above GZ].
(this is as there is §* € (G} : 1) € t,) which belongs to J (as J € Nj and
is a dense subset of Pz~ and (Gﬁ’7 : 1M € ty) is in sGenp_, (N;) and the first
possibility in the definition of J cannot hold as G& C Gf, whenever oy, = iy).
Now choose G%,, satisfying: (B)(1), (B)(2) and for every n € t, of length
n+m* for some gy € P, ,, NNy : gplin € Gf, and ¢; I+ “Gp.,,,NNo=Gp "
This is possible by (x)1 + (*)2.
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Third Step. Let for each v € t,, with a, = in, (G,,m : m < m,) be such that:
q:}[m* IFp,, “f Gy C ..GPi" then ..GPin NNj3 € {Gu,m tm < my}.
(This sequence exists and is finite by (A)(3), and as P; adds no new reals).

Now we let
thy1 =t U{v " (m) :m <my,v € ty,a, =in}.
and choose &"*! by (D)(3) and (D)(4).

Fourth Step. Repeating the proof of 2.4 (but choosing the appropriate forcing

conditions from Gy (n € tn,a, = iy)), we choose (Gf, :1 € thy1 \ tn) and (r,'; :
~n+1

7 € tpt1 \tn) such that: (Gg i 7 € tny1) € sGendy,  (N1) and Qpt(m=+n) € Gg

(q;;r(m_ +n) I8 from the end of the second step) and 7"2 € P; .. N Ny, which is

an upper bound to Gf, and 74 i, € Gf’r(m. +n) (just order t,,41 \ tn, and then

choose (Gf,r?) by induction on 7, see 2.4(2)).

n+1

Fifth Step. We choose (G7, : 1 € tni1 \ tn), (1) 1 V € tai1 \ tn) satisfying (E)
and [V Etnp1&ay, =i 218 € G,C,] and for 7 € ty41 \ th, 1 = v (M), we

c
havery € P,

NN3, rplin € Gym, Ty a bound of G7; this is possible as in the

proof of the preservation of properness.

Sizth Step. We choose (gp*! : n € t\t_; so ay = i) by Claim 2.6 making

sure that {rS: v € ty41 \ tn,n < v} is pre-dense above q,']‘“, this to guarantee
(E)(7); do it for each such n separately.
So, we have finished the induction step, hence the proof of (4)x,. Hence,

the proof of the Main Lemma. Uz.108

2.10C Proof of Condition (4). When we are Dealing with NN Ry

We mix the proof of VIII, §4 and the previous proof .
So let x, N,i*,1,j,G*% p,qo,q1 are as there. By the assumption w.l.o.g.
j =20 Let x1 = (2)%,¢t = {{),(0),(1)} € “w,ac> = i*,ac0> = ac1> =

t The readers who are happy to have the details should thank Lee Stanley

for his advice.



§2. Not Adding Reals 881

i,q<> = qoli*(= q1i*) and g<o> = qo,9<1> = q1, and § = (qn 1 m € t),
stipulate t_; = {()} .

Choose N¢(¢ =0,1,2,3,4,5) such that:

(a) every Ny is countable, Ny = N,

(B)  NeC New1 < (H(xa),€,<5,) for £=0,1,2,3,4,

(7) NiNAp €&y NaNdg € E, N3NAg € Ey, NyNAg € &, NsNAg € &,

(5) Ny € Ngyq for £=0,1,2,3,4,

() g€ N1, G* e Ny.

Let i =ip <41 <13 < ... <ip <...(n <w) be such that: each i,, belong

to Ng N4, is a non-limit ordinal and
sup(d N Np) = sup{in : n < w}.

Let (Z,, : n < w) € N be a list of the dense subsets of Ps which belong to
Np. Let t* =tN lw.
Now we define by induction on n < w, k, € w,(My : k < ky), Dn,
gn(n € t*), G, tn, @7, Sk, BF, by, R (k < kn),Gf,,Gfl (for n € t,,) such that:
A) (1 )q,, GPzn(net*)
(2) gy is (N, P, )-generic for £=0,1,2,3,4,5
(3) For every pre-dense subset Z of P; from Ny, for some finite
J € INNy,J is pre-dense in P; over gp (hence this holds for £ < 4)
(4) gn < ¢ for n e t*
(5) afoy ey = afyy Tevgy
(6) gpt ' lin = gy
(7 Dom(qn) is i, N N5
(B) (1) G¢ is a generic subset of P;, N Ny over Ny
(2) Goi NP, =Gy
3) Gg =G*
(4) gp \Fp,,, “Gp.,, N No = G” (for n € t*).
(C) (1) pn € NoN Ps
(2) p < pn < Prt1
(3) prn+1 € I, for n € t*.
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(4) palin € G
(D) (1) t, is a nonempty finite tree, to = t,t, Cend tns1,
(2) @™ = (af 1 n € ty),
(3) @™ = a"*!|tn,a® = &, so we may write ay for af
(4) if n € tpy1 \ tn then there is v, € t,, such that: n is an immediate
successor of vy, ay = int1, 0, = in
(E) (1) (G%:n € ty) belongs to sGenQ“ (V1)
(2) Gh € Ny
(3) Gy € Gen<a" (Ng) for n € t*
(4 )tn|=n<1/1mphest7§Gf,
(5) Gy, € N3
(6) Gggim-1 € Gb C Gy, for n € tn(£g(n) > 1, of course)
(7) if n € t* then

qy IFp,, “for some p € t, \ {()} we have: o

0 = in and Gf) g GPin”

(we can demand it is a P;, -name pn and pp < gnﬂ).
(F) (1) Mo = No
(2) Mg < Myy1 < (H(x), €,<%) for k < kp
(3) My is countable,
(4) My € My
(5) M € Ny
(6) kn < kn+1 <w, ko =1 (stipulate k_y = —1)
(G)(1) so={<>}s1=t
(2) if kp < k < kpyq then sp = sp, U{v (€)1 £ <2k *n v e 5,
lg(v) =n+1}
(3) for k, < k < kny1, we define hg, a function with domain s and
range Sk: hi sk, = identity, and for v~ (£) € sgt1 \ Sk,
(v (8) = v ((¢/2])
(4) Bk = (8% : v € si,, k < ky) is defined as follows: 820 = iy,
(remember so = {()}) and if k > 0, B2F is i* if £g(v) = 0, ipg(,)—1
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if 0 < £g(v) but v is not maximal in s, and finally 4, if v is maximal
in s,
(5) sk, =tn
(6) For k such that k, < k < kn41, A} is the function with domain
Skny1 = tnt1 t0 Sk, AR (n) = hy 0 hiy1 0 by, ,,—1(n) (and h'ﬁnﬂ =
id¢,,,), also if k < ky, hy is defined by the downward induction
on m as hi* o h',:mﬂ where kp, < k < k41 (no incompatibility).
(H)(1) ifv,n € t,, = Sk, , k < knt1 and A (n) = hZ(v) ( both well defined)
then G N My = G N My, and we denote this value by Gl,’l’;(’,’f),
(2) (Gz’"'k 1pESsg) € sGeng"'k(Mk) and it belongs to Mg (and to
Ny).

If we succeed, then let 7, = ¢9 U U, ., @@ [in,iny1) (for n € t*, so
a, = i) and let r, = ¢, for n € t \ t*, they are members of Ps. For n € t*, r,
is (No, Ps)-generic and forces Gp; NN = Gp; N No = U, <y,
(C)(1)-(4)), and (r, : n € t) € Pj. Here, B is as in Definition 2.3(i). So, it is

enough to carry the definition.

G? (remember

The case n = 0 is easy (better to define (g7 : 1 € to) € Ps by steps).
Let us do the induction step: defining for n + 1.

First Step. Choose pn4+1 € I, N Ng such that p, < pp4+1 and pptilin € GE.

Second Step.
First Note:

(¥)1 the following set is a dense subset of Pgn,1:

J ={q :q' € Pgn,1 and either for some 7 € sl,ﬁ,’;'l =i, and
ap VP, “Gp,, N No # G}”
or there is a G’ € Genp,  (No) such that:
Pn+1lint1 € G'N P, = G2 and:
nesi&fpt =in=>q,lFp, “in P, /P the set G’

has an upper bound”}.
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This follows by (4)2 for Qin41 (which is an NN Ry-iteration).
Also

(¥)2 thereis a 7' € (G? :n € s1) (ie. Nnes, In € Gbm™1) such
that [n € sy &,6,’;’1 =i, = g, is above G3] and 7' € J.
(This is as (GZ™! : n € s1) isin sGenp,, , (M1) and G}, C G5™' whenever

=)

Now choose G, satisfying: (B)(1), (B)(2) and for every n € s; with

S n,0 3 . A0 bn,l 0
' = ip for some ¢pv° € P, ., N My we have: ¢p°[1, € Gp™" and ¢p° I+
“"GPi1n+l N No = Ggl+1”‘

This is possible by ()1 + (¥)2.

Third Step. Let for each v € t,(= s, ) with 8% = i,, (G,m : m < m,) be
such that (on g7 see (A)(1), (2), (3)):

qon ke, “f G5 C Gp,, then Gp, N N3 € {Gym :m < my}".

(This sequence exists and is finite by (A)(3) and as P;, adds no new reals).
W.lo.g. m, is a power of 2, m, = 2™, and does not depend on v, and let
kn+1 be such that ky1 — kp, = 2™ for any such v. So sg,kn < k < kpt
and t,.1 are well defined. Now we can choose appropriate M(k, < k <
kns+1) such that!: My < Ni[H(x),My € Ny, My_y < My, My_1 € My,
Mp[(GE = m € tn)] < (NMiIH(X))(GE : n € tn)]. Why can we choose such
My’s? By (E)(1), (Gb :n € t,) € sGeng;in(Nl), and Pan is &-proper. Let
Gomk = Gb N My, for 0 € tn. Also f"HF(k < knyq) and sp(k < kpi) are
well defined now. Now we define by induction on k =0, ..., k,+1, a condition

Aan+1,k
q?,"‘(n € sk&ﬂ{,‘“’k = ip4+1) and (Gf’;"“’k im € s) € sGeng ! (My) such

T Remember x; = (2X)* and Ng < (H(x1), €,<5,) for £=1,2,3,4,5.
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that
(@) k < kng1&n € sk&By* <ipgr = GHHR = Ghmk

(b) gp* € Myy1 for n € sy, (if k = kny1 then gi* € Vy)
() q,’;’k lin € Gg’"’k when 7 € s, &ﬁ,’;’k =3,
1k b,n+1,k+1
(d) gy € Gy
k
(e) G;JLY;?(-;)I C Gg,n-i—l,k for n € Snar-

For k = 0 gj»° was already defined and let Gl(’snﬂ‘o = G}, 41-see second step.

n+1

For k + 1 we repeat the proof.

Fourth Step. Repeating the proof of 2.4 (but, choosing the appropriate forcing
conditions from G§(n € tn \ {()}, @y = in)), we choose (Gf, 11 € thy1 \ tn) and
(rf, : 1 € tpy1 \ tn) such that: q:f’(cf::l) € Gf, and r,'; € P;, ., N Ny, which is an

upper bound to Gf, and 8 i, € Gf,r(l +n) (just order t, 41\ tn, and then choose

(G?,t2) by induction on 7 see 2.4(2)).

Fifth Step. We choose (G, : 1 € tny1), (1}, : V € tny1 \ tn) satisfying (E)
and [1/ € th1&a, = iy = r,’j € G’f,] and Ty € P ., " N3, rplip, €
Gyi(14n),m(14n), Ty @ bound of G7; this is possible as in the proof of the preser-

vation of properness.

Sizth Step. We choose (g, : n € t\ {0},a, = i) by Claim 2.6 for each such n
separately taking care that {r : v € t,41 \ tn,n < v} is pre-dense above q,’;‘“
(this will guarantee (E)(7)).

So, we have finished the induction step hence the proof of (4),. Hence, the

proof of the Main Lemma also for x = 2. Os.10¢

2.11 Claim. If Q has length o + 1, Q|a is an NN R,-iteration for (&o,&1,&2),
IFp, “Qq is strongly proper, and condition (4), holds for i = a, j = a + 1"
then Q is an N N R,-iteration for (£, &1, £2).

Proof. Straight.

Now we can phrase various conclusions on sufficient conditions for the limit of

a CS iteration not to add reals.
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2.12 Conclusion. Suppose Q = (P;, Qj:i < ,j <a) is a countable support
iteration of strongly proper forcing satisfying (x) defined below. Then we can
conclude that forcing with P, adds no reals (hence, being proper, no new w-

sequences of ordinals, and in fact Q is an NN Ry-iteration) where

(x) If 49 < 41 < o then (>1<)iqi;’i"i1+1 holds, where we let
(>|=)8’“"2 ip <11 < iz < a=£g(Q) and in VP :if N < (H(x),€,<})
is countable, (Q,10,%1,i2) € N, p € [P,,/P,,]N N, ¢,¢" € P, /P,, are
(N[Gp, ), Pi,/ Pi,)-generic, pli1 < qi, pli1 < ¢" and ¢’,q"” force Gp, /Py N
N = G, then for some (N[Gp, ], P;,/Pi)-generic ', '’ € P,,/P;, we
have: p<7r',p<7r”,¢ <7r',q" <r" and v, 7" force (Gp,.z/Pio) NN =G"

for some G".

Proof. Straight.

2.13 Claim. 1) A sufficient condition for (x) from 2.12 is that each Q; is (D, £)-
complete for some simple 2-completeness system (see VIII, 4.2, 4.4).
2) We can in 2.11, 2.12 replace strongly proper by:
® “proper not adding reals even after forcing by any proper forcing notion
not adding reals.”
(3) If V E CH, & supercompact with Laver diamond then for some proper
forcing P not adding reals, of cardinality &, satisfying the -c.c., in VF* we
have R; = RY, Ry = &, 280 = R;, 2% = R, of course and:
Ax,, [Pr(Q)] where Pr(Q) means:
(A) forcing with Q does not add reals
(B) part (A) holds even in a larger universe which has the same reals gotten
by a proper forcing
(C) the forcing notion @ is proper and for some simple 2-completeness system

D (or, even a R;-completeness system) @ is D-complete.

2.14 Remark. 1) Part 3 is a specific case, of course.
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We can now conclude the consistency of appropriate other axioms (see Ch.
VIII).

2) We can now solve the problems from the end of §1.

2.15 Definition. 1) A finite tree ¢ is simple if it has a root(= a minimal
member) and all maximal n € ¢ are from the same level ( the level of 7 in ¢
is tgn & {v : v < n}|). t is called standard if t C “”w is closed under initial
segments, the order being <. Let max(t) be the set of maximal members of ¢.
2) If € is a finite non-decreasing sequence of ordinals, n = £g&, t a simple finite
tree with n levels then &y = (o, : 7 € t) where o, = €4gy.

