XVII. Forcing Axioms

§0. Introduction

This chapter reports various researches done at different times in the later eighties. In Sect. 1, 2 we represent [Sh:263] which deals with the relationship of various forcing axioms, mainly $\mathrm{SPFA}=\mathrm{MM}, \mathrm{SPFA} \nvdash \mathrm{PFA}^{+}\left(=\mathrm{Ax}_{1}\right.$ [proper]) but SPFA implies some weaker such axioms ($\mathrm{Ax}_{1}\left[\aleph_{1}\right.$-complete], see 2.14, and more in $2.15,2.16$). See references in each section.
In sections 3 , 4 we deal with the canonical functions (from ω_{1} to ω_{1}) modulo normal filters on ω_{1}. We show in $\S 3$ that even PFA^{+}does not imply Chang's conjecture [even is consistent with the existence of $g \in{ }^{\omega_{1}} \omega_{1}$ such that for no $\alpha<\aleph_{2}$ is g smaller (modulo $\mathcal{D}_{\omega_{1}}$) than the α-th function]. Then we present a proof that $\mathrm{Ax}[\alpha$-proper $] \nvdash \mathrm{Ax}[\beta$-proper $]$ where $\alpha<\beta<\omega_{1}, \beta$ is additively indecomposable (and state that any CS iteration of c.c.c. and \aleph_{1}-complete forcing notions is α-proper for every α).

In the fourth section we get models of $\mathrm{CH}+$ " ω_{1} is a canonical function" without $0^{\#}$, using iteration not adding reals, and some variation (say ω_{1} is the α-th function, $\mathrm{CH}+2^{\aleph_{1}}=\aleph_{3}|\alpha|=\aleph_{2}$ (see 4.7(3)). The proof is in line of the various iteration theorems in this book, so here we deal with using large cardinals consistent with $V=L$.

Historical comments are introduced in each section as they are not so strongly related.

We recall definition VII 2.10: If φ is a property of forcing notions, $\alpha \leq \omega_{1}$ then we write $\mathrm{Ax}_{\alpha}[\varphi]$ for the statement:
whenever P is a forcing notion satisfying $\varphi,\left\langle\mathcal{I}_{i}: i<\omega_{1}\right\rangle$ are pre-dense subsets of $P,\left\langle{\underset{\sim}{S}}_{\beta}: \beta<\alpha\right\rangle$ are P-names of stationary subsets of ω_{1}, then there is a directed, downward closed set $G \subseteq P$ such that for all $i<\omega_{1}$, $\mathcal{I}_{i} \cap G \neq \emptyset$ and for all $\beta<\alpha$ the set $S_{\beta}[G]$ is stationary.

We write $\mathrm{Ax}[\varphi]$ for $\mathrm{Ax}_{0}[\varphi]$ and $\mathrm{Ax}^{+}[\varphi]$ for $\mathrm{Ax}_{1}[\varphi]$, PFA for Ax [proper], SPFA for Ax [semiproper], similarly PFA^{+}and SPFA^{+}.

§1. Semiproper Forcing Axiom Implies Martin's Maximum

We prove that $\operatorname{Ax}\left[\right.$ preserving every stationarity of $\left.S \subseteq \omega_{1}\right]=\mathrm{MM}$ (= Martin maximum) is equivalent (in ZFC) to the older axiom $\mathrm{Ax}[$ semiproper $]=$ SPFA (= semiproper forcing axiom).
1.1 Lemma. If $\mathrm{Ax}_{1}\left[\aleph_{1}\right.$-complete], P is a forcing notion satisfying $(*)_{1}$ (below) then P is semiproper, where
$(*)_{1} \stackrel{\text { def }}{=}$ the forcing notion P preserves stationary subsets of ω_{1} ".
1.1A Remark. 1) This is from Foreman, Magidor and Shelah [FMSh:240].
2) It follows that $\mathrm{SPFA}^{+}=\mathrm{Ax}_{1}\left[\right.$ semiproper] is equivalent to MM^{+}(compare [FMSh:240]). The conclusion is superseded by 1.2, but not the lemma.
3) The proof is very similar to III 4.2 .
4) Of course every semiproper forcing preserves stationarity of subsets of ω_{1} (see X 2.3(8)).

Proof. Clearly $\mathrm{Ax}_{1}\left[\aleph_{1}\right.$-complete] implies $\operatorname{Rss}\left(\aleph_{1}, \kappa\right)$ for any κ (see Defefinition XIII 1.5(1).). By XIII 1.7(3) "forcing with P does not destroy semi-stationarity of subsets of $\mathcal{S}_{<\aleph_{1}}\left(2^{|P|}\right)$ " implies P is semiproper. (So by $1.1 \mathrm{~A}(4)$ these two properties are equivalent).

1.2 Theorem.

Ax [not destroying stationarity of subsets of ω_{1}] $\equiv \mathrm{Ax}$ [semiproper], i.e. $\mathrm{MM}(=$ Martin Maximum) \equiv SPFA (i.e., proved in ZFC).

Proof. As every semiproper forcing preserves stationary subsets of ω_{1} (X 2.3(8)), clearly $M M \Rightarrow$ SPFA. So it suffices to prove:

1.3 Lemma. [SPFA.]

Every forcing notion P satisfying $(*)_{1}$ is semiproper, where $(*)_{1} \stackrel{\text { def }}{=}$ "the forcing notion P preserves stationarity of subsets of ω_{1} ".

Proof. We assume $(*)_{1}$. Without loss of generality the set of members (= conditions) of P is a cardinal $\lambda_{0}=\lambda(0)$. Too generously, for $\ell=0,1,2,3$, let $\lambda_{\ell+1}=\lambda(\ell+1)=\left(2^{\left|H\left(\lambda_{\ell}\right)\right|}\right)^{+}$. Let $<_{\lambda_{\ell}}^{*}$ be a well ordering of $H\left(\lambda_{\ell}\right)$, end extending $<_{\lambda_{m}}^{*}$ for $m<\ell$. Let

$$
\begin{aligned}
K_{P}^{\text {neg }} \stackrel{\text { def }}{=}\{N: & \left.N \prec\left(H\left(\lambda_{2}\right), \in,<_{\lambda_{2}}^{*}\right),\|N\|=\aleph_{0}, P \in N \text { (hence } \lambda_{0}, \lambda_{1} \in N\right) \text { and } \\
& \neg(\forall p \in P \cap N)(\exists q)[p \leq q \in P \text { and } q \text { is semi generic for }(N, P)]\}
\end{aligned}
$$

and

$$
\begin{gathered}
\left.K_{P}^{\text {pos def }} \stackrel{=}{=} N: N \prec\left(H\left(\lambda_{2}\right), \in,<_{\lambda_{2}}^{*}\right)\right),\|N\|=\aleph_{0}, P \in N\left(\text { hence } \lambda_{0}, \lambda_{1} \in N\right) \\
\text { and } \left.\neg\left(\exists N^{\prime}\right)\left[N \prec N^{\prime} \in K_{P}^{\text {neg }} \text { and } N \cap \omega_{1}=N^{\prime} \cap \omega_{1}\right]\right\} .
\end{gathered}
$$

