
XVIII. More on Proper Forcing

§0. Introduction

From the last eight chapters you may have gotten the impression that we are

done with properness, but this is not so. First, we turn to the problem of

not adding reals; remember that by V §7, VIII §4, for CS iterations of proper

forcing notions not adding reals, the limit does not add reals, provided that

two additional conditions hold: one is D-completeness (for, say, a simple 2-

completeness system) and the second is (< ω\)-properness (see V §2). Now,

the first restriction is justified by the weak diamond (see V 5.1, 5.1A and AP

§1); that is not to say that we have to demand exactly D-completeness, but

certainly we have to demand something in this direction. However, there was

nothing there to justify the second demand: α-proper for every α. In the first

section, (following [Sh:177]), we show that we cannot just omit it, even if we

use an HI-completeness system. It is natural to hope that this counterexample

will lead to a principle like the weak diamond (so provable from CH). Thus

the construction of this counterexample leads to questions like: Assuming CH,

can we find (C$ : δ < ωι), C$ an unbounded subset of ί, say of order type ω,

such that for every club E of ωi, for stationarily many limit 6 < (Ji, C§ C E or

δ = sup(Cδ Π E) or (Vα G δ)[mm(E \ α) < mm(Cδ \ (a + 1)]? (They are kin to

"the guessing clubs", the existence of which for, e.g. ^2, follows from ZFC, see

[Sh:g].) It interests us as the theorems (and proofs) from V, VIII §4 do not give
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us the consistency of their negation with CH. However, those statements do not

follow from ZFC 4- CH; for this we prove in the second section a preservation

theorem for CS iterations of proper forcing not adding reals. Again we have two

conditions (called there (4)2 or (4)κ0 and (5)). The first, (4)2, is done "against"

the weak diamond, and is weaker than the older D-completeness, but this is

just a side gain. The second condition says our forcing remains proper even if

we force with "forcing notion from our family, in particular not adding reals".

Note that for forcing notions of cardinality HI, this is a very mild condition.

Sp, the results of §1 remain the only restrictions on theorems on preservation

by CS iteration, and there is a gap between them and the results of §2.

Then, in the third section we turn to other preservation theorems, giving an

alternative to the theorem from VI §1 - §3, and dealing with some examples.

(For a simplification of possibility A in 3.3, see [Go]).

Finally, in the fourth section we turn to the problem of a unique P-point. In

VI §4 we have proved that there may be no P-point; remember, a P-point

F is a nonprincipal ultrafilter on ω such that if An G F for n < ω then for

some A € F we have f\n A Cae An (A Cae An means A \ An is finite). Now,

to prove the consistency of "there is a unique object" is typically harder then

proving there is no one. Unique here means up to permutations of ω. In VI §5

we have proved a weaker result: there may be a unique Ramsey ultrafilter, but

there could have been many P-points above it which were not isomorphic. We

continue this and prove the consistency of "there is a unique P-point".

§1. No New Reals: A Counterexample
and New Questions

1.1 Lemma. Suppose V satisfies 2N° = Nι,2N l = N2 ) and for some A C ωi,

every B C ω\ belongs to L[A] and for limit δ < ω^

L δ [ A Γ \ δ ] h Discountable".
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Then we can define a countable support iteration Q = (Pi,Qi : i < ί*) such

that the following conditions hold:

(a) Each Qi is proper and Ihp. "Q; has power NI".

(b) Each Qi is D-complete for some simple NI-completeness system D

(hence does not add reals).

(c) Forcing with P^ = LimQ adds reals.

Proof. We shall define Qi by induction on i < i*, i* < ω2, so that conditions

(a) and (b) are satisfied, and Ci is a Q^-name of a closed unbounded subset

of ω\. Let (/| : ξ < ωι) G L[A] be a list of all functions / which are from

δ to δ for some limit δ < ω\^ and let h : u i —> ωi, ft G I/[A], be defined by

Λ(α) = Min{/3 : /? > α and /^[A Π α] h "|α = K0"}

Suppose we have defined Qj for every j < i] then Pi is defined, is proper

(as each Qj, j < i, is proper, and III 3.2) and has a dense subset of power HI

(by III 4.1). Let Gi C P^ be generic, so, clearly, there is a Bi C ωi such that in

V[C?i], every subset of ω\ belongs to L[A, S^]. The following now follows:

1.1A Fact. In V[Gi], every countable AT -< (H(#2),e,A,Bi) is isomorphic to

Lβ[A Πδ.BiΠ δ] for some β < h(δ), where 5 - δ(N) d= ωλ Π N.

We shall assume also that V[Gi] has the same reals as V (otherwise we

already have an example).

We now define by induction on α < u>ι, a set Ta = T^ such that the

following conditions are satisfied:

(i) Each / G Ta is the characteristic function of a closed subset of some

successor ordinal β < α, i.e., Dom(/) = /3, and /"1({1}) is a closed subset

of β and is included in the set of accumulation points of Γ\j<i ^r If 7 < #j

then TΊCTa.

(ii) If / G Γα,7 + 1 < Dom(/), then f\(Ί + 1) G Tα, and even /f(7 4-1) 6 T/3

for 7 + 1 < /3 < α.
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(iii) If / G Tα, Dom(/) = /?, /3 < 7 < α, 7 a successor, then /' = /UO^) G

i.e., Dom(//) = 7, and

/ / _//(£), </*<&

(iv) If /, 0 G Γα, /(/?) ^ 0(/3), then f~l({l}) Π ̂ ({l}) \ β is finite.

(v) If / G Tα, 7 > β = Dom(/), 7 + 1 < α, 7 is an accumulation point of

f| <i Cj and the order type of f~l({I}) has the form ξ + 2 or is > 0 and

< ω, then /; = / U 0[/3>7) U {(7, 1)} e Ta.

(vi) If / G Tα, ί 4- 1 = Dom(/), 5 limit, and /(β) = 1 for arbitrarily large

β < δ, then Min{£ : f\δ = f £ } is larger than Min{£ : 5 < ξ G C^ } (for

3 < 0-

(vii) If J -f 1 < α, 5 is an accumulation point of Γ\j<iCj, ξ* < ^i, and

/ G T<5 Π L^^ Π ί], ίften there is a g G Γα, 5 + 1 = Dom(^), such that for

every J G Lh($)[AΓ\δ, BiΓ\δ] (an open dense subset oίTsC\Ls[AΓ\δ] (ordered

by inclusion)), for some 7 < δ we have g\^y G J and g\δ £ {/£ : ξ < ξ*}

and / = #fDom(/).

(viii) For / G Γα, if ί = sup(5 Π fl ( { ! } ) ) (hence f ( δ ) = 1), δ < β, and

f ( β ) = 1, then for every j < i, for some 7 < /?, the characteristic

function of C^ restricted to δ is /*; and if 5, / f j and /3 satisfy this then

f\(δ + 1) U 0[ff+ι>/3) U l[/3,/3+i) belongs to ϊ>+2

Let us carry the induction.

. a is limit, or a = 7 + 1, 7 limit. Let Ta = \Jβ<a Tβ or Ta - \Jβ<Ί Tβ.

Case B. a < ω. Let Ta = {/ : / a function from β < a to {0}}.

Case C. α = /3 + 3>α;. LetTα = Γ / 9 + 2U{/:Dom(/) = /J + 2,/Γ(/3 + l) G 7>+2,

provided that (viii) is satisfied }.

Case D. a = δ + 2, 5 limit, ί G ace Πj<i^j (acc~ denotes the set of

accumulation points). This is the main case. Let {// : i < ω} be a list of

TS Π LS [A Π ί], each appearing NO times, and {J^1 : I < ω} be & list of

all open dense subsets J of (T$ Π L§[A Π ί],C) which satisfy: J belongs to
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Lh(δ}(A Π δ, Bi Π δ] or J = {/ e Tδ n L5[A Π 5] : / £ /£} for some ξ <

We now define by induction on n < ω, an ordinal βn = β%a < δ and a finite

set Fn = F%a C{f eTδnLδ[Anδ]:βn = Dom(/)} such that

if n > 1, (V/,0 € Fn) (f\βn-ι ί g\βn-ι => /"'({I}) n ̂ ({l}) C ̂ .̂  .

Subcase a. If n = 0 mod 3, then /3n+1 = βn + 1 and Fn+ι = {/ U {(/3n,0)} :

/ G Fn}; and if n = 0, then Fn = 0 and /3n = 0.

/?. If n = 1 mod 3, then /3n+1 - βn -f 1; let /^ - /fn-i)/3 and

/?; - Dom(/fn_1)/3) if Dom(/fn_1)/3) is < /?n, and let /; = 0, /£ = 0 otherwise;

now let

= {/ U 0[ n̂ A+l) : / G Fn} U {/; U 0^ι/3n+l)}.

Subcase 7. If n = 2 mod 3, (n - 2)/3 = m2 4- fc, fc < 2m, then every / G Fn+ι

belongs to jT/c = J^1 Note that we have to take care to satisfy (*); hence let"!"

Fn = {ft : I < |Fn|}, and define /3^n for ί < \Fn\ and ̂  for ί < \Fn\ by

induction on ί : βfi = βn\ if β? is defined, choose ̂ , f£ U 0^,^] C ̂  e Jfc,

and /3^+1 - Dom(^). Now let

Note that only in Subcase 7, do we have a free choice, and we eliminate

it by choosing the first candidate for Fn_j_ι by the canonical well-ordering of

L[A, Bi], and we also require that (J^ : t < ω) be the first such sequence in

the canonical well ordering of L$[A Π 5, Bi Π δ]. So we have finished defining the

Fn's and we let

Tδ+2 = Tδu{f :Dom(/) = δ + 1 and : either / = /' U 0[7>ff+i),

where /; E T$, 7 = Dom(/') or for some fc < α;,

T Of course, we suppress the dependency of βn,ff,o^,gf on δ and i.
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It is easy to check that that T§+2 is as required. (Case β in the definition

of Fn enables us to satisfy demand (vii)).

Case E. a = δ + 2, δ limit, δ φ ace (f|j<z cj) - Let Ta=Tδ(j{f : Dom(/) =

5 + 1, (30 G Γ*)[g C / & /r((<S 4- 1) \ Dom(0)) is zero ]}.

So we have defined Ta = T^ for α < ωi, and let Qi G V[Gi] be Uα<α;1

 Ta

ordered by inclusion; and it is easy to see that Qi is as required (in (a) and (b)

of 1.1). Let Ci = \J{Γ1({1}) ' f e GQJ, so Ihg. "C; is a club of oV'.

So Q = (Pi,Qi : i < ω2) is defined, and it is easy to see that we can

replace (in V[Gi]) B{ by Ci = (Cj : j < ί). Let G C Pω2 be generic, and

Ci the interpretation of CV Let fa be the characteristic function of Q, and

C = Πi<u,2 Ci, and {α^ : ζ < ω\} an enumeration of C (in increasing order).

We shall suppose that forcing by Pω? does not add reals, and shall deduce that

(fi'.i< ω2) G F, which is clearly false, as lhQo "C0 i F".

By the assumption the sequence (fi\a^ : i < ω2) belongs to F, and we

shall show how to compute (fi\aζ : i < ω2) for every ζ, by induction on C; as

the computation is done in V we get the desired contradiction. More formally,

there is a function F in V such that

(/itαc+i : i < ω2) = F[(fi\a( : i < ω2}].

So suppose {/j \otζ : i < ω2) is given, and let, for i < ω2:

βi d^f Min (d \ (αc + 1)), &

By demand (i) in the definition of the Γ^'s C» C ace (flj<t cj) - So clearly

βj < βi, for j < i and βi G Cj for j < i. Also by demand (vi) on the Γ^'s,

βj < ξi for j < i, and by demand (viii) on the T^'s ξj < βi for j < i. We

can conclude that Sup{/?i : i < ωn} — Sup{^ : i < ωn} for all n G ω;

but from (fi\aζ : i < ω2) we can compute 7n ^
f Sup{ξi : i < ωn}. As

/?i G Cj for j < i, 7n G Cj when j < ωn, and clearly 7n < 7n+ι, so we have

7 = Un<ω Tn ^ Πj<α;2 ̂  By the definition of the αc's, 7 = αc+ι. As we know

Γ° Π L<y[A], and we know {7™ : n < ω} C Co; /o Γ7 is uniquely determined (by
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demand (iv)). Similarly we continue to reconstruct fa \*γ by induction on i < ω2

(see end of Case D in the construction - the canonical choice), thus finishing

the proof. DI.I

1.2 Remark. The ω2 in 1.1. is best possible.

1.3 Lemma. (1) Fixing (/* : a < ωi), a list of F = {f : f : (0 + 1) -*

{0,1}, /~1({1}), closed, β < ω\(f G V, of course) } ( so we are assuming CH)

and h : ω\ —> α i, we can repeat the construction in the proof of 1.1 (omitting

the assumption on A), and its conclusion holds provided that

(*)ι (α) if x is large enough, T C {f*\r. 7 < ωι,a < α i}, T G N -< (#(χ),G,

<*), N countable, J G N a dense subset of (Γ, C), then J Π N G {J/ :

I < h(δ)} where δ = ωι Π N, and {j| : £ < α i} is a list of all subsets of

{Ί«\Ί'-Ί,<*<$}•

(β) moreover, after CS iteration of length i < ω2 of forcing notions of this

form ((T, C)), giving generic sets G j ( j < i ) , (a) continues to hold with

{Jι : t < h(δ)} replaced with the family of subsets of {/*ί7 : 7,α < δ}

definable in (δ U {/* \Ί : 7, α < δ} U {(7, α, JJ): Ί<δ,a< ft(7)}, G, ),<z,

or, at least

(*)2 for each δ < ω\, we have gδ — (gδ

η : η a sequence of successor length < ω2,

each η(ί) is in W2) such that:

(α) g^,fi : 5 —» {0,1}, (^/^)~1({1|) is an unbounded subset of 5 (and if

η,v have length i -f- 1, η\i ± i / f i , then (^ω)~1({l}) Π (^ω)"1({l» is

bounded in δ).

(β) Suppose i < ω2, x large enough, N -< (H(χ), G, <*), N countable, δ —

NΓ\ωι,Qί = ( P j , Q j : j < i) G N defined as in 1.1, is a CS iteration, each

QJ proper satisfying (i) - (viii) from the proof of 1.1 (with (vii) rephrased in

terms of { J f : t < ^(5)}), Pi adds no reals, and (gLj\ '• j < i) is generic for

Pi Π N, then for at least one v G ω2,g*- v is (N\g^ : j < i], Qi)-generic.

(2) If <2* is adding NI Cohen reals, and V |=CH then VQ* |= (*)2.

Proo/ of 1.3 (1) Same proof as 1.1.

(2) Left to the reader. Note: let Q — {/ : / a finite function from ω\ to {0,1}},
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let /* be the generic function; now in F[/*], if

\^V ΠfΓ(χ), /*,<*) countable,

then TV G V[f*\(N Π ωι)]. So for 5, defining gδ, we have to consider only

N G V[f* \δ], so /* \[δ,ωι) is "free" to be used for defining gδ .

1.4 Lemma. (1) We could weaken the demands on V (in 1.1) to V |=CH,

provided that we also waive the requirement lhp i "\Qi\ = NI".

(2) Assume CH and

(*)s there are C = (C$ '. δ < ω\ limit) and h : ω — > ω such that:

(α) C$ is an unbounded subset of δ of order type ω

(β) for every club E of ωι,Sh(E, C) ά= {δ < ωι : Cδ Π E is unbounded in

5, and, moreover, for arbitrarily large a G C$, |<7<5 Π Min(C$ Π E \ α)| >

h(\a Π C$|)} contains a club of α i ΐ ,

(7) /ι diverges to infinity.

Then the conclusion of 1.1 holds except that we weaken condition (α) to: Qi

satisfies the ^2-pic and is proper.

(3) Assume CH (for clarity). There is a forcing notion Q, \Q\ = 2N l, Q is

Ki-complete satisfying K2-pic, and Ihg "(*)3"

Proof o/1.4(l): By (2) and (3).

o/ 1.4(2): The proof is similar to the proof of 1.1. The main difference

is that defining Tj+2 for δ G ace (lΊj^CjK we do not choose the members

/ of TS+I such that δ = sup/~1({l}) by "inverse limit construction" i.e.,

by constructing the Fn's, but by induction on ζ < ω\. W.l.o.g. h is non

decreasing Choose (hi : i < ω\}, hi : ω — > ω diverging to oo, non decreasing,

[i < j => for every k large enough, hj(k) < hi(k) < h(k)] and [i,ωι,k <

ω ^ hi+ι(l)/hi(l 4- fc) goes to infinity]; why can we? choose hi by induction

on i < α i, for each i we diagonalize. Defining Qi, we shall assume that in

t So if C G Λ Γ ^ ( # ( χ ) , £,<*), δ = NΓ]ωl < ωi, and δ G

if S G ̂ V is a club of α i then C$ Π £^ is unbounded below 6.
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V[GpJ, (C, hi) still exemplify (*)s. So, for limit i, we have to repeat the proof

of preservation of properness and preserve (*)a.

We now define the Q^s. First, we define Q®: initiating the construction in

the proof of 1.1, in Case D we have to change somewhat (to guarantee that

forcing with Qi preserves "C exemplifies (*)s"). We choose by induction on

ζ < α i, a function f^τ : δ —> δ such that: (letting C$ = {β^ : n < ω},

increasing in n)

(a) for each 7 < δ we have

(β) The set Y^ = {n : /£* \\β^ βδ

n+l) φ O^β^)} satisfies: for n large enough

if n < m are successive members of Yς )l then n -f h^n) <m<n + /i2ί+ι(n)

(7) if ξ < ζ then Y** Π Y** is finite.

(δ) if { J/ : I < ω) is a list of dense subsets of Γj Π {/ξ* f7 : ξ < 5, 7 < δ}, each

satisfying <8)̂ * (see below), then for some ζ, for every n G Y^'*: if m < n and

there is #, /f * ̂  C ^ G Γj Π {/* ί7 : ξ, 7 < 5}, <; G f\<n J* > then /f * satisfies

this for such maximal m(<ri)\

Where

®j if / € Tj n {/|r7 : ί < ί,7 <^} and

^/.j ={α € C4 : if / C /' e Ίi n {/ξ* ί7 : ξ < 0,7 < α} then for

some /" € J we have /' C /" e Tδ Π {/ξ* ^7 : ξ < a, 7 < δ}

then for infinitely many a € Cg we have

\{βζCδ:a<β and (α,0) C ̂ /i(7}| > h(\CfΠn\)
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How? First choose inductively πii such that: πii -f i + 1 < rrii+i < ω,

and for i large enough m* + z + 1 + h^πii 4- i + 1) < rrii+ι, rrii+i 4- i 4- 2 <

ra-i 4- ^21+1(^1) (this is possible as fc < ω =Φ (Ii2i+i(m)/h2i(m 4- fc) : m < α;)

goes to infinity). Second list {j : j < i} as (jfc : k < α;), and diagonally choose

F/'1 Π [mi, mi + i 4- 1), a singleton. Now, for a G Y^'* we deal with the J* ,^

where: for each <£, for some k no two successive members of g^l{ί} are of

difference > fc.

Now, Q® is defined analogously to the Case D in the proof of Lemma 1.1.

Then Qi is the result of CS iteration starting with Q9, and continuing with

shooting club through Shi+l (E, C] for every club E C ω\, (by initial segments).

(3) Q is forcing C by initial segments and then CS iteration (of length 2H l) of

shooting club through Sh(E,C) for every club E C ω\ (by initial segments).

Πι.4

1.5 Claim. Under the assumptions of 1.1 for ε < ω\ additively indecomposable,

we can add to the conclusion: for ζ < ε and i < i*, the forcing notion Qi is

("-proper.

Proof. We again assume Gi C Pi generic is given; hence (Cj : j < i) (which

serve as Bi too) is also given and by induction on α we define T£, so that

in the definition of T^ we use A and (Cj Π a : j < i) only (and the list

{/ξ : ζ < ωι} £ £[^])> so that a variant of (i) - (viii) holds. The changes are:

(iv); i f / , 0 e ϊ j , /(O ^^W, then/-1({1})Π^-1({1}) \ i h a s order-type

< ε.

(viiy In addition to (vii), if (δζ : ζ < ζ*) is an increasing sequence of

accumulation points of Π^Cj, (δζ ξ < ζ) e Itfc+1[A Π ic+i], for

C < C*, / € T|o Π L5oμ Π Jo], /m e Tc^+1 for m < m* and m* < ω,

C* < ε, then there is g € T£,+2, / C g, Dom(^) = (* 4- 1, such that

the following conditions hold:

(a) For every J G Lh^[AlΊί, BiΠί] (an open dense subset ofT$Γ)Ls[Anδ]

(ordered by inclusion)) for some 7 < 5, (7^7 G J7", where 5 G {5ζ : ζ < ζ*}.

(β) g~l({l}} \ {δζ : C < C*} is a bounded subset of 5C .
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(7) For every m < m*,^!}) Π /^(U}) \ {<*C = C < C} Q Dom(/).

In the proof of Case D, we use the canonical well-ordering of -H"(Nι)LM on

our assignments (for the existence of g e T|+2, Dom(^) = δ + 1), and construct

a witness, preserving and using (vii)'. Π1>5

1.6 Discussion. 1) Also 1.3, 1.4 can be generalized to this context.

2) We have shown that just excluding the forcing notions like the one from

Example V.5.1 (by demanding D-completeness for a simple 2-completeness

system) is not enough to ensure that CS iteration of proper forcing does not

add reals. In VIII §4, on the other hand, we have quite weak restrictions on

such Qi ensuring Lim{Pi, Qi : i < a) does not add reals. However, the examples

above (1.1-1.4) lead naturally to forcing notions which fall in between (and the

corresponding consistency problems), which we now proceed to represent.

1.7 Problem. Let f§ : δ — >• δ for any limit δ < ω\. Is there / : ω\ — > ω\

such that for every δ < ω\, for arbitrarily large a < δ, fs(θί) < /(α)? I.e., the

problem is, assuming CH, whether it is possible that for every such {/$ : δ < ω\)

there is a suitable / [negative answer follows from Ottu and c.c.c. forcing

preserves a negative answer].