2.16 Theorem. Suppose £ C S<x,(}) is stationary, Q@ = (P;,Q; : i < a*,j <

a*) a CS iteration, and for each o < o*, (>|<)%‘z+1 holds (see below), then forcing

with P,+ adds no reals, where for 8 < v < o* we define:
(*)%1 Assume
(a) k<w,n<w,€={€0,...,En-1),60 < ... < Ep—1 < B,
m; < w for i <mn,
t a standard simple tree with n levels,
ty=tU{n"(i):i<2%ne max(t)}

) ifvet
he i tep1 — teis h(v) = {'l’/IA ([3/2]) i/ inA (1),m € max(t)

and let h = hg, to = tf, t1 =t} ;.
If § = (gy : 1 € to), let §" = (qn(y) : M € t1)

(b) N < (H(x),€,<}) is countable, @, Ao, & 8,7 € N and
NN Ag € &, while 8 < v < a*.

(c) Go € Pa,, .- 5 NN is generic over N, (so we may write Gy = (G
1 € to))-

(d) pe NNPs, -, is compatible with G° (note Ps, .- 5 € Payyc- (y»
so this means A, c, p,16 € Gy).

(e) § € Pa,, .- such that it is above Ghie,7eGy=7"<q

Then we can find G, 7, such that

0 .
n "
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Proof. We prove by induction on o < £g(Q) that for every 3 < v < a,
By
(*)Q'g
(in particular that Q[a is a CS iteration of £-proper forcing). The main point
is the case v = o is a limit ordinal whose proof is similar to the proof in 2.10C.

O2.16

§3. Other Preservations

A central theme in this book is that it is worthwhile to have general preservation
theorems on iterated forcing. While it seems that this is reasonably accepted
in the community for properness, this seemingly is not so for preservation
theorems like “proper+“w-bounding” and even less for a general framework
for them. So here we try another way to materialize the theme (in 3.1-3.6).
We then present several applications (but, generally, we do not repeat VI). A
simple case of our framework is [Sh:326, A 2.6(3), pp.397-9]

This section passed through several versions, e.g. in most of them the proof
of 3.6 was left to the reader. Goldstern [Go] starts from an earlier one, he cuts
the generality for the sake of completeness. Relative to the present version he
restricts himself to the case A and o* = w, in Definition 3.4 omit demand (xi)
((x) irrelevant) and demand it adds reals. Also R, C Rp+1 and he omits S and
g (so uses (“w)Y as a cover: a g,y is chosen in the proof.).

Lately we added the proof of 3.6 (and added 3.4B, 3.13) and in some of the
cases (i.e. when d[a] € a, a* > 1 and we are not in Possibility C(C*)) we added

the condition @ (or @1).
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3.1 Context. S C Scx,(A) for some A = |JS (usually S is stationary). For
a € S cla],d[a] are subsets of a, and there are ¢'[a], d'[a] defined such that:

Case a: if d[a] € a then c'[a] = cla], d'[a] = d[a].

Case b: if d[a] ¢ a then cla] ¢ a, c[a] = ¢[a] N a, d[a] = d'[a] Na.

Advise to the reader: At first reading the reader may think of a typical
case: xo << X, A = H(xo), and elements of S are of the form N N H(xy), for
some N < (H(x), €, <}) such that xo € N, all in the original universe Vp. A
typical case for d[a] ¢ a would be d[a] = a, or da] = a Nw, and below (in

Definition 3.2) choose one possibility, say (B).

In addition we have g = (g, : a € S) where g, is a function from d[a] to
cla] and o* is an ordinal > 0.

The set |J S is, for simplicity, transitive, R is a three place relation, (more
exactly a definition of one) written as fR,g, and whenever fR,g, for some
a € S we have: @ € a*Na and f, g are functions from d[a] to c[a]; for notational
simplicity [d[a] €aécla € a] and (Va € S)[d[a] € a] or (Va € S)[d[a] ¢ a];
and d'[a],c[a] € a (of course d'[a] Na = d[a], d[a] Na = c[a]), and £R, is
absolute (enough to restrict to extension by forcings e.g. by proper forcing).
Generally, saying absolutely or in any generic extension V9, we may mean for
generic extensions by proper forcing, or any other property preserved by the

iterations to which we want to apply this section.

3.2 Definition. 1) We say (R, S,g) covers (in V) if for x large enough, for
every T € H(x)V there is a countable N < (H(x), €, <%) to which (R, S,g)
and z belong, and N is (R, S, g)-good, which means:

a®¥ NN (US) belongs to S, (so {d'[a],c'[a]} € N) and: for every function
f € N such that f maps d[a] into c[a], (so d[a] C Dom(f) but not necessarily
Dom(f) C d[a]) for some 8 € o* Na, we have (f|d[a])Rgg,, the most natural
case is: f a function from d'[a] to ¢[a].

2) We say (R, S,g) fully covers (in V) if: the above holds for every countable
N < (H(x),€,<}) to which (R, S,g) and z belong and NN (JS) € S and in

addition S is stationary.
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3) We say (R, S,g) weakly covers if d'[a] = d, ¢[a] = ¢ for every a € S (so
¢, d are constants, for example w) and for every f € %c for some a, a we have
fRa8a-

3.2A Remark.

1) Actually, if the function a@ — g, is one to one, then we can omit o and write
fRga where R is defined by fRg iff (3a € 5)[g = 8a & Vcang» fRaBal;
the notation above is just more natural in the applications we have in
mind.

2) Of course, in Definition 3.2,  is not necessary.

3) If VI C V2 C V3 are universes, (R!,S!,g!) € V! weakly covers in V2
and (R?,5?,g%) € V2 weakly covers in V3, £gR', (gR* < w; and \/ ., R%,
have the same definition for all £ = 1,2 and a € S (which is absolute for
the cases of extension) and are partial orders and S! is a stationary subset
of Scy, (U S?) even in V3 then (R, S',g!) weakly covers in V3.

4) We can translate an instance of Case a (in 3.1) to an instance of Case b,

dlal¢[q] by a function fl% where

by replacing d[a] by a and replacing f €
the function fll is f UOg\g[a], for example. This may help to apply e.g. 3.3.
Possibility A, the case a € S = d[a] ¢ a but has a price: d[a] ¢ a makes
Definition 3.4 stronger, as the assumption becomes weaker (see clauses
(vii)+(ix)), though we add the assumption in clause (x) so really there is

no clear order.

3.3 Definition.; We say (R, S, g) strongly covers if (it is as in 3.1 and) it covers
(in V, see Definition 3.2(1)) and one of the following possibilities holds:

Possibility A: Each R, is closed (2-place relation on #%lc[a])! (note that if Rq
is open then R = |J Ry n where each R, p is closed, hence this possibility
= R, ) and: [a € S = d[a] ¢ a] or

a* =1 or @, for every k < w, which meanst

n<w

applies replacing o* by wa*, using R/, ,,

t It is enough that each {f : fR,8.} is closed.
tt Instead of the forcing notion P we can just demand that this holds

absolutely.
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Pr if

(a) P is a proper forcing notion preserving “(R, S, g)-covers” and in VP,
@ is a proper forcing in VP [or just P, Q are P;, Q; as we get in our
iterations]

(b) in VP, N < (H(x), ¢, <;‘<)VP is countable, and (R, S, g)-good (so in
particular (R,S,g) € N,a=NnJSeS)andQeN,pec QNN

(c) for each £ < k we have: f, € N is a Q-name of a member of d'[a]¢/[q],

(d) x1 < x (xa large enough e.g. (P,Q) € H(x1) but 2¥* < x), Ny <
(H(x1),€,<%,) is countable, N1 € N, {Q,p, R, S,8,fe} € N1, p €
G! € Gen(N1,Q) N N.

(e) Be € ana* and frld[a1][G'Rp,&a

then for any y € NN H(x1) there are No, G, satisfying (the parallel of) clause

(d), such that y € N, and: for some v, € a, v, < B¢ (for £ < k) we have

felG2] R, 8, (for £ < k).

Also instead of @y we can require:

@), if in some (e.g. proper) forcing extension, N is (R, S,g)-good, NN|JS =
a€ S,k <w,for £ <k wehave f; Rg,g, (where B¢ € ana*), (f;, :n < w)
converge to f; (ie. fj, € dlalcfa], Vz € dla]3mVn > m(f;,(x) = ff(z)])
and (f7, : n < w), f; € N then for some v, < Bp,7¢ € a we have
Vn<w /\€<K, onRw ga

Remark:

1) we can specify how f7, f;,, come from Ny, (see the proof of 3.7E) (possibly
in some V@, Q (R, S,g)-preserving). This is close to VI §1 (if n € “w,
Mn € “w for n < w and nyIn = nin and € Dom(R) then for some T,
zRT and n € lim T, (3°n)(n, € imT)). The original @y, is better when
not all ((p? : m < w) : n < w) work, but some do.

2) So possibility A splits to four cases: [a € S = dla] ¢ S], o* =1, A\, D&
and A\, @}

Possibility B: Here we assume dfa] ¢ a for a € S or a* =1 or at least @&y, for

every k < w. Let x be large enough. For each a € S if (Skolem hull of a in
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(H(x), €, <>*<)) NS = a, then player II has an absolute winning strategy (i.e.
an absolute definition of it) which works in any generic extension V< of V by a

(proper) forcing notion @ € H(x); during the play, stipulating b_; = 0, in the

n’th move player I chooses fZ,..., f? satisfying f3|da] € 4°lc[a] (see clause
(b) below) and of,...,a_;,an,
such that:

(@) for £ <naf €ana*, and aff <ot
(B) if € <n,a} = o} " then fPlba_1 = £ buoy
(7) fiRay8a for £ < n (hence of € a)
Player II chooses finite b, b,_1 C b, C a.
In the end player II wins if:
(a) letting oy = min{ay : £ < n < w} and n(f) = min{n : a} = o} and
fe= Un;«&) f¢ 1bn, we have foRq, 84

or

(b) a# (US)N (Skolem hull of a U {f : £ < n < w}).

Possibility C: Let x be large enough. For each a € S in any forcing extension

of V (of our family) player II has a winning strategy in the following game.

In the n’th move: player I chooses N,,, H,, such that:

(a) N, is a countable model of ZFC~ (so €= is € [ N, but N,, is not necessarily
transitive), N, N (US) = a,S € N, g8 € N,, R € N, (and d'[a] €
Np,c[a] € Np) and [ <n= N, C N,,] and N, = “(R,S,g) covers” and

[f € Yl (o] & f € Ny = (fld]a]) Raga)

(where Ry =V cona- Ra)

(b) H, C {{fo,---,fn1): for some finite d C d'[a], each f, is a function from
d to '[a]} and H, € N, is not empty.

(c) if (fo,-.., fn-1) € Hy and d C Dom(fo) is finite then (fold,..., fn_1ld) €
H,.

(d) if (fo, ", fa—1) € Hp,Dom(fo) C d, d finite C dfa]
then for some (f},..., f,_,) € H, we have Dom(f;) = d, and f; C f;

() m<n& {fo, .. s fn-1) € Hy = (fo,..., fm-1) € H}, (see below).
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Player II chooses (fJ,...,f* ;) € H, N N,, and let!
H* = {{fo,.--,fn-1): for each £ the functions f, f3* are compatible' }

In the end player II wins if: for every m < w, U,,>,, fm, is a function which has
domain dfa] and (U, 5, fm)Ra8a [note: if e.g. {f : fRaga} is a Borel set, then

the game is determined and a winning strategy is absolute].

Possibility A*: Each R, is closed and
® if a1,a3 € S, a1 € ag, then (c[a1],d'[a1]) = (c'[a2], d’[az]) and absolutely
for every f € 9'(%21¢'[ay] we have: (f(d[a1])Ra,8a, = (fId[a2])Ra,Ea,
and : (Va € S)(d[a] ¢ a) or a* =1 or @;. Note that in cases A*, B*, C*, for

some (¢/,d’) we have (c'[a],d'[a]) = (¢, d’) for every a € § (as S is directed).

Possibility B*: We assume
® if a;,az € S, a1 € az then (c[a1],d'[a1]) = (c'[az],d[az]) and absolutely
for every f € ¢[921¢/[ay] we have (f|d[a1])Ra,8a; = (f1d[az])Ra,8as,
and player II has an absolute winning strategy in a game similar to the one in
Possibility B except that only f§,ag,by, are chosen. And: (Va € S)(d[a] ¢ a)

ora* =1 or ®;.

Possibility C*: We assume
® if a1,ap € S, a1 € ay then (d[a1],d'[a1]) = ([az],d'[as]) and absolutely
for every f € ¢[921¢/[ay] we have (f1d[a1])Ra,&a; = (f1d[a2]) Ray&a,,
and player II has an absolute winning strategy in a game similar to the one in
Possibility C
(a) as before
(b)* H, C {f : for some finite d C d’[a], fo is a function from d to c[a]}
(c)* if f € Hp, d C Dom(f) is finite then fld € H,
(d)* if f € Hp, d C Dom(f), d C d'[a] then for some f' € H,, we have
Dom(f’) =d and f C f’
(e)* Hp € Hpya

t We could give the second player more influence, see proof of 3.6.
tt We could add £ < m <n = fJ* C f, no real difference.
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3.3A Remark. 1) In Possibility B, we can restrict the forcing to a suitable

family.

2) Below in the cases d[a] ¢ a we use (see Possibility C) d'[a] = c/[a] = U S.

This is essentially a notational change.

3) In Possibility C* we can weaken ®; to the weaker version

®7 if for some forcing notion P, in VP, (R, S, g) still covers, N is a countable
elementary submodel of (H (x)VP, €) to which (R, S,g) belongs, and so
is a model of ZFC~, and a e NN (US) € S and if a; € SN N and
f € N n (Yalcfa]) then for some ag,a; € az € SN N and f|d[ag)Rq,8a,
then fR,g,.