We now define a forcing notion Q

$$
\begin{aligned}
& Q \stackrel{\text { def }}{=}\left\{\left\langle N_{i}: i \leq \alpha\right\rangle: \alpha<\omega_{1}, N_{i} \in K_{P}^{\mathrm{neg}} \cup K_{P}^{\text {pos }}\right. \\
&\left.N_{i} \in N_{i+1}, \text { and } N_{i} \text { is increasing continuous in } i\right\} .
\end{aligned}
$$

The order on Q is being an initial segment.
The rest of the proof of Lemma 1.3 is broken to facts $1.4-1.11$.
1.4 Fact. If $P \in M_{0} \prec\left(H\left(\lambda_{3}\right), \in,<_{\lambda_{3}}^{*}\right),\left\|M_{0}\right\|=\aleph_{0}$, then there is M_{1} such that $M_{0} \prec M_{1} \prec\left(H\left(\lambda_{3}\right), \in,<_{\lambda_{3}}^{*}\right),\left\|M_{1}\right\|=\aleph_{0}, M_{0} \cap \omega_{1}=M_{1} \cap \omega_{1}$ and $M_{1} \upharpoonright H\left(\lambda_{2}\right) \in K_{P}^{\mathrm{neg}} \cup K_{P}^{\text {pos }}$.

Proof. As $P \in M_{0}$, clearly $\lambda_{0} \in M_{0}$; hence $\lambda_{1}, \lambda_{2} \in M_{0}$ hence $\left(H\left(\lambda_{\ell}\right), \in,<_{\lambda_{\ell}}^{*}\right)$ belong to M_{0} for $\ell=0,1,2$, so $K_{P}^{\text {pos }} \in M_{0}$ and $K_{P}^{\text {neg }} \in M_{0}$. We can assume $M_{0} \upharpoonright H\left(\lambda_{2}\right) \notin K_{P}^{\text {pos }}$, so by the definition of $K_{P}^{\text {pos }}$ there is N^{\prime} such that (abusing our notation) $M_{0} \cap H\left(\lambda_{2}\right)=M_{0} \upharpoonright H\left(\lambda_{2}\right) \prec N^{\prime} \in K_{P}^{\mathrm{neg}},\left\|N^{\prime}\right\|=\aleph_{0}$ and $N^{\prime} \cap \omega_{1}=\left(M_{0} \upharpoonright H\left(\lambda_{0}\right)\right) \cap \omega_{1}$; hence $N^{\prime} \cap \omega_{1}=M_{0} \cap \omega_{1}$.

Let M_{1} be the Skolem Hull of $M_{0} \cup\left(N^{\prime} \cap H\left(\lambda_{1}\right)\right)$ in $\left(H\left(\lambda_{3}\right), \in,<_{\lambda_{3}}^{*}\right)$. So

$$
\begin{array}{llll}
H\left(\lambda_{3}\right): & M_{0} \longrightarrow M_{1} \\
H\left(\lambda_{2}\right): & M_{0} \cap H\left(\lambda_{2}\right) & \prec & N^{\prime}
\end{array} \uparrow
$$

We claim that $M_{1} \cap H\left(\lambda_{1}\right)=N^{\prime} \cap H\left(\lambda_{1}\right)$. To prove this claim, let x be an arbitrary element of $M_{1} \cap H\left(\lambda_{1}\right)$. Now x must be of the form $f(y)$, where f is a Skolem function of $\left(H\left(\lambda_{3}\right), \in,<_{\lambda_{3}}^{*}\right)$ with parameters in M_{0}, and $y \in N^{\prime} \cap H\left(\lambda_{1}\right)$ (note that $N^{\prime} \cap H\left(\lambda_{1}\right)$ is closed under taking finite sequences). Note that f 's definition may use parameters outside $H\left(\lambda_{2}\right)$, but $f^{\prime} \stackrel{\text { def }}{=} f \cap\left(H\left(\lambda_{1}\right) \times H\left(\lambda_{1}\right)\right)$ belongs to $H\left(\lambda_{2}\right)$, so $f^{\prime} \in M_{0} \cap H\left(\lambda_{2}\right) \subseteq N^{\prime}$, so also $x=f(y)=f^{\prime}(y) \in N^{\prime}$.

So we have

$$
\begin{aligned}
& M_{1} \cap \omega_{1}=N^{\prime} \cap \omega_{1}=M_{0} \cap \omega_{1}, \\
& M_{0} \prec M_{1} \prec\left(H\left(\lambda_{3}\right), \in,<_{\lambda_{3}}^{*}\right), \\
& \left\|M_{1}\right\|=\aleph_{0}\left(\text { as }\left\|M_{0}\right\|,\left\|N^{\prime}\right\|=\aleph_{0}\right) . \\
& M_{1} \cap H\left(\lambda_{1}\right)=N^{\prime} \cap H\left(\lambda_{1}\right)
\end{aligned}
$$

We can conclude by $1.5(1)$ below that $M_{1} \upharpoonright H\left(\lambda_{2}\right) \in K_{P}^{\text {neg }}$, thus finishing the proof of Fact 1.4, as:
1.5 Subfact. 1) Suppose for $\ell=0,1, N^{\ell}$ is countable, $P \in N^{\ell} \prec\left(H\left(\lambda_{2}\right), \epsilon\right.$,$\left.<_{\lambda_{2}}^{*}\right)$ and $N^{0} \cap H\left(\lambda_{1}\right)=N^{1} \cap H\left(\lambda_{1}\right)$, then $N^{1} \in K_{P}^{\mathrm{neg}} \Leftrightarrow N^{2} \in K_{P}^{\mathrm{neg}}$.
2) Really, even $N^{1} \cap \omega_{1} \subseteq N^{0} \subseteq N^{1} \prec\left(H\left(\lambda_{2}\right), \in,<_{\lambda_{2}}^{*}\right), N^{0} \in K_{P}^{\text {neg }}$ implies $N^{1} \in K_{P}^{\text {neg }}$ (we can also fix the P in the definition of " $N \in K_{P}^{\text {neg" }}$).

Proof. 1) Because in " q is (N, P)-semi generic", not "whole N " is meaningful, just $N \cap \omega_{1}$, the set $N \cap P$ and the set of P-names of countable ordinals which
belong to N, hence (for "reasonably closed N ") this depends only on $N \cap 2^{|P|}$ (even $|P|^{<\kappa}$, when $P \models \kappa$-c.c.).
2) Assume $N^{1} \notin K_{P}^{\text {neg }}$. If $p \in P \cap N^{0}$ then $p \in P \cap N^{1}$, hence there is $q \in P$ which is (N^{1}, P)-semi generic, $q \geq p$. But as $N^{0} \prec N^{1}$ have the same countable ordinals, q is also (N^{0}, P)-semi generic.
1.6 Fact. Q is a semiproper forcing.