1.7A Definition. For any sequence / = (f$ : δ < α i), f$ : δ — > 5, let

po = {g : g a function from some a < ω\ into ωι, such that for every (limit)

δ < α, for arbitrarily large β<δ, fδ(β) < g ( β ) } ]

ordered by inclusion.

1.7B Discussion. Now if CH -f Ax[forcing notions of the form P|] holds in

some universe, the answer to 1.7 is yes ( in that universe). So it is enough

to show that if we iterate, with countable support, such forcing notions, then

no real is added. A positive answer follows by 1.8 below and next section.

A negative answer could have been viewed as proving a very weak form of

diamond. The situation is similar for the other problems here.
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1.8 Problem. Let C§ C δ be an unbounded subset of £, for δ < ω\. Is there a

closed unbounded C C ω\ such that for no ί, C$ C C? Consider in particular

the cases when we restrict ourselves to:

(a) Cζ has order-type ω, δ = Sup C$,

(b)ξ Cfi has order- type £, ί = Sup C$ and £ limit,

(c) C<5 has order-type < δ, δ = Sup C$,

(d) C«5 = 0 mod D«5, £>$ a filter on ί, δ = Sup C$, for a given D = (D& :

δ < ωι).

1.8A Definition. For C = (Cδ : δ < ωι),Cδ C δ, let P± = {/ : / a

function from some α + 1 < α i to {0, 1}, /~1({1}) is closed and for no δ < α,

Order: inclusion.

We may consider also

1.8B Definition. For D = (Dδ : δ < ωi), Dδ a filter on 5, let

PQ — {/ : / a function from some α + 1 < ω\ to {0, 1}

such that /~1({1}) is closed and for no δ < α,

Order: inclusion.

1.9 Problem. Let C$ be an unbounded subset of 5, for δ < ω\. Is there a

closed unbounded C C α i such that for every 5, C Π C$ is a bounded subset of

5, when we restrict ourselves as in 1.8?

1.9 A Definition. For a sequence C = (C§ : δ < ωι), C§ an unbounded subset

of J, let

P^ — {g \g a function from some α -f 1 <ω\ to {0, 1}, such that

g~l({l}) is closed and for every δ < α, Sup[Cδ n ^"Hίl})] < ^}
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Order: inclusion.

1.9B Definition. For a sequence D = (D§ : 6 < α i), D$ a filter on 5, let

P£ = {g : g a function from some α 4- 1 < ωi to {0, 1} such that g~l({l}) is

closed and for every δ < α, g~l({l}) Π δ = 0 mod D$}

1.10 Claim. 1) Pj?, P£ and P? (when one of the Cases (a)-(d) from 1.8 holds)

are proper and D-complete for some simple HI -completeness systems and

2) P?,P<i is strongly proper.

3) P£ is proper (and does not add reals) even in VQ if forcing by Q adds no

reals (for P|, P^ this follows by part 2).

Proof. Left to the reader.

1.11 Definition. For each S < ω\, let F§ be a function, from Dom(F$) = {/ : /

a function from some α-fl < δ to {0,1} such that /~1({1}) is closed } to ω. Let

C$ C δ be an unbounded subset of δ of order type ω and C — (C$ : δ < ωι).

Let

PC^F — {9 : 9 a function from some α 4- 1 < cji to {0, 1}

5f~1({l}) is closed and for every δ < a for

some ns : if /? G C5, |C« Π /5| > n$, and

Min(Cδ \ ()9 + 1)) > Min (g'l({l}) \ (β + 1)) and

β < 7 € Cδ, Min (C5 \ (7 + 1)) > Min (g~l({l}) \ (7 4- 1)),

|7 Π C5| > Fδ(g\(Mm (Cδ \ (β + 1)))}.

1.11A Claim. PF(^ (for F, C as in definition 1.11) is proper, D-complete for

some simple Hi-completeness system and

(g) it is proper not adding reals even after forcing by any proper forcing

notion not adding reals.

(see 2.13(2)).
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Proof. Left to the reader.

Remark. In 1.11 (and 1.11 A) demand

|7 Π Cδ\ > Fδ(\Cδ Π (β + l)Ur(min(C5 \ (β +1))).

§2. Not Adding Reals

We prove here that we can iterate (CS iterations) the forcing notions introduced

at the end of the previous section, and not add reals. The real work is in

Definition 2.2 and Lemma 2.8, but the reader may look at Conclusion 2.12

(or at 2.16). For our aim , naturally, we phrased a condition NNR?,, on CS

iterations of proper forcing, saying we add no reals (condition (3)), a quite

weak condition for avoiding "collision" with the weak diamond, and another

condition, (5), intended to avoid collision with the counterexample of §1. It

says each Qi stays proper even if we force with forcing notions of the kind we

iterate. Having phrased the condition, the main point is proving it is preserved

by CS iteration, mainly in limit stages.

So, suppose Q has length £, and for each a < δ , Q \a is as required. Assume

for simplicity we do not try to kill Φ^°; say, using NI-completeness systems. As

seems natural, we start with a countable N -< (H(χ), G, <*) and p G P$ Π TV

and try to find <?, p < q G P<5, q is (N, P$)-generic and determine GPδ ΠAT", which

should be an old set if we succeed. So, if sup(δ Π TV) = (Jn<ω an, an < αn+ι,

Oίn G TV we should try to choose approximations qn G Pttn, qn+\ \an = qn. But,

as we do not have Ki-completeness we cannot do this per se. In V§7 a major

point in the proof is that we have "above" N a sequence TV = (Ni : 1 < i < ζ),

ζ and each Ni countable (letting TVo = TV), TV quite "long" in suitable sense,

and we demand qn is (TVj,Pαn)-generic for "many" i's. So if e.g. an+\ = αn + l,

i < ζ such that qn is (TV^, Pαn)-generic, we have only N0 candidates for members

of the relevant completeness system. However "using TV^ is destroying it", "it is

consumed ", as qn+\ is not (TV^, PQ,n+1)-generic. Why is this so? In the first step,
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say choosing GQ0ΓWo, we have no problem; for GQ^NQ^QQ] we have to choose

a common member from all the candidates A to be "a subset of Qι Π NQ[GQO]

in the appropriate family Dx". Now the common member is naturally not in

NI. We can use stronger induction hypothesis, then use only HO-completeness

system or even 2-completeness system, so we have for GQQ Π NI only finitely

many (or two) candidates, so a common member exists in NI. But after ω steps

it is not clear how to guarantee Gpω Π NQ G NI .

One approach, suggested in [Sh:177], is to weaken "Q is α-proper" to "for

p e Q Π 7V0, N = (Ni : i < a) as usual, there is q,p < q G Q, q is (Ni,Q)-

generic for "many" i < α" this work for "easy" cases like interpreting "many"

as "having the same order type". While this work for e.g. P^ (from 1.8(a),

1.8A), this does not seem strong enough , but it covers the forcing notion of

V for specializing Aronszajn tree, which the present condition do not. Here we

rather say: having two candidates for G Π NI , we demand they are a subset of

(Qo Π N) x (Qo ̂  N) generic over ΛΓ0; for making this work we are carried to

the following.

Here we have A/i, NQ -< NI, qn is demanded to be (7Vι,Pαrι)-generic too;

We have several possibilities, we actually have a finite tree of possibilities for

Gpa Π NI which is generic for an appropriate product of finitely many copies

of P/s, i < an. But to proceed with this we have 7V2, where again we have a

finite tree of possibilities for Gpan Π 7V2' But only each one is generic over AΓ2.

Above this we imitate V 4.4. Now qn is (N^ Pαn)-generic for i = 3,4,5 and for

each Pαn-name r G AΓ4 of an ordinal it allows only finitely many possibilities,

but unlike V 4.4 we do not use α -properness. So we have for each n a "tower"

of six models. For higher I < 5 , qn "knows" less on NI, but our knowledge goes

down "slowly" so moving from n to n + 1, taking care of £, the knowledge on

Gparι ΠNI+I is enough to move ahead. Probably this explanation is meaningless

for many readers, but will be helpful if read in the end or middle of reading

the proof.

Note that §1 (particularly 1.5) show the impossibility of too good iteration

theorems (say CS, of proper forcing not adding reals) but do not block consis-
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tency of appropriate forcing axiom with CH as we may instead of forcing with

candidates, spoil their being candidates (as in III, V).

2.1 Definition. 1) For a finite tree t (i.e. t = (|ί|,<*),|ί| a finite set, <* a

partial order on \t\ such that for x G ί, {y : y <* x} is linearly ordered), let

trindα(ί) — {α :α = (aη : η G ί), each α^ is an ordinal < α

and // < ι/ in t implies aη < &„}

trind<α(ί)= [J tτmdβ(t).
β<a

2) For a given iteration Q = (Pi,Qj '• i < ot,j < α), a finite tree t and a G

trindα(£) let

POL — {p ' P — (Pη '• η £ t) 5 and for η G t we have pη G Pttτϊ and if t \= η < v

ordered by

P < q iff for every η e t, Par] |= pη < qη.

3) t Cend siftiss restricted to the set of members of t and: s \= ["77 < z/",

v € ί] implies [77 £ £].

4) We write (ί) for α = (α^ : η G t), when t has one element, say <> and

5) For Q an iteration of length α, ί a finite tree, α G trindα(t), and model TV:

(a) αGenq(TV) = {G : G a subset of Pδ Π N generic over N such that for

each η G t, G^ = {p^ : p G G} has an upper bound in Paτt }

[Note: G can essentially be identified with (Gη : η G t)].

(b) sGeng(TV) = {G : G a subset of P& Π A/" generic over TV which has an

upper bound in Pώ}.

(c) Gen|(JV) = {G : G a subset of P^ Π N generic over N}

6) If tlCt2,a
£e trind tt£ (*/), and ft G Pa< for I G {1, 2}, and Λ f |€tl ̂  < α^

then p1 < p2 means Λ^€ίl Pη < Pη K-

2.2 Definition. Q is an AΓA^^-iteration for (£o?£ι>£2) means:
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(1) Q is a CS iteration of £o-proper forcing (see V2.2).

(2) For t — 0, 1, 2, £^ is a stationary subset of S<^1 (λ^) for some uncountable

(3) Forcing with Pa adds no reals for a <

(4)2 If.

(a) N -< (if (χ), G, <*) is countable, (χ regular large enough),

(b) T V Π λ i G f i ,

(c) {Q,£o,£ι,£2) belongs to AT,

(d) i* < i < j < α < ̂ g(Q), i* G ΛΓ, i G AT, j G JV and i*, i are non-limit,

(f) p G AT Π P, , p f i G Gα, and

(g) 9o j <?ι are upper bounds of Ga in P^, and <?o ί^* = 9ι N*>

ώen there is G; G Gen| 7>(AΓ), extending Gα, p f j G G' and g^gfe Pj

such that: go ^ 9o" Γ*» 9ι — 9Ϊ" Γ*» anc^ for ί = 0, 1, g/ is an upper bound to

G1. Let G1 extends Gα, mean that (p1 eG' =ϊp'\i€ Ga] and c^ \i* = q£ \i*.

(5) Assume i are not limit ordinals, i < j < α, Qr a CS iteration of length /?

satisfying (1) - (4), a < β,Q = Q'\OL, Q' satisfies (l)-(4), t a finite tree,

77* G t, ά G trind0(£), α^* = i, 5 = t\{η : r; < 77*}, (so P 5̂ is essentially

Pi), and let R d= P^/Pi (a P^-name).

If R is an 82 - proper forcing not adding reals, then

H~Pi*β "Pj/Pi is a ^2— proper forcing not adding reals" .

2.2A Remark. Note that for i < j < tg(Q], i non-limit, we have: Pj/Pi is

(έ^o U έ î U ̂ 2)-

2.3 Definition. Q is an NNR#0 - iteration for (^0,^1,^2) is defined similarly,

replacing (4)2 by (4)^0 below (so, in clause (5) now we mean this (4)) where:

t Actually, e.g. if Qo? Qi are proper forcings not adding reals and QQ x Qι is

proper, then Qo χ Qi does not add reals; in fact by 2.5 the "not adding reals"

is redundant.
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(4)«0 tf

(a) TV -< (H(χ), G, <* ) is countable, (χ regular large enough),

(b) A Γ Π λ i G έ i ,

(c) (Q, £0,^1,^2} belongs to TV,

(d) i < j ' < α, i non-limit, z G AT and j G AT,

(e) G« G

(g) t G JV a finite tree, ά G trindi(£), each aη non-limit,

(h) q G PU, and if 77 G t, αη = i, then qη is a bound to Gα, and

(i) β = (βη :η et) where for r? G £ :

if rv — ?'•ir α^ — z,
( a

— } A(̂  J

TΛen there are G' G Gen^>(JV) extending Ga and f G P^, such that:

(α) each 7*77(77 G ί, θίη — ΐ) is a bound of G'

(0) 9 < f.

Before we state and prove the main lemma, we prove a few claims.

2.4 Claim. 1) Suppose x G {2,N0}> Q1 is an iteration satisfying (1) - (3),(4)2:

of Definition 2.2 or 2.3, Q = Q'\a, β = tg(Qr), Q is an AW^-iteration

for (£"0,^1,^2), X is regular large enough, N -X (#(χ), € ,<*) is countable,

(Q7, fo,^ι,^2,Qί) belongs to N, N Π λ2 G <?2> ^ ίend 5 are finite trees,

β G AT is in trind^(s), α = β\t, Rang[^ί(5 \ *)] C α, Ga G Gen|(AΓ) and

^ — (̂  '• ?̂ G ί) G Pa is above Gώ, p G P^ Π A/", and pf t G Gώ

Assume in addition:

(*)ί for each η G £, the forcing notion Pά/^αf{ί/:ι/<r7} is ^-proper not

adding reals.

Then there is a G^ G Gen^(ΛΓ) extending Ga (recall, Gβ extending Ga

means [σ G Gβ =Φ σ f t G G«] ) to which p belongs and f e Pβ above G^,

ί ^ ^Γ^i (and it follows p < f).

2) Moreover, if 77 G t, and v <l η is maximal such that (3p G s\t)(v < /?),
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Proof. We prove it by induction on the number of elements of s.

By the induction hypothesis, we can show that if t C tι C s&ti ^ s,

then (*)ίl holds. Hence, it is easy to reduce the claim to the case s\t has a

unique element, say η. Assume first that there is a maximal v G t with v <s η

and let ί* = t\{p : p G t, p < ι/}; so by (*)t we know Pa/Pa\t* is a £2-proper

forcing not adding reals. Let R be the P^r-name Pa/Pa\t* Note that Part*

is isomorphic to Pαι/. Let z = α,,, j = α^ and apply (5) of Definition 2.2 (or of

2.3, of course). We obtain r = (rp : p e s).

But why is rp a condition in Parj and not a P^-name of such a condition?

As all the influence of Pά/Pa\t* is on the set of dense subsets of Par] in 7V[Gp_],

which we know (and it is in V) so as we know there is rp we can inspect each

candidate (not i), we use our demanding q < f \t rather than q — f \t. U2.4

2.5 Claim. If Q satisfies (1), (2), (3) of Definition 2.2, α = ίg(Q), t is a

finite tree, β G trindo (t) and Pβ is Sz-piopei, then it does not add reals.

Also, if GU C PU is generic over V, we let Gη — {qη : q G GQ,}, then

(Gη : η G Dom(ά)) determines G& (hence we do not distinguish strictly ).

Similarly, for "G C P& Π N generic over AT".

Proof. Immediate.

2.6 Claim. Let (i) Q be a CS iteration of ^α -bounding proper forcing notions,

(ii) i < j < lg(Q),No -< NI are countable elementary submodels of

(ίf(χ), G, <*), (Q,i,j) G NO, X regular large enough, and N0 G NI.

(iii) p G Pj Π NO, g G Pi, p f i < ςf, g is (Nx, P^-generic, and (JV0> Pi)-generic.

(iv) for every pre-dense J C P^ from AΓ0, some finite JΓ C JΠ JVo is pre-dense

above q.

Then there is r G Pj, r f i = <?, p < r, r is (Λ^P^-generic and (N0,Pj)-

generic such that for every pre-dense T C Pj from NO some finite J C J Π N0

is pre-dense above r.

2.6A Remark. This claim is from [Sh:177] and is implicit in VI §1.
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Proof of 2.6. By VI Theorem O.A, P;, PjjPi are ^-bounding. Let (τn : n <

ω) G NI list all P^-names of ordinals which belong to NQ.

We can find a functions F, H G 7V"o such that: for every p, a P^-name of a

member of Pj/Gpi , and r, a Pj-name of a ordinal, we have p' = F(p, r) is a P^-

name of a member of Pj/Gpi satisfying p'[GpJ fi = p[GpJ fi, p[GpJ <PJ p'[GpJ

in P and σ = H (p, r) is a P^-name of an ordinal such that

Let po = p\[ij), Pn+i = F(pn,τn), σn = ff(pn,τn), so pn, σn G 7V0, and

σn is a Pi-name of an ordinal and ((pn,<?n) ' n < ω) e NI. For each n

we can find (p^,yn) £ Λ/Ί, moreover {(p^,5n) : n < α;) belongs to 7Vχ such

that vn is a P^-name of a sequence of finite sets of ordinals which belongs to

NI (so Ihp. "ϋ € V") p+ a Prname of a member of Pj/GP., and in ^[Gp.]

p+[G+] is above pn[GPί] (in Pj/GpJ and is ( N [GPi},Pj/GPi) -generic and

p[GpJ G -ΛΓι[GpJ Γ\V (for any GPi C P^ generic over V). Let ϋ — (ym : m < α;),

^m — U ^m so 5 ^ ̂ i ig a ί^-name, Ihp. "ϋ is an α -sequence of finite sets of
n<m

ordinals" (we can make Ihp. "ϋ G V" but we not use).

Let (un : n < ω) list all sequences, u = (um : m < ω) G NI, um a finite

set of ordinals. Let un = (u^ : m < ω). Choose (u* : n < ω) G V, a sequence

of finite sets of ordinals, such that:

(*) for each n < ω and for every large enough ra,ι^ C u^.

As σn G TVo are P^-names, by assumption (iv), we can find (υ* : n < ω) G V

a sequence of finite sets of ordinals such that

Now, clearly it suffices to prove:

® ^ I^Pi "there is a condition r G Pj , r f z = q, [i,j) Π Dom(r) = 7VΊ Π [i, j f ) , r is

(7Vι, Pj)-generic, r is above some pn, and r Ihp. [/\n rn G v* U u*]"

[as there is a P^-name of such a condition, and we know the domain, there

exists an actual such r G Pj].
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Why ® holds? Let Gi C P$ be generic over V, q e Gi. Then ϋ being a P^-name

from Λ/Ί, satisfies ϋ[Gi] = (vn : n < ω) e Nι[Gi] so vn C NI Π Ord, hence for

some (v'n : n < ω) G V, and ω-sequence of finite sets of ordinals, /\ vn Cυ'n,so
n<ω

w.l.o.g. (v'n : n < ω) G 7Vι; so for some n(*),Λm>n(*) υ* - υή ^ un Choose r

as (Wι[Gι], Pj/P^-generic such that Dom(r) = Nι[Gι] Π [ij) = NI Π [z, j), and

^n(*) K^]' Pn(*) ^ r> sucn r exists by the theorem of preservation of properness.

Now r is as required in <8>. As we have done it in any V[Gf],Gi £ Pi generic

over V,q e Gi, clearly q forces (II-pj there is such r. D2.6

2.7 Claim. Let

(i) Q be a semiproper iteration of ωα;-bounding forcing notions

(ϋ) i < j < tg(Q), N0^N^ (H(χ), 6, <*), (Q, i,j) € N0 and ΛΓ0 e ̂  both

countable, and χ regular large enough.

(iii) p G Pj nTVΌ, ^ G PΪ, pf i < ς, q is (JVi, P^-semi generic and (JV0, Pi)-generic,

(iv) for every r G Λ^0 a P^-name of a countable ordinal for some finite u,

ς f l h " r G u " .

T/ien, there is an r G P-/, r \i — ς, p < q, r is (A/j, Pj)-semi generic and (JVo, Pj)-

semi generic such that for every P^-name τ G NQ of a countable ordinal, for

some finite tt, we have r Ihp. "r G u".

Proof. Same as 2.6 except that: using RCS, the issue of the domain of r

disappears, and the names we deal with are names of countable ordinals. U2.7

2.8 Main Lemma. If x G {2,K0}, Q is a CS iteration of (limit) length δ

and for every α < 5, Q\a is an AW^-iteration for (^0,^1,^2)) then Q is an

ΛWJ^-iteration for (£0,£ι,£2)

2.9 Remark. 1) Our main object is usually to preserve clause (3) of Definition

2.2: adding no real.

2) Comparing this with the result is V §7 and in VIII §4, we gain in replacing the

completeness system by condition (4)x, which is weaker; but "(< u;ι)-proper"

seems incomparable with condition (5) which replaces it.
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2.10 Proof of 2.8 . We have to prove the five conditions from Definition 2.2 (or

2.3).

Conditions (1) and (2) are easy (part (1) follows from part (2), for part

(2) see 2.2A and V).

Condition (3) follows from condition (4) (use i = 0, j = J, r a name of a

real).

So, it is enough to prove:

(a) condition (4) and

(b) condition (5) assuming (3), (4) hold.

2. 10 A Proof of Condition (5), Assuming Conditions (3), (4). So, forcing with

PS adds no reals and Q satisfies (1) — (4).

Let i, j be non limit ordinals, i < j < <J, jR, Q', s, ί, α, η* be as

in the assumption of (5). So let χ be regular large enough, N a countable

elementary submodel of (H(χ), € ,<*) , N Π λ2 G S2,i G N,j e N,R e

N,Q G N,(qo,qι) e Pi * jR is (JV,P» * jR)-generic and force GP^R Π TV to

be Gα,p G P, Π W,pti € Gα Π Pi (equivalently p\i < q0). It suffices to find

r G Pj above #o and above p, and r is (N[Ga], P^-generic, and r forces a value

to GPj Π N.