3.3B Observation. 1) In' Definition 3.3
(a) (Va € S)[d[a] ¢ a] & Possibility B* implies Possibility B.
(b) (Va € S)[d[a] ¢ a] & Possibility C* implies Possibility C.
(c) (Va € S)[d]a] ¢ a] & Possibility A implies Possibility B.
(d) Possibility A* implies Possibility B*
2) If Possibilities A* or B* or C* of Definition 3.3 hold, (or just ® from there),
Q is a proper forcing and kg “for every f € d'lal¢/[q], for every a; € SN N for
some ay satisfying a; € az € SN N we have (f|d[az])Rs,8,” and Q € N <
(H(x),€,<}), Nn(US) € S, N countable and q € Q is (N, Q)-generic then
q - “N[Gq] is (R, S, g)-good”.
3) A sufficient condition for @ of Definition 3.3 istf
&% if (a),(b),(c), (d), (e) are as in @ of Definition 3.3, then for some p’ € Gy,
ve € (B¢ + 1) Na and Borel set (even X; set over | J S i.e. quantifying over
“(US), with R, S, g as parameters will do), A¢ € N (for £ < k) we have
(@) P/ lkq “fe€ Agfor £ <k’
(B) (Vf € A)(3v < Be)(fR8a)
Proof. (1) Easy, For clause (a) note that:

! We can replace (Va € S)[d(a) ¢ a] by * = 1, and/or add X €
{A,B,C} & (Va € S)[d(a) ¢ a] implies Possibility X < Possibility X*. Note

that for possibility C' and C*, w.lo.g. o* = 1.
tt Many times this is easy.
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(i) increasing b, may only help player II as it just strengthen the restrictions
on player II,

(ii) having more f* may only help player II as it make the satisfaction of
clause (b) of possibility B (or B*) more probable. So for player II, having
a winning strategy in the two games are equivalent (but not so for the
'player I has no winning strategy; see hopefully in [Sh:311)). Similarly for
clause (b).
(c) We should give a winning strategy for player II. Let a = {z; : i < w}
and his strategy is to choose b, = {z;: £ < n}.
2), 3) Left to the reader. 0338

3.4 Definition. We say that a forcing notion Q is (R, S,g)-preserving for
possibility X if (where X € {A, B,C, A*, B*,C*}, for Possibilities C, C* (in
Def 3.3) we can omit (iv)-(xi) and conclusion (a) as they hold vacuously; if we
omit “for possibility X” we mean X = C):
(*) Assume (i) x1 is large enough, x > 2X1
(ii) N < (H(x),€,<}), N countable, NN (JS) =a€ S
and (@, S,8,x1) € N
(iii) N is (R, S, g)— good (see Definition 3.2(1)) and p € Q N N.
(iv) In Possibilities A, B we have k < w and for £ < k we have fe€ Nis
a @-name of a function, I-g “Dom(f¢) = d'[a]”; for Possibilities A*,
B* the situation is similar but £ = 1. For Possibilities C, C* we can
let £k = 0.
(v) if £ <k, then f; is a function and Dom(f}) = d[a]
(vi) for n < w we have: p,p, € QN N, p < pp < Ppa1
(vii) if d[a] € a then (pp, :n <w) € N and (f; : £<k) €N
(viil) for each z € Dom(f;) and £ < k, for every n large enough
PnlFQ “fe(x) = fi (z)
(ix) for £ < k we have f;Rg,8, where B, € ana*.
(x) if d[a] ¢ a, T € N a dense open subset of Q then for some n, p, € T
(xi) if dla] € a, then for some N; a countable elementary submodel of

(H(x1), €,<%,) which belong to N and include
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dla] U c[a] U {d]a], cla]} U{Q, S,g} U {fe: £ < k} we have™:
/\pn € Nl,\/pn € 7 for any Z € N;, a dense subset of Q.
n n

Then there is a ¢, p < ¢ € Q such that: q is (N, Q)-generic and
(a) qlFq “(feld[a])Ry,8q for some e, e < Be& e € aNa*” for each £ <k
(b) glFq “N[Gq] is (R, S, g)-good”

3.4A Claim. 1) If o* = 1 then “Q is (R, S,g)-preserving” (see 3.4 above) is

equivalent to : if N < (H(x),€,<}), N countable, N is (R, S,g)-good, Q € N,

p € NNQ then for some (N, Q)-generic ¢ € Q, ¢ > p we have ¢ IF “N[Gq] is

(R, S,g)-good”".

2) If ® (of possibilities A*, B*, C* of Definition 3.3) hold, @ proper and a* =1

then: “Q is (R, S,g)-preserving” is equivalent to : for every f € ¢[%¢/[a] from

V< for some ay we have a € az € S, (f|d[az])Ra,8a,-

3) If (R, S, g) is as in Possibility A* (of Definition 3.3) and (Va € S)([d[a] € a])

and ®* below holds then: for any proper forcing notion Q, if IFg “(R,S,g)

covers” then Q is (R, S, g)-preserving for possibility A* where

®% Assume'! we have a countable N < (H(x), €, <}) such that (R, S,g) € N,
a1 € aa NS, a0 = Nn(US) € S, (cla1],d[a1]) = (c[az],d[az]) and
{f,{fn : n < w)} € N and fRuBa,, and {f, fn : n < w} C 4elcay],
fnRo, 84, and (Vz € d[a])(V*n)(fn(z) = f(z)) and @, a, € a* Na;. Then

for some n < w and finite d C d[a;] we have

* We may add a; C NV;
NlﬂUS= ay and

(clai], dla1]) = (ca], d[a])
and similarly add in @y of Definition 3.2. Then in the proof of 3.5, 3.6 change

somewhat (as in the proof of 3.4A), using some absoluteness for zRg,.
t This gives the results of VI §3.
tt We can add N; € N, N; < N, N; N ({JS) = a; and even more in this

direction.
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(x) if f' € Ulefag], f'Ra,8a, and f'Id = fr]d then f'Roga,

(we can look for f' € V, or in N1[Gg] for every Gg C @Q generic over V
where Q € N is proper, N1[G]NV = N, N[G]NV = N, the second is more
restrictive)

4) If Q is (R, S, g)-preserving for possibility X for some X then Q is (R, S, g)-

preserving.

Proof. 1) Left to the reader.
2) Remember that (by ® of case A*, B*) there is a pair (¢/,d’) such that:

a € S = (c[a),d'[a]) = (c,d). Also note
meES&ar€ameS&ka=Nn|JS&SeN<(HX)€) =au Ca.

First we assume “Q is (R, S, g)-preserving” and let p € Q, a € S and f be
such that p kg “f € dlal/[a]” ie. p IFg “f € 4 Take N < (H(x),€,<%)
such that a, (R, S,g), p, f € N, and N is (R, S, g)-good. So by the assumption,
for some (N, Q)-generic ¢ we have p < ¢ € Q and ¢ Ikg “N[Gq] is (R, S, 8)-
good”. Let ag be NN(UJS),s0 ¢“ IF fld[az] € dlazl¢[q,] satisfies fldlaz]Ra,8a," s
as required.

Second, to prove = i.e. the “if” direction, assume that in V@ for every
f e from V@ for some a; we have a; € S and fidla1]R,,8a,- This means:
for every Gg C @ generic over V the statement above holds. Now let, in V,
N < (H(x),€,<}) be (R, S,g)-good and assume q € Q is (N, Q)-generic. Let
q € Gg € Q, Gq generic over V, so it suffices to prove V[Gg| IF “N[Gq] is
(R, S,g)-good”. Solet az = NN(|JS), and let f € N[Gg], f € ¢le2l¢/[ag] = ¥'¢.
So for some a; € S we have fld[a1]Ra,&a,, but N[Ggq| < (H(x)[Gg), €) hence
w.lo.g. a; € N[Gg|NS =NNS. Now apply ® of Definition 3.3 possibility A*
(or B*, or C*), which we are assuming, to deduce f[d[as]Rq4,8q,- As this holds
for every such f really V[Go] F N[Gg] is (R, S, g)-good.

3) Let N, Ny, f6, Bo, P = (pn : n < w) be as in Definition 3.4 for possibility A*.
Let a = NN (JS)- See in particular clause (xi) there. We can find My < Ny <
(H(x1), €, <3,)s {N1,(pn 1 n <w), fo} € Mz € N € N and NoNJS = a2 € S,
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M N (|bigcupS) = be and (c[ba],d[b2]) = (claz],d[az]) = (c[a],d[a]). Also we
can find (Prm : N,m < w), (fn : n < w) such that: p, < Pom < Prom+1,
Pno is (M2, Q)-generic, and pno I- “foRq,8," for some a, € by N a* and
(Pn,m : m < w) is a generic sequence for Ny (i.e. if Z C Q is dense, Z € N, then
(3m)(3r € TN No) (7 < pnym)), fn € Uc[a], and

Vz € d[a]Vn < WYV m(pnm IF fo(z) = fo(z)).

W.lo.g. (Prym : nym < w), (an :n < w) and (fn : n < w) belongs to N.
Clearly frRa, 8b,- (Here we used {f : fRq, 8b,} is closed and (pn,m : m < w)
is generic enough; Borel suffices. Why? Let G, = {p € QN Ny : (3m)p < ppm}
be a subset of Q N Ny generic over Np, so Na[G,]| F “fo[Gn]Rangal” but
fn = folGn].)

Now apply ®* with by, a, f§, Bo, (fn: n < w), (@n : n < w) here standing
for a1, az, f, a, (fn : n < w), (s : n < w) there, and get n and d,, as there.
Let m be such that p, n, force a value to fo [dn, so it is f,[d,. Let ¢ € Q be
(N, Q)-generic such that p, m < gq. Now suppose ¢ € Gg C Q, G generic over
V; by the conclusion (x) of ®* (i.e. the choice of n, d,) we get fo[Gq]Rg,8a-
We still have to prove “N[G¢] is (R, S, g)-good”. But this holds by the proof
of 3.4(2) above.

4) Easy. Us.qa

3.4B Claim. 1) Assume

(a) (R, S,g) is as in 3.1, (Va € S)(d[a] € a),

(b) (R, S,g) covers,

(c) we have

EB;“ Assume we have a countable N < (H(x), €, <;) such that (R, S, g) €N,
ap € aaNS, a2 = Nn(YS) € S, (clai],d[a1]) = (c[az],d[az]) and
{f,{(fn : n < w)} € N and fRuga,, and {f, fn : n < w} C 4lcay],
faRa,8q, and Vz € d[a1](V*n)(fn(z) = f(x)) and a, o, € a* Nay. Then
for some n < w and finite d C d[a;] we have

(*) if f' € Uo2cfay], f'Ra, B4, and f'[d = fnld then f'Roga,,
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moreover
(c)* for every proper forcing P preserving “(R, S, g)-covers” we have @} in V.
Then in the definition of “(R, S, g) strongly covers for possibility X” X = A*,
B* we can omit @, of Definition 3.2.
2) Assume (a), (b) as in (1) above and
(c) for each k < w we have
@®Ft asin @] but in the conclusion we replace “some n” by “for every n
large enough”
or at least
@} Assume we have a countable N < (H(x), €, <}) such that (R, S,g) €
N,a1 €az2nS, a2 =NnN(US) € S and (c[a1],d[a1]) = (c[az],d[az])
and {fe: £ < k}U{(ff :n <w):€ <k} €N and frRy)8a,, and
{fe, fé - £ < k,n < w} C dal¢fa] ff;Ran(g)gal and a(f), a,(f) €
ay Na*. Then for some n < w and finite d C d[a;] we have
(*) if £ <k, f; € 41lc[ay], fiRa, (0)8a; and fild = fi1d then fiRaga,.
(c)’ Moreover (c) is preserved by proper forcing preserving “(R, S, g)- covers”.
Then in the definition of “(R,S,g) strongly cover for possibility X”, when
Va € S (cla],d[a]) = (¢,d) X = A, B we can omit (Vk)Py.

Proof. Like the proof of 3.4A(3). 348

3.5 Claim. 1) If (R, S,g) covers in V and Q is an (R, S, g)-preserving forcing
notion then in V¢, (R, S,g) still covers.
2) Assume (R, S,g) covers. The property “(R,S,g)-preserving for possibility

X” is preserved by composition (of forcing notions).

Proof. 1) Just read the definitions.

2) Each part has some versions, according to whether in Definition 3.4 we
choose Possibility A, A*, B, B* or Possibility C, C* and whether d[a] € a or
not.

Let Q = Qo * Q1; let x1, X, N, N1, a, k, fe, Be, f¢ (for £ < k), p, pn (n <w)
be as in Definition 3.4. Let p = (¢% ¢*) and p, = (qg, ¢;)- By condition (vi) of
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Definition 3.4, for each n < m < w we have ¢}, IFq, “Q1 = ¢' < ¢, < ¢}.,”,
hence without loss of generality:

()1 kg, “QiE g < g} <g}, forn<m<w.

(*)2 for every x € d[a] for every n < w large enough, (0, ;) forces f¢(z) to be

equal to some (specific) Qo-name, for each £ < k.

[Why? By clause (x) or (xi) of Definition 3.4.]

Now we define fj, a Qo-name of a member of dlal¢[q] , such that IFg, “ for
each z € d[a], for every n large enough g, IF@, ‘(fe(z) = fe(z)]™. Easily:
dla] €a= f, € N.

By Definition 3.4 (and the assumption) there is go € Qo which is
(N, Qo)—generic, is above ¢° (in Qo) and forces N[Gg,] to be (R, S, g)-good
and for some v, <y, 7, € N we have qo Ibg, “f¢R s for £ <k”.

Let Go C Qo be generic over V such that g0 € Go. We want to apply
Definition 3.4 with N[Gol, ¢'[Go], (g;(Go] : £ < w), (felGo] : £ < k), (f4[Go] :
£ < k), (7g : £ < k), @1]Go] (and sometimes N1[Go]) here standing for N, p,
(pe: & <w), (fe: L <k), (ff £ <k), (Be:£<k), Q there (and sometimes
N;) (and same (R, S, g)).

So we have to check the assumptions of Definition 3.4; now we check all
clauses of Definition 3.4.
clause (i): clear by the “old” (i).
clause (#): holds as gy € Gy is (N, Qo)-generic so N[Go] N (US) =NNUS)
and the “old” (ii).
clause (iii): holds by the choice of gy € Gy that is go I+ “N[Gy) is (R, S, g)-
good” by the choice of gy and clause (b) in the conclusion in Definition 3.4.
clause (iv): clear by the “old” (iv).
clause (v): If = € d[a], then (z € N or € N; and) for some £ and Qo-name
7 € N or € N; we have IFg, “[q} g, “fe(z) =1 € c[a]”]” (as the set of
(r0,71) € Qo X Q1 such that

”_Qo “[rl ”—91 “ff(m) = I”]”
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for some Qo-name 7, is dense open subset of (Qo, Q1) so some (g2, g}) is in it,
and there is such 7 so w.l.o.g. 7 € N or € N1). So f}[Go)(z) = 7[Go] € c[a].
clause (vi): by (*)1 above (in our proof) this holds.

clause (vii): Check (see (*)2).

clause (viii): This is by the choice of fj(z) and (g} < w).

clause (iz): by the choice of go (and as go € Gp) and the choice of v, (for
< k).

clause (z): by the “old” clause (x) and as in the proof of clause (v) above. In
details, if N[Go] F “Z C Q1[Go] is dense open” so Z € N[Gy] then for some
7' € N we have I, “Z’ is a dense open subset of Q1” and Z = Z'[G)]; let

J = {(ro,T1) € Qo * 91 g, “T1 € ;[m},

clearly J € N, is a dense open subset of Qo * Q1 hence for every large enough
¢,
(¢, 9z) € J hence g;[Go) € Z'[Go] =1,

hence we finish.
clause (z3): Use a1, N1[Go]. Note that we do not require N;[Go]NV = Ny, still
N1[Go] < N[Gy], N1[Go] € N[Go] and (gz[Go] : £ < w) is as required there.