Proof. Let $Q, P \in M \prec\left(H\left(\lambda_{3}\right), \in,<_{\lambda_{3}}^{*}\right), M$ countable. Let $p \in Q \cap M$. It is enough to prove that there is a q such that $p \leq q \in Q$ and q is semi generic for (M, Q).
Let $\delta=M \cap \omega_{1}$. By Fact 1.4 there is M_{1}, with $M \prec M_{1} \prec\left(H\left(\lambda_{3}\right), \in,<_{\lambda_{3}}^{*}\right)$, $\left\|M_{1}\right\|=\aleph_{0}, M_{1} \cap \omega_{1}=\delta$ and $M_{1} \upharpoonright H\left(\lambda_{2}\right) \in K_{P}^{\text {neg }} \cup K_{P}^{\text {pos }}$. We can find by induction on n a condition $q_{n}=\left\langle N_{i}: i \leq \delta_{n}\right\rangle \in Q \cap M_{1}, q_{n} \leq q_{n+1}, q_{0}=p$, such that: for every Q-name $\underset{\sim}{\gamma}$ of an ordinal which belongs to M_{1} for some natural number $n=n(\underset{\sim}{\gamma})$ and ordinal $\alpha(\underset{\sim}{\gamma}) \in M_{1}$ we have $q_{n} \vdash_{Q} " \underset{\sim}{\gamma}=\alpha(\underset{\sim}{\gamma})$ " and for every dense subset \mathcal{I} of Q which belongs to M_{1}, for some $n, q_{n} \in \mathcal{J}$. Now $q \stackrel{\text { def }}{=}\left\langle N_{i}: i \leq \delta^{*}\right\rangle$ with $\delta^{*}=\bigcup_{n<\omega} \delta_{n}$ and $N_{\delta^{*}} \stackrel{\text { def }}{=} \bigcup_{i<\delta^{*}} N_{i}$ will be $\left(M_{1}, Q\right)$ generic if it is a condition in Q at all, as for this the least obvious part is $N_{\delta^{*}} \in K_{P}^{\mathrm{neg}} \cup K_{P}^{\text {pos }}$. Clearly (by 1.4) for each $x \in H\left(\lambda_{2}\right), \mathcal{I}_{x}=\left\{\left\langle M_{i}^{\prime}: i \leq j\right\rangle \in\right.$ $\left.Q: x \in \bigcup_{i \leq j} M_{i}^{\prime}\right\}$ is a dense subset of Q and $\left[x \in M_{1} \cap H\left(\lambda_{2}\right) \Rightarrow \mathcal{I}_{x} \in M_{1}\right]$ and $\left\langle M_{i}^{\prime}: i \leq j\right\rangle \in Q \cap M_{1} \Rightarrow \bigcup_{i \leq j} M_{i}^{\prime} \subseteq M_{1}$ (as M_{i}^{\prime}, j are countable), and so $\bigcup_{i<\delta^{*}} N_{i}=M_{1} \upharpoonright H\left(\lambda_{2}\right)$, which belongs to $K_{P}^{\text {neg }} \cup K_{P}^{\text {pos }}$ by the choice of M_{1}. Now $q \geq q_{0}=p$; and, as q is $\left(M_{1}, Q\right)$-generic it is $\left(M_{1}, Q\right)$-semi generic hence as in the proof of 1.5 (or see X2.3(9)), as $M \prec M_{1}, M \cap \omega_{1}=M_{1} \cap \omega_{1}$, we know q is also (M, Q)-semi generic, as required. By the way, necessarily $\delta^{*}=\delta . \square_{1.6}$
1.7 Conclusion. [SPFA] There is a sequence $\left\langle N_{i}^{*}: i<\omega_{1}\right\rangle$ such that

$$
\left(\forall \alpha<\omega_{1}\right)\left[\left\langle N_{i}^{*}: i \leq \alpha\right\rangle \in Q\right]
$$

Proof. By Fact 1.6 and SPFA (and as $\mathcal{I}_{\alpha_{0}}=\left\{\left\langle N_{i}: i \leq \alpha\right\rangle: \alpha \geq \alpha_{0}\right\}$ is a dense subset of Q for every $\alpha_{0}<\omega_{1}$; which can be proved by induction on α_{0} : for
$\alpha_{0}=0$ or $\alpha_{0}=\beta+1$ by Fact 1.4 , for limit α_{0} by the proof of Fact 1.6 or simpler).
1.8 Observation. $i \subseteq N_{i}^{*}$ for $i<\omega_{1}$.

Proof. As $\left[i<j \Rightarrow N_{i} \subseteq N_{j}\right]$ and as $N_{i}^{*} \in N_{i+1}^{*}$ (see the definition of Q), we can prove this statement by induction on i.
1.9 Definition. $S \stackrel{\text { def }}{=}\left\{i<\omega_{1}: N_{i}^{*} \in K_{P}^{\text {neg }}\right\}$.
1.10 Fact. S is not stationary.

Proof. Suppose it is; then for every $i \in S$ for some $p_{i} \in N_{i}^{*} \cap P$ there is no (N_{i}^{*}, P)-semi-generic q such that $p_{i} \leq q \in P$. By Fodor's lemma (as N_{i}^{*} is increasing continuous and each N_{i}^{*} is countable), for some $p \in \bigcup_{i<\omega_{1}} N_{i}^{*} \cap P$ the set $S_{p} \stackrel{\text { def }}{=}\left\{i \in S: p_{i}=p\right\}$ is stationary.

If $p \in G \subseteq P$ and G generic over V, then in $V[G]$ we can find an increasing continuous sequence $\left\langle N_{i}: i<\omega_{1}\right\rangle$ of countable elementary submodels of $\left(H^{V}\left(\lambda_{2}\right), \in,<_{\lambda_{2}}^{*}, G\right)$ (with G as a predicate), $N_{i}^{*} \subseteq N_{i}$. As P preserves stationarity of subsets of ω_{1}, and $E=\left\{i: N_{i}^{*} \cap \omega_{1}=N_{i} \cap \omega_{1}=i\right\}$ is a club of ω_{1} (in $V[G]$), and $S_{p} \subseteq \omega_{1}$ is stationary (in V, hence in $V[G]$), it follows that there is $\delta \in S_{p}$ with $N_{\delta}^{*} \cap \omega_{1}=N_{\delta} \cap \omega_{1}=\delta$. As this holds in $V[G], p \in G$, clearly there is $q \in G, q \geq p$, such that $q \Vdash$ " δ and $\left\langle N_{i}: i<\omega_{1}\right\rangle$ are as above". As $q \Vdash$ " $N_{\delta}^{*} \subseteq N_{\delta}^{*}[G] \subseteq{\underset{\sim}{N}}_{\delta}$ and $\delta \in E$ ", also $q \Vdash$ " $N_{\delta}^{*} \cap \omega_{1}=N_{\delta}^{*}[G] \cap \omega_{1}$ ", so q is $\left(N_{\delta}^{*}, P\right)$-semi generic, contradiction to the definition of S and K_{P}^{neg} and the choice of $p_{\delta}=p$.