By the assumption, a < δ ^> Q\ais N NRX -iteration for (£0?^ι,^2

if j < δ the conclusion holds. So, assume j = δ.

Let NQ = N and choose NI satisfying:

(α) NI is countable

(7) NI Π λ0 G <?o

(5) TVo G 7VX

(ε) Ga,qQ,qι e NI.

Let i = IQ < iι < i^ < < in < ' ' ' (™ < ω) be such that:

in is not limit, ine N0Γ}δ and sup[5 Π AΓ0] = sup{in :n<ω}.

Let (Jn : n < ω) G NI be a list of the Pi * jR-names of dense subsets of

Pi in 7Vo.
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Now we choose by induction on n, pn, qn such that:

(A) (l)q*ePin,

(2) gn is (Λ^, Pin)-generic for I = 0,1,

(3) Dom(gn) - in Π JVi

(4) 9o < 9°

(5)gn + 1Γin = (7n

(B) (1) pn is (a Pin - name of) a member of P^ Π NQ

(2)pn\in<qn

(4) pn+1 G In (more exactly: pn+1 G In[Ga] i.e. qn+l \\-Pin

"pn+l e Jn[G
α]" where

Tn[Gα] = {r G N : for some pf G Ga p' lhp. "r G Xn"})

(C) gn Ih "Gin Π A^o is generic for (NQ[Ga], (P

Note in (B)(l) that pn should not depend on GR.

For n = 0 - easy.

For the induction step, defining for n + 1, first note that

(*) "~Pi*[^x(Pin/Pi)l "pin+i/pin

 is £2 - proper not adding reals".

We get (*) by applying (5) of the Definition with Q\in+ι (which is NNRX-

iteration for (£0)£ι5£2)),Q5 ί*,ά*, r/71"1"1, ϊn j *n+ι here standing for Q,Qf, ί,

α, ry*, i, j there, where: ί* is t when we add ηn just above r/* and r/714"1 just

above ?7n and let α* fί = α, α*^ = zn and α* +1 = in-\-ι

To apply condition (5) we have, however, to know that Pώ* \(tu{ηn}) *s

^2-proper not adding reals; but this is guaranteed by Claim 2.4.

So, (*) above holds; so, after forcing with Pi * [R x (Pin/Pi)] (with

#n> (<lθιQι) m the generic set) we shall find a q G Pin+ι/Pin generic for

(N0[G",GPin/Pί], [Pin+1/Pin]).
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(Note: 7Vo[Gα] had no new members of V, so no new members of Pin+l/Pin).

Now, the forcing with R is irrelevant (except for the information in Ga and

Ga G V!) So, there is a P^-name of such a <?, and there is a P^-name of a <?',

<? < qf G Pin+l/Pin, q' forcing a value to Gpi Π 7V0.

So, there is a q' G A/i, a P^-name of a condition from Pin+1/Pin satisfying the

above if there is such q' at all.

Now, as in the proof on the preservation of properness, we can choose qn+ι

In the end, let r' = q° U Un4
n+1 IK, Wι) N°w (Jn Π GPj : n < ω) is

clearly a Pj-name, so, by condition (3), there is some r, r' < r G P,, and r

forces an (old) value to it. Now, this r finishes the proof. E^.IOA

2.1 OB Proo/ of condition (4)κ0 when we deal with NNR#0:

So let TV, z, j, ά, yS, Ga, p, ί, (^ : η G ί) are as there. By the assumption

w.l.o.g. j = ί.

Choose ΛΓ€ (for £ = 0,1,2,3,4,5) such that:

(α) every NI is countable, NQ — N

(β) Λ^Λ^ιX(#(χ),E,<pfor£ = 0,l,2,3,4

(7) NI nλi e Si, N2 nλ 2 G 52, ̂ 3 nλ0 G £0, ̂ 4n λ0 G £0, ̂ 5 nλi G f0,
(remember NQ Π λi G fi)

(5) NteNt+i foil = 0,1,2,3,4

(ε) qeNl,G
a^Nl.

Let i = io < H < ^2 < - < in < - - (n < α;) be such that: each in is

non-limit, belongs to AΓ0 Π 5, and

sup(£ Π NO) = sup{zn : n < ω}.

Let (In : n < ω) e NI be a list of the dense subsets of PS which belong

to NQ. For simplicity, w.l.o.g. we can assume t is a subset of ω>ω ordered

by < (being an initial segment), aη = i & ίg(η) = m* (remember only

η <* v => aη < Oίv was required). Let t* = t Π m*ω and stipulate ί_ι = ί \ ί*.

Now we define by induction on n < ω, pn, ς^(?7 6 Γ), G^,ίn, ά
n, Gζ, G^

(for 77 G ίn) such that:

(A) (1) <# G Pin (for 77 G Γ)



878 XVIII. More on Proper Forcing

(2) ςr» is (Nt, Pίn)-generic for I = 0, 1, 2, 3, 4, 5

(3) For every pre-dense subset X of Pin from Λ/4 for some finite J C

IΓ\ Λ/4, ,7 is pre-dense in Pjn above ς™ (hence this holds for £ < 4)

(4) qη < <j» for η € t*

(5) if i/ e ί \ **, i/ < T/i € t*, v < η2 € ί* then ς^ [α,, = ς°2 fαv

(6) <#+1r*n = < f o r 7 7 € ί *

(7) Dom(ς£) is in Π N5

(B) (1) G£ is a generic subset of Fin Π NO over ΛΓ0

(2) G"n+1nPin=G"n

(3) G§ = Gα

(4) g» ll-pίn "GPin n 7V0 = G«" for 77 e Γ

(C) (1) Pn € ΛΓ0 n Pi

(2) P < pn < Pn+1

(3) Pn+l e Jn

(4) pn\in€G»

(D) (1) ίn is a nonempty finite tree, ί0 = t,tn Cend tn+1,

(2) an = (o%:ηetn),

(3) αn = αn+1 fίm cί:0 = δ, so we may write aη for α™ when η € tn

(4) if 77 € ίn+ι \ tn then there is a vn € ίn such that: η is an immediate

successor of //„, £*„ = in+1, α^ = in.

(E) (1) <G£ : η € ίn> belongs to

(2) G* e ΛΓ2

(3) C?«

(4) tn \= η < v implies Gc

η C Gc

υ

(5) G' € ΛΓ3

(6) G»g(77)_m. C G* C GC

Ώ for η e (tn \ ί) U Γ so ^(η) > m*, of course

(7) if η e ί* then g£ Ih "for some p € ίn \ |J ίm we have: Oίn

p = in, η < p
m<n

If we succeed, then let rη = q% U Un<ω^+1Γ[in,in+ι) (for V £ **, so

Qr, = i and βη = j = δ) and let r^ = ̂  for η e t \ ί*, all are members of P^.
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For η E t*, rη is (JV0, P5)-generic and forces GP<5 Π AT = GP<5 Π W0 = (Jn<u; G£

and (rη : η et) £ Pβ. So, it is enough to carry the definition.

The case n — 0 is easy (better to define (q® : η E to) E Pa by steps i.e.

choose q® by induction on ίg(η)\ remember Pώ is proper not adding reals as

Qί^o is an NNR^0 -iteration).

Let us do the induction step: defining for n + 1.

Step. Choose pn+ι E Tn Π 7V0 such that pn < pn+ι and pn+ι \in E

Straightforward.

Second Step.

First note:

(*)ι the following set is a dense subset of Pώn:

J = {ς' :̂  E P«n, and ezί/ier for some r/ € ίn, α^ = in and

or there is a G; E Genp.^ χ (No) such that

G7, G; Π P^ - G^ and:

= i f =>q'η lhP.n "in Pin+l/Pirl the set G'

has an upper bound"}.

This follows by (4)κ0 for Qfin+ι (which is an NNR#0 -iteration).

Also

(*)2 there is a q' e J which belongs to (Gb

η : η E tn) (i.e. η e tn =ϊ q'η £ G^

and ς; E Pa«) such that [77 E tn & ̂  = in => q'η is above G£].

(this is as there is q* E (Gξ : η E ίn) which belongs to J (as J e NI and

is a dense subset of P^ and (Gb

η : η E tn) is in sGenp_τ l(A/1) and the first

possibility in the definition of J cannot hold as G£ C Gb

η whenever αη = in).

Now choose G^+l satisfying: (B)(l), (B)(2) and for every η E tn of length

n + m* for some q* E Pίn+1 Π^i : ̂ i»n € G^ and ς; Ih "GPίτι+χ Π7V0 - G«+1".

This is possible by (*)ι 4- (*)2.
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Third Step. Let for each v G tn with OLV — in, (G^m : m < ra,,) be such that:

<fi\m* ^Pin

 Utf°ί ^ QPir. then $Pin

 n 3̂ € {G,,ιm : m < mv}.

(This sequence exists and is finite by (A) (3), and as Pin adds no new reals).

Now we let

and choose αn+1 by (£>)(3) and

Fourth Step. Repeating the proof of 2.4 (but choosing the appropriate forcing

conditions from G^(η G ίn^ry — *n))j we choose (Gb

η : η G £n+ι \t n ) and (rjj :

r? G ίn+ι \tn> such that: (Gb

η : r? G ίn+ι) G sGeng^^ΛΓi) and <ζr(m.+n) e G^

(^77t(m*-ι-n) ^s from ^ne en(ί °f ^ne second step) and r^ G Pin+l Π A^2, which is

an upper bound to G^ and rb

n\in G G^r(m,+n) (just order tn+1 \ tn, and then

choose (G^,r^) by induction on 77, see 2.4(2)).

Fi/ίfc Step. We choose (Gξ : η G tn+ι \ ίn), (rc

v : v G tn+ι \ ίn) satisfying (E)

and \y G tn+ι feα^ = in+ι => r^ G G^] and for ry G ίn+ι \tn, η = z^(ra), we

have r^ G Pin+l r\N3,r^ \in G G^m, r^ a bound of G^; this is possible as in the

proof of the preservation of properness.

Sixth Step. We choose (q™+l : ry G t \ ί_ι so aη — i) by Claim 2.6 making

sure that {r£ : v G £n+ι \ tn,η <3 i/} is pre-dense above ς^+1, this to guarantee

(E)(7); do it for each such η separately.

So, we have finished the induction step, hence the proof of (4)κ0. Hence,

the proof of the Main Lemma. tlb.ioβ

2. IOC Proof of Condition (4)2 When we are Dealing with NNR%

We mix the proof of VIII, §4 and the previous proof t.

So let x, TV, i*,i, j, Gα,p, <?o5<7ι &re as there. By the assumption w.l.o.g.

j = δ. Let Xl = (2*)+,t = {(),{0),{1)} C ω>ω,α<> = i*,α<0> = α<ι> =

^ The readers who are happy to have the details should thank Lee Stanley

for his advice.
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= qo\i*(= Qι\i*) and q<0> = 4o,4<i> = qi, and q = (qη : η G t ) ,

stipulate ί_ι = {{)}.

Choose Nt(t = 0, 1, 2, 3, 4, 5) such that:

(α) every A^ is countable, TVo = </V,

(7)

(ε) ? € E Λ Γ ι , G " G J V ι .

Let i = i0 < ύ < *2 < < ^n < - (n < ω) be such that: each in belong

to NO Π 5, is a non-limit ordinal and

sup(ί Π 7V0) = sup{in : n < ω}.

Let (In : n < ω) G NI be a list of the dense subsets of P§ which belong to

7V0 Let t* =tnlω.

Now we define by induction on n < ω, kn G ω, (Mfc : fc < fcn), pn,

q»(η G Γ), Ga

n,tn,a
n,sk,β

n*,hk,hl(k < kn),Gb

η,G
c

η (for 77 G ίn) such that:

(A) ( i ) # e P < n f a € θ

(2) ̂  is (7V^ p. J-generic for t = 0, 1, 2, 3, 4, 5

(3) For every pre-dense subset X of Pin from A^, for some finite

J C Zπ A^4, J is pre-dense in P^ over ̂  (hence this holds for i < 4)

(4) </„ < ς° for η€t*

(7) Dom(^) is in Π ΛΓ5

(B) (1) Gn is a generic subset of Pin Π JV0 over N0

(2)G« + 1 nP ί n =G«

(3) Gg = Ga

(4) < Il-P4n "Gpin nNQ = G»" (for T? € ί*).

(C) ( l )p n €7V 0 nP ί

(2) p < pn < Pn+l

(3) pn+ι € Jn for η e ί*.



882 XVIII. More on Proper Forcing

(D) (1) tn is a nonempty finite tree, ί0 = t,tn Cend ίn+1,

(2) άn = (cς : η € ίn>,

(3) άn = an+1 \tn, a° = a, so we may write aη for α™

(4) if 77 e ίn+ι \ ίn then there is ι>η 6 tn such that: 77 is an immediate

successor of ι/η, aη = in+ι,aVη = in

(E) (1) (Gb

η : η € tn) belongs to

(2) Gb

ηeN2

(4) ίn |= η < v implies Gc

η C G£

(5) G< € 7V3

(6) G?fl(lϊ)_ι C G* C Gc

η for η € tn(^(τj) > 1, of course)

(7) if η e t* then

<lη ^Pin "for some P 6 ίn \ {{)} we have: α£ = in and G^ C GPirι"

(we can demand it is a Pjn-name pn and ρn < pn+ι)

(F) (1) Mo = Λ/Ό

(2) Mfe -< Mfc+ι x (ff(χ), €, <* ) for fc < kn

(3) Mfe is countable,

(4) Mk € Mfe+1

(5) Mk e TVi

(6) fcn < fcn+ι < ω,ko = 1 (stipulate fc_ι = -1)

(G)(l)β0 = {<>},«! = «

(2) if kn <k<kn+1 thens f c =s f e n U{ι/ A ( ί ) : t < 1k-k™,v € skn,

tg(v) = n + 1}

(3) for kn < k < fcn+i, we define /ife, a function with domain Sfe+i and

range s^: hk \skn = identity, and for v" (£) € sk+ί \ skn

(4) βn'k = (/3Jf'fc :vζskn,k<kn) is defined as follows: /?<'> =

(remember s0 = {()}) and if k > O,/?"'* is i* if ίg(v) = Q,ieg(
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if 0 < ^g(^) but v is not maximal in sk, and finally in if v is maximal

in skn

(5) skn = tn

(6) For fc such that kn < k < fcn+ι> h% is the function with domain

Skn+ί = *n+ι to 5 fc> ΛJίfa) = Λ fc o Λfc+1 o hkn+1-ι(η) (and ft£n+ι =

idίrι+1), also if A: < fcn, /ι£ is defined by the downward induction

on m as h™ o /ι£ where km < k < km+ 1 (no incompatibility).

(H)(l) if ι/, 77 G tn = βfcn, fc < fcn+i and /ιg(r?) = ΛJJ(ιx) ( both well defined)

then Gb

v Π Mk = G^ Π Mfc, and we denote this value by G^fa,

(2) (G '̂71^ : pe sk) e sGenk(Mk) and it belongs to Mfc+ι (and to

If we succeed, then let rη = q® U Un<α;^+1ί[^n, Wi) (for ^ € ^*5 so

α^ = ί) and let rη = qη for η G t \ ί*, they are members of P^. For η 6 £*, r^

is (A^o,P<5)-generic and forces Gp5 Π N = Gpδ Γ\ NQ = Un<α;^n (remember

(C)(l)-(4)), and (rη : η G t) G Pg. Here, /3 is as in Definition 2.3(i). So, it is

enough to carry the definition.

The case n — 0 is easy (better to define (q™ : η G to) € P« by steps).

Let us do the induction step: defining for n + 1.

First Step. Choose pn+ι E Jn Π AΓ0 such that pn < pn+ι and pn+ι fzn € G^.

Second Step.

First Note:

(*)ι the following set is a dense subset of P^n,ι:

,7 = {<f :ς' e P^n.i and either for some 77 G Si,/^'1 = in and

or there is a G1 G Genp^ (7V0) such that:

Pn+i r^n+i G G; Π Pίn - Ga

n and:

r/ G 5! fc^'1 =in=>q'η \\-Pin " in Pίn+1/P<n the set G'

has an upper bound"}.
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This follows by (4)2 for Q\in+ι (which is an N ΛΓ^-iteration)

Also

(*)2 there is a qf G (Gb

η : η G 8l) (i.e. Λ,,€βl q'η G G^'1) such

that [η G si fe/3™'1 = in =* ̂  is above G?£] and <f G J.

(This is as {G '̂1 : η G si) is in sGenP.n|1 (Mi) and G£ C G*'*1'1 whenever

Now choose G£+1 satisfying: (B)(l), (B)(2) and for every η e Si with

β%>1 = in for some q^° G Pirι+l Π MI we have: q%>°\in G G^71'1 and ς^'0 Ih

"GP < n + ιnJVo = σ^+ι".
This is possible by (*)ι + (*)2.

Third Step. Let for each z/ G tn(= Skn) with /3^'feτι — in, (Gι/>m : m < m^} be

such that (on ς£ see (A)(l), (2), (3)):

Cn lhPiτl

 U</GS ^ Qpin

 then ^Pίτι

 n 3̂ G {G^ : m < mj".

(This sequence exists and is finite by (A) (3) and as Pin adds no new reals).

W.l.o.g. mv is a power of 2, mv = 2n" , and does not depend on i/, and let

fcn+ι be such that fcn+ι - kn = 2m" for any such ι/. So Sfc,fcn < k < fcn+ι

and tn+ι are well defined. Now we can choose appropriate Mk(kn < k <

fcn+ι) such thatt: Mfc -X Nι\H(χ),Mk G NI, Mfe_ι ^ Mfc, Mfc_! G Mfc,

Mfc[(G^ : ry G tn>] ^ (Nι\H(χ))[(G* : η G tn>]. Why can we choose such

Mfc's? By (E)(l), (G* : η G tn) G sGen|nrίn(Nι), and Pa» is <f0-proper. Let

GM,A: ^ G^ Π Mfe for 7/ G tn. Also /3n+1» fc(fc < fcn+i) and sk(k < fcn+ι) are

well defined now. Now we define by induction on k = 0, . . . , fcn+ι, a condition

<# fc(i7 € sfc&^+1 * = in+ι) and (G*>n+ί>k : η £ sk) € sGenf +l'*(Mfc) such

t Remember χι = (2^)+ and Nt X (/f(χι), e, <*J for £ = 1,2,3,4,5.
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that
(α) k < fcn+i&r? G n

(b) q^k G Mfc+i for 77 G Sfcn+1(if k = fcn+i then q£k G 7Vι)

(c) <# *Γin e G*'n'* when 77 G

(d) <#•* G σ*'n+1'fc+1

/ \ >nfb,n+l,fc x- x-fb,n+l,/c r ,-
leJ U/ι£(τ7) - ^η IOΓ " fc

For /c = 0 ςf^ 0 was already defined and let G^n+1'° = G£+1-see second step.

For k + 1 we repeat the proof.

Fourth Step. Repeating the proof of 2.4 (but, choosing the appropriate forcing

conditions from G^(η G tn \ {()}, aη = in)), we choose (Gb

η : η G ίn+ι \ tn) and

(r* : η G ίn+ι \ tn) such that: ^ffίίi) ^ Gb

η and r^ G Pin+1 Π 7V2, which is an

upper bound to Gb

η and rb

n \in G G^/1+nx (just order £n+ι \ίn, and then choose

^,ίζ) by induction on r? see 2.4(2)).

. We choose (G^ : ry G £n+ι), (̂  : ^ ^ *n+ι \ *n) satisfying (E)

and [z/ G ίn+ι&^ = Wi =^ ^ e Gj] and r^ G Pin+1 Π 7V3, r^fin G

Gη\(i+n),η(i+n)ιrη a bound of G^\ this is possible as in the proof of the preser-

vation of properness.

Sixth Step. We choose (qη : η G t \ {0},^ = i) by Claim 2.6 for each such η

separately taking care that {rc

v : v G tn+ι \tn,η < v} is pre-dense above q™+l

(this will guarantee (E)(7)).

So, we have finished the induction step hence the proof of (4)2. Hence, the

proof of the Main Lemma also for x = 2. U2. ιoc

2.11 Claim. If Q has length α + 1, Q \a is an ΛW^-iteration for (£0, B\, £2),

l^~p« "Qα is strongly proper, and condition (4)x holds for i = α, j — a + 1"

is an A^TVβ^-iteration for (ίo?^ι?^2)

Proof. Straight.

Now we can phrase various conclusions on sufficient conditions for the limit of

a CS iteration not to add reals.
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2.12 Conclusion. Suppose Q = (Pi,Qj : i < a,j < a) is a countable support

iteration of strongly proper forcing satisfying (*) defined below. Then we can

conclude that forcing with Pa adds no reals (hence, being proper, no new ω-

sequences of ordinals, and in fact Q is an ΛW^-iteration) where

(*) If i0 < iι < a then (*)*°'<1'<1+1 holds, where we let

(*)$l<lί<a io < ii < Ϊ2 < α = *g(Q) and in Vp* : if N -< (#(*),€,<*)

is countable, {Q,io,H,*2> £ N, p e [PiJPio] Π W, ς',g" e P^/P^ are

(^GpJ^/PiJ-generic, p|n < ς f j , p^i < ςr" and ςf7,^7 force GPiι/P.Q Π

AT = G1, ίΛen for some (ΛΓ[Gp.J,Pί2/Pi0)-generic r7, r77 G Pi2/Pi0 we

have: p < r',p < r", qf < r',q" < r" and r7,r" force (GPί2/Pio) Π N = Gr

for some Gr.

Proof. Straight.

2.13 Claim. 1) A sufficient condition for (*) from 2.12 is that each Qi is (D, £)-

complete for some simple 2-completeness system (see VIII, 4.2, 4.4).

2) We can in 2.11, 2.12 replace strongly proper by:

0 "proper not adding reals even after forcing by any proper forcing notion

not adding reals."