So really we can apply 3.4 and get ¢1 € Q1[Go| which is (N[Gj], @1[Go])-
generic, and Q1[Go] F “¢*[Go] < ¢1” and (ye : £ < k), v¢ < 7, such that
Q1 ”'Ql[Go] “f ¢R+,8.". As G was any generic subset of Qo to which g belongs,
for some Qo-name q; we have go I, “g1 is as above”. Now (go, ¢1), (e : £ < k)
are as required. If we do have the demands on a; in Definition 3.4, clause (x7)
we should replace N1 ny another model in the intermediate stage as done in

the proof of 3.4A (but we use absoluteness of zRg,). O35

3.6 Theorem. 1) Suppose X € {A4,B,C,A*,B*,C*} and in V we have
(R, S,g) strongly covers, (Pi,Qj + i < a,j < a) is a CS iteration of proper,
(R, S,g)-preserving for possibility X forcing notions, then P, is a proper,
(R, S, g)-preserving for possibility X forcing notion.
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2) This is true also for more general iterations, as in XV when |o*| < ®; (in

fact all cases in VI 0.1 apply) .

Proof. 1) We prove by induction on { < a, that: for every { < ¢, P¢/P¢ is
(R, S, g)-preserving for possibility X (in VF¢), moreover in Definition 3.4 we
can get Dom(q) = (¢ \ §) N N. For ¢ zero, there is nothing to prove, for ¢
successor - use 3.5(2), so let ¢ be limit, { < ¢. Let Gp, C P¢ be generic over
V and x, N,p,k, fe, f7,Be (for £ < k), and possibly p,, x1, N1 be as in () of
Definition 3.4 (with P;/P¢, V[Gp,] here standing for @, V there); for X = C,
C* we have k = 0 so fe, f7, B¢ disappear and for cases d[a] ¢ a we have no
Nj and for X = A*, B* we have k = 1. Let Go = {p € P;/Gp, : p € N1 when
well defined and p € N otherwise and for some n, p < p,} (used in the proof
of possibility B, d[a] € a).) We can choose (,,lo = &,{n < (nt1 € NN ¢ and
sup(N N¢) = U, <o ¢n- Let go € Gp, force all this (so we can work in V, so we
have Gy).

The proofs are built after the proofs of preservation of properness and the
proofs in VI §1, VI §3 (particularly the proof of Possibilities A, d[a] € a).

The case when cf(¢) > N is elaborated when possibility B, dfa] € a, is
considered (note that the arguments there apply to all Possibilities).

Possibility C: Let (f¢: £ < w) list the P-names f € 9191¢/[d] satisfying f € N.
Let (Tn : n < w) list the P;-names of ordinals which belong to N. We choose
by induction on n, gn, fn, Hn ([? : £ < n) such that:

(a) gn € P, Dom(gn) \ € = N N(n, gnt11¢n = gn (of course gp is given)

(b) gqn is (N[Gp,], P, )-generic

(¢) gn Ik “N[Gp, ] is (R, S,g)-good”.

T But in the applications presented here we “forget” this. Of course if we
consider forcing notions with an additional order <, on them, and the cor-
responding iteration (see XV), then “pure (6, 2)-decidability” has to be added
for appropriate § (mainly dfa] € N, 6 = Rp).
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(d) pn is a P,-name of a member of P; N N such that
dn ”_Pcn “?n [Cn € GPcn ?

(e) H, is a P;,-name, H, = {(fo,...,fn=1) : d C dfa] is finite and
Pn uéP(/GPCn “<f0rd7' e ?fn—lrd> # <f0,- "7fn)”}
(f) f% is a Pr,-name such that

gn ke, “(f7 : £ <n) € Hy and for every m < n we have

pnt+1(Gr, | P/, - /\ fe2 f7".
£<m
(We can demand that gy, forces that p,+1[Gp,, | forces £ <n = f3[Gp, | C
fe, minor difference.)
(8) gn Ik “pny1 forces a value to 7,,”.
Now there is no problem to carry out the definition but still we have
freedom to choose (f7 : £ < n). For this we use the winning strategy from

Possibility C of Definition 3.3; choosing there the nth move of player I as:

def

No % NG, ]

H,[Gp,] def {(90,---,9n—1) : for some finite d C d[a] with have:
ge € c[a] for £ < n and

PW[GP(,.]“A “(fofd»--',fn-lfd) 7é (g())'--ygn—1>”}

(so the nth move is defined in Vn; we can work in VLeww(®o.(2"N")) Noy
of course while playing, the universe changes but as the winning strategy is

absolute there is no problem.

Possibility C* By 3.3B(2) it is enough to show that for every P;-name fo of
a function from d’[a] to c[a] for some b € S, ((¢'[b],d’[b]) = (c'[a],d’[a])) and
foRpgp. This is proved as in the proof of Possibility C, dealing only with fo
(and using Possibility C* of Definition 3.3 of course.)



904 XVIII. More on Proper Forcing

Possibility A, dla] ¢ a: Let {7; : j < w} list the P;-names of ordinals which
belong to N. We shall choose by induction on j < w, n; < w such that :
(A) nj <njp1 <w
(B) for some sequence (7T;¢: £ < j) € N, with 7, a P¢,-name we have:
(@) pn, 11¢55 Q) PR, “T5 =1T55”
(B) for £ < j we have pn,[[Ce, Ce+1) PP, | “Tjer1 =Tj6”
(C) ifj=i+1,£<ithenlrtp, “Pnl[CeCet1) < Pny[[Cer Cer)”
(D) if j =i+ 1 then Ikp, “pn, [[Gi, ) < P, [Gi,€)”

[Why can we carry the induction? It is enough to prove for each j that,
given (ng : £ < j) as required, the set of candidates for p € P; satisfying the
requirements on py, is dense which is easy by clause (x) of (*) of Definition
3.4]

Let {f; : j <w} list the P;-names of members of 4lal¢/[a] which belong to
N (for £ < k we let f; be as given). Note also that we can replace (p, : n < w)
by (pn; : j <w).

Hence without loss of generality we have 74; € N for j <2 <w, 74,5 a P;-
name such that pel[Ce, ¢) IFp,, “Te =1ee”, PellG)r i) IFp,,, “Tej41 = 125"
Let h(j,z) < w be such that T4(;) = f;(z). We can now define for n < w,
j <w, fr; a Pr,-name of a function from d[a] to c[a]. Let f}, ;(T) be Th(;z),n
if h(j,x) = n and Th(je),h(z) if h(J, ) <nso fi ;= fi for j <k.

We choose by induction on n, gn, kn, @} (for £ < k + n) such that:

(a) gn € P, Dom(gn) \ £ = N N(n,y gnt1lén = qn, (qo is given).

(b) gn is (N, P, )-generic

(©) gnlFp,, “N[Gp,]is (R,S,g)-good”

(d) kn is a P, /Gp.-name of a natural number, k,, < kn41 (for Possibility

(A), with which we are dealing) k, =n + 1 is 0.K).

(€) ProlCo < go (in P,y).

() @nlén kP, “PkniilénsCne1) < @nt1lCny Cnga) (in P, /Pe,).

(g) for £ < k+n, af is a P,-name of an ordinal in a N a*, o}t < af,

¢
ad = By
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(h) for £ < k+n we have ¢, Fp, neRop8a”

The induction step is by the induction hypothesis (and Definition of
“(R, S, g)-preserving” (see Definition 3.4)). In the end let ¢ = {J,, ., n-
Now why ¢ is (N, P;)-generic? Clearly ¢ € P; (by condition (a)); let ¢ € G¢ C
P; be generic over V, G¢ C G¢, and G, e G¢ N P, . Now for each P;-name
7 of an ordinal, for some j < w, T = 7; necessarily k(x) e k;j [Qpch] > j (see
condition (d)) hence: g; forces that 7, ;[G¢;] € N. But for £ > j and j; € [j,w)
we have p;[[Ce, Ce+1) < pjy [[Ce, Ce+1) hence by (e)+(£), p;l[¢e, Ce+1] < o1, s0
together p; (¢, U;c,, i) < @50 p;l[¢;,¢) < g; hence also g forces 7; = 75 ;. By
the last two sentences q IFp, “7;(Gp.] € NNOrd” so q is really (N, P;)-generic.
Now for each ¢ the sequence (o} [G¢] : £ < n < w) is non increasing (see con-
dition (g)) hence eventually constant; say for n € [ng,w) has value aj. Now if
x € dla], j < w then for n > h(j,z) clearly k, > h(j,z) so f;(z) = f,(z),
so for every finite b C dfa], ((f},[b)[Gp, ] : n < w) is eventually constant,
equal to (f;[b)[G¢]. So for n large enough, (f;10)[Gp.] = (f},[0)[Gp,,] and
f3nlGP, JRa; 8a-

So in V[G¢], [f;][G¢] satisfies

® for every finite b C da] for some f’, f;[G]Ib = f'[b and f'Ra;8a-
But we are in Possibility A of Definition 3.3, so Ra; is closed, so f; Ra; g.- This
finishes the proof that ¢ I- “N[G¢] is (R, S,g)-good”. The last point is noting
a; < apn[G¢] < ago = B for £ < k, so we finish.

Possibility B, dla] ¢ a: The proof is similar to the previous case, only the win-
ning strategy in the game is described in Definition 3.3 (Possibility B) to make
the k, large enough such that the part of the proof concerning Ig[G(]Ra; ga

works.
Possibility A* da] ¢ a: By 3.2B(1), the next case implies it.

Possibility B*, dla] ¢ a : By 3.3B(2), we have to take care of fo only, and this

is done as in Possibility B, d[a] ¢ a, not increasing the set of f;’s we consider.
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Possibility B, d[a] € a : We shall reason as in the proof of Possibility A, d[a] ¢ a,
for Ny (which vary).

If cf(¢) > No then the set Z = {p € P, : for some ¢’ < {, and P;-names
ge we have p Ib “fy = g for £ < k”} is a dense subset of P; and belongs
to Ni. So for some n, p, € Z, by renaming without loss of generality p € Z;
w.lo.g. ¢ < (1. We can easily find (¢, : n < w), (pj, : » < w) such that
Gn+11¢n = Gn, n € P, gn IF “N[Gp, ] is (R, S,8)-good”, ¢ IF “f,R.,&"
for some v, € a, v < B¢ and ¢, IFp “p,, € PO N, p1¢n € Gp,, and

/"

m <n = p,, <p,”, and pj = p, and for every P;-name of ordinal 7 € N for

«,

some n, qn IFp, [pﬁl lFp, “7 = a@;”,ar € N] where ¢, is a P ,-name of an

ordinal. Now q, = (J ¢n is (IV, P;)-generic, and p < q,; so ¢, is as required,
so in the case cf(¢ )n><u;¢0 we are done'.

So we are left with the case cf(¢) = ag. We have R* =1 or A @; as the
later case is harder we speak on it. This time we use the full vers,icon of clause
(xi) of Definition 3.4. Let {r; : j < w} list the P;-names of ordinals from N
and {f} : j <w} list the P;-names of functions f € dlal¢[a] which belong to N
with fi = f; for j <k and {z; : j < w} list d[a]. We now define by induction
onn < w, Mn, G", gn, P, bn, @7 (£ < k +n) (note that go and also GO are
already given):

(2) dn € P, Dom(gn) \ € = N 1 Ga \ £, Gns11Gn = g (o is given).

(b) gn is (N, P, )-generic

(¢) g IFp,, “N[Gp,,] is (R, S,8)-good”

(d) My, G™, Py bn, @f (for £ < k + n) are P, -names

(€) gn IFp,, “bn is a finite subset of dla], M, a countable elementary
submodel of (H(x1)[Gp,,],€,<},) which belongs to N[Gp, ]! and
bn € M7”

T This applies to all possibilities.
t And if we adopt the demand on a; in clause (i) of Definition 3.4, we

should add M,N(YS) e S
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() @n Fp, “G™ C P/G¢, N Myu[Gp,,| is generic over M,[Gp,_ ],
l)n[Gpcﬂ] € G"so p, € P, NN (ie. ;p;[gph] € P, N N) and
Pulén € Gp,, and f; € My, fj[Gn]Ra;—‘Ga”
(8) n+1 b “Pp < Phyay £5(G10n C £5IG™H1bn for j < k+n”.
(h) gn I “pr44[Gp,] forces a value to 17, (in P;/Gp )" and to f;1b, for
i<k+n.
There is no problem to carry the definition using A, ®x. Now we have some
freedom: choosing the b,. So actually this is a play of the game, where the
choices made above are fixing the moves of player I (with some extras). It will
suffice to have player II winning, which is O.K. (so less than “I wins the game”
is used).
In the end we let ¢, = |J ¢n and continue as in Possibility A, d[a] ¢ a.
n<w
Possibility B*, dla] € a: Combine the proofs for possibility B* when d[a] ¢ a
(i.e. use 3.3B(2)) but M, = N; and the proof of possibility B when d[a] € a.
2) Left to the reader O3

3.7 Application. Open dense subsets.

3.7A. Context and Definition. Let (n; : £ < w) enumerate “~w such that
nin € {nf : i <m}, let fR,g mean
f,9:¥2w—“>wandne€“w\{n; : £ <n} implies that there is v such
that n Jv <av” f(v) In"g(n).
Note that if fR,g and ¢’ : “”w — “Zw and (Vn)(g(n) < ¢’(n)) then fR,g".
Let, for some subuniverse V’/, § C S<N1(H(N1)V’), and fora € S, g, € US
be such that (Vf)(f € a & f is a function from “"w to “”w = \/, fRn8a).
Clearly such g = (g, : a € S) € V' exists.

Let R=V R, and let F* be the family of functions from “>w to “~w.

n<w
3.7B Claim. 1) (R, S, g) covers iff S is stationary and

(Vf e V)[f € F* — (3g € | S)[f Ryl
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2) If (R, S,g) covers then it strongly covers (for possibility A*) and
(vf € “w)Bg € SN f(n) < g(n)).

3) If N < (H(x),€,<}) is countable, (R, S,g) covers and NN (JS) =a€ S
then N is (R, S, g)-good.
4) Each R, and R=\/

m<w Pom are transitive.

Proof. Straightforward. E.g.
(2) First let us show that @7 of 3.4B(1) hold. So suppose that N, a;, as, f,

(fn:n <w) and o, o, are as assumptions of @7 . For n < w we define

d) = {n; : £ <nand (Ym < £)(Vn < 0}, "&a, (1)) (Ffu(m) = f(0)},

dy, = {n} : Qv € dy)(n; L v"ga, (V))},
2 =dLu{n; <o}

Note that

(¥)1 d% C d} C d2 are finite subsets of <“w,

(¥)2 each d*, (i < 3) is closed under initial segments,

(¥)3 (Vv € “>w)(V*n)(v € d2).