1.11 Fact. P is semiproper.

Proof. As S is not stationary, for some club $C \subseteq \omega_{1},(\forall \delta \in C) N_{\delta}^{*} \in K_{P}^{\text {pos }}$. Now if $M \prec\left(H\left(\lambda_{3}\right), \in,<_{\lambda_{3}}^{*}\right)$ is countable, and $P,\left\langle N_{i}^{*}: i<\omega_{1}\right\rangle, C$ belong to M, then $M \cap \bigcup_{i<\omega_{1}} N_{i}^{*}=N_{\delta}^{*}$ for some $\delta \in C$; hence $N_{\delta}^{*} \subseteq M \upharpoonright H\left(\lambda_{2}\right)$; as both N_{δ}^{*}
and $M \upharpoonright H\left(\lambda_{2}\right)$ are elementary submodels of $\left(H\left(\lambda_{2}\right), \in,<_{\lambda_{2}}^{*}\right)$ we get

$$
N_{\delta}^{*} \prec M \upharpoonright H\left(\lambda_{2}\right) \prec\left(H\left(\lambda_{2}\right), \in,<_{\lambda_{2}}^{*}\right) .
$$

Clearly $N_{\delta}^{*} \cap \omega_{1}=\delta=M \cap \omega_{1}$. As $M \upharpoonright H\left(\lambda_{2}\right)$ is countable and by the meaning of " $N_{\delta}^{*} \in K_{P}^{\text {pos" }}$ we have $M \upharpoonright H\left(\lambda_{2}\right) \notin K_{P}^{\text {neg }}$, i.e., for every $p \in P \cap M(=P \cap$ $\left.\left.\left(M \upharpoonright H\left(\lambda_{2}\right)\right)\right)\right)$ there is an $\left(M \upharpoonright H\left(\lambda_{2}\right), P\right)$-semi-generic $q, p \leq q \in P$. Necessarily q is (M, P)-semi-generic (as in the proof of $1.5(1)$); this is enough. $\square_{1.11,1.3,1.2}$
1.12 Conclusion. SPFA implies $\mathcal{P}\left(\omega_{1}\right) / \mathcal{D}_{\omega_{1}}$ is \aleph_{2}-saturated i.e. satisfies the \aleph_{2}-c.c.

Proof. Actually it follows by Foreman Magidor Shelah [FMSh:240], and Theorem 1.2, but as this is a book we give a proof.
Let $\Xi \subseteq \mathcal{P}\left(\omega_{1}\right)$ be a maximal antichain modulo $\mathcal{D}_{\omega_{1}}$. Remember seal $(\Xi)=$ $\left\{\left\langle\left(\gamma_{i}, a_{i}\right): i \leq \alpha\right\rangle: \alpha<\omega_{1}, a_{i}\right.$ is a countable subset of Ξ, non empty for simplicity, $\gamma_{i}<\omega_{1}, a_{i}$ and γ_{i} are strictly increasing continuous in i, and for limit $\delta \leq \alpha$ we have $\left.\gamma_{\delta} \in \bigcup_{i<\delta} \bigcup_{A \in a_{i}} A\right\}$. This forcing is S-complete for every $S \in \Xi$ (see XIII 2.8) hence does not destroy the stationarity of subsets of ω_{1}. Hence by $1.3 \operatorname{seal}(\Xi)$ is semiproper.
Now $\mathcal{I}_{i}=\{\bar{a} \in \operatorname{seal}(\Xi): \ell g(\bar{a}) \geq i\}$ is a dense subset of $\operatorname{seal}(\Xi)$. So by SPFA there is a directed $G \subseteq \operatorname{seal}(\Xi)$ satisfying $\bigwedge_{i<\omega_{1}} G \cap \mathcal{I}_{i} \neq \emptyset$. Let $\bigcup G$ be $\left\langle\left(\gamma_{i}, a_{i}\right): i<\omega_{1}\right\rangle$. We claim $\Xi=\bigcup\left\{a_{i}: i<\omega_{1}\right\}$. Let $C \stackrel{\text { def }}{=}\left\{\gamma_{i}: i=\gamma_{i}=\omega i\right.$ is a limit $\}, a_{i}=\left\{A_{\alpha}: \alpha<\omega i\right\}, A \stackrel{\text { def }}{=}\left\{\delta<\omega_{1}:(\exists i<\delta)\left(\delta \in A_{i}\right)\right\}$. Now if $S \in \Xi \backslash\left\{A_{i}: i<\omega_{1}\right\}$, then for all $i<\omega_{1}, S \cap A_{i}$ is nonstationary, so also $S \cap A$ is nonstationary, which is impossible as $C \subseteq A$ and C is a club.
$\square_{1.12}$

§2. SPFA Does Not Imply PFA ${ }^{+}$

It is folklore that in the usual forcing for $\mathrm{PFA}(=\mathrm{Ax}[$ proper] $)$ (or SPFA $=$ $\mathrm{Ax}[$ semiproper $]$) any subsequent reasonably closed forcing preserves PFA (or

SPFA). Magidor and Beaudoin refine this, showing that starting from a model of PFA, forcing a stationary subset of $\left\{\delta<\omega_{2}: \operatorname{cf}(\delta)=\aleph_{0}\right\}$ by
$P=\left\{h: h\right.$ a function from some $\alpha<\omega_{2}$ to $\{0,1\}$ such that:
for all $\delta \in S_{1}^{2}$ we have : $h^{-1}(\{1\}) \cap \delta$ is not stationary in $\left.\delta\right\}$
(ordered by inclusion) produces a stationary subset of $\left\{\delta<\omega_{2}: \operatorname{cf}(\delta)=\aleph_{0}\right\}$ which does not reflect, and this still preserves PFA but easily makes PFA ${ }^{+}$ (and SPFA) fail.
We can also start with $V \models$ PFA, and force $h: \omega_{2} \rightarrow \omega_{1}$ such that no $h^{-1}(\{\alpha\}) \cap$ δ is stationary in δ, where $\alpha<\omega_{1}, \delta<\omega_{2}$, and $\operatorname{cf}(\delta)=\aleph_{1}$.

It had remained open whether $\mathrm{SPFA} \vdash \mathrm{SPFA}^{+}$and we present here the solution, first starting with a supercompact limit of supercompacts and then only from one supercompact. I thank Todorcevic and Magidor for asking me this question.
2.1 Theorem. Suppose κ is a supercompact limit of supercompacts. Then, in some generic extension, SPFA holds but PFA^{+}fails.

The proof is presented in 2.3-2.9.
Overview of the Proof. Let f^{*} be a Laver diamond for κ (see Definition VII 2.8, as Laver shows w.l.o.g. it exists). Our proof will unfold as follows. We shall first define a semiproper iteration \bar{Q}^{κ}. Now $\Vdash_{P_{\kappa}}$ "SPFA" is as in the proof of X 2.8. We then define in $V^{P_{\kappa}}$ a proper forcing notion R and an R-name $\underset{\sim}{S}, \Vdash_{R}$ "S $S \subseteq \omega_{1}$ is stationary". We then show, that for no directed $G \subseteq R$ in $V^{P_{\kappa}}$ is $\underset{\sim}{S}[G]$ well defined (i.e., $\left(\forall i<\omega_{1}\right)(\exists p \in G)\left[p \Vdash_{R}\right.$ " $i \in \underset{\sim}{S}$ " or $p \Vdash_{R}$ " $i \notin \underset{\sim}{S}$ "]), and stationary (i.e., $\left\{i<\omega_{1}:(\exists p \in G) p \Vdash\right.$ " $\left.i \in \underset{\sim}{S} "\right\}$ is stationary).

Before we start our iteration, we will define several forcing notions (which we will use later when we construct R, and also during the iteration), and we will explain some basic properties of these forcing notions.