(3) If V N CH, K supercompact with Laver diamond then for some proper

forcing P not adding reals, of cardinality K, satisfying the K-C.C., in VPκ we

have HI = Nj', K2 = «, 2K° = NI, 2*1 = N2 of course and:

Axωι [Pr(<3)] where Pr(<3) means:

(A) forcing with Q does not add reals

(B) part (A) holds even in a larger universe which has the same reals gotten

by a proper forcing

(C) the forcing notion Q is proper and for some simple 2-completeness system

D (or, even a Ni-completeness system) Q is D-complete.

2.14 Remark. 1) Part 3 is a specific case, of course.
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We can now conclude the consistency of appropriate other axioms (see Ch.

VIII).

2) We can now solve the problems from the end of §1.

2.15 Definition. 1) A finite tree t is simple if it has a root(= a minimal

member) and all maximal η G t are from the same level ( the level of η in t

is Igη = | { ι / : ι / < r / } | ) . t i s called standard if t C ω>ω is closed under initial

segments, the order being <. Let max(£) be the set of maximal members of t.

2) If ε is a finite non-decreasing sequence of ordinals, n = Igέ, t a simple finite

tree with n levels then at^ = (α^ : η G t) where aη = ε^gη.

2.16 Theorem. Suppose S C <S<κ0(λ) is stationary, Q = (Pi,Qj : i < α*,j <

α*) a CS iteration, and for each α < α*, (*)S'̂ +1 holds (see below), then forcing

with Pα* adds no reals, where for β < 7 < α* we define:

)^ Assume

(a) k <ω,n<ω,έ= (ε0, . . . ,εn_ι),ε0 < < εn-ι < /3,

πii < ω for i < n,

t a standard simple tree with n levels,

t* = t U {η Λ (i) : i < 2*, η G max(ί)}

is Λ / r . /on Λ / Λ , N{[ι/2]> ι/ -77 (*>,^e max(ί)

and let ft = ft^, to — ̂ j *ι = fi+i

If 5 = (^ : ̂  € to), let ρh - (qh(η) : r/ G tι>

(b) AT ^ (ff (χ), G, <* ) is countable, Q, λ0, e, /?, 7 G AΓ and

A^ Π λ0 G fb, while β < 7 < α*.

(c) GO C Pαtθjff - <β) Π A/" is generic over JV, (so we may write G0 = (G®

(d) p G NnPάtQ ε. . <7> is compatible with G° (note P«t0)£- . (/J> C PatQ s .

so this means ^topη\β € G°).

(e) ^ G Pαtl e- (β) such tnat ^ ^s above GQ i.e., f G G0 => f'1 < q.

Then we can find GI, f, such that
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(α) GI C P&t _ „ ̂  Π ΛMs generic over N

(βJp^G,.

(7) GO C GI (see remark in (d)).

(X\ r ^ P- - , v π < r
V / -̂ ott ε \Ύ) ' :/ —

(ε) f is above Gf.

Proo/. We prove by induction on a < tg(Q) that for every β < 7 < α,

(in particular that Qfα is a CS iteration of £ -proper forcing). The main point

is the case 7 = α is a limit ordinal whose proof is similar to the proof in 2.IOC.

Π2.16

§3. Other Preservations

A central theme in this book is that it is worthwhile to have general preservation

theorems on iterated forcing. While it seems that this is reasonably accepted

in the community for properness, this seemingly is not so for preservation

theorems like "proper-f^u -bounding" and even less for a general framework

for them. So here we try another way to materialize the theme (in 3.1-3.6).

We then present several applications (but, generally, we do not repeat VI). A

simple case of our framework is [Sh:326, A 2.6(3), pp.397-9]

This section passed through several versions, e.g. in most of them the proof

of 3.6 was left to the reader. Goldstern [Go] starts from an earlier one, he cuts

the generality for the sake of completeness. Relative to the present version he

restricts himself to the case A and α* = ω, in Definition 3.4 omit demand (xi)

((x) irrelevant) and demand it adds reals. Also Rn C Rn+ι and he omits S and

g (so uses (ωω)v as a cover: a gαnv is chosen in the proof.).

Lately we added the proof of 3.6 (and added 3.4B, 3.13) and in some of the

cases (i.e. when d[a] G α, α* > 1 and we are not in Possibility G(G*)) we added

the condition 0& (or Θi).
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3.1 Context. S C ̂ ^(A) for some A — \JS (usually 5 is stationary). For

a G S c[α],d[α] are subsets of α, and there are c'[α],d'[α] defined such that:

Case a: if d[a] G α then cf[a] = c[α], d'[a] = d[ά\.

Case b: if d[a] φ a then c[a] φ a, c[a] = c'[a] Π α, d[α] — d'[α] Π α.

.Adwse to ί/ie reader: At first reading the reader may think of a typical

case: χo « X? A = #(%o)? and elements of 5 are of the form TV Π fl"(χo)j f°r

some N -< (H(χ), G, <*) such that χ0 £ W, all in the original universe VQ. A

typical case for d[a] φ a would be d[a] = α, or d[a] — a Π ωi, and below (in

Definition 3.2) choose one possibility, say (B).

In addition we have g = {gα : α € S) where gα is a function from d[α] to

c[a] and α* is an ordinal > 0.

The set \J S is, for simplicity, transitive, R is a three place relation, (more

exactly a definition of one) written as fRag, and whenever fRag, for some

α G 5 we have: α G α* ΓΊα and /, g are functions from d[a] to c[α]; for notational

simplicity \d[a] G α <ί=> c[o] G αl and (Vα G 5)[d[α] G α] or (Vα G 5)[d[α] φ α];

and d^α],^^] G α (of course d'[α] Π α = d[α], c'[α] Π α = c[α]), and ± α̂ is

absolute (enough to restrict to extension by forcings e.g. by proper forcing).

Generally, saying absolutely or in any generic extension VQ, we may mean for

generic extensions by proper forcing, or any other property preserved by the

iterations to which we want to apply this section.

3.2 Definition. 1) We say (β, S,g) covers (in V) if for χ large enough, for

every x G H(χ)v there is a countable TV X (#(*), G,<*) to which (β,5,g)

and x belong, and TV is (R, 5, g)-good, which means:

α = TV Π (\JS) belongs to 5, (so {d'[α],c'[α]} G TV) and: for every function

/ G TV such that / maps d[α] into c[α], (so d[α] C Dom(/) but not necessarily

Dom(/) C d[α]) for some β G α* Π α, we have ( f \ d [ a ] ) R β g a j the most natural

case is: / a function from d'[a] to c?[a].

2) We say (β, 5, g) fully covers (in V) if: the above holds for every countable

TV -< (H(χ), G, <*) to which (β, 5, g) and x belong and TV Π (\J S) G S and in

addition S is stationary.
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3) We say (R, 5, g) weakly covers if d'[a] — d, c'[a] = c for every a G 5 (so

c, d are constants, for example ω) and for every / G dc for some α, α we have

3. 2 A Remark.

1) Actually, if the function a ι— >• gα is one to one, then we can omit α and write

/βgo where R is defined by /Λg iff (3α 6 S)[g = gα & Vαeαnα /#»&»];

the notation above is just more natural in the applications we have in

mind.

2) Of course, in Definition 3.2, x is not necessary.

3) If V1 C V2 C V3 are universes, (β^S1^1) G V1 weakly covers in F2

and (£2, S2, g2) G V2 weakly covers in V3, IgR^lgR2 < ωγ and Vα(Ξα #1

have the same definition for all ί = 1,2 and α G S^ (which is absolute for

the cases of extension) and are partial orders and S1 is a stationary subset

of 5<«1(US'1) even in V3 then (R,Sl,gl) weakly covers in V3.

4) We can translate an instance of Case a (in 3.1) to an instance of Case b,

by replacing d[a] by α and replacing / G d'αlc[α] by a function f^ where

the function /Iαl is /Uθα\d[αj, for example. This may help to apply e.g. 3.3.

Possibility A, the case a G S => d[a] φ a but has a price: d[a] $. a makes

Definition 3.4 stronger, as the assumption becomes weaker (see clauses

(vii)-f(ix)), though we add the assumption in clause (x) so really there is

no clear order.

3.3 Definition.; We say (R, 5, g) strongly covers if (it is as in 3.1 and) it covers

(in V, see Definition 3.2(1)) and one of the following possibilities holds:

Possibility A: Each Ra is closed (2-place relation on dlαlc[α])ΐ (note that if Ra

is open then R = \Jn<ω Ra,n where each R^n is closed, hence this possibility

applies replacing α* by ωa* , using R'ωθί+n = Ra,n) and: [α G 5 => d[a] φ a] or

α* = 1 or Θ/c for every k < α;, which means^

t It is enough that each {/ : fRaga} is closed.
tt Instead of the forcing notion P we can just demand that this holds

absolutely.
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if

(a) P is a proper forcing notion preserving "(#, 5, g) -covers" and in Vp,

Q is a proper forcing in Vp [or just P, Q are P^, Qi as we get in our

iterations]

(b) in Vp, N -< (#(χ),G,<*)vP is countable, and (Λ, S, g)-good (so in

particular (β, 5, g) G N, a = N Π |J 5 G 5) and Q G N, p G Q Π N

(c) for each I < k we have: /£ G Λf is a Q-name of a member of d lα'c'[α],

(d) Xi < X (Xι large enough e.g. (P,Q) 6 #(χι) but 2*1 < χ), NI ^<

),e,<U is countable, ̂  G TV, {Q,p, fi,S,g,/*} G 7V l5 p G

(e) ft G α Π α * and //ί

then for any ?/ G N Γ\H(χι) there are Λ^, ̂ 2 satisfying (the parallel of) clause

(d), such that y G AΓ2 and: for some 7^ G α, 7^ < /^ (for I < k) we have

Also instead of 0& we can require:

0J. z/in some (e.g. proper) forcing extension, N is ( ,̂ 5, g)-good, Λf Π |J 5 =

α G S, fc < ω, for t < k we have f^Rβ£ga (where βι G αΠα*), (f£n : n < ω)

converge to /; (i.e. f£n G dlαlc[α]? Vx G d[α]3mVn > m[/;>n(x) - /*(χ)])

and (// : n < ω), // G N then for some 7^ < βt,Ίt € α we have

Vn<u; l\i<κ f^n^Λa

Remark:

1) we can specify how //, /^ come from Λ/i, (see the proof of 3.7E) (possibly

in some VQ ', Q (P, 5, g) -preserving). This is close to VI §1 (if η G ωω,

ηn e ωω foΐ n < ω and ηn\n = η \n and x G Dom(JR) then for some Γ,

z#T and η G limΓ, (3°°n)(r7n G limΓ)). The original θ^ is better when

not all ((Pm : ra < ω) : n < ω) work, but some do.

2) So possibility A splits to four cases: [α G S => d[α] ^ 5], α* = 1, /\k 0^

Possibility B: Here we assume d[α] ^ α for α G 5 or α* = 1 or at least 0^ for

every k < ω. Let χ be large enough. For each α G S if (Skolem hull of a in
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(H(χ), G, <* ) J Π U S — α, then player II has an absolute winning strategy (i.e.

an absolute definition of it) which works in any generic extension VQ of V by a

(proper) forcing notion Q G //(χ); during the play, stipulating 6_ι = 0, in the

n'th move player I chooses /g1, . . . ,/£ satisfying ft\d[a] G d'alc[a] (see clause

(b) below) and α#, . . . , <_l5 <,

such that:

(α) for I < n ofy G α Π α*, and α£ < α™"1

(/?) if I < n, a? = a?'1 then ft rftn-i = /Γ* Γ^n-i

(7) f?Ra?ga for l<n (hence α£ G α)

Player //chooses finite 6n, frn_ι C bn C α.

In the end player II wins if:

(a) letting α^ — min{α™ : ί < n < ω} and n(ί) = min{n : α™ = aι} and

ίi = U n<r /^nt6n, we have //Λα£gα
n>n(£)

or

(b) α ̂  (U 5)Π (Skolem hull of α U {ft : i < n < ω}).

Possibility C: Let χ be large enough. For each α G 5 in any forcing extension

of V (of our family) player II has a winning strategy in the following game.

In the n'th move: player I chooses Nn, Hn such that:

(a) Nn is a countable model of ZFC~ (so G Nn is G \ Nn but Nn is not necessarily

transitive), Nn Π (\JS) = α, 5 G ΛΓn, g G Nn, R G Nn (and d'[a] G

Nn, c'[a] G AΓn) and [t < n => A^ C AΓn] and AΓn μ= "(β, 5, g) covers" and

[/G d/[βMα]

(where βα = Vαeαnα* β«)

(b) //n C {(/o, . . . , fn-ι): for some finite d C d;[α], each /^ is a function from

d to c'[a}} and //n G Λfn is not empty.

(c) if (/o, . . . , /n-i) € //n and d C Dom(/0) is finite ί/ien (/0 fd, . . . , /n-ι fd) G

ffn-

(d) if {/o, - - , fn-i) € //n, Dom(/o) C d, d finite C d[α]

tfeen for some {/Q, . . . , /ή_ι) e //n we have Dom(/^) = d, and jt C /^

(e) m < n & {/o, . . . , /n-ι) € //n =» {/o, - - , /m-i) € //^ (see below).
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Player II chooses (/£,..., f^) G Hn Π Nn and lett

/f* = {{/o,. , fn-ι): f°r each £ the functions /g, /™ are compatible^ }

In the end player II wins if: for every ra < ω, (Jn>m /m *s a function which has

domain d[a] and (Un>m/m)^αSα [note: if e.g. {/ : /#αgα} is a Borel set, then

the game is determined and a winning strategy is absolute].

Possibility A*: Each Ra is closed and

0 if αι,α2 G 5, αi G α2, ώen (c'[αι],d'[αι]) = (c'[α2],d'[α2]) and absolutely

for every / G d>2lc'[α2] we have: (/ΓφiD/ϊαxgα! =» (/rd[a2])#a2ga2

and : (Vα G S)(d[α] £ α) or α* = 1 or Θi. Note that in cases A*, £*, C*, for

some (c',d') we have (c^αjjd^α]) = (c1 ,d') for every α G 5 (as 5 is directed).

Possibility B*: We assume

0 if αι,α2 G 5, αi G α2 ίften (c^αij^^oi]) = (c'^],^7^]) and absolutely

for every / G d'^c'[a2} we have (/ΓφiD^gαi =» (/rd[α2])#α2gα2,

and player II has an absolute winning strategy in a game similar to the one in

Possibility B except that only fQ,ά$)bn are chosen. And: (Vα G S)(d[a] φ a)

or α* = 1 or Θi

Possibility C*\ We assume

0 if αι,α2 G 5, αi G α2 then (cf[aι],df[aι\) = (^[α^d7^]) and absolutely

for every / G d>2lc'[α2] we have (/ΓφiDΛαxgα! =» (/Γφ2])Λαagαa,

and player II has an absolute winning strategy in a game similar to the one in

Possibility C

(a) as before

(b)* Hn C {/ : for some finite d C d'[α], /o is a function from d to c'[α]}

(c)* if / G ίfn, d C Dom(/) is finite ίften f\de Hn

(d)* if / G ίίn, d C Dom(/), d C d'[α] ώen for some f e Hn, we have

Dom(/') = d and / C f

(e)* ffn C

We could give the second player more influence, see proof of 3.6.
We could add i < m < n => /™ C f f , no real difference.
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3. 3 A Remark. 1) In Possibility B, we can restrict the forcing to a suitable

family.

2) Below in the cases d[a] φ a we use (see Possibility C) d'[a] — c'[a] = \JS.

This is essentially a notational change.

3) In Possibility C* we can weaken <8>ι to the weaker version

(S>j~ iffoτ some forcing notion P, in Vp , (R, 5, g) still covers, N is a countable

elementary submodel of (H(χ)v , G) to which (jR, 5,g) belongs, and so

is a model of ZFC~, and α d= N Π (\JS) G S and if αi G 5 Π TV and

/ € jy π (dlα)φ]) then for some α2, αi G α2 G S Π TV and /rd[α2]βα2gα2

then fRaga

3.3B Observation. 1) Inf Definition 3.3

(a) (Vα G 5)[d[o] ^ α] & Possibility B* implies Possibility B.

(b) (Vα G S)[d[a] φ a] & Possibility C* implies Possibility C.

(c) (Vα G S)[d[a] φ a] & Possibility A implies Possibility B.

(d) Possibility A* implies Possibility B*

2) If Possibilities A* or B* or C* of Definition 3.3 hold, (or just (g) from there),

Q is a proper forcing and Ihg "for every / G d/lαlc'[α], for every αi G S Π N for

some α2 satisfying a\ G α2 G 5 Π TV we have (/td[α2])#α2gα2"
 and Q G AT ^

(#(χ), G, <* ), TV Π (U 5) G 5, N countable and g G Q is (N, Q)-generic then

q\\- UN[GQ] is (Λ,S,g)-good".

3) A sufficient condition for 0/e of Definition 3.3 is^

0^ if (a),(b),(c), (d), (e) are as in 0^ of Definition 3.3, then for some p' G GI,

Ίi ^ (βt + 1) n α an(i Borel set (even ΣI set over \J S i.e. quantifying over

ω(U5), with R, 5, g as parameters will do), At e N (for t < k) we have

(α) p1 Ihg " G Λ for £ < /c"

Proof. (1) Easy, For clause (a) note that:

t We can replace (Vα G S)[d(a) φ α] by α* = 1, and/or add X G

{A,B,C} & (Vα G S)[d(a) £ α] implies Possibility X & Possibility X*. Note

that for possibility C and C*, w.l.o.g. α* = 1.

tt Many times this is easy.
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(i) increasing bn may only help player II as it just strengthen the restrictions

on player II,

(ii) having more ff may only help player II as it make the satisfaction of

clause (b) of possibility B (or B*) more probable. So for player II, having

a winning strategy in the two games are equivalent (but not so for the

'player I has no winning strategy; see hopefully in [Sh:311]). Similarly for

clause (b).

(c) We should give a winning strategy for player II. Let α — {xi : i < ω}

and his strategy is to choose bn — {x# : i < n}.

2), 3) Left to the reader. D3.3β

3.4 Definition. We say that a forcing notion Q is (R, 5, g)-preserving for

possibility X if (where X G {A,B,C,A*,B*,C*}, for Possibilities C, C* (in

Def 3.3) we can omit (iv)-(xi) and conclusion (a) as they hold vacuously; if we

omit "for possibility X" we mean X = C):

(*) Assume (i) χ\ is large enough, χ > 2Xl

(ii) TV -< (JEΓ(χ), G, <*), N countable, N Π (|J 5) - a G S

and(g,S,g , X l )GΛΓ

(in) N is (R, S, g)- good (see Definition 3.2(1)) and p G Q Π N.

(iv) In Possibilities A, B we have k < ω and for i < k we have ft e N is

a Q-name of a function, Ihg "Dom(/£) = d'[α]"; for Possibilities A*,

B* the situation is similar but k — 1. For Possibilities C, C* we can

let k = 0.

(v) if I < k, then // is a function and Dom(//) = d[a]

(vi) for n < ω we have: p,pn G Q Π TV, p < pn < pn+ι

(vii) if d[a] G α then (pn : n < ω) G N and (// : I < k) e N

(viii) for each x G Dom(//) and t < fc, for every n large enough

Pn \\-Q afe(x) - //(*)"

(ix) for t < k we have f^Rβfga where /% € α ΓΊ α*.

(x) if d[a] $. α, X G N a dense open subset of Q then for some n,pn^X

(xi) if d[α] G α, then for some Λ/i a countable elementary submodel of

(if (%ι), G, <*J which belong to N and include
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d[α] U φ] U {d[α], φ]} U {Q, S, g} U {f£ : £ < k} we have*:

/\Pn £ A/i, \/pn £ 2" for any J G Λ/i, a dense subset of Q.
n n

Then there is a g, p < q G Q such that: g is (AT, Q)-generic and

(a) q \\-Q "(/*Γd[α])Ay£gα for some 7^, 7^ < βi&Ίt G α n α*" for each £ < fc

(b) g l h Q "7V[GQ]is(Λ,5,g)-good"

3.4A Claim. 1) If α* = 1 then "Q is (Λ, 5, g)-preserving" (see 3.4 above) is

equivalent to : if N -< ( H ( χ ) , G, <*), N countable, N is (R, 5, g)-good, Q G N,

p £ N Γ\Q then for some (TV, Q)-generic g G Q, q > p we have g Ih "-/V[Gg] is

(Λ,5,g)-good"t.

2) If 0 (of possibilities A*, B*, C* of Definition 3.3) hold, Q proper and α* - 1

ί/ien: "Q is (f£, 5, g)-preserving" is equivalent to : for every / G d ^cf[a] from

VQ for some α2 we have α G α2 G 5, (/ίd[α2])jRα2gα2

3) If (β, 5, g) is as in Possibility A* (of Definition 3.3) and (Vα G 5)([d[α] G α])

and ®+ below holds then: for any proper forcing notion Q, if !(-Q "(Λ, 5, g)

covers" ί/ien Q is (-R, 5, g)-preserving for possibility A* where

(g)+ Assume^ we have a countable N -< ( H ( χ ) , G, <*) such that (Λ, 5, g) G N,

αi G α2 Π 5, α2 = JV Π (\JS) G 5, (φι],d[αι]) = (φ2],d[α2]) and

{/,{/n : n < α;)} G AT and /βαgα2, and {/,/n : n < ω} C ^Iφx],

/n#anga! and (Vx G d[α])(V*n)(/n(x) = /(x)) and α, αn G α* Π αi. Then

for some n < ω and finite d C d[αι] we have

* We may add a\ C JVi

JVi Π (J 5 - αi and

(φι],d[αι]) = (φ],d[α])

and similarly add in Θjt of Definition 3.2. Then in the proof of 3.5, 3.6 change

somewhat (as in the proof of 3.4A), using some absoluteness for xRga

t This gives the results of VI §3.

ΐ ΐ We can add A/i G AT, NI -< JV, A/i Π (U 5) = aι and even more in this

direction.
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(*) iff € d^c[a2]9 f'Rangaι and f'\d = fn\d then f'Raga2

(we can look for /' G F, or in 7Vι[Gg] for every GQ C Q generic over V

where Q G NI is proper, Nι[G] Π V — N\, N[G] Π V — TV, the second is more

restrictive)

4) If Q is (R, 5, g)-preserving for possibility X for some X then Q is (fi, 5, g)-

preserving.