Using (*)s one easily constructs a function f* € F* N N such that
(#)a (Vk <w)(n # dp = fnRef*)

(note that the sequence (d : n < w) is in N). Then for some 8 < w we have

f*R38a, and 8., Ra8a,-

Take n such that
(x)s (Ym < B)(n%, € db)
and put d = {v: (3n € d})(v < 1" ga,(n)}-
Suppose that f' € F* is such that f'R, g,, and f'|d = f,[d. We are
going to show that f,, R,g,,. To this end suppose that £ < o and consider the

following three cases.
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Case 1: n} ¢ d?
Then 7} ¢ d2 and hence (by (*)s) £ > . Since g,, Rggaq, we find v € “>w such
that

M Sv <V Ga, (v) ;" Bay (17)-

It follows from (%), that v ¢ d2, so v = n} for some k > ay,. Since 'R, g,
we find n such that

me Qv dn<an” f(n) Av* e (v) I ;" gay (07),

as required.
Case 2: m) € d2 \ d2
Since n} ¢ d° we know £ > 3. As f*Rgga,, we find k such that

me Smg <Ak ST (k) L0 8ao (M2)-
Necessarily n; ¢ d® and therefore f, Ry f*. Consequently we find v such that
Me Inp Qv <" fo(v) <" (k) <0k " 8as ()

Plainly v € d (as n} € d2) and therefore f,(v) = f'(v), so we get what is
required.
Case 3: ) € d2

Since fR,8q, We find v such that

ne v Qv f(v) < ng” 8ag (07)-
As n} € d2 we know that f,(v) = f(v) so we conclude
ng Qv <Av” fo(v) <15 " 8oy (M7)-

This finishes verifying the clause ®;. Now we may apply 3.4B(1) and easily
check that (R, S, g) strongly cover for possibility A* (i.e. this claim gives ®; of
Definition 3.3).

The other parts should be clear. Os.7B
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3.7C Claim. Suppose in V, (R, S,g) covers, @ is a proper forcing notion, then:
Q is (R, S, g)-preserving for possibility A* iff

Ve (Y fe F)(3g €9 Ry]

(so also kg “(R, S, g) covers” is equivalent to them).

Proof. The “only if” part is straightforward.
The converse implication follows from 3.4A(3) (note that the demand ®*

was proved in the proof of 3.7B(2)). Os.7¢c

3.7D Claim. If (R, S,g) covers then “proper+ (R, S,g) - preserving” is pre-

served by composition, and more generally by CS iteration.

3.7E Claim. 1) Suppose (R, S, g) covers, then for every dense open A C “>w
there is a dense open B C “?w,B € |JS and B C A.

2) If FV is the family of functions from “>w to “>w and F C FV is such that
Vg3f [gRf] and S C Scx,(H(x1)) is stationary then we can find g = (g, : a €
S), ga € F such that (R, S, g) covers.

Proof. 1) For a dense open set A C “>w define f4 € F by
fa(n) is such that n~ fa(n) € A.

Let n < w, g € |JS be such that f4R,g and define
BY {ne “w: for some v € “w\ {n} : £ < n} we have v g(v) < n},

Clearly B is open dense, B € |J S, and B C A.
2) Straightforward. Us.7e

3.7F Remark. 1) In 3.7A we could have weakened fRng to: n ¢ {n} :
£ < n} implies that for some v,v < v"f(v) < n"g(n), call it R¥ (and
R*,R",(S,R¥,g) are defined accordingly). So we can demand () ¢ Rang(g).
Then 3.7 B-E holds for this version too. (For 3.7B(2) second clause: for every
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f € wlet f': 9w — “w be such that f'((n)) = (n,n+1,...,n + f(n)),
and f'(()) = f'({0)). So there are ¢ € |JS and n such that f’R,g’. Let
g(n) = min{tg(v"g'(v)) : v"g'(v) < ()" F'((n))}; easily f* <* g € US.)

2) Assume R is as in 3.7A and S, g as in 3.1. Then also the inverse of 3.7E(1)
holds, see 3.7H.

3.7H Claim. Suppose (R, S!,g!), (RY,S?,g?) is as in 3.7A for the same V'
(for R defined in 3.7F) and S, S2 C S<y,(R1)V are stationary even in V,
then: (R, S',g') covers

iff for every dense open A C “Zw there is a dense open B C “>w such that
BelUS?=JS'and BC A

iff (R¥, S%,g?) covers.

Proof. first = second: this is 3.7E(1).

second = third:

Let f(€ V) be a function from “w to “”w; we define Ay = {p: p€ “w
and (Fv)(v" f(v) < p)}. Clearly A € V is a dense open subset of “”w. So by
the assumption there is a dense open B C “>w which belongs to |JS? and
B C Ay. So, working in V' there is g € U S? such that: g is a function from
w>w to “?w and for every n € “”w we have " g(n) € B. It suffices to prove
that fRog (as fRog = fRg and R is a partial order). Now for every n € “>w,
we know 7" g(n) € B hence 0" g(n) € Ay, but by its definition this implies the
existence of ¥ € “>w such that v" f(v) <" g(n). So v is as required.

third = first:

Let f be a function from “”w to “”w. Let us define a function f’ from
“>y to “w as follows. For n € “w, let (o : k < ky) be a list of {p :
p € “w,lg(p) = Lg(n) and Ay gy p(€) < n(£)}, so n appears in it and
1<k, <w. Wlog n= ps,k")_l. We now choose by induction on k < kg, a

sequence vk € “>w. Let 1) =7, and v§*! be:

(pk U vET[lgn, £gvE)) " Flok U (vy 1egn, Levy))] (0).

Finally f'(n) is defined by 0" f'(n) = V,(,k”), remember 7 = szn_l-
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So by the assumption there is ¢’ € |JS? such that ¢’ is a function from
“>y to “w and f'R¥g’. As |JS? includes the set of functions from “>w to
w>w in V', without loss of generality f'RY¢’, and as () ¢ Rang(f’), by 3.7F we
know Vn[€g(f'(n)) > 0). We now define a function g from “>w to “~ w; we define
g(n) by induction on k = fg(n); given n of length k, we choose by induction
on £ < k natural numbers i, € {n(£),n(£) + 1} such that for m < k we have
i is not the first element of f/((io,...,i¢—1)) (possible as f'({io,...,i¢-1)) has
length > 0).

Let o' = (ip,...,ik—1) and g(n) = ¢'(n’). Note: i’ is well defined and for
every { < k the sequence n’ (and even n'[(£ + 1)) is not an initial segment
of (n'1€)" f'(n'1£). By the choice of ¢’ and definition of RY we know that
there is 1% € “>w such that 1° < 0" f'(1°) < n'"¢'(n’). By the choice
of 7',=(v° < 7') so necessarily ¥ <9 0. Let v! = n U (VO[[k,~£gr?)), so
n Q v, Lg(vt) = Lg(v°) and (VO)[v1(€) < v°(¢)]. Hence by the choice of
/(W0 there is v2, vt 9 1?2 < V2" f(V2) < V2" F(¥?)"(0) Q W17 F(V0), just
choose m such that v* = p” and put 12 def P " (Ve 1[egr®, £gr™s)). Note that
v f1(W°) < g'(n') = n”g(n) and hence So fRog. As g was defined from f

alone; and R is a partial order so we may easily finish. Os7g

3.8 Application. Old reals of positive measure:

This is closely related to Judah Shelah [JdSh:308, §1].

3.8A Context and Definition.

Let S C Scx, (HX)Y', A % S transitive model of ZFC~ and S a
stationary subset of Scx, (lJS). For a € S let g, € “2 be random over a, for
simplicity: g, € |US and a* = w. For n < a* we define relation R,, by fR,g
iff: g € “2, f a sequence of nonempty rational intervals (in our context means
I, ={ne “2:p <n} for some p € “>2) and! Y tcw LD (f(€)) <1 (where

Lb({ne“2:p<n}) def 2% and m >n =g ¢ f(m).

t Lb stands for Lebesgue measure.
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3.8B. Claim.

1) If (R, S,g) covers then it strongly covers (for possibility A).

2) If (R, S,g) covers then SN“2 does not have measure zero (equivalently, it
has positive outer measure).

3) If (R, S,g) covers then “proper + (R, S,g) - preserving” is preserved by
composition and more generally by CS iteration.

4) If in V, A C “2 is not null (i.e. does not have Lb measure zero) and
S C Scr, (H(Xy)) is stationary then for some g = (g, : a € S), we have:
(R, S,g)-covers and a € S = g, € A.

Proof. 1) We check that Possibility A holds, so we have to check ®. So in V¥
let Q, N,a, N1,a1, G*, p, k, fe, Be, f{ (£ < k), z,y be given as there (so by 3.8A
we have d[a] € a). Let (p, : n < w) be such that p < p, < ppy1 € G, (so p,
pn € QN N1) and A co1 Ve 4 < Pr- Let N2 < (H(x1), €, <},) be countable
such that

{N1, (Pn i n <w),(fe, f7 : £ <k),z,y} € N2

and aj et NonUS € S and N2 € N. Let (p}, : m < w), f7, be such
that: p{,‘ = Dn, Py < Phs1, (P @ m < w) is a generic sequence for (N2, Q)
and pj, - “felm = f7, Im”; without loss of generality (fen,pm < k,n <
w,m < w) € N. Clearly for some my, < w we have fe,n m; . 8a- As we
can thin the sequence ((pn,p} : n < w) : n < w) as long as it belongs
to N without loss of generality for some rational u, € Q, 0 < u < 1, and
pn IF 22Lb(fe(2) € (ul,ub + 1/k2%"] and (v : n < w) € N is strictly
increasilng and (ué + 1/k2%" : n < w) is strictly decreasing, and p,, forces a

value to felmey such that > fo(i) > ué and (my, :n < w) € N. So it

t<mg n

is forced by pn that f¢[mem has the value above, and > f) <1 /k2%",

i>2Men
ism, LD (F7 () < 1/2%"
and pg I+ “felmen = f7 Imey”, hence ZZ{Lb (Ip): for some £ < k, n < w we

have I, = f;,.(i)} < ZZLbfe (Z)+EZ Z Lbf7,(9) <ZZLbfe(z)+

n i> 2Me,n

33, 1/22" so this is a sum of two reals < o0 (note that in ﬁrst sum for each
£

so f;,, satisfy this too. For every n we have 3, ; >
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i it is on the set double appearances not counted). Hence g, belongs to only
finitely many of the sets J{I, : for some £ < k,n < w,I, = fyn(i)}, so the
rest is easy.

2), 3) are left to the reader.

4) Straightforward. Os.88

3.8C Claim.
(1) Assume S C Scx,(H(R1)), and S is stationary as a subset of Scx, (U S),
and g : S — “2 is such that:
(*)s,g if z, S € H(x) then for some countable N < (H(x),€<}) we have
{z,S,8} € Nand NN (|JS) =a € S and g, belongs to no measure
zero set from N.
Then: if (P;,Q; : 1 < a,j < ) is a CS iteration of proper forcing proper
notions, each Q; preserving (x)s1 g whenever |JS € JS?, (Va € S*)(an
Us) € 9), g = Ban(J )’ this means VP E “if (x)g1 41 then IFg,
(*)s1,g1”) then P, preserves (*)s,g.
(2) Assume X C “2 has positive (outer) Lebesgue measure. If (F;,Q; : i <
a,j < a), is CS iteration of proper forcing, each @Q; preserve the property
(*)s,g whenever g : S — X, then P, preserves the property of “being of

positive outer measure” for X’ C X.

Proof. 1) As we can replace Q) by (Pp+i/Pp,Qj i <a—p,j <a—p),and S by
S; C S as long as (*)s, gts; holds in VF# it is enough to prove IFp, “(x)sg”-
Now letting S* = {a € S : g, is random over a}, clearly S* C S is stationary
and S*, g|S* fit 3.8A.

We prove by induction on ¢ that
(a) P; is (R, S*,g[S*)-preserving (for possibility A) and
(b) IFp, “Q; is (R, S*,g|S*)-preserving”.
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Arriving to 4, clause (a) holds by 3.8B(3). To prove clause (b) first we deal

only with clause (b) of definition 3.4 and, for x large enough in VP we let

W = {N: (i) N is a countable elementary submodel of (H(x), €, <)
to which S*, g, Q; belong and a = N N (U S) e S,
and g, is random over N

(ii) for some p € @; N N there is no q such that
p < g € Qi,q is (N, Q;)-generic and

gk, “N[Gg,] is (R, S*,g1S5*)-good}.

If (b) fails then W is stationary (otherwise if x' = (2X)*, {W,x} € N <
(H(x'),€,<5,) then for N the required conclusion holds and we clearly finish).
For p € Q; let W), be defined like W with p (in clause (ii)) fixed. So by
normality for some p, W, is stationary. But defining g' def (g = EnnlJs
N € Wp), clearly VP I “(x)w, 17 but VP I “Ikg, —(x)w, g1 contradicting
the assumption.

But we have to deal also with clause (b) in the conclusion of Definition

3.4, so define

W' = {N :(i) as before
(i) for some p € Q; NN and k <w and f, € N(€ <k)

Nlaalv (pn n< w)yf;
as in (x) of Definition 3.4

there is no ¢ satisfying (a) + (b) of Definition 3.4 }.

Assume toward contradiction that clause (b) here fails, hence W C S<x, (H(x))
is stationary and w.l.o.g. let (mg, : £ < k,n < w) € N be as in the proof of
3.8B. So for some z = (p, A, (Pp : n < w), Ny, a1, (f} : £ < k), (men : £,n)) we

have
W, def {N € W’ :z € N gives a counterexample in (ii)

of the Definition of W'}
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Q:
is stationary. Let x1 >> x. In (V)"

, clearly {go:a=NNUS,N e W.}is
not null. Also for every club E of SSNO(H(Nl)VPi) we have: the set {g, : @ € U}
is not null where Ug = {NNH(x1): N e W/}nE.

So for some club E*, the outer measure of {g, : a € Ug} is minimal. So
really in VP we have a Q;-name E* € H(x1). We can find xo < x large enough

such that letting
E'={anH(xo):a€ E*} and W)/ ={NnNH(xo):N €W/}

we have all those properties and there are <*-first hence belong to N;. Replac-
ing N1, (pn : n < w) by Ny, (p}, : n < w) by 3.8B, we have {W/, x1, E’,z} € N;.
So choose N € W.

Now for some n, p, force outer Lebesgue measure of {g, : a € Ug } is

> 1/n*, n* > 0, and if n is large enough, it forces value to felm, and force

> Lb(f(4)) <1/n*(k +1). Let pp € Gq, C Qi, Gq, generic over VF
= So E® = {N < H(x) : N[Gg,]n"Ord C N} is a club, so restricting
ourselves to it does not change the outer measure. Let N € Ug N E®, then
\l/—| feRp, InnJs- There are 2k possibilities: which 4, and if bad ¢ is > kmg
or < my,n, later is impossible.