Convention. Trees T will be such that members are sequences with the order being \triangleleft (initial segments) and T closed under initial segments so $\lg (\eta)$ is the level of η in T. But later we will use trees T whose members are sets of ordinal
ordered by initial segments, so we can identify a name η if η is strictly increasing sequence of ordinals, $a=\operatorname{Rang}(\eta)$.
2.2 Fact. Let T be a tree of height $\omega_{1}, \kappa \geq \aleph_{1}$ with $\kappa=2^{\aleph_{2}}$ if not said otherwise. Let $P=R_{1} *{\underset{\sim}{2}}_{2}$, where R_{1} is Cohen forcing and R_{2} is $\operatorname{Levy}\left(\aleph_{1}, \kappa\right)$ (computed in $V^{R_{1}}$). Then every ω_{1}-branch of T in V^{P} is already in V.

Proof. Well-known and included essentially in the proof of III 6.1.
2.3 Definition. Let T be a tree of height ω_{1} with \aleph_{1} nodes and $\leq \aleph_{1}$ many ω_{1}-branches $\left\{B_{i}: i<i^{*} \leq \omega_{1}\right\}$ and let $\left\{y_{i}: i<\omega_{1}\right.$ and $\left[i<2 i^{*} \Rightarrow i\right.$ odd $\left.]\right\}$ list the members of T such that: $\left[y_{j}<_{T} y_{i} \Rightarrow j<i\right]$. Let B_{i}^{*} be: B_{j} if $i=2 j$, $j<i^{*}$ or $\left\{y_{j}\right\}$ if y_{j} is defined. Let $B_{j}^{\prime}=B_{j}^{*} \backslash \bigcup_{i<j} B_{i}^{*}, x_{j}=\min \left(B_{j}^{\prime}\right)$ if $B_{j}^{\prime} \neq \emptyset$ so that the sets B_{j}^{\prime} are disjoint nonempty end segments of some branch $B_{j^{\prime}}$, or the singletons $\left\{y_{j}\right\}$ or \emptyset; let $B_{j}^{\prime} \neq \emptyset \Leftrightarrow i \in w$ and so $\left\langle B_{j}^{\prime}: j \in w\right\rangle$ form a partition of T. Let $A=\left\{x_{i}: i \in w\right\}$ (so A does not include any linearly ordered uncountable set). The forcing "sealing the branches of T " is defined as (see proof of 2.4(3)):
$P_{T}=\{f: f$ a finite function from A to ω, and
if $x<y$ are in $\operatorname{Dom}(f)$, then $f(x) \neq f(y)\}$.
See its history in VII 3.23.
2.4 Lemma. For T, P_{T} as in Definition 2.3:
(1) P_{T} satisfies the c.c.c.
(2) Moreover: If $\left\langle p_{i}: i<\omega_{1}\right\rangle$ are conditions in P, then there are disjoint uncountable sets $S_{1}, S_{2} \subseteq \omega_{1}$ such that: whenever $i<j, i \in S_{1}, j \in S_{2}$, then p_{i} and p_{j} are compatible.
(3) If $G \subseteq P_{T}$ is generic over $V, V[G] \subseteq V^{*}$, and $\aleph_{1}^{V^{*}}=\aleph_{1}^{V}$, then all ω_{1-} branches of T in V^{*} are already in V.

Proof. (1) Follows by (2).
(2) Recall that p and q are incompatible if:
either $p \cup q$ is not a function or there are $\eta \in \operatorname{Dom}(p), \nu \in \operatorname{Dom}(q)$ such that $p(\eta)=q(\nu)$, and η and ν are distinct but comparable, i.e. $\eta<_{T} \nu$ or $\nu<_{T} \eta$.

Let $\left\langle p_{i}: i<\omega_{1}\right\rangle$ be a sequence of conditions in P_{T}. By the usual Δ-system argument we may assume that for all $i, j<\omega_{1} p_{i} \cup p_{j}$ is a function, and we may also assume that $\left|\operatorname{Dom}\left(p_{i}\right)\right|=n$ for all $i<\omega_{1}$. We will now get the desired result by applying the following subclaim n^{2} times:
2.4A Subclaim. If $\left\langle\eta_{\alpha}^{1}: \alpha \in S_{1}\right\rangle,\left\langle\eta_{\alpha}^{2}: \alpha \in S_{2}\right\rangle$ are lists of members of A without repetitions, S_{1}, S_{2} are uncountable, then there are uncountable sets $S_{1}^{\prime} \subseteq S_{1}, S_{2}^{\prime} \subseteq S_{2}$ such that: $\alpha \in S_{1}^{\prime}, \beta \in S_{2}^{\prime} \Rightarrow \eta_{\alpha}^{1}, \eta_{\beta}^{2}$ are incomparable.

Proof of the subclaim. for $\ell=1,2$ and $\zeta<\omega_{1}$, let:

$$
L_{\ell}(\zeta)=\left\{\eta_{\alpha}^{\ell} \upharpoonright \zeta: \alpha<\omega_{1}, \lg \left(\eta_{\alpha}^{\ell}\right) \geq \zeta\right\}
$$

Let $\zeta_{\ell}=\min \left\{\zeta: L_{\ell}(\zeta)\right.$ is uncountable $\}$, and if all $L_{\ell}(\zeta)$ are countable, let $\zeta_{\ell}=\omega_{1}$.

We now distinguish 4 cases:
Case 1: $\zeta_{1}<\zeta_{2}$: Since $L_{2}\left(\zeta_{1}\right)$ is countable, for some η the set $S_{1}^{\prime} \stackrel{\text { def }}{=}\left\{\alpha<\omega_{1}\right.$: $\ell \mathrm{g}\left(\eta_{\alpha}^{2}\right)>\zeta_{1}$ and $\left.\eta<_{T} \eta_{\alpha}^{2}\right\}$ is uncountable (as $\left.\aleph_{1}=\operatorname{cf}\left(\aleph_{1}\right)>\aleph_{0}\right)$, and as $L_{1}\left(\zeta_{1}\right)$ is uncountable, $S_{2}^{\prime} \stackrel{\text { def }}{=}\left\{\alpha<\omega_{1}: \ell \lg \left(\eta_{\alpha}^{1}\right) \geq \zeta\right.$ and $\left.\neg \eta<_{T} \eta_{\alpha}^{1}\right\}$ is uncountable. So $S_{1}^{\prime}, S_{2}^{\prime}$ as required. We are done.
Case 2: $\zeta_{2}<\zeta_{1}$: Similar.
Case 3: $\zeta_{1}=\zeta_{2}<\omega_{1}$: By induction on $\gamma<\omega_{1}$ choose $\beta(1, \gamma)$ and $\beta(2, \gamma)$ such that:

$$
\begin{gathered}
\ell \mathrm{g}\left(\eta_{\beta(1, \gamma)}^{1}\right) \geq \zeta_{1} \text { and } \eta_{\beta(1, \gamma)}^{1} \upharpoonright \zeta_{1} \notin\left\{\eta_{\beta\left(\ell, \gamma^{\prime}\right)}^{\ell} \upharpoonright \zeta_{1}: \gamma^{\prime}<\gamma, \ell=1,2\right\} \\
\lg \left(\eta_{\beta(2, \gamma)}^{2}\right) \geq \zeta_{2} \text { and } \eta_{\beta(2, \gamma)}^{2} \upharpoonright \zeta_{2} \notin\left\{\eta_{\beta\left(\ell, \gamma^{\prime}\right)}^{\ell} \upharpoonright \zeta_{2}: \gamma^{\prime}<\gamma, \ell=1,2\right\} \\
\cup\left\{\eta_{\beta(1, \gamma)}^{1} \upharpoonright \zeta_{1}\right\}
\end{gathered}
$$

and let $S_{\ell}^{\prime}=\left\{\beta(\ell, \gamma): \gamma<\omega_{1}\right\}, \ell=1,2$.
Case 4: $\zeta_{1}=\zeta_{2}=\omega_{1}$ and no earlier case. For $\ell=1,2, \zeta<\omega_{1}$ let $A_{\zeta}^{\ell}=\left\{\eta \in T: \ell g(\eta)=\zeta\right.$ and there are \aleph_{1} many α with $\left.\eta_{\alpha}^{\ell} \upharpoonright \zeta=\eta\right\}$, clearly $A_{\zeta}^{\ell} \neq \emptyset$.