Proof. 1) Left to the reader.

2) Remember that (by <g> of case A*, B*) there is a pair (c',dr) such that:

α G S => (c'[α],<f [α]) = (c'X) Also note

αi G 5 & αi G α2 G 5 & α2 = TV Π |J 5 & S G TV ^< (if (χ), G) ̂ > αx C α2.

First we assume "Q is (R, 5, g)-preserving" and let p G Q, α G 5 and / be

such that p \\-Q "/ G d'Wcf[a]n i.e. p \\-Q "/ G d'c'\ Take AT x (if(χ), G, <*)

such that α, (β, 5, g), p, f G TV, and TV is (̂ , 5, g)-good. So by the assumption,

for some (TV, Q)-generic q we have p < q G Q and <? Ihg 'W[Gg] is (jR,5,g)-

good". Let α2 be MΊdJS), so ς" Ih /fd[α2] G d^c[a2] satisfies /rd[a2]^a2ga2",

as required.

Second, to prove => i.e. the "if" direction, assume that in V® for every

/ G d d from V® for some a\ we have a\ G 5 and f\d[aι]Raιgaι. This means:

for every GQ C Q generic over V the statement above holds. Now let, in V,

N -< (ίf(χ),G,<*) be (£, 5,g)-good and assume q G Q is (AT, Q)-generic. Let

<? € GQ C Q, GQ generic over V, so it suffices to prove V[Gg] Ih "^[Gg] is

(Λ, 5, g)-good". So let α2 - 7Vn(U 5), and let / G N[GQ], f G '̂̂ ^[02] - d'c'.

So for some αi G 5 we have f\d[aι]Raιgaι, but N[GQ] -< (ίf(χ)[Gg], G) hence

w.l.o.g. αi G A^[Gg] Π 5 = N Π S. Now apply (g) of Definition 3.3 possibility A*

(or B*, or C*), which we are assuming, to deduce /fd[α2]#α2gα2. As this holds

for every such / really V[GQ] N N[GQ] is (Λ, S,g)-good.

3) Let JV, JVi, /o, /Jo? P = (Pn ' n < ω) be as in Definition 3.4 for possibility A*.

Let α = N Π ((J 5). See in particular clause (xi) there. We can find M2 -< 7V2 -X

(if (χi), 6, <*J, {TVi, (pn : n < ω), /0} G M2 G A^2 G N and ΛΓ2n|J 5 - α2 G 5,
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M<2 Π (\bigcupS) = 62 and (c[62],d[&2]) = (φ2],d[α2J) = (φ],d[α]). Also we

can find (pn>m : n,m < ω), (fn : n < ω) such that: pn < pn>m < pn,m+ι,

pn?o is (M2,Q)-generic, and pn?o If- "/o^αng62" f°r some αn € 62 Π α* and

(Pn,m : ra < ω) is a generic sequence for ΛΓ2 (i.e. if J C Q is dense, I e N2 then

(3m)(3r G Jn ΛΓ2)(r < pn,m)), /n G dWφ], and

Vx G d[α]Vn < u;V*m(pn,m Ih /0(x) - /„(*)).

W.l.o.g. (pn,m : n,m < ω}, (αn : n < ω} and ( f n ' n< ω) belongs to AT.

Clearly fnRan^b2- (Here we used {/ : fRangb2} is closed and (pn,m m < ω)

is generic enough; Borel suffices. Why? Let Gn = {p G QΠ AΓ2 : (Ξm)p < pn,m}

be a subset of Q Π AΓ2 generic over AΓ2, so AΓ2[Gn] N "/o[Gn]βαngαι" but

/n = /θ[Gn].)

Now apply (g)+ with 62? ^? /o 5 /^o, (/n : ̂  < ^)» {<^n : ̂  < α;) here standing

for αi, α2, /, α, {/n : n < α;), (αn : n < ω) there, and get n and dn as there.

Let m be such that pn>m force a value to /ofd n, so it is fn\dn. Let q G Q be

(AT, Q)-generic such that pn?m < q. Now suppose # G GQ C Q, GQ generic over

V\ by the conclusion (*) of (8>+ (i.e. the choice of n, dn) we get /0[GQ]jR00gα.

We still have to prove UN[GQ] is (β, 5, g)-good". But this holds by the proof

of 3.4(2) above.

4) Easy. E\3ΛA

3.4B Claim. 1) Assume

(a) (β, 5,g) is as in 3.1, (Vα G S)(d[a] G α),

(b) (β, 5, g) covers,

(c) we have

θf Assume we have a countable N -< (ίf(χ), G, <*) such that (β, 5,g) G N,

αi G α2 Π 5, α2 = A'' Π (\JS) G 5, (φι],d[αι]) = (φ2],cί[α2]) and

{/,(/n : n < ω)} G TV and /βαgα2, and {/,/n : n < α;} C ^Iφ^,

/nβατιgαι and Vx G d[αι](V*n)(/n(x) = f(x)) and α, αn G α* Π αi. Then

for some n < ω and finite d C d[αχ] we have

(*) <//' € dtα2]c[α2], /'J?Qngoi and /'fd = fn\d then /'βQgα2,
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moreover

(c)+ for every proper forcing P preserving "(Λ, 5, g)-covers" we have 0+ in Vp.

Then in the definition of "(Λ, 5,g) strongly covers for possibility X" X = A*,

B* we can omit Θi of Definition 3.2.

2) Assume (a), (b) as in (1) above and

(c) for each k < ω we have

Θfc~+ as in Φ+ but in the conclusion we replace "some n" by "for every n

large enough"

or at least

Θ^ Assume we have a countable N -< (-ff(χ), G, <*) such that (R, S, g) G

AT, αi G α2 Π 5, α2 - Nn (|J5) G S and (φι],d[αι]) = (φ2],d[α2])

and {ft : I < k} U {(f* : n < ω) : ί < k} G N and Λflα Wgα ι, and

{/,,/* : £ < fc,n < ω} C Φilφi] f^RanWgaι and α(f), αn(*) G

αi ΓΊ α*. T/ien for some n < ω and finite d C d[a\] we have

(*) ite<k,fίe d^c[aι}, flRan(e)Saι and /^d = ft\d then f,Ra^.

(c); Moreover (c) is preserved by proper forcing preserving "(Λ,5,g)- covers".

Then in the definition of "(Λ, 5, g) strongly cover for possibility X", when

Vα G 5 (c[α],d[α]) = (c,d) X = A, B we can omit (Vfc)θjfe.

Proo/. Like the proof of 3.4A(3). D3.4B

3.5 Claim. 1) If (R, 5,g) covers in V and Q is an (β, 5, g)-preserving forcing

notion ί/ien in V^, (Λ, 5, g) still covers.

2) Assume (Λ, 5, g) covers. The property "(Λ, 5, g)-preserving for possibility

X" is preserved by composition (of forcing notions).

Proof. 1) Just read the definitions.

2) Each part has some versions, according to whether in Definition 3.4 we

choose Possibility A, A*, B, B* or Possibility C, C* and whether d[α] G α or

not.

Let Q = Qo * Qι; let χι, χ, AT, AΓ1? α, fc, /£, ft, /; (for £ < fc), p, pn (n < ω)

be as in Definition 3.4. Let p = (q^.q1) and pt = (ς$,ςfj). By condition (vi) of
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Definition 3.4, for each n < m < ω we have q^ \\-QQ "Qi |= ql < q\ < g^",

hence without loss of generality:

(*)ι Il-Qo "Qι ϊql<ql

n<ql

mϊoιn<m< ω\

(*)2 for every x G d[a] for every n < ω large enough, (0,<j£) forces f t ( x ) to be

equal to some (specific) Qo-narne, for each i < k.

[Why? By clause (x) or (xi) of Definition 3.4.]

Now we define /^, a Qo-riame of a member of dlαlc[α] , such that Ihg0 " for

each x G d[α], for every n large enough q\ Ihg1

 ί[f'i(x) = /^(x)]'". Easily:

d[α] G α =ϊ f't G TV.

By Definition 3.4 (and the assumption) there is go G Qo which is

(TV, Qo) — generic, is above g° (in Q0) and forces TV[Gg0] to be (Λ, 5,g)-good

and for some 7^ < 7^, 7^ G AT we have go "~Q0 "/^^'βo f°r ^ < fc"

Let GO C Qo be generic over V such that go G GQ. We want to apply

Definition 3.4 with N[GQ], ql[G0], (?J[ί?o] : t < ω), {//[G0] : ^ < fc>, (/J[G0] :

I < k), (^ : I < k), Qι[Go] (and sometimes 7Vι[G0]) here standing for AT, p,

( p t \ I < ω), (ft : t < fc), {/; : £ <k), (βe:ί < fc), Q there (and sometimes

NI) (and same (β,5,g)).

So we have to check the assumptions of Definition 3.4; now we check all

clauses of Definition 3.4.

clause (i): clear by the "old" (i).

clause (ii): holds as g0 € G0 is (TV, Q0)-generic so TV[G0] Π (U S) = N Π (|J S)

and the "old" (ii).

clause (Hi): holds by the choice of g0 € G0 that is g0 "~ "TV[G0] is (Λ, 5,g)-

good" by the choice of go and clause (b) in the conclusion in Definition 3.4.

clause (iv): clear by the "old" (iv).

clause (v): If x G d[α], then (x G A/" or G TVi and) for some i and Qo-name

r G N or G ATX we have lhQo "^g] lh?1 "/^(x) = r e c[α]"j" (as the set of

(ΠhΓi) ^ Qo x Qi such that

"[n It-Q. B//(a:)=Γ"]"
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for some Q0-name τ, is dense open subset of (<3o, Qi) so some (q®, q\) is in it,

and there is such τ so w.l.o.g. τ G N or G 7Vι). So /i[Go](α:) = l[Go] € φ]

clause (vi): by (*)ι above (in our proof) this holds.

clause (mi): Check (see (*)2)

clause (vίίi): This is by the choice of f £ ( x ) and (q\ : I <ω).

clause (ix): by the choice of QQ (and as QQ G G0) and the choice of 7^ (for

l<k).

clause (x): by the "old" clause (x) and as in the proof of clause (v) above. In

details, if N[G0] N "J C Qι[GQ] is dense open" so I G N[G0] then for some

Zf G N we have Ihg0 "T7 is a dense open subset of Qi" and Z = T'[Go]; let

J = {(ro.Γi) € Qo * Qi : IHQo "n e J"'},

clearly J7 G NI is a dense open subset of Qo * Qi hence for every large enough

*,

(rf,?/) e J hence ς£[G0] € ?;[G0] - J,

hence we finish.

clause (xi): Use αi, 7Vι[G0] Note that we do not require 7Vι[G0] Γ\V = NI, still

Nι[GQ] X A^[G0], A^ifGo] G A^[Go] and {^[G0] : t < ω) is as required there.

So really we can apply 3.4 and get qι G Qι[G0] which is (A/"[G0],Qι[Go])-

generic, and Qι[G0] N V[Go] < ς[ι" and (7^ : i < fc), 7^ < 7^ such that

^i "~Qι[G0] "ftRiΛa" - As G0 was any generic subset of Qo to which g0 belongs,

for some Q0-name qι we have ς0 Ί~Q0 "9ι is as above". Now (ςf0, #1), (7^ : £ < k)

are as required. If we do have the demands on a\ in Definition 3.4, clause (xi)

we should replace NI ny another model in the intermediate stage as done in

the proof of 3.4A (but we use absoluteness of xRga). Ds.5

3.6 Theorem. 1) Suppose X G {A,B,C,A*,£*,C*} and in V we have

(R, 5, g) strongly covers, (Pi,Qj : i < a,j < α) is a CS iteration of proper,

(Λ, 5, g)-preserving for possibility X forcing notions, then Pa is a proper,

(β, 5, g)-preserving for possibility X forcing notion.
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2) This is true also for more general iterations, as in XV when |α*| < NI (in

fact all cases in VI 0.1 apply) ' .

Proof. 1) We prove by induction on ζ < α, that: for every ξ < ζ, Pζ/Pξ is

(5, 5, g)-preserving for possibility X (in Vp*), moreover in Definition 3.4 we

can get Dom(ς) = (ζ \ ξ) Π N. For ζ zero, there is nothing to prove, for ζ

successor - use 3.5(2), so let ζ be limit, ξ < ζ. Let Gpξ C Pξ be generic over

V and χ,-ΛΓ,p, k,fι,fϊ,βι (for I < fc), and possibly pn, χι,Nι be as in (*) of

Definition 3.4 (with Pζ/Pξ,V[GP(i} here standing for <2, V there); for X = C,

C* we have k = 0 so /^, /|, βι disappear and for cases d[a] φ a we have no

NI and for X = A*, B* we have k = 1. Let G0 = {p G PC/GP* : P € #ι when

well defined and p e N otherwise and for some n, p < pn} (used in the proof

of possibility B, d[a] G α).) We can choose Cn>Co = £, Cn < (n+i G A/" Π ζ and

sup(JV Π C) = Un<u; Cn Let go G Gpξ force all this (so we can work in V, so we

have GO).

The proofs are built after the proofs of preservation of properness and the

proofs in VI §1, VI §3 (particularly the proof of Possibilities A, d[a] G α).

The case when cf(ζ) > NO is elaborated when possibility B, d[a] G α, is

considered (note that the arguments there apply to all Possibilities).

Possibility C: Let (ft:ί< ω) list the Pc-names / G d'^d[d\ satisfying / G N.

Let (rn : n < ω) list the P^-names of ordinals which belong to N. We choose

by induction on n, <?n, fn,Hn (f™ : ( < n) such that:

(a) qn G Pζn, Dom(gn) \ ξ = AT n Cn, ζ?n+ι ΓCn = 9n (of course <?0 is given)

(b) qn is (JV[Gpξ],PCn)-generic

(c) gn Ih "N[GPJ is (Λ,5,g)-good".

I But in the applications presented here we "forget" this. Of course if we

consider forcing notions with an additional order <pr on them, and the cor-

responding iteration (see XV), then "pure (0,2)-decidability" has to be added

for appropriate θ (mainly d[a] G TV, θ = HO).
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(d) pn is a P^-name of a member of Pζ Π N such that

(e) Jΐn is a P^-name, Hn = {(/o, ,/n-ι) d <Ξ d[α] is finite and

?n^Pζ/Gpu " < / o r d , . . . , / n - i r d > ^ ( / 0 , . - . , / n ) M }

(f) /£ is a P^-name such that

^n "~pcn "(/F : -̂  < n) ^ ^?n and for every ra < n we have

Pn+llGpJ JKp/Ptn «-- Λ // 2 /Γ"

(We can demand that gn forces that pn+ι [GpCτι ] forces ί < n => /^ [Gpζτι ] C

/£, minor difference.)

(g) gn Ih "pn+i forces a value to rn".

Now there is no problem to carry out the definition but still we have

freedom to choose (/£ : ί < n). For this we use the winning strategy from

Possibility C of Definition 3.3; choosing there the nth move of player I as:

ίfn[Gpζrι] = {{#05 >#n-ι) : f°r some finite d C d[a] with have:

gt € dc[a] for I < n and

F ''{/ofd, - - ,/n-lΓd) ?έ (50, - ,fln-l>"}

(so the nth move is defined in Vp^\ we can work in yLevy(^0,(2 PO£ )+)^ ]̂ ow

of course while playing, the universe changes but as the winning strategy is

absolute there is no problem.

Possibility (7 By 3.3B(2) it is enough to show that for every Pς-name /0 of

a function from d'[o\ to c'[α] for some b e 5, ((c'[&],<f[&]) = (c7[α],d!'[α])) and

/o^bgb This is proved as in the proof of Possibility C, dealing only with /0

(and using Possibility C* of Definition 3.3 of course.)
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Possibility A, d[a\ φ a: Let {TJ : j < ω} list the P^-names of ordinals which

belong to N. We shall choose by induction on j < ω, rij < ω such that :

(A) rij < Πj+i < ω

(B) for some sequence (TJJ : ί < j) G ΛΓ, with τ^t a P^-name we have:

(β) for I < j we have pn. \[&, 0+ι) lf-pC£+1 "r

(c) if j = i + M<ithenih P ζ w

 cκrκ>,o+ι)<P
(D) if j = i + 1 then lhPζ "pnί ί[Ci, C) < P*, ί[C<, 0"

[Why can we carry the induction? It is enough to prove for each j that,

given (rii : ί < j) as required, the set of candidates for p G Pζ satisfying the

requirements on pnj is dense which is easy by clause (x) of (*) of Definition

3.4.]

Let {fj : j < ω} list the Pζ-names of members of d [α'c7[α] which belong to

N (for ί < k we let f j be as given). Note also that we can replace (pn : n < ω)

by (pnj ' j<ω).

Hence without loss of generality we have r^j G N for j < i < ω, T^J a P .̂-

name such that pι\[ζe,ζ) lhpς / "τ£ = r^\ P t \ [ ζ j , ζ j + ι ) lhPc,-+1 "Π,j+ι = !*,/'•

Let h(j,x) < ω be such that Xh(jίX) — fj(%) We can now define for n < ω,

j < ω, fnj a P^-name of a function from d[a] to c[α]. Let fnj(χ) be τ/ι(j,χ),n

if Λ(j,x) > n and τh(^x}M^x} if /ι(j,x) < n so /^ = /ί for j < fc.

We choose by induction on n, ςfn, fcn, a% (for £ < fc + n) such that:

(a) qn <E PCτι, Dom(gn) \ ξ = N n Cn, 3Wi ΓCn = 9n, (^o is given).

(b) <?n is (7V,PCn)-generic

(c) qn lhpCrι "AΓ[GpcJ is (£,S,g)-good"

(d) kn is a Pζ^/Gp^-name of a natural number, kn < kn+ι (for Possibility

(A), with which we are dealing) kn — n + 1 is O.K).

(e) PfcoΓCo < 9o (in PCo).

(0 9nrCnlf-p C n ^*n+ιr[Cn,Cn+l)<ςn+ir[Cn,Cn+l](inPC n + 1/Pc»Γ

(g) for £ < /c 4- n, α^ is a Pζn-name of an ordinal in α Π α*, α^+1 < α™,
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(h) for i < k 4- n we have qn \^Pζn "/n,^α?gα"

The induction step is by the induction hypothesis (and Definition of

"(β, 5, g)-preserving" (see Definition 3.4)). In the end let q = \Jn<ω qn

Now why q is (N, Pζ) -generic? Clearly q G Pζ (by condition (a)); let q G Gζ C

Pζ be generic over V, Gζ C Gζ, and Gζn = Gζ Π Pζn. Now for each Pζ-name

r of an ordinal, for some j < ω, r — TJ necessarily &(*) = kj[Gpζ. ] > j (see

condition (d)) hence: QJ forces that Tj,j[Gζj] £ N. But for i > j and ji G [j,ω)

we have ft Γ[&,CM-ι) < Pji \[ζι,ζι+ι) hence by (e)+(f), Pj\[ζt,ζι+ι] < #+ι» so

together ft Γ[0» Ui<w Ci) < Q so ft t[Cj, C) < 95 hence also ςι forces TJ = r^ j. By

the last two sentences <? lhpζ

 uTj[Gpζ] G TVπOrd" so # is really (JV, Pζ)-generic.

Now for each I the sequence (α^ [Gζ] : ί < n < ω) is non increasing (see con-

dition (g)) hence eventually constant; say for n € [n^ώ) has value α|. Now if

x G d[α], j < α; then for n > ft(j,x) clearly fcn > h(j,x) so /j(x) = /J>n(x),

so for every finite 6 C d[α], {(/j,nf^)[GpCτι] : n < α;} is eventually constant,

equal to ( f j \ b ) [ G ζ } . So for n large enough, ( f j \ b ) [ G P ζ ] = (/*n^)[GPζJ and

So in F[GC], [/j][Gζ] satisfies

<g> for every finite b C d[α] for some /', /^[G] f6 = / ' f fc and /;βαjgα.

But we are in Possibility A of Definition 3.3, so Ra* is closed, so fjRa*&a This

finishes the proof that q Ih "A/^G^] is (β, 5, g)-good" . The last point is noting

< α£?0 = βι fof ^ < fc, so we finish.

Possibility B, d[a] £ a: The proof is similar to the previous case, only the win-

ning strategy in the game is described in Definition 3.3 (Possibility B) to make

the kn large enough such that the part of the proof concerning fι[Gζ}Ra^ga

works.

Possibility A* d[a] £ a: By 3.2B(1), the next case implies it.

Possibility B* , d[a] $. a : By 3.3B(2), we have to take care of /o only, and this

is done as in Possibility B, d[a] $ α, not increasing the set of fis we consider.
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Possibility B, d[a] G a : We shall reason as in the proof of Possibility A, d[a] $. α,

for NI (which vary).

If cf (ζ) > NO then the set J — {p G Pζ : for some ζf < C, and P^-names

gι we have p Ih "ft — gι for i < fe"} is a dense subset of Pζ and belongs

to NI. So for some n, pn G T, by renaming without loss of generality p G T;

w.l.o.g. ζ' < (Ί. We can easily find (qn : n < ω), (p^ : n < α;) such that

<Zn+lKn = (/n, <7n € Pζn, <?n IH "N[GPJ IS (£, 5, g)-gOθd", Ql Ih "//A^fo"

for some 7^ G α, 7^ < A and gn lhPζn "p'n G PζnN, p'n\ζn G GP^ and

m < n => p^ < p^", and pό = p, and for every Pζ-name of ordinal r G N for

some n, ςn lhpζτι [p^ lhpς "τ — aτ",ar G AT] where ar is a P^-name of an

ordinal. Now qω = \J qn is (TV, P^)-generic, and p < qω] so ςfω is as required,
n<ω

so in the case cf(£) > H0 we are done^.