The outer measure of former is < k1/n*(k + 1) < 1/n*, but by the choice
of the club E* contradiction.
Remark. Really this is part of a quite general theorem. We shall return to it

elsewhere.

2) Should be clear. Us.sc

3.9 Application. Souslinity of an w;-tree.

Here we return to the issue of IX §4.

3.9A Context and Definition. Let T be an w;-tree, say with [wa, wa +w) \
{0} being the (1 + «)-th level. Let W C w; be the set of limit ordinals § = wd
(for clarity). Let for t € T,, 8 < v, t[B be the unique s € Tp, such that s <r t.
Let for 6 e W, a5 =0U%>4, S ={as:6 € W}, dla] =a, cla]| =a (so d' = wy,
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¢ =“>w;) and {t’ : n < 75 < w} be a subset of Ts for some non zero s < w.
Let a* = w; and lastly we choose! g, such that: for a € ana*, we let fR.gq
iff one of the following holds:

(@) a=0and fY{IPhN{s€T<s:0<s<p t5f(0)} #0 or

() 0<a<édand f7H{1})N{s € Ts: ti(o)ra <sand s#0}=0or

() ~(£(0) € 7).

Let Y = {tS : n < 75,8 € W}; we say the tree T is Y-Souslin if: for x large
enough, for every z € H(x) for some N we have: z, T € N < (H(x), €, <}),
N countable, & df v Nwi, and for n < vs, {s: s < t3} is (N, T)-generic. For
W' CW let

YIW' = {t{ :n < s and 6 € W'}.

3.9B Claim. 1) If A;T5 = {t} : n < 75} then Y-Souslin means Souslin. If T
is Y-Souslin then 7 is not special, even not W-special.

2) If T is a Y-Souslin tree then (R, S,g) fully covers (so for any forcing notion
Q, if in V9 the tree T is still Y-Souslin, then (R, S,g) still fully covers),

3) If (R, S,g) covers then (R, S,g) strongly covers for possibility A.

Proof. 1), 2) Straightforward.
3) Clearly each R, is closed and as [a € S = d[a] ¢ a] we are done.

3.9C Claim. A forcing notion Q is (R, S,g)-preserving iff Q is (R, S, g)-
preserving for possibility A.

Proof.

The “only if” direction.

Let N < (H(x),€,<}) be countable (R,S,8) € N, and p, (p, : n < w),
(f :£<k), (fe:£<k), (Be: £ <k) be as in Definition 3.4.

We can assume 28! < x; = cf(x1), 2¥* < x.

t As commented earlier, actually the identity of g, does not matter only the

sets Ra,o = {f : fRaga}
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Let w= {¢ <k: f(0) <5 and B¢ # 0}. For £ € k\ w choose 1, € TN N
such that z, <p tf,e(o) and V,, ., pn = “fe(ze) =1 or £¢(0) > 75”. So for some
n(*) <w,

Pay = N\ [felwe) = Lor £2(0) > ).
LEk\w

Let

Z ={q € Q : for each £ € w, q forces a value to fe(0), say my, and it

forces a truth value to (Hx)(tfnl Be <1 z & fo(z) = 1)}

So for some n > n(*), we have p, € Z, so those truth values which it forces
are all false (as if p, IF (3z)(t5,,18; <7 z & fe(z) = 1) then for some n' > n,
pn forces a specific such z so F;(z) = 1, contradiction). So any (NN, Q)-generic
q € Q which is > p, and satisfies (), below is as required, where

(*)g for n < YNnw,, the branch {t : t <7 t}} of TN N is (N, T)-generic.

Its existence follows from “Q is (R, S, g)-preserving.”

The “f” direction.

It is trivial (reread Definition 3.4). Us.oc

3.9 D Definition. We say Q is Y-preserving when: if N < (H(x), €, <})
countable, § = NNW;, {Y,T} € N,andp € Qsuchthatn <y = {t :t <r t3}
is (N, T)- generic, then thereis ¢, p < g€ Q, qlF “n <vs = {t : t <t’} is
(N[Gg), T')-generic.”

3.9 E Fact. Q is Y-preserving iff Q is (R, S, g)-preserving.
3.9 F Conclusion.
If T is an w; - tree, Y C T then the property “Q is Y-preserving and is

proper” is preserved by CS iterations (and composition).

3.10 Application. Being a nonmeager set
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3.10A Context and Definition. Let S C Scx,(H(x)), for a € S, d[a] =
cla] = “Zw. Let fRyg iff (f is a function from “”w to “”w and g a function
from w to w) & (3*°m)[(glm) " f(gim) < g]. Let g = (8, : @ € S) where
g, € “w, (so a* =1,R = Ry).

Remark. Note that if N is a model of ZFC~, then: “g is Cohen over N” iff

(Vf e N)(f: 7w —“w= (3*m)[(gIm)" f(gIm) 2 g])

if
“(Vf e N)(f 7w — “"w = (3m)[(gim)" f(gim) < g])

(as N is closed enough).

3.10B Claim. 1) If (R, S,g) covers in V then it strongly covers in V (by
Possibility B, C).

2)In V,if A C “w is not meager and S stationary subset of e.g. Scx, (H(X1))
then for some g we have (R, S,g) covers in V and g(a) € A fora € S.

Proof. 1) We can show that in Definition 3.3 Possibility B holds. The winning
strategy is in stage n, to choose b, so large that for £ < n, there are at least n
members in solutions of {m : (g,m) " f;(8.[m) < g} are guaranteed (similar to
VI §3, because the property has the form (3°m)) (i.e. Gs Borel set) (remember
o* =1 so @ is not needed). The proof for possibility C is similar.

2) Straightforward. Us.108

3.10C Claim. If (R, S,g) covers, then “proper +(R, S, g)-preserving” is pre-

served by composition and more generally by CS iterations.

Proof. Remember that (R, S, g)-preserving means “for possibility C” (the case

where Definition 3.4 is more transparent). Now use 3.6. Os.10¢

3.10D Claim.
(1) Assume S C Scx, (H(Ry)), and S is stationary as a subset of Scx, (U S5),
and g : S — “2 is such that:
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(*)s,g if z, S € H(x) then for some countable N < (H(x),€<}) we have
{z,S,8} e Nn(US) € S and g, belongs to no meagre set from N.

Then: if (P;,Q; : i < o,j < a) is a CS iteration of proper forcing

proper notions, each Q; preserving (x)g1 g1 whenever |JS € |JS?, (Va €

SHYanUS) € S), g = Ban(Js) (and (*)g1,g1 is defined as in part

(1); this means VP E “if (¥)s1,g1 then kg, (%)s1,4:”) then P, preserve
(*)s,g-

(2) Assume X C “2 is not meagre. If (P;, Q; i<, j <a),is CS iteration of

proper forcing, each Q; preserves the property (x), g whenever g: S — X,

then P, preserves the property of “being of not meagre” for X’ C X.

Proof. Like 3.8C.

3.10E Claim. If (R, S, g) covers in V and Q is a forcing notion which is Souslin-
proper in any extension (i.e., we have a Souslin definition which in any generic
extension is Souslin-proper) and IFg “V'N“2 is not meager” (in every extension)

then in V@ we have: (R, S,g) still covers and Q is (R, S, g)-preserving.

Proof. 1t follows from Lemma 3.11 below.

3.11 Lemma. [Goldstern and Shelah| Assume that Q is a Souslin proper

forcing, say definable with a real parameter r*, with the property
IFg “V N“2 is not meager”

and continues to have these properties in any extension of V' (by set forcing).
If N < (H(x),€,<x) countable, o a Cohen real over N and p € N N Q, then
there exists a condition ¢ > p, ¢ is (N, Q)-generic (i.e. (N, QV)-generic), and
gk “zo is Cohen over N[Gq].”

We will prove this through a sequence of lemmatas. We always assume that
Q is a forcing notion satisfying the assumptions of our lemma, N is a count-

able elementary submodel of some (H(x), €) (x big enough, regular), M is a
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countable transitive model satisfying a large enough fragment of ZFC. We let
X € N be a regular cardinal that is reasonably big (say A > Jj) but still small
compared to x, say 22" < X-)

3.11A. Fact. Assume B is a complete Boolean algebra, By C B a complete
subalgebra and {B, By} € N. If Gy C By is N-generic, then there exists an
N-generic filter G C B extending Gp.

Proof. Easy.

3.11B. Fact. Assume B € N is a forcing notion, xo € “2 a Cohen real over N.

Assume ¢ is a B-name such that
Ik “c is a Cohen real over V”

Then there is a N-generic filter Gg C B such that ¢[G g] is almost equal to zo.

Proof. Without loss of generality we assume that B is a complete boolean
algebra. For any formula ¢ in the forcing language of B we write [¢] for the
Boolean value of ¢. We write [¢] = 0 if Ik —p. Assume that o € “2 is

Cohen-generic over IV, and ¢ € “2 is forced to be Cohen-generic over V. Let
T:={ne“2:[nCc]#0}

Then T is a tree, and IFg “c € imT”. So LimT cannot be nowhere dense,
so for some 79 € T' we must have (Vn)(no < n € “>2 = [ € T]). For notational
simplicity only we assume 7 = () (otherwise we have to consider c|[¢g(mo),w)
and zo[[¢g(no),w) instead of ¢ and z).

Let By C B be the complete Boolean algebra generated by the elements [ C ¢,
where 7 ranges over “~2. Then By is a complete subalgebra of B, and the map
that sends n € “”2 to [n C ¢] is a dense embedding of “>2 into By. Thus
zo induces an (N, QV)-generic filter Go C By. By 3.11A, Gy can be extended
to an N-generic filter G C B. Clearly ¢[G] = o, as for every n € w, letting
N :=xzoIn, we have [n C c] € Go CG. Os.11B
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3.11C. Lemma. The formula “M C wxw codes a well founded model of ZFC~
with universe w, ¢ is (M, Q)-generic, and q kg =z is Cohen over M[Gg]” is
equivalent to a II}-formula (about z, ¢, and M as parameters). (M-generic
means M'-generic, where M’ is the transitive collapse of M. We will not

notationally distinguish between M and M'.)

Proof. First we note that “q is (M, Q)-generic” is a II}-statement, as it is
equivalent to

for every A € M such that M |= “A is pre-dense in Q”, and

for every r > g thereis a € M, M |= “a € A”, and a,r are compatible.
(Recall that in a Souslin forcing notion the compatibility relation is ¥} and
i)

If g is (M, Q)-generic, then we have: ¢ IF “z is Cohen over M[G]” iff for all
T € M such that M |= “r is a Q-name of a nowhere dense tree C “>2”, and
for all r > q there exists a condition p’ € M N Q and a natural number n such
that p', r are compatible, and M = “p’ IF z[n ¢ 7”. Again it is easy to see that

this can be written as a I1}-statement. Os.11¢c

3.11D. Lemma. Assume M is as above, p € Q N M, A a comeager Borel set.
Then there exist a real z € A and a condition ¢ > p such that ¢ is (M, Q)-
generic, and ¢ I- “z is Cohen over M[Gg).”

Proof. Let qo > p be (M, Q)-generic. Work in V[G], where go € G C Q, G is
generic over V. Since V N 2¥ is not meager (in V[G]), AVI¢ is comeager, and
the union of all meager sets coded in M[G] is meager, we can find z € VN AVIC]
which is Cohen over M[G], by absoluteness z € A. Now let ¢ > go be a condition

which forces this. Os.11p

3.11E. Proof of the Lemma 3.11: Recall that A € N is much bigger than w,
but much smaller than x. Let M % (H()),€). So M € N.

Let B be the algebra that collapses H()) to a countable set (using finite con-
ditions) i.e. Levy(Rg, |[H(A)|). Clearly IFg“M is a countable model of ZFC~.”

We assert that
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(*¥) Ik “There exists  (Cohen over V) and q € Q, q is (M, Q)-generic, and
IFq  is Cohen over M[Gg)”.
To prove this assertion, work in V2. The set of all closed nowhere dense sets
coded in V is now countable, so the set of Cohen reals over V is comeager,
and hence contains some comeager Borel set A. Now apply the previous lemma
3.11D. This finishes the proof of the assertion (x).

From the assertion we can get names z and ¢ such that all the above is
forced by the trivial condition of B. Clearly we can assume that z and ¢ are in
N.

Now apply Fact 3.11B to get an N-generic filter G C B (in V'!) such that

s ¥ z|G) is almost equal to zg. Let ¢ o q[G]. Then

N[G] E “q is (M, Q)-generic, and ¢ IFg ¢ is Cohen over M[Gg]”

and N[G] N Ord = N N Ord.
Since I}-formulas are absolute, we can replace N[G] by V (remember
N[G] C V). We can also replace z by zg, since modifying a Cohen real in

finitely many places still leaves it a Cohen real. Thus,
V = “qis (M N N,Q)-generic, and q IFg zo is Cohen over M[Gg].”

(Why MNN and not M? As we should look at M as interpreted in N[G], note
N[G] E “M is countable”). As M N N and N have the same dense sets of Q,
q is (M, Q)-generic iff it is N-generic. Similarly, zo is Cohen over M[G] iff it is

Cohen over N[G], so we are done. Os.11
Remark. We shall deal with more general theorems in [Sh:630].

3.12 Concluding Remarks. 1) We may consider the following variant of this
section’s framework concentrating on dfa] € a (of course if R, s = R, we get
back the previous version).

(A) We replace Ry by Ry ¢ for t € Q such that s <t = Ry s C Ray; We

may use Ry =V cq Ra,s-
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(B) N is (R, S,g)-good iff a NN (US) € S and for every f € N

satisfying f € %9c[a] for some a < o* and t € Q we have fRa9.

(C) “Strongly covers” is defined as before except that @y is changed
parallely to the change in (D) below, i.e. Le.

@ if (a) — (d) of (x) of & from Definition 3.3 and

() Be € ana*, ty < sg are rationals and f¢[G'|Ry :&q

then for any y € N N H(x) there are Ny, G, satisfying (the parallel of)

clause (d) such that y € Ny and: for some v, € a, v, < B¢, sj € Q, s, < s¢

(for £ < k) we have f¢[G2|R,, s 84 (for £ < k).

(D) Q is (R, S, g)-preserving means: if (*) of Definition 3.4 holds (having
now f; Rg, +,8, and sg > t4, s¢ € Q) then there is an (N, Q)-generic g,
p < g € Q such that ¢ IFg “for £ < k there are 7, < B, and s, € Q
such that [y, = B¢ = s, < s¢] and feRy, 5, 8a-

2) If we have @}, of 3.3B(3) then (b) of the conclusion in Definition 3.4 can be

omitted (as it follows from “g is (IV, @)-generic” under the circumstances).