So $T^{\ell} \stackrel{\text { def }}{=} \bigcup_{\zeta<\omega_{1}} A_{\zeta}^{\ell}$ is a downward closed subtree of T, possibly only a single branch.
Subcase 4a: For some ℓ and $\zeta,\left|A_{\zeta}^{\ell}\right|>1$. Without loss of generality $\left|A_{\zeta}^{1}\right|>1$. Let $\nu_{2} \in A_{\zeta}^{2}, \nu_{1} \in A_{\zeta}^{1} \backslash\left\{\nu_{2}\right\}$, for $\ell=1,2$ we let $S_{\ell}=\left\{\alpha<\omega_{1}: \nu_{\ell}<_{T} \eta_{\alpha}^{\ell}\right\}$.
Subcase $4 b$: For each $\ell=1,2$ the set $T^{\ell}=\bigcup_{\zeta<\omega_{1}} A_{\zeta}^{\ell}$ is a branch, say $B_{i(\ell)}$. If $i(1) \neq i(2)$ then we can again find ν_{1} and ν_{2} as in case 4 a . So let $i=i(1)=i(2)$. It is impossible that uncountably many η_{α}^{ℓ} are on B_{i} (by the choice of A in Definition 2.3), so we may assume that no η_{α}^{ℓ} is on B_{i}. By induction we can find uncountable sets $S_{1}^{\prime} \subseteq S_{1}, S_{2}^{\prime} \subseteq S_{1}$ and sequences $\left\langle\nu_{\alpha}^{1}: \alpha \in S_{1}^{\prime}\right\rangle$, $\left\langle\nu_{\alpha}^{2}: \alpha \in S_{2}^{\prime}\right\rangle$ such that: $\nu_{\alpha}^{\ell} \in B_{i}, \nu_{\alpha}^{\ell}<_{T} \eta_{\alpha}^{\ell}, \eta_{\alpha}^{\ell} \upharpoonright\left(\ell g\left(\nu_{\alpha}^{\ell}\right)+1\right) \notin B_{i}$, and $\left\{\nu_{\alpha}^{1}: \alpha \in S_{1}^{\prime}\right\} \cap\left\{\nu_{\alpha}^{2}: \alpha \in S_{2}^{\prime}\right\}=\emptyset$. This shows that for $\alpha \in S_{1}^{\prime}, \beta \in S_{2}^{\prime}$ the nodes η_{α}^{1} and η_{α}^{2} are incomparable. So we have proved the subclaim and hence 2.4(2).

Proof of 2.4(3). Since $T=\bigcup_{j<\omega_{1}} B_{j}^{\prime}$ is a partition of T, we can for each $y \in T$ find a unique $j=j(y)$ with $y \in B_{j}^{\prime}$. Let $h(y)=\min B_{j(y)}^{\prime} \in A$. In $V^{P_{T}}$ we have a generic function $g: A \rightarrow \omega$, and we can extend it to a function $g: T \rightarrow \omega$ by demanding $g(y)=g(h(y))$. Now let B^{*} be an ω_{1}-branch of T in some \aleph_{1-} preserving extension of $V^{P_{T}}$. Clearly $g\left\lceil B^{*}\right.$ takes some value uncountably many times, but $g\left(y_{1}\right)=g\left(y_{2}\right) \& y_{1}<_{T} y_{2}$ implies $j\left(y_{1}\right)=j\left(y_{2}\right)$, so $B^{*} \subseteq B_{j}$ for some j.
2.5 Fact. There is a family $\left\langle\eta_{\delta}: \delta<\omega_{1}, \delta\right.$ limit \rangle such that:
(A) $\eta_{\delta}: \omega \rightarrow \delta$, and $\sup \left\{\eta_{\delta}(n): n<\omega\right\}=\delta$
(B) For all limit $\delta_{1}, \delta_{2}<\omega_{1}$ and $n_{1}, n_{2}<\omega$ we have: if $\eta_{\delta_{1}}\left(n_{1}\right)=\eta_{\delta_{2}}\left(n_{2}\right)$, then $n_{1}=n_{2}$ and $\eta_{\delta_{1}} \upharpoonright n_{1}=\eta_{\delta_{2}} \upharpoonright n_{2}$.
(C) if $m<\ell<\omega$ and $\delta<\omega_{1}$ is limit, then $\eta_{\delta}(m)+\omega \leq \eta_{\delta}(\ell)+\omega$.

Proof. Easy. Let $H:{ }^{\omega>} \omega_{1} \rightarrow \omega_{1}$ be a 1-1 map such that for all $\eta{ }^{\omega>} \omega_{1}$ we have $H(\eta) \in[\operatorname{maxRang}(\eta), \operatorname{maxRang}(\eta)+\omega$) (and can add $\nu \triangleleft \eta \Rightarrow H(\nu)<$ $H(\eta))$.
Now for any limit ordinal δ, let $\alpha_{0}<\alpha_{1}<\cdots$ be cofinal in δ, and define η_{δ}
inductively by

$$
\eta_{\delta}(n)=H\left(\eta_{\delta} \mid n^{\wedge}\left\langle\alpha_{n}\right\rangle\right) .
$$

2.6 Definition. Assume that $\left\langle\eta_{\delta}: \delta<\omega_{1}, \delta\right.$ limit \rangle is as above.
(1) For $\eta \in{ }^{\omega>} \omega_{1}$, let $E_{\eta}=\left\{\delta: \eta \unlhd \eta_{\delta}\right\}$.
(2) Let $\mathbf{Z}=\left\{\eta \in{ }^{\omega>} \omega_{1}: E_{\eta}\right.$ is stationary $\}, C_{0}=\left\{\delta<\omega_{1}:(\forall n<\omega) \eta_{\delta} \upharpoonright n \in\right.$ Z $\}$.
(3) Let $\mathbf{Z}^{*}=\left\{\eta \in \mathbf{Z}:\left(\exists^{\aleph_{1}} i<\omega_{1}\right) \eta^{\wedge}\langle i\rangle \in \mathbf{Z}\right\}$.
(4) Let $C^{*}=\left\{\delta \in C_{0}:\left(\exists^{\infty} n\right) \eta_{\delta} \upharpoonright n \in \mathbf{Z}^{*}\right\}$.
(5) Let $\mathbf{Z}_{0}=\left\{\eta \in \mathbf{Z}:(\forall k<\ell g(\eta)) \eta \upharpoonright k \notin \mathbf{Z}^{*}\right\}$

2.6A Fact.