So we are left with the case cf(C) = αo We have N* = 1 or /\ 0^; as the
A:

later case is harder we speak on it. This time we use the full version of clause

(xi) of Definition 3.4. Let {rj : j < ω] list the P^-names of ordinals from N

and {fj : j < ω} list the P^-names of functions / G dtα'c[α] which belong to N

with fj = fj for j < k and {xj : j < ω} list d[a]. We now define by induction

on n < ω, Mn, G
n, gn, p^, 6n, q^(i < k + n) (note that go and also G° are

already given):

(a) qn G PCn, Dom(gn) \ ξ = N Π Cn \ C, 9n+ι ίCn = 4n (ςfo is given).

(b) qn is (AΓ,PCτι)-generic

(c) gnlhp ζ τ ι <W[GpcJis(£,S,g)-good"

(d) Mn, G
n, p^, 6n, α^ (for £ < fc + n) are P^-names

(e) qn ll~pζτι "bn is a finite subset of d[α], Mn a countable elementary

submodel of (^(χι)[Gpζrι], G, <*J which belongs to N[GPζn}^ and

^ This applies to all possibilities.
t And if we adopt the demand on a\ in clause (xi) of Definition 3.4, we

should add Mn Π ((J 5) G 5
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(f) qn lhpCτι "Gn C Pζ/Gζn ΓΊ Mn[GpJ is generic over Afn[G?PζJ,

pn[QPζn] G Gn so p'n G Pζn n TV (i.e. j/n[GpCn] G PCτι Π N) and

KKn € GpCrι and /,- G Mn, /, [G"]#αngα»

(g) ίn+i II- Vn < K+i, /;[Gn] ff>n C /J [G
Λ+1] \bn for j < ft + n".

(h) ςn Ih up'n+ι[Gpζn] forces a value to τ'n (in Pc/GpCn)" and to /,- f6n for

j < k + n.

There is no problem to carry the definition using f\k 0^. Now we have some

freedom: choosing the bn. So actually this is a play of the game, where the

choices made above are fixing the moves of player I (with some extras). It will

suffice to have player II winning, which is O.K. (so less than "I wins the game"

is used).

In the end we let qω = \J qn and continue as in Possibility A, d[a] φ a.
n<ω

Possibility 5*, d[a] G α: Combine the proofs for possibility B* when d[a] φ a

(i.e. use 3.3B(2)) but Mn = NI and the proof of possibility B when d[a] G α.

2) Left to the reader D3.6

3.7 Application. Open dense subsets.

3.7A. Context and Definition. Let (η% : t < ω) enumerate ω>ω such that

^m ίn £ {nl '- i ^ m}? let fRnd mean

f,g : ω>ω -> ω>ω and η G ω>ω \ {η% : t < n} implies that there is v such

that Ύ]<v< v* j(v) < η~g(η).

Note that if fRng and g1 : ω>ω -> ω>ω and (Vη)(g(η) < g'(η)) then fRng'.

Let, for some subuniverse V7, S C 5<^1(ίί(Nι)v' ), and for α G 5, gα G \JS

be such that (V/)(/ G α & / is a function from ω>ω to ω>ω ^ Vn /#nβα)

Clearly such g = (gα : α G 5) G V exists.

Let Λ = Vn<u; ^n» and let ^* be the familY of functions from ω>ω to u;>α;.

3.7B Claim. 1) (Λ, 5, g) covers zjffS is stationary and
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2) If (β, 5, g) covers then it strongly covers (for possibility A*) and

(V/€ ω

3) If N -< (ff (χ), 6, <* ) is countable, (β, 5, g) covers and N Π (|J 5) = α G 5

then N is (β, 5, g)-good.

4) Each Rn and R — \Jm<ω Rm are transitive.

Proof. Straightforward. E.g.

(2) First let us show that 0f of 3.4B(1) hold. So suppose that N, 01, α2, /,

( f n ' - n < ω) and α, αn are as assumptions of θί~. For n < ω we define

d°n = {ηϊ:Kn and (Vm <

4 = 4 U {77; : £ < an}.

Note that

(*)ι d^Cd^C. 4 are finite subsets of <ωω,

(*)2 each dj, (ί < 3) is closed under initial segments,

(*)3 (Vi/ 6 ω>

ω)(V*n)(ι/ e 4).

Using (*)s one easily constructs a function /* G F* Π A/" such that

(*)4 (Vfc < ω)(τ,jE ^ d°n =s> /nΛfc/*)

(note that the sequence (d^ : n < ω) is in ]V). Then for some β < ω we have

and

Take n such that

(*)δ (Vm</?)(^€

and put cί = {z/ : (3τy

Suppose that /' G F* is such that f'Rangaι and / 7 fd = fn\d. We are

going to show that fnRa^a2' To this end suppose that t < a and consider the

following three cases.
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Case l\ηϊi (%

Then ηl φ d° and hence (by (*)5) i > β. Since gαι#/3gα2

 we find v £ ω>ω such

that

ηΐ < v < ^gcnH < f?ΓgαaW?)

It follows from (*)2 that v ^ d^, so i/ = 77^ for some k > an. Since f'Rangai

we find ry such that

r

as required.

Case 2: ry; G

Since 77^ ^ d^ we know ί > β. As /*-R/3ga2>
 we fin<i fc such that

Necessarily r?£ ^ cί̂  and therefore fnRkf*- Consequently we find v such that

Plainly v G d (as 77^ G cZ^) and therefore /n(^) = /'Mϊ so we get what is

required.

Case 3: η^ ed^

Since fRaga2 we find i/ such that

ηl < v < z/ VM < ^Γgα2(^*)

As 77! G d^ we know that /n(^) = /(^) so we conclude

This finishes verifying the clause θί". Now we may apply 3.4B(1) and easily

check that (Λ, 5, g) strongly cover for possibility A* (i.e. this claim gives θi of

Definition 3.3).

The other parts should be clear. ΠS.TB
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3.7C Claim. Suppose in V, (R, 5, g) covers, Q is a proper forcing notion, then:

Q is (#, 5, g)-preserving for possibility A* iff

(so also \\-Q "(R, 5, g) covers" is equivalent to them).

Proof. The "only if part is straightforward.

The converse implication follows from 3.4A(3) (note that the demand <8>+

was proved in the proof of 3.7B(2)). ΠB.TC

3.7D Claim. If (Λ, S,g) covers then "proper + (Λ, 5, g) - preserving" is pre-

served by composition, and more generally by CS iteration.

3.7E Claim. 1) Suppose (Λ, 5, g) covers, ίften for every dense open A C ω>ω

there is a dense open β C ω>ω, B e\jS and £ C A.

2) If Fv is the family of functions from ω>ω to ω>ω and F C Fv is such that

Vg3f [gRf] and 5 C S<^l(H(χι)) is stationary then we can find g = (gα : a G

S), gα G F such that (Λ,5,g) covers.

Proof. 1) For a dense open set A C ω>u; define fΛ^Fby

/A(n) is such that ry Λ /Λ(T/) ^ ^4

Let n<ω, g£\JSbe such that fA^nd and define

£ = {77 G ω>ω : for some z/ G ω>ω \ {77^ : t < n} we have ^g(z') < r^},

Clearly B is open dense, B G \J 5, and B C A.

2) Straightforward. Da.rβ

3.7F Remark. 1) In 3.7A we could have weakened fRng to: η $ {η$ :

£ < n} implies that for some ϊ/,ι/ < ι/ A /(ι/) < η" g(η), call it βJJ' (and

RW,RW,(S,RW,%) are defined accordingly). So we can demand () ^ Rang(#).

Then 3.7 B-E holds for this version too. (For 3.7B(2) second clause: for every
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/ G ωω let /' : ">ω -* ω>ω be such that f((n}) = (n,n + 1, . . . ,n + /(n)>,

and /'({}) - /'({O}). So there are g' G \JS and n such that /'#n#'. Let

<j(n) - min{£g(ι/ VM) : i/ VM < (n) Λ/'«n»}; easily /* <* g G (JS-)

2) Assume Λ is as in 3.7A and 5, g as in 3.1. Then also the inverse of 3.7E(1)

holds, see 3.7H.

3.7H Claim. Suppose (fl.SSg1), (5™,S2,g2) is as in 3.7A for the same V

(for Rw defined in 3.7F) and S1, 52 C 5<κ0(Hι)y/ are stationary even in V,

then: (R,Sl,gl) covers

ifffoτ every dense open A C ω>ω there is a dense open B C u;>ω such that

covers.

Proof, first => second: this is 3.7E(1).

second =Φ ί/wrrf:

Let /(G V) be a function from ω>ω to w>α;; we define A/ = {p : p G ω>ω

and (ΞZ/XZ/"/^) < p)}. Clearly A/ G V is a dense open subset of ω>ω. So by

the assumption there is a dense open B C ω>α; which belongs to U^2 and

B C ^4y. So, working in V there is g G |J52 such that: g is a function from
ω>ω to u;>α; and for every η G u>>α; we have η" g(η) G 5. It suffices to prove

that fR0g (as fR^g =» /Λ^f and # is a partial order). Now for every η G ω>ω,

we know 77 Λ g(η) G β hence 77 Λ g(η) G A/, but by its definition this implies the

existence of v G ω>α; such that ι/Λ /(i/) < η* g(η). So ί/ is as required.

t/iirc? => /irsί:

Let / be a function from ω>ω to CJ>α;. Let us define a function /' from

ω>ω to ^^^α; as follows. For η G ω>α;, let (p% : k < kη) be a list of {p :

p G ω>ω,ίg(p) = £g(r?) and /\t<ίgMP(f) < ηW}* so ^ appears in it and

1 < kη < ω. W.l.o.g. η = Pη . We now choose by induction on fe < fc^, a

sequence ι/£ G ω>α;. Let ι/° = 17, and ι/^+1 be:

(̂  U ̂  \[lgη, €gι/*)) Λ /[pξ U (i/* r[/OT, «g^))] Λ (0) .

Finally f(η) is defined by η* f(ή) = ̂ ^^ remember η = p^'1 .
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So by the assumption there is g' G U 52 such that g1 is a function from

ω>ω to ω>ω and f'Rwg'. As (J^2 includes the set of functions from ω>ω to
ω>ω in V, without loss of generality f'Rfig', and as {) φ Rang(/'), by 3.7F we

know Vr/[£g(//(?7)) > 0). We now define a function g from ω>ω to ω>ω\ we define

g(η) by induction on /c = ig(ή)', given 77 of length fc, we choose by induction

on ί < k natural numbers iι G {η(t ),η(£ ) + 1} such that for ra < k we have

^ is not the first element of /'((io, ..., ̂ -i)) (possible as f f ( ( i o , . . . , ^-i)) has

length > 0).

Let 77' = (io» , fc fc- ι ) and #(77) = g'(η'). Note: 77' is well defined and for

every ί < k the sequence ηf (and even η'\(£ + 1)) is not an initial segment

of (n'\tyf(rf\f). By the choice of g1 and definition of Rfi we know that

there is ι/° G ω>ω such that ι/° < z/° V'O'0) < */Vfa') BY the choice

of r/',--^0 < r/) so necessarily r/' < zΛ Let z/1 = 77 U (z/°Γ[fc,^gι/0)), so

77 < z/1, ^(i/1) - 4(ι/°) and (Vί)^1^) < ι/°(ί)]. Hence by the choice of

/'(i/0) there is ί/2,^1 < ι/2 < ι/2V(^2) < ^2V(^2)Λ{0) < ^V'K), Just

choose m such that i/1 = p 0̂ and put ι/2 d^f p 0̂

 Λ «£ r[^g^0,^g^)). Note that

ί / l Λ/ /(i / 0) 53 η^d'W) — 77^5f(?7) and hence So /.Ro^ As ^ was defined from /'

alone; and R is a partial order so we may easily finish. Πs.7#

3.8 Application. Old reals of positive measure:

This is closely related to Judah Shelah [JdSh:308, §1].

3.8A Context and Definition.

Let 5 C 5<N1(fΓ(Nι))v l, A d= \JS transitive model of ZFCΓ and S a

stationary subset of <S<N1((J'S') ^or ^ ^ ^ let gα e ω2 be random over α, for

simplicity: gα G \JS and α* = ω. For n < α* we define relation Rn by fRng

iff: g G ω2, / a sequence of nonempty rational intervals (in our context means

Ip = {77 G ω2 : p < 77} for some p G ω>2) andt Σι<ω Lb(/W) < 1 (where

Lb({τ? G ω2 : p < η}) d= 2"€βW), and m > n ^> g φ /(m).

I Lb stands for Lebesgue measure.
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3.8B. Claim.

1) If (R, 5, g) covers then it strongly covers (for possibility A).

2) If (R, 5,g) covers then SΠω2 does not have measure zero (equivalently, it

has positive outer measure).

3) If (R, 5, g) covers then "proper -f (R, 5, g) - preserving" is preserved by

composition and more generally by CS iteration.

4) If in V, A C ω2 is not null (i.e. does not have Lb measure zero) and

S C S<^1(H(^ι)) is stationary then for some g = (gα : α G 5), we have:

(β, 5, g)-covers and α G S => g0 G A

Proof. 1) We check that Possibility A holds, so we have to check Θ/c So in Vp

let Q, A/", α, JVi, αi, G1, p, fc, /^, /3^, // (ί < fc), x, ?/ be given as there (so by 3.8A

we have d[a] G α). Let (pn : n < ω) be such that p < pn < pn+ι G G1, (so p,

pn e Q Π 7Vι) and Λg6cι Vn<u, ^ < Pn Let 7V2 X (#(χι), €, <*J be countable

such that

{Nι, (Pn n< ω), {//,// : £ < fc),x,y} G 7V2

and α2

 d= ^2 Π \JS e 5 and AΓ2 e ΛΓ. Let (p£ : m < ω), /;>n be such

that: p^ = pn, p^ < p^+i, (p^ : m < ω) is a generic sequence for (JV2,Q)

and p^ Ih "/^fm = /?nίm"; without loss of generality (//>n,p^ : I < k,n <

ω,m < ω) G AT. Clearly for some m|n < ω we have f^nRm* gα. As we

can thin the sequence ((pn,Pm '. n < ω) : n < ω) as long as it belongs

to N without loss of generality for some rational un G Q, 0 < u < 1, and

pn Ih ΣLb(/*(ί)) G (u^^n + l/A:22n] and (u£ : n < α;) G N is strictly
i ~

increasing and (u^ -f l/kZ2™ : n < ω) is strictly decreasing, and pn forces a

value to ft\m^n such that J^ /^(i) > u^ and (m^?n : n < ω) G AT. So it
i<mί>n ~

is forced by pn that /^ίm^,m has the value above, and £] /(i) < l/fc22 n,
i>mι,n ~

so //n satisfy this too. For every n we have Σ^<fc Σΐ>m* n^(//W) < 1/22"

and p^ Ih "/^ \m^n = // fm^?n" , hence Σ Σ{Lb (7p): for some £ < fc, n < ω we

have /p - /; (i)} < Σ ΣLb/;(i) + ΣΣ Σ Lb/;ιΠ(i) <
n

Σ Σn 1/2271 so this is a sum of two reals < oo (note that in first sum for each
t
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i it is on the set double appearances not counted). Hence gα belongs to only

finitely many of the sets \J{IP : for some t < k,n < ω,Ip = ft,n(i)}, so the

rest is easy.

2), 3) are left to the reader.

4) Straightforward. DS.SB

3.8C Claim.

(1) Assume S C S<^ί(H(^ι)), and S is stationary as a subset of So^US),

and g : 5 -> ω(2 is such that:

(*)s,g if x, 5 G H(χ) then for some countable N -< (#(χ),G<*) we have

{x, S, g} G JV and N Π (|J 5) = a G S and gα belongs to no measure

zero set from N.

Then: if (Pi,Qj : i < α, j < a) is a CS iteration of proper forcing proper

notions, each Qi preserving (*)sι,gι whenever US' G \JS1, (Vα G 51)(α Π

(US) G 5), gi - gαn(Us)> this means yPi N " i f (*W then Ih0i

(*)5ι jgι") then Pa preserves (*)s,g.

(2) Assume X C. ω2 has positive (outer) Lebesgue measure. If (Pι,Qj : i <

α,j < α), is CS iteration of proper forcing, each Qi preserve the property

(*)s,g whenever g : 5 —> X, then Pa preserves the property of "being of

positive outer measure" for X' C X.

Proof. 1) As we can replace Q by (Pβ+i/Pβ, Qj : i < a — β, j < a — /?}, and 5 by

5ι C S as long as (*)sΊ,gt5ι holds in VP(3, it is enough to prove \\-pa "(*)5,g"

Now letting S* = {α G S : gα is random over α}, clearly 5* C S is stationary

and 5*,gΓ5* fit 3.8A.

We prove by induction on i that

(a) Pi is (R, 5*,g|"5*)-preserving (for possibility A) and

(b) Ihp. "Qί is (JR,5*,gί5*)-preserving".
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Arriving to i, clause (a) holds by 3.8B(3). To prove clause (b) first we deal

only with clause (b) of definition 3.4 and, for χ large enough in VPί we let

W = {N : (i) N is a countable elementary submodel of (ff(χ), G, <* ),

to which 5*, g, Qi belong and a = N Π (|J 5) <E S,

and gα is random over N

(ii) for some p G Qi Π N there is no q such that

p < q £ Qi, q is (W, Q^-generic and

tf'l-Qi "Wβil is (£,£*, gΓS*)-good}.

If (b) fails then W is stationary (otherwise if χ' = (2*)+, {W,χ} e N ^

(ff(χ'), G, <* ) then for JV the required conclusion holds and we clearly finish).

For p G Qi let Wp be defined like W with p (in clause (ii)) fixed. So by

normality for some p, Wp is stationary. But defining g1 = (g^ = gNn\ ι s :

NeWp), clearly VFi Ih "(*)ιvpϊgι" but FPί N " lhQί -(*)ιyp,gι" contradicting

the assumption.

But we have to deal also with clause (b) in the conclusion of Definition

3.4, so define

W' = {N :(i) as before

(ii) for some peQiΓ\N and k < ω and fι G N(ί < k)

Nι,aι,(pn :n <α;),//

as in (*) of Definition 3.4

there is no q satisfying (a) 4- (b) of Definition 3.4 }.

Assume toward contradiction that clause (b) here fails, hence W C S<χQ(H(χ))

is stationary and w.l.o.g. let (m^n ' t < k, n < ω) G N be as in the proof of

3.8B. So for some x - (p,ή, (pn ' n < α;),^Vι,αι, (// : I < k), (m^n : t,n)) we

have
W'x

 ά= {N eW :x e N gives a counterexample in (ii)

of the Definition of W'}
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is stationary. Let χι » χ In (VPi)~\ clearly {gα : a = N Π \JS, N G W'x} is

not null. Also for every club E of <S<κ0 (H (&ι)v l ) we have: the set {gα : α G Ue}

is not null where UE = {N Π H(χι) : N G W£} Π E.

So for some club £"*, the outer measure of {gα : α G £/#} is minimal. So

really in VPί we have a Q^-name E* G ff(χι). We can find χo < X large enough

such that letting

: α G £ * } and W£' - {N Π #(χ0) : N G W'x}

we have all those properties and there are <* -first hence belong to Λ/Ί. Replac-

ing NI, (pn : n< ω) by N2, (p'n : n < ω) by 3.8B, we have {W£, χι, E' , x] G N^

So choose N G W'x.

Now for some n, pn force outer Lebesgue measure of {gα : α G U^,} is

> 1/n*, n* > 0, and if n is large enough, it forces value to /^fra, and force

Σ Lb(/(i)) < l/n*(fc + 1). Let pn G GQi C Q^ GQi generic over FPί.
i>m

So E® - {AT -< H(χ) : ^[GQi] Π Όrd C AT} is a club, so restricting

ourselves to it does not change the outer measure. Let N G UE' Π E® , then

V ' ̂ ftRβtgNr\ |5. There are 2fc possibilities: which i, and if bad i is > fcra^n

or < m^)7l, later is impossible.

The outer measure of former is < fcl/n*(fc -f 1) < 1/n*, but by the choice

of the club E* contradiction.

Remark. Really this is part of a quite general theorem. We shall return to it

elsewhere.

2) Should be clear. DS.SC

3.9 Application. Souslinity of an ωi

Here we return to the issue of IX §4.

3.9A Context and Definition. Let T be an c^i-tree, say with [ωa,ωa. + ω) \

{0} being the (1 -f α)-th level. Let W C ω\ be the set of limit ordinals δ — ωδ

(for clarity). Let for t G TΊ,β <Ύ,t\β be the unique s G T/?, such that s <τ t.

Let for δ G W, aδ = δ U ω>δ, S = {aδ : δ G W}, d[a] - α, c[a] = a (so d' = ωi,
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d = ω>(jj\) and {tn : n < 75 < ω} be a subset of T§ for some non zero 75 < ω.

Let α* = ω\ and lastly we choose^ gα such that: for a G a Π α*, we let fRaga

iff one of the following holds:

(α) a = 0 and f~l({l}) (Ί {s e T<δ : 0 < s <τ tδ

f(0}} ± 0 or

(β) 0<a<δ and /"Hi1}) n is G τ«* : */(o) Γ<* < * and 5 ̂  0} = 0 or

(7) -(/(O) G 7,).

Let Y = {ί̂  : n < 75, 5 € VF}; we say the tree T is F-Souslin if: for χ large

enough, for every x e H(χ) for some N we have: x, T e N ^ (H(χ), G, <*),

TV countable, δ = N Π α i, and for n < 75, {s : 5 <r £„} ^s (^» T)-generic. For

W CW let

- {t* : n < 75 and 5 € W}.

3.9B Claim. 1) If /\δTδ = {tδ

n : n < 75} then Y-Souslin means Souslin. If T

is y-Souslin then T is not special, even not W-special.

2) If T is a F-Souslin tree then (R, 5, g) fully covers (so for any forcing notion

Q, if in VQ the tree T is still F-Souslin, then (β, 5,g) still fully covers),

3) If (R, 5, g) covers then (f£, 5, g) strongly covers for possibility A.

Proof. 1), 2) Straightforward.

3) Clearly each Ra is closed and as [α G 5 ==> d[a] φ α] we are done.

3.9C Claim. A forcing notion Q is (R, 5, g)-preserving iff Q is (Λ, 5, g)-

preserving for possibility A.