3) Another variant of our framework is as follows.

() Let R be a definition of a forcing notion, i.e. partial order, {Z, : y € Y'} be
a definition of a family of dense subsets of it (e.g. all), all absolute enough,
K be a definition of a family of forcing notions closed under CS iterations

(soeg. if Qo€ KVe, Vo1 = VZQ‘ then Q1 x Q2 € KVt similarly for limit.

We have: if in VOQ", p<qg€eRyc Y(VQO), p € I, then this holds in
Qo*Q1

Vo .

(B) S € Vp, S a stationary subset of Scx, H(x*)V

() fora € S, g, is a directed subset of RNa not disjoint to aNZ, fory € Y Na
(absolute as in (a)).

() in V*°, N is (R, S,g)-good if: N < (H(x), €,<}) is countable, (R, S,g) €
N, o NNH(x*)" € Sand [y € NAYV® = 3pe T,3q € ga(p < 9)]

(of course g, is still a directed subset of RV n a).
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3.13 Preservations connected to Norms.

3.13A Context and Definitions.
1) Assume we have (72*,nor, w) where
(o) 7* = (n} : i < w) is strictly increasing.

(8) nor = (nor; : i < w), where nor; : P([n],n},;)) — w satisfies:
uy C ug C [n],ni, ;) = nor;(u1) < nor;(uz)

nory([n7, niy1)) >0
(nor;([n],nj;1)) : i < w) converge to infinity
() w = (w; : i < w) where Dom(w;) = w, Rang(w;) € {U : U C
P([n¥,n},,)) is downward closed, U # 0} or even! Dom(w;) = “Hlw
and for every u C [n},n¥, ;) with nor;(u) >0 and z € w (or Z € "*lw

otherwise) for some v/ C u we have v’ € wp(z) and nor;(u’) >

N

nor;(u) — 1 (if @ is omitted then w;(x) is: let x(i) code wy C
P([ng,niy1)), now let w;(T) = wes if (wi(z) : i <w) is O.K. and let
wi(z) = P([n},n},,)) otherwise.

2) Let

LI P(n; niy0)) = {1t: C [0}, niyy) and (nors(t) : i < w)
1<w

converge to infinity nor;(¢;) > 0}

3) We define two partial orders on []7_, P([n},n},,)):
t<sifft; Ds; foreveryi <w

t <*3iff t; D s, for every i < w large enough

(note that < is a partial order, <* is a partial order such that every

increasing w-chain has an upper bound)

t Instead of w = Dom(w;) or ‘w = Dom(w;) we can use other finite or

countable set.
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4) We call T C []i,, P([n},n},1)) a nice set if:
(a) T is <*-directed
(B) every <*-increasing w-chain in I" has an upper bound in I
(v) for every T € “w, for some t € I' we have t; € w;(x;) (or t; €

w;(Z[(i + 1))) for every i < w large enough.

3.13B Fact.
1) (ITi<o, P([n},nf,q)), <) is a partial order.
2) ([T, P(In},nk41)), <*) is a partial order with any <*-increasing w-chain
having an upper bound.
) t<s=>t<*s.
4) If CH (or just MA) then there exists a nice I' and hence S, g as in 3.13C
(2), (3) below exist.

Proof. Straightforward.

We want to show that niceness of I' is preserved under limit of CS proper

iteration

3.13C Context and Definition.
1) Let I" be nice in a universe Vj,
2) S C Scxn, (H(X1)) be stationary,
3) g: S — T be such that: g, = (ga,i : ¢ <w) € [[;, P([n},nj},)) and
() for every z € (“w) Na we have (V*i < w)[gq,i € wi(z;)]
(B) for a; € ap from S we have g,, <* g,, (can ask that moreover
8a, € a2)
4) dla] =cla] = w
5) R= (R, :n <w) and TR,g, mean (Vi <w)[i > n — g,; € W;(z;)]

3.13D Claim.

1) (R,S,g) is as in 3.1, it covers (in V, see 3.2, we are assuming 3.13C of

course)
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2) If in VP, we have “(R, S,g) covers” then it also strongly covers by Possi-
bility A*
3) If (R, S,g) cover in VF, Q is a proper forcing notion preserving “T" is nice”

then Q is (R, S, g)-preserving.

Proof: 1) Read definitions.
2) Check (for ®1, can apply 3.4B and the proof of @* from there in the proof
of part (3) below).
3) We use 3.4A(3), so the least trivial condition is ®* from there. Let V¥ N,
ay, az, f, {(fn:n <w), a, (&, : n < w) be as there. We can find a finite d C w
such that:
(*) if £ € w\ d then gg, ¢ D Bay e,
w.lo.g. also {0,...,a—1} C d, {0,...,a0 — 1} C d (remember a < a* = w).
Let k; > ¢ be maximal such that f;[k; = flk;, so 4li)m k; = oo.

Also w.l.o.g. a; > k; > sup(d) and we can ﬁn(; a;o infinite A C w such that
([ks, i) : i € A) are pairwise disjoint, and w.l.o.g. A € N and n € [mind,w) =
frn(0) = £(0). Now define g € “w by:

gllki, i) = fillks, i) for i € A and gl(w \ | J[ki, ) C £,
i€A

so clearly g € “wN N, hence \/ gRi8,, 50 w.l.o.g. £ € w\ d = gq,,0 € we(g(£)).
Omitting finitely many memll;ers of A we can assume i € A = d C k; and
hence f;[d = fld. We will show that any ¢ € A, d; = {0,...,a; — 1} are as
required in &%, so assume f’ € U%2lcfay] = “w, f'Id; = f,|d; and f'Ra,8a,. So
let £ € w\ a, and we should prove gq,.¢ € we(f’(£)), thus proving f'R,g,, and
finishing the proof of ®*; we divide this to cases.
case 1: £ ¢ d;
So £ > o; and we know f'R,,8,, hence g, ¢, € we(f'(£)); but also £ ¢ d
hence (see (x) above) 8o, ¢ 2 8aye, and we(f'(¢)) is downward closed so
8a,,0 € we(f'(£)) as required.
case 2: £ € d; \ {0,...,k; — 1}
So k; <€ < ay. As £ € d; we know f'(£) = f;(£) and f;(¢) = g(£), but as £ ¢ d
we have g, ¢ € we(g(£)), together we finish.
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case 3: 0 < k;
But flk; = filk; = f'[ki, hence f'(£) = f(¢), and as fR,g,, we are done. So
we have finished checking the condition ®* of 3.4A(3), thus proving 3.13D(3).

Us.13p

3.13E Conclusion. If T is nice, Q = (Pj,;Q,- :J < 4,1 < d) is a CS iteration
of proper forcing, each Q; preserves the niceness of I' then Ps preserves the

niceness of I'.
3.13F Remark. Similarly for the other variants in VI 0.1, for pure preserving.
3.14 Example (of 3.13).

3.14A Context. We work inside the subcontext of 3.13.

Let n* = (nf 1 i <w), nf <<mj << kj << njy,.

By renaming we replace [n},n} ;) by ¢f = ¢ = {(€1,£2) : £1,¢3 €
[n¥,k¥)}, so we consider subsets of C; only, but actually can consider instead

e € E; only where:

EY {e : e an equivalence relation on [n], ;) and each equivalence
class has exactly n} + 1 elements, except possibly one.}
For e € E; we let Dom(e) = J{z/e : |z/e| = n} +1}. To make it fit we identify
e with

Se = {(£1,42) : £1 € [n},k}) and €3 € [n], k) and —({1els)},

we will not continue to mention the minor changes; now we let

nor**(e) = logylog, (ki — n; — [Dom(e)|)/m;
rounded (to maximal natural number < than this or zero if it is negative).
For Z = (z; : j < i) we define w;(Z): we consider z; as (being or just coding)

a pair (fs,,Az,), where A;, C w finite non empty and fz, : [n,nf ;) —
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(A4=:{0,...,n}}) (s0 a € Az, = fuila] : [n},n}y 1) = {0,...,nf})

wi(T) = {e €E; : for > (n¥)™*? equivalence classes u of e,

) 1 l{a € Ag, : (fi.[a])lu is not one to one }|
~ (logy(ng))® ~ [Az, | '

We should check
()1 if (i is large enough and) eo € E; and nor*i(e;) > £+ 1 and Z = (z;: j <
i+ 1) as above then for some e; € E;, ¢, C Seo, nor’ (ez) > norti(eg) — 1

and eg € wi(:t).

[Why (*)1 holds? Choose by induction on m < n* def (n)"i+2) 3 set uy C
[ny,ny,,) satisfying |um| = nj,; and u, disjoint to U um' U U{z/e1 :
m’'<m

|z/e1| = n} + 1} and:

w2 < l{a € Ay, : (fz:]a])lun is not one to one}|/|A,,|.

(Why? If v C [nf,nj, ), [v| = nj + 2 is disjoint to the set above then for each
a€ Ay,

{u € [v] *1 : (fz.[a]) lu not one to one}| > (1 — ) x ] Y,

ny +2
so by the “finitary Fubini”, some u € [v]™ ! is (much more than) as required,
increasing v we get better estimates.)
Let ez € E; be such that: the set of ez-equivalence classes of cardinality n} + 1
is

{z/er: |x/er] = nf +1}U {um :m < (n})™ +2}.

Now

nor® (e3) = log,log, (ki — n} — |Dom(ey)|)/m}
= log,log, (k — n} — |Dom(e)| — n} (n})™ *2) /m}
nm
K = nz — [Dom(en) /™
g ()2

k¥ —n¥ - |Dom(el)|)]/m:

1

= logslog, (ki — nj — [Dom(e1)]) x (1 -

= log,[logy (ki — n} — |Dom(e1)|) + logy(1 —
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but as nori(eg) > 0, necessarily
ki = n} — [Dom(ey)| > 2%™ >> n(n})"+",

hence

3 ()" :
log,(1 — = (n) ) > —1/n;.

77 - [Dom(ey)]
Hence nor*(e3) > nor'(ep) — 1.]
Moreover, the proof gives

(%)2 if eg € E;, norti(eg) > £+ 1 and X is a set of n} (or less) (i + 1)-tuples

T = (z; : j <1+ 1) as above then for some e; € E;, s, C s, and

nort(ey) > nor*i(e;) — 1 and A ez € w;(%)
zeX '

[Why? We define above u,, for m < ((n¥)™ *2) x | X| dealing with each z € X

bY U, (n¥)™ 2 times. As |X| < n} there is no problem.] Os.144

Remark. 1) Think first for the case A/, a singleton.
2) (log(n}))®0*2 serves as the f(—,—) in [RoSh:470]

3.14B Claim. If the forcing P preserve ‘T is nice” then there is no Cohen real
over V in VF.

Proof. For this the case A;, is a singleton suffices. If n € “w is Cohen over V
then

(V3 € T')(3*°4)(n is not 1-to-1 on any equivalence class from s;)

(better look at {n € “w : £ < n;y1 = n(¢) <nf}) Os.148

3.14C Claim. Random real forcing preserves a nice I'.

Proof. Let p eRandom be such that p IF “Z = (20 : £ < w) € “w”. W.lo.g.

Aq,
plk “zo = xo, and z; = (fu,, As.), O # Az, C w finite, fo, € “7{0,...,n7}".
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As Random forcing is “w-bounding w.lo.g. p kg “AL| < £, where
(4 i <w) e VN¥w) {0}) and as we can replace A by any A x B w.l.o.g.
Ay, = A} (not name). Now define g;, Dom(g;) = [n},n}, ;) X A x{0,...,n}
as follows: if m € [n},n},;), a € A} and £ € {0,...,n;} then

gi(m,a,t) b (maximal q > p forcing (f .la](m )/Lb(hmp)

W.lo.g. p = lim(T") where T is a closed subtree of “>2 and we can choose for
each i < w, a natural number t; large enough so that from n € pN T N %2

we can read fg, that is for any n € T N %2 we have lim(7') force a value
to fu, (Where T = {v € T: v 95 V n < n} of course). For i < w

we let A, = Af x ()2 N p), and we let g] be the function from [n},n}, )
to (49{0,...,n!} defined as follows: for (a,n) € A% and m € [n},n},,) we
let (¢/[(a,n)])(m) = £ iff im(T™) I- (f3:[a])(m) = €. So apply “T nice” to
' =(xo+1,91,92,--.) Os.14c

3.14D Claim. If Q has the Laver property or just is (f,g)-bounding with
fa) =22

g(i) = n}, then Q preserves any nice I'.

Proof. Assume p € Q, p kg “T = (zp : n < w), T9p < w, and z, codes

fazi i [nf,niy,) — (4“){0, ...,n}}" and we shall find p’, a such that p < p’ € Q,
a € S and p’ IFo< ZRg,”, this is enough. So w.l.o.g. p IF “co = z¢”. For each
u C [nf,k

5 kY), lul = n} +1, we let t; , be the truth value of the statement

1-— 1/(log(n;-*))’”°+2 <|{a € 4z, : (fz [a]) [u is not one to one}|/|Ag,|.

Let & = (tiy : u C [n},k}), |u| = n} +1). The number of possible u is < 2k:ki|

(R 1,
hence the number of possible interpretation of t is < 92t By the assumption
w.l.o.g. for each i we have (t*¢ : £ < n?) (all in V not names) such that

P I« v E’i — Ei,ln.
<n}
So we can find, in V, ((4}, f}) : £ < nj,i < w) such that (A, f}) is a possible

case of (A;i, f;,) By the way the norm was defined (for i large enough) by
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dropping the norm by 1 we can deal not just with one case (i.e. one possible
t" i.e one (A}, f§)) but even with n* of them. This is ()3 of 3.15A.
Note: if p € G C Q, G generic over V then for some £ < nj, (A;i,fii) =

(Ab, £1), and they have the same w;(—).

3.15E Claim. The forcing as in [FrSh:406] is like that.

Proof. W.l.o.g. the i-th splittings are included in (22k:,logzlog2(n;*+1)), o
follows by 3.15D the ((2%))""™* n?*) : i < w)-bounding version.

§4. There May Be a Unique P-Point

This section continues VI §5.

4.1 Theorem. Assume V satisfies 2% = R; and 2% = R,, Fp is a Ramsey
ultrafilter on w. Then for some Ny-c.c. proper, “w-bounding forcing notion P
of cardinality Ry, in VP there is a unique P-point, and it is Fy (i.e. the filter it

generates in VF).

4.1A Remark. In fact, in VP, Fj is a Ramsey ultrafilter (actually this follows).

Proof. By the proof of VI 5.13, it suffices to prove the following lemma:

4.2 Lemma. Suppose

(¥)o Fo, F1 are ultrafilters on w, Fy is a Ramsey ultrafilter, F is a P-point,
Fy <grx F; but not Fy <grk Fp.