(1) \mathbf{Z} is closed under initial segments, so \mathbf{Z} is a tree (of height ω). \mathbf{Z}^{*} is the set of those nodes of \mathbf{Z} which have uncountably many successors.
(2) \mathbf{Z} defines a natural topology on C_{0}, if we take the sets E_{η} as basic neighborhoods.
(3) C_{0} and even C^{*} contains a club of ω_{1}.
(4) For every finite $u \subseteq \mathbf{Z} \backslash \mathbf{Z}_{0}$ there is $\rho \in \mathbf{Z}$ which is \triangleleft-incomparable with every $\eta \in u$ moreover $\rho \in \mathbf{Z} \backslash \mathbf{Z}_{0}$.

Proof. (1) and (2) should be clear.
For (3), let χ be some large enough regular cardinal. If $\omega_{1} \backslash C^{*}$ as stationary, we could find a countable elementary submodel $N \prec(H(\chi), \epsilon)$ such that $\delta \stackrel{\text { def }}{=} N \cap \omega_{1} \notin C^{*}$ and $\left\langle\eta_{\delta}: \delta<\omega_{1}\right.$ limit \rangle belongs to N (hence $\left\langle E_{\eta}: \eta \in{ }^{\omega>}\left(\omega_{1}\right)\right\rangle$, $\mathbf{Z}, C_{0}, \mathbf{Z}^{*}, C^{*}, \mathbf{Z}_{0}$ belong to $\left.N\right)$. Assume that for some $n_{0}<\omega$ for all $n \in\left(n_{0}, \omega\right)$ we have $\eta_{\delta} \upharpoonright n \notin \mathbf{Z}^{*}$. So the set

$$
Y \stackrel{\text { def }}{=}\left\{\nu \in \mathbf{Z}: \nu \unlhd \eta_{\delta} \upharpoonright n_{0} \text { or: } \eta_{\delta} \upharpoonright n_{0} \unlhd \nu \text { and }\left(\forall k \in\left(n_{0}, \ell \mathrm{~g}(\nu)\right)\right) \nu \upharpoonright k \notin \mathbf{Z}^{*}\right\}
$$

is a subtree of \mathbf{Z} with countable splitting, hence is countable. Let $\delta^{\prime}=\sup \{\nu(k)$: $\nu \in Y, k \in \operatorname{Dom}(\nu)\}$. Since $Y \in N$, also $\delta^{\prime} \in N$, but $(\forall k)\left[\eta_{\delta} \upharpoonright k \in Y\right]$, so $\eta_{\delta}(k) \leq \delta^{\prime}<\delta$, contradicting $\delta=\sup \left\{\eta_{\delta}(k): k<\omega\right\}$.
(4) So if $u \subseteq \mathbf{Z} \backslash \mathbf{Z}_{0}$ is finite, let $\eta \in u$ be of minimal length and as $\eta \notin \mathbf{Z}_{0}$ there is $\nu \triangleleft \eta$, such that $\nu \in \mathbf{Z}^{*}$, so for some $i<\omega_{1}, \rho \stackrel{\text { def }}{=} \nu^{\wedge}\langle i\rangle \in \mathbf{Z}$ and ρ is \triangleleft-incomparable with every $\eta^{\prime} \in u$ and $\rho \notin \mathbf{Z}_{0}$ as $\nu \triangleleft \rho, \nu \in \mathbf{Z}^{*}$. $\quad \square_{2.6 A}$

From \mathbf{Z} we can now define the forcing notion R_{4}, to be used below:

2.6B Definition.

$R_{4}=\left\{(u, w): w\right.$ a finite set of limit ordinals $<\omega_{1}, u$ a finite subset of $\mathbf{Z} \backslash \mathbf{Z}_{0}$, and $w \cap E_{\eta}=\emptyset$ for $\left.\eta \in u\right\}$.
with the natural order: $\left(u_{1}, w_{1}\right) \leq\left(u_{2}, w_{2}\right)$ iff $u_{1} \subseteq u_{2} \& w_{1} \subseteq w_{2}$.
Note that $w \cap E_{\eta}=\emptyset$ just means that for all $\delta \in w, \eta \nsubseteq \eta_{\delta}$. Actually $\eta=\eta_{\delta}$ never occurs as $[\eta \in w \Rightarrow \ell \mathrm{~g}(\eta)<\omega]$ and $\left[\delta \in u \Rightarrow \ell \mathrm{~g}\left(\eta_{\delta}\right)=\omega\right]$.
So we have that (u, w) and (u^{\prime}, w^{\prime}) are incompatible iff ($u \cup u^{\prime}, w \cup w^{\prime}$) is not in R_{4}, i.e., either there is $\eta \in u, \delta \in w^{\prime}$ such that $\eta \unlhd \eta_{\delta}$, or there are such $\eta \in u^{\prime}$, $\delta \in w$.
R_{4} produces a generic set ${\underset{\sim}{S}}^{4}=\bigcup\left\{w:(\exists u)\left[(u, w) \in{\underset{\sim}{R}}^{G_{4}}\right]\right\}$ (i.e. this is an $R_{4^{-}}$ name), which can easily be shown to be a stationary subset of ω_{1} (in $V^{R_{4}}$, see $2.6 \mathrm{E}(1))$ (actually $V\left[{\underset{\sim}{S}}^{4}\right]=V\left[{\underset{\sim}{R_{4}}}\right]$).
2.6C Fact. R_{4} satisfies the \aleph_{1}-c.c.; in fact for every \aleph_{1} conditions there are \aleph_{1} pairwise compatible (and more).

Proof. Let $\left(u_{i}, w_{i}\right) \in R_{4}$ for $i<\omega_{1}$. Let $v_{i} \stackrel{\text { def }}{=} \bigcup\left\{\operatorname{Rang}(\eta): \eta \in u_{i}\right\}$.
Thinning out to a Δ-system we may assume that there are $\alpha<\omega_{1}, w^{*} \subseteq \alpha$, $v^{*} \subseteq \alpha, u^{*} \subseteq{ }^{\omega>} \alpha$ such that for all $i<\omega_{1} \backslash \alpha$,

$$
w_{i} \cap \alpha=w^{*}, \quad v_{i} \cap \alpha=v^{*}, \quad u_{i} \cap^{\omega>} \alpha=u^{*}
$$

and for all $i \neq j: w_{i} \cap w_{j}=w^{*}, v_{i} \cap v_{j}=v^{*}$ and $u_{i} \cap u_{j}=u^{*}$. So $\eta \in u_{j} \backslash u^{*} \Rightarrow$ $\operatorname{maxRang}(\eta)>\alpha$. We may also assume that none of the v_{i} or w_{i} is a subset of α, and thinning out further we may also assume that for all $i<j$ we have $\alpha<\max \left(w_{i}\right)<\min \left(v_{j} \backslash \alpha\right)$.