Proof.

The "only if" direction.

Let N -< (ff(χ),G,<*) be countable (β,5,g) G N, and p, (pn : n < ω),

(ft : ̂  < fc), (/^ : ̂  < fc), (ft : £ < fc) be as in Definition 3.4.

We can assume 2**1 < χι = cf(χι), 2Xl < χ.

t As commented earlier, actually the identity of gα does not matter only the

Sets R^a = {/ : fRa
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Let w = {I < k : fι(0) < 7$ and βt φ 0}. For t G k \ w choose xt G T Π N

that xt <τ ί^(0) and \Jn<ωpn H~ " f έ f a ) = 1 or fι(0) > 75". So for somesuch that

n(*)

Let

X = {<7 G Q : for each I e w,q forces a value to /g(0), say m^, and it

forces a truth value to (3x)(t^ \βt <τ x & /^(x) = 1)}.

So for some n > n(*), we have pn G J, so those truth values which it forces

are all false (as if pn Ih (3x)(ί^ ί̂  <τ x & /*(#) = 1) then for some n' > n,

pn/ forces a specific such x so F/(x) = 1, contradiction). So any (AT, Q)-generic

ς G Q which is > pn and satisfies (*)ς below is as required, where

(*)q for n < 7^00;! , the branch {t : t <τ tδ

n] of T Π N is (AT, Γ)-generic.

Its existence follows from "Q is (β, 5, g)-preserving."

ΓΛe "i/;; direction.

It is trivial (reread Definition 3.4). Πa.9C

3.9 D Definition. We say Q is F-preserving when: if TV -< (Jϊ(χ),e,<*)

countable, <5 = A/Ή Wι, {Y, T} G W, and p G Q such that n < 7 => {t : t <τ t
δ

n}

is (N,T)- generic, then there is ςf, p < ς G Q, <? Ih "n < 75 =» {ί : t < tδ

n} is

(AΓ[GQ],T)-generic."

3.9 E Fact. Q is Y-preserving iff Q is (β, 5, g)-preserving.

3.9 F Conclusion.

If T is an ω\ - tree, Y C T ίften the property "Q is ^-preserving and is

proper" is preserved by CS iterations (and composition).

3.10 Application. Being a nonmeager set
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3.10A Context and Definition. Let 5 C S<^l(H(χ)), for a 6 5, d[a] =

c[a] = ω>ω. Let fRg iff (/ is a function from ω>ω to ω>ω and g a function

from ω to ω) & (3°°m)[(g\m) *f(g\m) < g}. Let g = (gα : a € 5) where

Remark. Note that if TV is a model of ZFC~, then: "g is Cohen over TV" iff

(V/ G TV)(/ : ">ω -> ">α; =s> (3°°m)[((/rm) V(ί/M < g])

iff

"(V/ G N)(f : ">«; -+ ">u; => (3m)[(^N) V(^M < #])

(as AT is closed enough).

3.10B Claim. 1) If (Λ, 5,g) covers in V ίften it strongly covers in V (by

Possibility B, C).

2) In V, if AC. ωω is not meager and 5 stationary subset of e.g. S<N1(.ff(Nι))

then for some g we have (Λ, 5, g) covers in V and g(α) G A for a G 5.

Proof. 1) We can show that in Definition 3.3 Possibility B holds. The winning

strategy is in stage n, to choose bn so large that for ί < n, there are at least n

members in solutions of {m : (gα fra) Λ /^(gα ί̂ ) <1 ^} &re guaranteed (similar to

VI §3, because the property has the form (3°°m)) (i.e. G$ Borel set) (remember

α* = 1 so Θfc is not needed). The proof for possibility C is similar.

2) Straightforward. ΠS.IOB

3. IOC Claim. If (JR, S,g) covers, then "proper f(Λ, 5, g)-preserving" is pre-

served by composition and more generally by CS iterations.

Proof. Remember that (jR, 5, g)-preserving means "for possibility C" (the case

where Definition 3.4 is more transparent). Now use 3.6. Πs.ioc

3.10D Claim.

(1) Assume 5 C 5<^1(ff(Nι)), and 5 is stationary as a subset of

and g : S -+ ω2 is such that:
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(*)s,g if x, 5 G H(χ) then for some countable N -< (#(χ),e<*) we have

{z, 5, g} € N Π (U 5) G 5 and gα belongs to no meagre set from N.

Then: if (Pi,Qj : i < a,j < a) is a CS iteration of proper forcing

proper notions, each Qi preserving (*)sι>gι whenever \J S e \J Sl , (\/a e

S1)(aΠ (\JS) e S), gi = gαn(y(S) (and (*)sι,gι is defined as in part

(1); this means VPl N " if (*)5ι)gι then Ihg. (*)5ι?gι") then Pa preserve

(2) Assume X C ω1 is not meagre. If {P<, Qj :i < aj < α), is CS iteration of

proper forcing, each Qi preserves the property (*)S)g whenever g : 5 —> X,

then Pa preserves the property of "being of not meagre" for X' C X.

Proof. Like 3.8C.

3.10E Claim. If (β, 5, g) covers in V and Q is a forcing notion which is Souslin-

proper in any extension (i.e., we have a Souslin definition which in any generic

extension is Souslin-proper) and Ihg "1^(1^2 is not meager" (in every extension)

then in V® we have: (R, 5, g) still covers and Q is (Λ, 5, g)-preserving.

Proof. It follows from Lemma 3.11 below.

3.11 Lemma. [Goldstern and Shelah] Assume that Q is a Souslin proper

forcing, say definable with a real parameter r*, with the property

II-Q "V Π ω2 is not meager"

and continues to have these properties in any extension of V (by set forcing).

If N -< (-ff(χ), 6, <* ) countable, x0 a Cohen real over TV and p € N Π Q, then

there exists a condition g > p, g is (AT, Q)-generic (i.e. (N, Qv)-generic), and

g r l h "z0 is Cohen over N[GQ].n

We will prove this through a sequence of lemmatas. We always assume that

Q is a forcing notion satisfying the assumptions of our lemma, TV is a count-

able elementary submodel of some (ff(χ), €) (χ big enough, regular), M is a
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countable transitive model satisfying a large enough fragment of ZFC. We let

λ G TV be a regular cardinal that is reasonably big (say λ > D2) but still small

compared to χ, say 22 < χ.)

3. HA. Fact. Assume B is a complete Boolean algebra, BQ C B a complete

subalgebra and {β,f?o} £ N. If GO C BQ is TV-generic, then there exists an

TV-generic filter G C B extending GQ.

Proof. Easy.

3.11B. Fact. Assume B G N is a forcing notion, XQ £ ω2 a Cohen real over TV.

Assume c is a jB-name such that

\\~B "c is a Cohen real over V"

Then there is a TV-generic filter Gβ C B such that C[GB] is almost equal to XQ.

Proof. Without loss of generality we assume that B is a complete boolean

algebra. For any formula φ in the forcing language of B we write {φ] for the

Boolean value of φ. We write [<p] = 0 if H-# -«/?. Assume that XQ G ωc2 is

Cohen-generic over TV, and c£ω2 is forced to be Cohen-generic over V. Let

Then T is a tree, and lhβ "c G limΓ". So LimT cannot be nowhere dense,

so for some ηQ G T we must have (Vτ/)(ryo < *7 € ω>2 =» [r? G T]). For notational

simplicity only we assume 770 = 0 (otherwise we have to consider c\[ίg(ηo),ω)

and XQ\[ig(ηo) , ω) instead of c and #o)

Let BQ C Bbe the complete Boolean algebra generated by the elements [77 C c],

where η ranges over ω>2. Then BQ is a complete subalgebra of B, and the map

that sends η G ω><2 to fr/ C c] is a dense embedding of ω>2 into BQ. Thus

#0 induces an (TV, QN)-generic filter GO C BQ. By 3.11A, G0 can be extended

to an TV-generic filter G C B. Clearly c[G] = XQ, as for every n G ω, letting

J we have [ry C c] G GO C G. ΠS.IIB
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3.11C. Lemma. The formula "M C ω xω codes a well founded model of ZFC~

with universe ω, q is (M, Q)-generic, and q \\-Q x is Cohen over M[Gg]" is

equivalent to a Π^-formula (about x, q, and M as parameters). (M-generic

means M'-generic, where M' is the transitive collapse of M. We will not

notationally distinguish between M and M'.)

Proof. First we note that "q is (M, Q)-generic" is a Π}-statement, as it is

equivalent to

for every A G M such that M |= "A is pre-dense in Q", and

for every r > q there is α G M,M |= "α G A", and α,r are compatible.

(Recall that in a Souslin forcing notion the compatibility relation is Σ\ and

πi )
If q is (M, Q)-generic, then we have: q Ih "x is Cohen over M[G]" iff for all

T G M such that M |= "τ is a Q-name of a nowhere dense tree C ω>2", and

/or all r > q there exists a condition p' G M Π Q and a natural number n such

that p', r are compatible, and M |= "p7 Ih x f n ^ r". Again it is easy to see that

this can be written as a Π^-statement. Πs.nc

3.11D. Lemma. Assume M is as above, p G Q Π M, A a comeager Borel set.

Then there exist a real x G A and a condition q > p such that q is (M, Q)-

generic, and q Ih "x is Cohen over M[Gg]."

Proof. Let ς0 > P be (M, Q)-generic. Work in V[G], where q$ G G C Q, G is

generic over V. Since V Π 2ω is not meager (in V[G.]), Av^ is comeager, and

the union of all meager sets coded in M[G] is meager, we can find x G V(~] Av^

which is Cohen over M [G], by absoluteness x G A. Now let q > qo be a condition

which forces this. ΠS.IID

3.HE. Proof of the Lemma 3.11: Recall that λ G N is much bigger than cj,

but much smaller than χ. Let M d= (ff(λ), G). So M G AT.

Let f? be the algebra that collapses #(λ) to a countable set (using finite con-

ditions) i.e. Levy(N0, \H(X)\). Clearly lhβ"M is a countable model of ZFC~."

We assert that
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(*) \\-β "There exists x (Cohen over V) and q e Q, q is (M, Q)-generic, and

\\-Q x is Cohen over M[Gg]".

To prove this assertion, work in VB'. The set of all closed nowhere dense sets

coded in V is now countable, so the set of Cohen reals over V is comeager,

and hence contains some comeager Borel set A. Now apply the previous lemma

3.11D. This finishes the proof of the assertion (*).

Prom the assertion we can get names x and q such that all the above is

forced by the trivial condition of B. Clearly we can assume that x and q are in

TV.

Now apply Fact 3.11B to get an TV-generic filter G C B (in VI) such that

x = x[G] is almost equal to XQ Let q — q[G], Then

N[G] \= "q is (M, <2)-generic, and q \\-Q c is Cohen over M[Gg]"

and N[G\ Π Ord = TV Π Ord.

Since Π^-formulas are absolute, we can replace N[G\ by V (remember

N[G] C V). We can also replace x by Xo 5 since modifying a Cohen real in

finitely many places still leaves it a Cohen real. Thus,

V \= "q is (M Π TV, <3)-generic, and q \\-Q x0 is Cohen over M[Gg]."

(Why MΓiN and not M? As we should look at M as interpreted in TV[G], note

N[G\ \= "M is countable"). As M Π N and N have the same dense sets of Q,

q is (M, <3)-generic iff it is TV-generic. Similarly, x0 is Cohen over M[G] iff it is

Cohen over TV[G], so we are done. Πa.n

Remark. We shall deal with more general theorems in [Sh:630].

3.12 Concluding Remarks. 1) We may consider the following variant of this

section's framework concentrating on d[a] G α (of course if RajS — Ra we ge^

back the previous version).

(A) We replace Ra by Λα>t for t e Q such that s < t ==> βα?s C Λ t t)t; we

may use Λα = VS<ΞQ^<*,S
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(B) TV is (fl,S,g)-good iff a d= N Π ((JS) G 5 and for every / G N

satisfying / G rf'α'c[α] for some α < α* and t G Q we have fRa,t9-

(C) "Strongly covers" is defined as before except that 0^ is changed

parallely to the change in (D) below, i.e. I.e.

Θ/c if (a) - (d) of (*) of 0^ from Definition 3.3 and

(e) βt e aΓ}a*,tι < st are rationale and ft[Gl}Rajga

then for any y G N Π H(χ) there are TV2, <72 satisfying (the parallel of)

clause (d) such that y G TV2 and: for some 7^ G α, 7^ < /%, s^ G Q, sj < s^

(for £ < fc) we have /*[G2]Aγ<,βjgα (for £ < fc).

(D) Q is (β, 5, g)-preserving means: if (*) of Definition 3.4 holds (having

now fiRβitΛa and s^ > t^ s^ G Q) then there is an (TV, Q)-generic g,

p < q G Q such that q \\-Q "for I < k there are 7^ < /?£ and 5^ G Q

such that 7^ = ̂  = >̂ s < s^ and

2) If we have 0jζ of 3.3B(3) ί/ien (b) of the conclusion in Definition 3.4 can be

omitted (as it follows from "q is (N, Q) -generic" under the circumstances).

3) Another variant of our framework is as follows.

(α) Let R be a definition of a forcing notion, i.e. partial order, [Zy : y G Y } be

a definition of a family of dense subsets of it (e.g. all), all absolute enough,

K be a definition of a family of forcing notions closed under CS iterations

(so e.g. if Qi G KVt, Vi^ = V?1 then Ql * Q2 € K
v\ similarly for limit.

We have: if in V^0, p < q G R, y G γ(γQQ\ p G Iy then this holds in
Qo*Qι~

(β) S G Vb, 5 a stationary subset of S<

(7) for α G 5, gα is a directed subset of .RΠα not disjoint to αΠ Iy for y G Y Πα

(absolute as in (a)).

(δ) in V^0 , TV is (R, 5, g)-good if: TV -4 (H(χ), G, <* ) is countable, (Λ, 5, g) G

TV, α d= TV Π H(χ*}v* G 5 and [y G TV Π yyQ° =» 3p G J^ G gα(p < ς)]

(of course gα is still a directed subset of Rv ° Π α) .
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3.13 Preservations connected to Norms.

3. 13 A Context and Definitions.

1) Assume we have (n*,nδr, w) where

(α) ή* = (n* : i < ω) is strictly increasing.

(/?) nor = (noli : i < ω), where nor^ : ^([n*,n*+1)) —> ω satisfies:

u\ C u2 C [n*,n*+1) => noii(ui) < nor^(u2)

noΓiflnJX+i)) >0

(nori([n*,n*+1)) : i < ω) converge to infinity

(^) w = (wi : i < ω) where Dom(^) = ω, Rang(κ i) C {[/ : U C

^([ni»ni+i)) is downward closed, {/ ^ 0} or even^ Dom(^) = ϊ+lω

and for every u C [n*, n*+1) with nori(u) > 0 and x G α; (or x e l+lω

otherwise) for some u' C u we have u' G wn(x) and nor^u') >

nori(u) — 1 (if ϋ) is omitted then Wi(x) is: let x(i) code wx^ C

P([n*,n*_}_1)), now let ^(x) = ̂ (^ if {^(x) : i < ω} is O.K. and let

Wi(x) = P([ra*,ra*+ι)) otherwise.

2) Let

'n*+ι)) = ίί:ίi ς KX+ι) and (norί(ί4) : i < ω)

converge to infinity nor^) > 0}

3) We define two partial orders on Πi<ω^([nΐ»ni+ι)) :

t < s iff ti 2 5^ for every i < α;

ί <* 5 iff ti 2 Si for every i < ω large enough

(note that < is a partial order, <* is a partial order such that every

increasing ω-chain has an upper bound)

t Instead of ω = Dom(wi) or lω = Dom(tί i) we can use other finite or

countable set.
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4) We call Γ C Π*<u; P(K, nj+1)) a nice set if:

(a) Γ is <*-directed

(/?) every <* -increasing ω-chain in Γ has an upper bound in Γ

(7) for every x G ωω, for some t G Γ we have ti G Wi(xi) (or ti 6

Wi(xf( i + 1))) for every i < ω large enough.

3.13B Fact.

!) (Πzχu,^([n*X+ι))> <) is a partial order.

2) (ΠΓ<u; ̂ ([n? » nπ+ι))> ^*) is a partial order with any <*-increasing u -chain

having an upper bound.

3) t < s=>t <* s.

4) If CH (or just MA) then there exists a nice Γ and hence 5, g as in 3.13C

(2), (3) below exist.

Proof. Straightforward.

We want to show that niceness of Γ is preserved under limit of CS proper

iteration

3.13C Context and Definition.

1) Let Γ be nice in a universe VQ,

2) 5 C 5<N l(ff(Ni)) be stationary,

3) g : 5 -* Γ be such that: gα - (gfl|i : i < ω) G Π*<^ P(W , <+ι)) and

(α) for every x G (ωω) Π α we have (V*i < ω)[gα,ΐ ^ ^ί(^ί)]

(/?) for αi G α2 from 5 we have gαι <* gα2 (can ask that moreover

gαi ^ a,2)

4) d[α] = c[α] = ω

5) -R = (.Rn : ra < ω) and xRnga mean (Vi < α;)[i > n — > gα^ G W^x^)]

3.13D Claim.

1) (Λ,5,g) is as in 3.1, it covers (in V, see 3.2, we are assuming 3.13C of

course)
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2) If in Vp , we have "(^, 5, g) covers" then it also strongly covers by Possi-

bility A*

3) If (R, 5, g) cover in Vp , Q is a proper forcing notion preserving "Γ is nice"

then Q is (β, S, g)-preserving.

Proof. 1) Read definitions.

2) Check (for Θi, can apply 3.4B and the proof of Θ"1" from there in the proof

of part (3) below).

3) We use 3.4A(3), so the least trivial condition is <8>+ from there. Let Fp, N,
ait &2> /, (fn '• n < ω), α, (an : n < ω) be as there. We can find a finite d C ω

such that:

(*) if I G ω \ d then gαiι* 3 gα2,^,

w.l.o.g. also {0, . . . , α — 1} C d, {0, . . . , QQ — 1} C d (remember α < α* = ω).

Let ki > i be maximal such that fi\ki = f\k^ so lim ki — oo.
i— >oo

Also w.l.o.g. a.i> ki> sup(d) and we can find an infinite A C ω such that

([fci,αi) : i G A) are pairwise disjoint, and w.l.o.g. A e N and n G [minA,α;) =>

/n(0) = /(O). Now define 0 G ωcj by:

for i G A a n d ^ ί ω fci,αi C

so clearly g eωωnN, hence V ##fcgα2

 so w.l.o.g. £ G α; \ d => gα2,^ G wι(g(l)).
k

Omitting finitely many members of A we can assume i G A => d C fc^ and

hence /^fd = /fd. We will show that any i G A, d* = {0, . . . ,α* - 1} are as

required in Θ+, so assume /' G d^c[a2] = ωω, f\di = fn\di and /;βα.gαι. So

let £ G α; \α, and we should prove gα2^ G wt(f'(i)), thus proving f'Raga2

 an<i

finishing the proof of Θ+; we divide this to cases.

case 1: i φ di

So t > oti and we know fRaitiaι hence gαij| G wι(f(ΐ))\ but also ^ ^ d

hence (see (*) above) gαι,^ 2 gα2,^
 an(i wi(fW) ιs downward closed so

gα2,^ ^ wt(f'(£)} as required.

cα,5e ^:£G d. \ {0,. ..,*;»- 1}

Soki<t< α<. Asledi we know /'(^) - Λ(£) and /<(ί) - #(£), but as £ φ d

we have gθ2^ G wι(g(£)), together we finish.
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case 3: i < ki

But f\ki = fi\ki = f\ki, hence f(t) = /(£), and as fRaga2 we are done. So

we have finished checking the condition (g)4" of 3.4A(3), thus proving 3.13D(3).

ΠS.ISD

3.13E Conclusion. If Γ is nice, Q = (Pj,Qi : j < δ,i < δ) is a CS iteration

of proper forcing, each Qi preserves the niceness of Γ then P§ preserves the

niceness of Γ.

3.13F Remark. Similarly for the other variants in VI 0.1, for pure preserving.

3.14 Example (of 3.13).

3. 14 A Context. We work inside the subcontext of 3.13.

Let n* = (n* : i < ω), n* « m* « /c* « n*+1.

By renaming we replace [ft*,ft*+ι) by cl ~ cti = {(^1^2) : -^1^2 £

[n*, fc*)}, so we consider subsets of C* only, but actually can consider instead

e 6 Ei only where:

£?i = {e : e an equivalence relation on [n*, fc*) and each equivalence

class has exactly n* + 1 elements, except possibly one.}

For e G Ei we let Dom(e) = U{χ/e : l x/ el — nΓ + 1} ^0 make it fit we identify

e with

Se = {(^1,^2) : ^i e [n*,fc*) and £2 G [n*,fc*) and

we will not continue to mention the minor changes; now we let

nor^(e) = Iog2log2(fc* - n* - |Dom(e)|)/m*

rounded (to maximal natural number < than this or zero if it is negative).

For x — (xj : j < i) we define Wi(x): we consider Xi as (being or just coding)

a pair (fXi,Ax.), where AXi C ω finite non empty and fx. : [n*,n*+1) ->
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(A'i {0,..., n*}) (so a € AXί =» fxt [a] : [n*, n*+1) -> {0,..., n*})

Wi(x) = j e G.Ei : for > (n*)nί~l~2 equivalence classes u of e,

1 |{α G AXi : (/*. [α]) fw is not one to one }|
1 ~ (log2K))*° - IΛJ

We should check

(*)ι if (i is large enough and) eo G £?$ and nor^ei) > ί 41 and x = (x^ : j <

i + 1) as above ίften for some e2 G £?», se2 C 5eo, nor^(e2) > nor^eo) - 1

and e2 G Wi(x).