Then there is a forcing notion Q) such that:

(a) Q has the PP-property, (hence is “w bounding) and is of cardinality 2%
and

(b) kg “Fp is an ultrafilter”, but

(c) if Q@ < @', Q' has the PP-property then in V' we have: F; cannot be
extended with to a P-point (ultrafilter).
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4.2A Remark. During the proof of 4.1 we use the forcing notions SP*(F) from
Definition VI 5.4 to kill the P-points F' with Fo £rk F.

The rest of this section is dedicated to the proof of this Lemma.

Proof. Since Fy <rk F1 and F} is a P-point, there is a function h : w — w such
that

(¥)1 h(Fy) = Fp and for each £ < w the set I(¢) = I, def h=1({£}) is finite.
Note that then [A Cw & A1 > |[;NA| = A ¢ F1] because F; £rk Fo.

Now in Definition 4.4 belovf we define a forcing notion @ = SP*(Fp, F1, h) and
then prove in 4.3 — 4.9 that it has all the required properties thus finishing
the proof of 4.2 and 4.1.

4.3 Claim. In the following game player I has no winning strategy: In the
n’th move player I chooses A,, € Fy and B,, € Fy; player II chooses k, € A,
(kn, > k¢ for £ < n) and w, € Bp NI, . In the end player II wins the play if
{kn : n < w} € Fy and J{wn : n < w} € F (the first demand follows from the

second).

4.3A Remark. Clearly player I has no better choice than w, = B, N I, .
Remember Iy, = h=1({k,}) is finite.

Proof. Suppose H is a wining strategy of player I. Let A be big enough,
N < (H(X),€,<3) be such that {Fy, F1,h,H} € N and N is countable. As F,
is a P-point there are, for £ € {0,1} sets A} € Fy such that A} C,. B (ie.
Aj \ B finite) for every B € F;N N.

Now we can find an increasing sequence (M, : n < w) of finite subsets of
N,N=U

<w Mn such that it increases rapidly enough; more exactly:

a) H,Fy,Fi,h € My and M,, € My,

B) if ¢(z,aq,...) is a formula of length < 1000 + |M,,| with parameters from
M, U{M,} satisfied by some z € N, then it is satisfied by some = € My,+1,

v)if £ € {0,1}, B€ F;N N, B € M, then BU M, ,; 2 A},
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5)Aﬂﬂﬁw==@,

€) if £ € M, then I(¢) C M,+; and M, is closed under h (we can demand
m € M, & h(m) € M, if we make the domains of Fy, F; disjoint).

Let up+1 = (Mpy1 \ Mp) Nw. So (u, : n < w) forms a partition of w into
finite sets. As Fy is Ramsey, we can find A € Fy such that A, |u, N A] <1 and
A C Af and

Un NA# D& un NA#D&n<m = m—n>10.

Let A = {i¢ : ( <w} (increasing), i¢ € u, . Now we define by induction on (,

A¢, Be, k¢, we such that

(a) (Ag, Be, ke, we : € <€) is an initial segment of a play of the game in which
Player I uses his winning strategy.

(b) (Ag, B, ke, we : £ < () belongs to My 3.

(c) k¢ =1i¢ and we = Be N I(ke) N AT

There is no problem to carry out the definition, and clearly Player II wins

because not only {k¢ : { <w} = {i¢ : { <w} = A C Aj but also

|J we =410 |J we = A1 n{j <w: h(j) =i¢ for some ¢ < w}

(<w (<w
— 41N {j: h(j) € A} € Fi.

[Why? As respectively: we C A}; as A7\ A € [U{we¢ : ¢ < i¢ +4} by clause (v)
above; as A = {i¢ : ( <w}; as A] € F; and A € Fj hence {j : h(j) € A} € F1.]

Contradiction. O3

4.4 Definition. Let TP = [],_,, ®*¢2 and let T" = |J,,_, T}*. Note that T*"
is a perfect tree with finite branching ordered by < (being initial segment). Let
Q = SP*(Fo, F1,h) = {T : T is a perfect subtree of T" and for each k < w
for some Ay € Fy and B € F; we have: if £ € Ay and n € Tl % 1A Tlf‘ and
p € (BeNI(©)xk3 then for some v € 1(9%€2 we have p C v and " (v) € T}.

The order: inverse inclusion.
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4.5 Claim. 1) If T € Q, T" = {m,...,m} (with no repetition) T, =
T L {(veT :ndvorvan),T] € Q T, <T) (ie. T} C T) then
T<TtE UL Tveq.

2) If 7 is a Q-name of an ordinal and n < w then there is 7T, T < T € @ such
that TT IFq “r € A” for some A satisfying |4| < |T™)], and TN U, T =
Ttn Ue<n T4, Moreover for each n € T[", T[L] determines 7.

Proof. Same as in the proof of VI 5.5. Oy 5

4.6 Claim.
Q is proper, in fact a-proper for every a < w1, and has the strong PP-property
(see VI 2.12E(3)).

Proof. First we prove properness. Let A be regular > 2%, N < (H(\), €,<3%)
be countable, {Q, Fo, F1,h} € Nand T € NN Q.

Let {70 : £ < w} list the Q-names of ordinals from N. We now define a strategy
for player I in the game from Claim 4.3. In the n’th move player I chooses
A, € FyN N, B, € F; N N and player II chooses k,, € A,, and w, def B, NI,
(remember 4.3A); on the side player I chooses T,, € N N Q and m, such that
To=T, Tp < Tny1, imeal T,ET’{“] and m, > max{mp_1,kn’ : 0’ < n}
and mg = 1.

In the (n + 1)’th move, player I first chooses m,+; as above then he
chooses Th11 € Q, Ty, < Thyr, T[m"“] = 7™+ such that for every n €
Tl (Th+1)n) forces a value to 7, for £ < myy1. This is possible by 4.5.
Then as Tp+1 € QNN there are sets A1 € FyN N, B,y1 € F1 NN such that
for every k € Apy1, N € (Tny1)F and p € (Brt1nI(E)Xn9 for some v € 1(k)xkg,
we have: p C v and 1" (v) € T4 and for simplicity A,41 N m, = A, Nmy,.
Note that the amount of free choice player II retains is in N.

So by 4.3 for some such play, player II wins. Now T* def NpewTn € Q as
{kn : n < w} € Fy and |J B, N I(k,) € Fy witness; of course T, < T* for
each n hence T = Ty < %fwand T* IF “1¢[Gol € NN Qy” (as Tyy1 < T*, see

its choice).
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So @ is proper. The proof also shows that () has the strong PP-property
(see VI 2.12: for more details see the proof of VI 4.4.). The proof of a-properness

is as in VI 4.4 (and anyhow it is not used). Oae

4.7 Lemma. Suppose ((*)o of 4.2, Q =SP*(Fy, F1, h) as defined in 4.4 of course
and) Q < P and P has the PP-property.

Then in VP, Fy cannot be extended to a P-point.

Proof. Suppose p € P forces that E is an extension of F} to a P-point (in
VP). Let (r, : n < w) be the sequence of reals which @ introduces, i.e.
(i) = £ € {0,1} is defined as follows: clearly for a unique k < w, i € Iy;
now r,(i) = £ iff: n > k, £ = 0 or for some T € Gq, T*+1 = {n} and
(n(k))(i,n) = £ (remember that n(k) is a function from I(k) x k to {0,1}).

Define a P-name h:
h(n)is 1if {i <w:rp(i) =1} € E and
h(n)is0if {i<w:rp(t) =0} e E

So p Ik “h € “2”. Now as P has the PP-property, by VI 2.12D, there are
p1 > p, (p1 € P), and (((k(n), (in(£),jn(€)) : £ < k(n)) : n < w) in V such
that k(n) < w, i,(0) < jn(0) < in(1l) < jn(1) < ... <in(k(n)) < jn(k(n)), and
Jn(k(n)) < in+1(0) such that:

p1 IFp “ for every n < w for some £ < k(n) we have h(in(£)) = h(jn(£))”

Now define the following P-names:
A, ={m <w: for some £ < k(n),r;,e)(m) = 1;,0)(m)}.
We can conclude as in the proofs of VI 4.7, VI 5.8. Oy.7

4.8 Claim. In V@, Fj still generates an ultrafilter.

Proof. If not, then for some Ty € Q, and Q-name A we have Ty IFg “A C w
and A,w \ 4 are # 0 mod Fy”.
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By the proof of 4.6 without loss of generality, for some Ay € Fy we have:
for k € Ag and n € T&k“], (To)py) forces a truth value to “k € A” which we
call t(To,n); without loss of generality for n € Ték], k¢ Ay = |sucr,(n)] = 1.

Now for every T > Ty and £ < w there are A(T, £), B(T,¢) as in Definition
4.4. For every £ <w, T > T, and k € A(T,¢) fix an arbitrary (T, ¢, k) € T,

Then, by observation 4.9 below, there are mr s € I(k) N B(T,¢) and a
partition (u;(T,¢,k) : i < 3) of I(k) N B(T,¢) and a triple (t;(T,¢,k) : i < 3) of
truth values and ji(7,¢) € {0,1} and truth value s (7, ¢) such that:

(*) (a) if jx(T,£) = O then for i < 3, for every p € “(Tek)x2 there is

v € 1(k)xk9 such that p C v and n(T,4,k) " (v) € T and

T['l ~ ()] ko “k e Aiff ti(T,f, k)”.

(Clearly ti(T7 E, k) = t(TOa 77A (V>))

(b) if jx(T,£) =1 then for every p € TENBT.O\mr,ek DXEY there is v €
(Ik)xk)2 such that: p C v and (n(T,£,k)) " (v) € T and T}~ 1y kg “k € A
iff s (T,2)”.

So for some j(T,£) < 2 and (T, ¢) < 3 and truth value t(7',£) we have
(o) if j(T,£) = 0, then

JH{uiag (T, 4.5) = Gk(T,£) =0, k € A(T,0), tyz,0) (T, £, k) = (T, £) € Fy

(B) if §5(T,¢) =1 then {k € A(T,£) : jx(T,2) = 1,s,(T,£) = t(T,£)} € Fp.
Note:
® for (T,£) as above there are A = A*(T,{) € Fy, B = B*(T\{) € [y
satisfying: for every k € A there is n € T, £g(n) = k such that: every
p € (TKNB)XH can be extended to v € 1*)**2 satisfying: 0" (v) € T,
Tty - vy F@ “k € Aiff t(T,£)”
[Why? If §(T,¢) =0 let

B = | J{uiz,o (T, £,k) : Gx(T,£) = 0, k € AT, £), tir,(T, 4, k) = (T, £)}
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and A = {k : I(k) N B # 0}. Check the demand by clauses (x)(a) and (o)
above. So assume j(T,¢) =1 and let

B =| J{I(k) " B(T, )\ {mrke} : k € A(T,¢) and (T, ) = 1,
and sg(T,4) = t(T,0)};

(why B € F;? because F; £rk Fo!). Put A = {k : I N B # 0} and check the
demand by clauses (*)(b) and (8) above].
Note that we have been dealing with fixed T, ¢.
As we can increase Ty without loss of generality: for some truth value t* for
a dense set of TV > Tj for the Fy-majority of £ < w we have and t(7”,¢) = t*.
Now we can define a strategy for player I in the game from 4.3. So in the
n’th move player I chooses A,, B, and player II chooses k,,w,; but we let
player I play “on the side” also Ty, £, (chosen in the n’th move) such that:
(A) T < Ty < Togr, T = T 0> 00 > £, and t* = t((T0) ), 6n)
forn>0and ne€ T,[,k"H].
(B) For every k € Apy1 and 1 € TE+1 there is m,n dm € T such
that for every p € (Bnt10I()Xéni19 there is v, p C v, m (V) € Ty,
(T, Lln, kn) = t(Ty, £n) = t*, (note Ty is chosen only after kny1, Wn1

were chosen).

We should prove that player I can carry out his strategy. For stage
n+ 1 let {ng,...,n:‘n(n)} list T,[,k"ﬂ], so for some £,y; > {,, for each
¢ < m(n) there is T, ¢ > (Tn)[ng‘] such that t(Ty ¢, %n41) = t*. Let Byyq =
ﬂ(Sm(n) B*(Th,¢,8n+1) and Apy1 ={k € Ap : k> ky, and I(k) N Boy1 # 0}.

By clause (B) above, after player IT moves, we can choose T, 11 as required.
As this is a strategy, by Claim 4.3 for some play in which player I uses it he

looses. For this play {k, : n <w} € Fo, U,,., Wn € F1,50 T def N, Tn € Q.

n<w nw

By tracing the demands on the t’s:
® for n <w,n €T, lg(n) = kn + 1 we have T}, IF “k, € A iff t*7.
We conclude: T' I+ “{k, :n <w}NAis @oris A” as {k, : n < w} € Fy we get

the desired conclusion. Oas
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4.9 Observation. Suppose t is a function from X* = [],., A: to {0,1}, u
finite.
Then at least one of the following holds:
(o) we can find u;, X; (i < 3) such that :
(a) (u;:1 < 3) is a partition of u,
(b) X; C X*,
(c) tIX; is constant,
(d) for every i <3 and p € [];¢,, A thereis v € X;, p C v,
(B) for some z € u, there is X C X™* such that t[X is constant and for every
P € [licu\(z} At thereis v € X, pCv.

Proof. Let for j € {0,1},P; = {v : v C u and there is X C X* such that t[X

is constantly j and for every p € [],c, A4; there is v € X, p C v}. Clearly

(A) uy € Pj,up C uy implies ug € P;. [Why? Same X witnesses this.]

(B) u1 C u & uy; ¢ P; implies u \ vy € Pi_j [Why? As u; ¢ P;, for some
p € Ilicu, At for no v € [l;ep\u, At does t(pUv) = j; let X def {v e
[Ticy At - p C v}, it is as required for u \ u;.]

(C) @ € Py U P;. [Why? Trivially.]

Case (i): Py U Py is not an ideal.

So there are ug, u; € Py U Py with v def uoUuy ¢ PyU P;. By (A) without loss
of generality uo Nu; = 0. Let ua = u\ v, so (ug, u1,ug) is a partition of u. Now
by clause (B) we know that ugz € Py (and to P;) as v = u \ uz does not belong
to P, (and to Pp). Now we know ug,uq,u2 € Py U Py, so for some (jp : £ < 3)
we have ug € Pj, for £ < 3, and let X, be a witness. Now check that clause (a)

in the conclusion holds.

Case (i): Py U Py is an ideal.

If w € PyU P, then t is constant so conclusion (a) is trivial, so assume not. By
(B) above the ideal is a maximal ideal so it is principal (because u is finite),
ie. forsome z € u, u\ {z} € PoU Py, {z} ¢ Py U P; so we have finished.
(Reflection shows we get more than required in (5): reread the proof of (B)).

Os2,4.1