[Why (*)ι holds? Choose by induction on m < n* d=f (n*)(n**+2) a set ιtm C

[n*,n*+1) satisfying |nm| = n*+1 and um disjoint to U um/ U |J{χ/eι :

7n7<τn

\x/eι\ = n* + 1} and:

2
< |{α G Ax. : (fXi[a])\un is not one to

n J + 2

(Why? If v C [n*, n*_|_ι), |υ| = n* 4- 2 is disjoint to the set above then for each

\{u G [ι>]nt*+1 : (fXi[o])\u not one to one}| > (1 ) x |Hnt*+1|,

so by the "finitary Fubini", some u G [υ]ni+1 is (much more than) as required,

increasing υ we get better estimates.)

Let e2 G EΪ be such that: the set of e2-equivalence classes of cardinality n* 4 1

is

{x/ei : |x/eι| - n* 4 1} U {um : m < (n*)< 4 2}.

Now

nor**(e2) - Iog2log2(fc* - n* - |Dom(e2)|)/m*

= Iog2log2(fc* - n* - |Dom(eι)| - <(n*)n**+2)/ra*

= Iog2log2((fc* — n* - IDom(eι)l) x (1 — —
' ^ i»* ft-1 *

= Iog2[log2(/c* - < - |Dom(eι)|) + Iog2(l -
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but as nor^eo) > 0, necessarily

fc? - n* - |Dom(eι)| > 2^ » n*(n*)<+1,

hence

Hence nortί(e2) > nor^eo) — 1.]

Moreover, the proof gives

(*)2 if e0 G EΪ, nor^eo) > ^ + 1 and X is a set of n* (or less) (i + l)-tuples

x = (xj : j < z + 1} as above then for some e2 G £;, sG2 C seι and

nortί(e2) > no^^ei) - 1 and /\ e2 G ^i(x)

[Why? We define above um for m < ((n*)71** +2) x |X| dealing with each x G X

by wm) (n*)nt*+2 times. As |X| < n* there is no problem.] Πs.i4Λ

Remark. 1) Think first for the case A'x a singleton.

2) (log(n*))xo+2 serves as the /(-, -) in [RoSh:470]

3.14B Claim. If the forcing P preserve T is nice" then there is no Cohen real

over V in Vp .

Proof. For this the case AXi is a singleton suffices. If η G ωω is Cohen over V

then

(W G Γ)(3°°z)(?7 is not 1-to-l on any equivalence class from s^)

(better look at {η <E ωω : i < ni+ι => η(i) < n*}) Π3.ι4β

3.14C Claim. Random real forcing preserves a nice Γ.

Proof. Let p eRandom be such that p Ih "x = (ye : £ < ω) G ωcc;". W.l.o.g.

p Ih "x0 - xo, and a* - (fXi,AXi), ^ ̂  AXi C ω finite, /x. G ^{0, . . . ,n*}".
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As Random forcing is ^α -bounding w.l.o.g. p \\-Q "\A%

X\ < t", where

(ίi : i < ω) G V Π ω(ω \ {0}) and as we can replace A by any A x B w.l.o.g.

Ax. = A\ (not name). Now define #;, Dom(^) = [n*, n*+1) x A* x {0, . . . , n*},

as follows: if m € [n*, n*+1), a £ A* and £ 6 {0, . . . , n*} then

gi(m, a,l) = Lbί maximal q > p forcing (/^JαK^i)) — t) J/Lb(limp)

W.l.o.g. p — lim(T) where T is a closed subtree of ω>2 and we can choose for

each i < ω, a natural number ti large enough so that from η G p Π T Π **2

we can read fXi that is for any η G T Π t{2 we have lim(TM) force a value

t° /x» (where Γ^l = {z/ G T : z/ < 17 V η < η} of course). For z < ω

we let A( — A* x ((^2 Πp), and we let ^ be the function from [n*,n*+1)

to ^A^{0, . . . ,n*} defined as follows: for (α,ry) G A( and m G [n*,n*+1) we

let (0 [(α,τ/)])(m) - ^ iff lim(ΓW) Ih (/ί.[α])(m) - £. So apply T nice" to

3.14D Claim. If Q has the Laver property or just is (/, ̂ -bounding with

f ( i ) = 22 l l , #(ΐ) = n*, then Q preserves any nice Γ.

Proof. Assume p G Q, p Ihg "x = (xn : n < ω), x0 < ^? and xn codes

(Ax )
fxί [n* , ra*+ι) — * " ?ΐ {0, . . . , n*}" and we shall find p', α such that p < p7 G Q,

α G 5 and // lhg< x.Rga", this is enough. So w.l.o.g. p Ih "x0 — ̂ o" For each

n C [n*, fc*), |u| = n* + 1, we let tiίU be the truth value of the statement

1 - l/(log(n*))xo+2 < \{a G A*. : (f &[<*]) \u is not one to oue}\/\ASi\.

Let fi = (ti^u : u C [n*, fc*), |u — n* + 1). The number of possible u is < 2kikί ,

hence the number of possible interpretation of t is < 22 l * . By the assumption

w.l.o.g. for each i we have (il>1 : I < n*) (all in V not names) such that

p l h " V t < = t < » / w .

€<nr
So we can find, in V, {(-Aj, /j) : ί < n*, i < ω) such that (AJ, /J) is a possible

case of (Ax., f x . ) . By the way the norm was defined (for i large enough) by
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dropping the norm by 1 we can deal not just with one case (i.e. one possible

t^ i.e one (Aj,/])) but even with n* of them. This is (*)2 of 3.15A.

Note: if p G G C Q, G generic over V then for some i < n\, (AJ..,/j. ) —

(AJ, /]), and they have the same Wi(—).

3.15E Claim. The forcing as in [FrSh:406] is like that.

fc*
Proof. W.l.o.g. the i-th splittings are included in (22 ί ,log2log2(n*+1)), so

follows by 3.15D the ((2^^n**"l"1,n*) : i < ω)-bounding version.

§4. There May Be a Unique P-Point

This section continues VI §5.

4.1 Theorem. Assume V satisfies 2H° = NI and 2*1 = N2, F0 is a Ramsey

ultrafilter on ω. Then for some N2-c.c. proper, ^α -bounding forcing notion P

of cardinality ̂  in VP there is a unique P-point, and it is F0 (i.e. the filter it

generates in Vp).

4.1 A Remark. In fact, in Vp, FQ is a Ramsey ultrafilter (actually this follows).

Proof. By the proof of VI 5.13, it suffices to prove the following lemma:

4.2 Lemma. Suppose

(*)o -Pbj FI are ultrafilters on cj, FQ is a Ramsey ultrafilter, FI is a P-point,

FO <RK FI but not FI <RK F0.

Then there is a forcing notion Q such that:

(a) Q has the PP-property, (hence is ωω bounding) and is of cardinality 2N°

and

(b) \\-Q "F0 is an ultrafilter", but

(c) if Q <£ Q7, Q' has the PP-property then in V®' we have: FI cannot be

extended with to a P-point (ultrafilter).



§4. There May Be a Unique P-Point 933

4.2A Remark. During the proof of 4.1 we use the forcing notions SP*(F) from

Definition VI 5.4 to kill the P-points F with F0 ^RK F.

The rest of this section is dedicated to the proof of this Lemma.

Proof. Since F0 <RK F\ and FI is a P-point, there is a function h : ω —> ω such

that

(*)ι ft(Fι) = FO and for each I < ω the set 1(1) = h d= h~l({ί}) is finite.

Note that then [A C ω & /\1 > \It Γ\ A\ => A £ FI] because FI ^RK F0.
i

Now in Definition 4.4 below we define a forcing notion Q = SP*(FG, FI, ft) and

then prove in 4.3 — 4.9 that it has all the required properties thus finishing

the proof of 4.2 and 4.1.

4.3 Claim. In the following game player I has no winning strategy: In the

n'th move player I chooses An e F0 and Bn G FI; player II chooses kn G An

(kn > ki for ί < n) and wn C Bn Π Ikn. In the end player II wins the play if

{kn : n < ω} G FO and (J{wn : n < ω} G FI (the first demand follows from the

second).

4.3A Remark. Clearly player II has no better choice than wn = Bn Π Ikn.

Remember Ikn = h~l({kn}) is finite.

Proof. Suppose if is a wining strategy of player I. Let λ be big enough,

TV -< (-ff(λ), G, <χ) be such that {F0, FI, ft, if} G TV and N is countable. As Fg

is a P-point there are, for ί G {0,1} sets A\ £ Ft such that A\ Cae B (i.e.

A*ι\B finite) for every B £ F£ Π N.

Now we can find an increasing sequence (Mn : n < ω) of finite subsets of

N, N = \Jn<ω Mn such that it increases rapidly enough; more exactly:

α) H, FO, FI, ft G MO and Mn G Afn+ι,

/?) if (^(x, αo,. •) is a formula of length < 1000 + \Mn\ with parameters from

Mn U {Mn} satisfied by some x G TV, ίften it is satisfied by some x G Mn+ι,

7) if i G {0,1}, 5 G Ft Π TV, JB G Mn then 5 U Mn+ι D AJ,
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δ) Mo Π ω = 0,

ε) if i G Mn then /(£) C Mn+ι and Mn is closed under h (we can demand

ra 6 Mn 4Φ /ι(ra) G Mn if we make the domains of FQ, FI disjoint).

Let un+ι = (Mn+ι \ Mn) Π ω. So (un : n < ω) forms a partition of ω into

finite sets. As F0 is Ramsey, we can find A G F0 such that /\n |un Π A\ < 1 and

A C AQ and

u n Π ^ ^ 0 & u m Π A ^ 0 & n < m =» ra - n > 10.

Let A = {̂  : ζ < ω} (increasing), iζ G unζ. Now we define by induction on (,

Aζ, Bζ, kζ, Wζ such that

(a) (Aξ, .Bξ, fcξ, Wξ : ξ < ζ) is an initial segment of a play of the game in which

Player I uses his winning strategy.

(b) (Aξ,Bξ,kξ,Wζ:ξ< ζ) belongs to Mnζ+3.

(c) kζ = iζ and Wζ = Bζ Π I(kζ) Π A\.

There is no problem to carry out the definition, and clearly Player II wins

because not only {kζ : ζ < ω} — {iζ : ζ < ω} = A C AQ but also

[J Wζ = AI Π Î J Wζ = A* Π {j < ω : Λ(j) = iζ for some C < ω}

[Why? As respectively: Wζ C A^ as A\ \ Aξ C (J{wζ : ζ < iξ + 4} by clause (7)

above; as A = {ίc : ( < α;}; as AJ G FI and A G F0 hence {j : h(j) G A} G FI-]

Contradiction. U4.3

4.4 Definition. Let l£ - Π^<n /Wx€2 and let Th = [Jn<ω T%. Note that Th

is a perfect tree with finite branching ordered by < (being initial segment). Let

Q = SP*(F0, FI, Λ) = {Γ : Γ is a perfect subtree of Th and for each k < ω

for some Ak G F0 and Bk G FI we have: if t G Ak and η G T^ d= T Π T% and

p G (^n/W)xfc 2 then for some v G J W χ *2 we have p C i/ and 77 Λ (i/) G T}.

The order: inverse inclusion.
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4.5 Claim. 1) If T G Q, Γ^ = {r/i,. . . ,r?fc} (with no repetition) Tt =

T[ηι]

 d= {v G T : ηι < v or v < ηέ}, T} e Q, Γ< < T\ (i.e. T\ C T,) then

τ<τt d^ fuLι τ^Q
2) If r is a Q-name of an ordinal and n < ω then there is T^, T < T^ G Q such

that Γf lhg "r G A" for some .4 satisfying \A\ < |ΓM|, and Γ Π U*<n

rM =

T1" Π \Ji<n Γ^. Moreover for each η G Γ^,!1^ determines r.

Proof. Same as in the proof of VI 5.5. D.14.5

4.6 Claim.

Q is proper, in fact α-proper for every a < α i, and has the strong PP-property

(see VI 2.12E(3)).

Proof. First we prove properness. Let λ be regular > 2**1, N -< (H(X), G, <J)

be countable, {Q, F0, F1? ft} G A^ and Γ G TV Π Q.

Let {T£ : I < ω} list the Q-names of ordinals from N. We now define a strategy

for player I in the game from Claim 4.3. In the n'th move player I chooses

An G FO Π N, Bn G FI Π N and player II chooses kn G An and tί;n

 d= Bn Π /fcn

(remember 4.3A); on the side player I chooses Γn G N Π Q and ran such that

To - Γ, Γn < Γn+ι, Γ,lmn+l1 - Γ^+l1 and mn > max{mn_ l5 fcn/ : n; < n}

and mo — 1.

In the (n + l)'th move, player I first chooses ran+ι as above then he

chooses Tn+ι G Q, Tn < Γn+ι, Γ^ΐ+l1 = τj™"+l! such that for every η G

TAmn+ , (Tn_j_ι)^] forces a value to r^ for ί < mn+ι. This is possible by 4.5.

Then as Tn+ι G Q Π AT there are sets An+ι G F0 Π JV, βn+ι G FI Π AT such that

for every Λ G An+ι, η G (Tn+ι)W and p G (^+ιπ/(/c))xn2 for some ^ G J ( fc)x fc 2 )

we have: p C v and 77Λ (i/) G Tn+i and for simplicity An+ι Π mn = ^4n Π mn.

Note that the amount of free choice player II retains is in N.

So by 4.3 for some such play, player II wins. Now Γ* = Γ\n<ω Tn G Q as

{kn : n < ω} G F0 and |J Bn Π I(kn) G FI witness; of course Γn < Γ* for

each n hence Γ - T0 < T* and Γ* Ih ar^[GQ] G TV Π Qn" (as Γ^+ι < T*, see

its choice).



936 XVIII. More on Proper Forcing

So Q is proper. The proof also shows that Q has the strong PP-property

(see VI 2.12: for more details see the proof of VI 4.4.). The proof of α-properness

is as in VΊ 4.4 (and anyhow it is not used). U4.6

4.7 Lemma. Suppose ((*)o of 4.2, Q =SP*(jF0? PI, ft) as defined in 4.4 of course

and) Q <£ P and P has the PP-property.

Then in Vp', F\ cannot be extended to a P-point.

Proof. Suppose p G P forces that E is an extension of FI to a P-point (in

Vp). Let (rn : n < ω) be the sequence of reals which Q introduces, i.e.

rn(ί) = ί G {0,1} is defined as follows: clearly for a unique fc < α;, i G /&;

now rn(i) = £ iff: n > fc, ί = 0 or for some T G GQ, T^1! - {r?} and

( η ( k ) ) ( i , n ) = £ (remember that η(k) is a function from /(fe) x k to {0,1}).

Define a P-name ft:

Λ(n) is 1 if {i < ω : rn(ί] = 1} e E and

ft(n) is 0 if {i < ω : rn(i) = 0} G £"

So p Ih "ft G "2". Now as P has the PP-property, by VI 2.12D, there are

Pi > P, (Pi e P), and {{(fc(n), (in(£), jn(£)} : ί < fc(n)> : n < ω) in V such

that k(n) < ω, in(ϋ) < jn(0) < in(l) < jn(l) < . . . < in(k(n)) < jn(k(ri)), and

jn(k(n)) < in+ι(0) such that:

pi Ihp " for every n < α; for some ί < k(ri) we have h(in(t)} = ft(JnW)"

Now define the following P-names:

An = {m < ω : for some ί < k(n)^rirι^(m) = ΐ j n ( i ) ( τ n ) } .

We can conclude as in the proofs of VI 4.7, VI 5.8. U4.7

4.8 Claim. In VQ, FQ still generates an ultrafilter.

Proof. If not, then for some Γ0 G Q, and Q-name A we have T0 Ihg "A C ω

and A, α; \ A are ^ 0 mod F0" -
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By the proof of 4.6 without loss of generality, for some A0 G FQ we have:

for k G AQ and η G T^4"1', (T0)[η] forces a truth value to "fc G A" which we

call t(T0, 77); without loss of generality for η G TQ ', k φ AQ => |sucτ0(^)| = l

Now for every Γ > Γ0 and £ < ω there are A(T, I), B(T, ΐ) as in Definition

4.4. For every t < ω, T > T0 and k G A(T,ί) fix an arbitrary η(T,t, k) G 7*1

Then, by observation 4.9 below, there are m^fe G I(k) Π B(T,C) and a

partition {M< (Γ, ̂  fc) : i < 3) of /(fc) Π B(Γ, £) and a triple {t<(T, ̂  fc) : i < 3) of

truth values and jk(T,l) G {0, 1} and truth value sk(T,£) such that:

(*) (a) if jk(T,£) = 0 then for i < 3, for every p G M7V,fc)χ^2 there is

i/ G 7( fc)xA;2 such that p C z/ and τy(Γ, ,̂ fc) Λ (i/) G Γ and

(Clearly t ί (T,ί,fc)=t(Γ 0 ,r/ Λ {i/))).

(b) ifJk(T,έ) = 1 then for every p G U(fc)nB(τ,m{mT),)fc})x*2 there is v G

(J(fc)χfc) 2 SUch that: p C i/ and (r/(Γ,^, fc)) Λ (z/) G T and T[rΓ (l/)] lhQ "fe G A

So for some j(Γ, ̂ ) < 2 and i(T, ί) < 3 and truth value t(Γ, ^) we have

(α) 'ύj(T,ί) = 0, then

(^)(^^fc) : 3k(T,l) = 0, fc G ^(Γ,ί),t<(TΛ(T,£,*;) - t(T,^) G F

(β) ifj(T,l) = 1 then {k G A(Γ,£) : jk(T,l) = l,sk(T,l) = t(Γ,£)} G F0.

Note:

Θ for (T,t) as above there are A = A*(T,t) G F0, B = B*(T,() G FI

satisfying: for every k G A there is 77 G Γ, ^g(r/) = k such that: every

p G ((/(fe)ns)x«2 can be extended to v G /(/c)χfc2 satisfying: η" » G Γ,

[Why?

,fc) : jk(T,ί) = 0, fc G
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and A = {k : I(k) Π B ^ 0}. Check the demand by clauses (*)(α) and (α)

above. So assume j ( T , f ) = I and let

B = \J{I(k) Π B(T,t) \ {mτ,M} : k G A(T,ΐ) and jk(T,t) = 1,

and

(why £ G FI? because FI ^RK F0!). Put A = {k : Ik Γ\ B ^ $} and check the

demand by clauses (*)(b) and (β) above].

Note that we have been dealing with fixed T, ί.

As we can increase TO without loss of generality: for some truth value t* for

a dense set of T1 > T0 for the F0-majority of I < ω we have and t(T', t) = t*.

Now we can define a strategy for player I in the game from 4.3. So in the

n'th move player I chooses <An, Bn and player II chooses kn,wn] but we let

player I play "on the side" also Tn, tn (chosen in the n'th move) such that:

(A) T < Tn < Γn+ι, Γ^+1] - Γfc+11, ω > 4+ι > 4, and t* -

(B) For every k G An+ι and η G T there is 771, η < ηι G T such

that for every p G (β-+ιn/(/c))x^+12 there is ι/, p C i/, 771 Λ (ί/> G Γn,

t(Tn,£n,fcn) = t(Γn,4) = t*, (note Tn+ι is chosen only after fcn+1, wn+ι

were chosen).

We should prove that player I can carry out his strategy. For stage

n + 1 let {770, . . . ?^(n)} list Γn + , so for some £n+ι > £n, for each

C < m(n) there is Γn>c > (Γn)[t?»] such that t(Tn,c,4+ι) = t*. Let £n+1 =

Πc<m(n) B*(TnfC,*n+ι) and An+ι - {fe G An : fc > kn and J(fc) Π βn+ι ̂  0}.

By clause (B) above, after player II moves, we can choose Tn+ι as required.

As this is a strategy, by Claim 4.3 for some play in which player I uses it he

looses. For this play {kn : n < ω} G F0, Un<u, wneFl9aoT d= f}n<ω Tn e Q.

By tracing the demands on the t's:

Θ forn < ω, η G T, ίg(η) = kn + 1 we have T[r?] Ih "fcn G A iff t*".

We conclude: Γ Ih "{fcn : n < ω} Π A is 0 or is A" as {kn : n < ω} G FQ we get

the desired conclusion. U4.8
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4.9 Observation. Suppose t is a function from X* — ]\t^uAt to {0,1}, u

finite.

Then at least one of the following holds:

(a) we can find i^, Xi (i < 3) such that :

(a) (ui : i < 3} is a partition of -u,

(b) XiCX*,

(c) t\Xi is constant,

(d) for every i < 3 and p G Πteu. At there is v G Xi, p C ιy,

(/?) for some x G u, there is X C X* such that t fA" is constant and for every

P £ l\teu\{χ} At there is i/ G X, p C i/.

Proof. Let for j G {0,1}, Pά , = {v : v C u and there is X C X* such that t\X

is constantly j and for every p G Πt€v At there is v G X, p C z/}. Clearly

(A) ϊ/i G Ppi/o <Ξ ^i implies UQ G Pj. [Why? Same X witnesses this.]

(B) ui C u & wi ^ PJ implies u\uι £ PI-J [Why? As u\ φ Pj, for some

P £ Πtem ̂  for no v e Πt€ii\«ι A* does t('° U ^) = X let X ^ i^ G

Πt€n ^* : /° — v}ι it is as required for u\uι.]

(C) 0 G PO U PI. [Why? Trivially.]

Case (i): P0 U PI is not an ideal.

So there are UQ, u\ G PO U PI with v = UQ U ui ^ PQ U PI. By (A) without loss

of generality UQ Π u\ = 0. Let ^2 = u \ v, so (UQ, ^1,^2) is a partition of u. Now

by clause (B) we know that u<2 G PO (and to PI) as v — u \ 1̂ 2 does not belong

to PI (and to P0). Now we know 1/0,^1,^2 G PO U PI, so for some (jι : t < 3)

we have u^ G P/£ for ί < 3, and let Xi be a witness. Now check that clause (a)

in the conclusion holds.

Case (ii): PQ U PI is an ideal.

If u G PO U PI, then t is constant so conclusion (α) is trivial, so assume not. By

(B) above the ideal is a maximal ideal so it is principal (because u is finite),

i.e. for some x G u , u \ {x} G PO U PI, {x} φ P0 U PI so we have finished.

(Reflection shows we get more than required in (/?): reread the proof of (B)).

^4.2,4.1