Now if $i<j$ and $\left(u_{i}, w_{i}\right)$ and $\left(u_{j}, w_{j}\right)$ are incompatible, then we must have one of the following:
(a) $\left(\exists \eta \in u_{i} \backslash u^{*}\right)\left(\exists \delta \in w_{j}\right) \eta \unlhd \eta_{\delta}$
(b) $\left(\exists \eta \in u_{j} \backslash u^{*}\right)\left(\exists \delta \in w_{i}\right) \eta \unlhd \eta_{\delta}$

Now if if clause (b) holds for $\eta \in u_{j} \backslash u^{*}$ and $\delta \in w_{i}$, this implies $\delta \leq \max \left(w_{i}\right)<$ $\min \left(v_{j} \backslash \alpha\right) \leq \max (\operatorname{Rang}(\eta))<\delta$. [Why? As $\delta \in w_{i}$; by assumption above; as $\eta \in u_{j} \backslash u^{*}$; as $\eta \unlhd \eta_{\delta}$ and the choice of η_{δ} (see $\left.2.5(1)\right)$ respectively.] A contradiction, so clause (a) must hold. Now we claim that: for each $j<\omega_{1}$ the set $s_{j} \stackrel{\text { def }}{=}\left\{i<j: p_{i}\right.$ and p_{j} are incompatible $\}$ is finite.

Why? Assume not; by the above for $i \in s_{j}$ necessarily there are $\eta^{i} \in u_{i} \backslash u^{*}$ and $\delta_{i} \in w_{j}$ such that $\eta^{i} \triangleleft \eta_{\delta_{i}}$. But for $i(0)<i(1)$, both in s_{j}, we get that $\eta^{i(0)}$ and $\eta^{i(1)}$ must be incomparable, since neither of $\operatorname{Rang}\left(\eta^{i(0)}\right)$ and $\operatorname{Rang}\left(\eta^{i(1)}\right)$ can be a subset of the other. Hence all the $\delta_{i}\left(i \in s_{j}\right)$ are distinct - a contradiction as w_{j} is finite.

2.6D Fact.

(1) If $A \subseteq \omega_{1}$ is stationary, $n<\omega$, then there is $\delta \in A$ such that $E_{\eta_{\delta} \upharpoonright n} \cap A$ is stationary.
(2) If $B \subseteq \omega_{1}$ is stationary, then also the set

$$
B^{\prime} \stackrel{\text { def }}{=}\left\{\delta \in B:(\forall n<\omega)\left[E_{\eta_{\delta} \upharpoonright n} \cap B \text { is stationary }\right]\right\}
$$

is stationary, and in fact $B \backslash B^{\prime}$ is nonstationary.
Proof. (1) Using Fodor's lemma we can find a stationary set $A^{\prime} \subseteq A$ and a finite sequence η^{*} such that for all $\delta \in A^{\prime}$ we have $\eta_{\delta} \upharpoonright n=\eta^{*}$. So $A^{\prime} \subseteq A \cap E_{\eta^{*}}=$ $A \cap E_{\eta_{\delta} \mid n}$ for all $\delta \in A^{\prime}$.
(2) Let $A \stackrel{\text { def }}{=} B \backslash B^{\prime}, A_{n} \stackrel{\text { def }}{=}\left\{\delta \in B: E_{\eta_{\delta} \upharpoonright n} \cap B\right.$ is nonstationary $\}$. By (1), each A_{n} must be nonstationary, so also $A=\bigcup_{n} A_{n}$ is nonstationary. $\quad \square_{2.6 D}$
2.6E Fact. Let ${\underset{\sim}{x}}^{4}$ be the R_{4}-name of a subset of ω_{1} defined in 2.6B. Then we have
(1) ${\underset{\sim}{S}}^{4}$ is stationary in $V^{R_{4}}$.
(2) If $A \subseteq \omega_{1}$ is stationary in V, then in $V^{R_{4}}$ there is $\eta \in \mathbf{Z}$ such that $A \cap E_{\eta}$ is stationary and $E_{\eta} \cap{\underset{\sim}{S}}^{4}=\emptyset$.
(3) Every stationary subset of ω_{1} from V has (in $V^{R_{4}}$) a stationary intersection with $\omega_{1} \backslash{\underset{\sim}{S}}^{4}$.

Proof. (1) Easy; for each $p=(u, w) \in R_{4}$ and club $E \in V$ of ω_{1}, as $u \subseteq \mathbf{Z} \backslash \mathbf{Z}_{0}$ is finite there is $\eta \in \mathbf{Z} \backslash \mathbf{Z}_{0}$ which is \triangleleft-incomparable with every $\nu \in u$ (see $2.6 \mathrm{~A}(4))$ so E_{η} is stationary hence we can find $\delta \in E \cap E_{\eta} \backslash(\sup (w)+1)$, so $q=(u, w \cup\{\delta\}) \in R_{4}, p \leq q$ and $q \Vdash_{R_{4}} " S^{4} \cap E \neq \emptyset "$. As R_{4} satisfies the c.c.c. this suffice.
(2) Let A be stationary. By $2.6 \mathrm{~A}(3)$ w.l.o.g. $A \subseteq C^{*}$ and by $2.6 \mathrm{D}(2)$ we may w.l.o.g. assume that $(\forall \delta \in A)(\forall n<\omega)\left[E_{\eta_{\delta} \upharpoonright n} \cap A\right.$ is stationary]. Fix a condition $(u, w) \in R_{4}$. Choose $\delta \in A \backslash w$, then for some large enough $n, E_{\eta_{\delta} \mid n} \cap w=\emptyset$ and $\eta_{\delta} \upharpoonright n \notin \mathbf{Z}_{0}$, so $\left(u \cup\left\{\eta_{\delta} \mid n\right\}, w\right)$ is a condition in R_{4} above $(u, v) \in R_{4}$ and it clearly forces $A \cap E_{\eta_{\delta} \upharpoonright n} \cap{\underset{\sim}{S}}^{4}=\emptyset$.
(3) Follows from (2).
2.7 Definition of the iteration. We define by induction on $\zeta \leq \kappa$ an RCS iteration (see X, §1) $\bar{Q}^{\zeta}=\left\langle P_{i},{\underset{\sim}{2}}_{j}: i \leq \zeta, j<\zeta\right\rangle$, and if $\zeta<\kappa, \bar{Q}^{\zeta} \in H(\kappa)$, which is a semiproper iteration (i.e. for $i<j \leq \zeta$, i non-limit P_{j} / P_{i} is semiproper but for a limit ordinal j the forcing notion ${\underset{\sim}{~}}_{j}$ is not necessarily semiproper) and, if $\zeta=\delta, \delta$ a limit ordinal, also P_{ζ}-names, A_{ζ}, T_{ζ} (of a tree), and $P_{\zeta+1}$-name $W_{\zeta}=\left\langle H_{\alpha}^{\zeta}(a): \alpha \in a \in A_{\zeta}\right\rangle$, as follows:
(a) Suppose ζ is non-limit, let $\kappa_{\zeta}<\kappa$ be the first supercompact $>\left|P_{\zeta}\right|$, so κ_{ζ} is a supercompact cardinal even in $V^{P_{\zeta}}$, and let Q_{ζ} be a semiproper forcing notion of power κ_{ζ} collapsing κ_{ζ} to \aleph_{2} such that $\Vdash_{P_{\zeta} * Q_{\zeta}}$ "any forcing notion not destroying stationary subsets of ω_{1} is semiproper", [it exists e.g. by Lemma 1.3 and X 2.8 but really $Q_{\zeta}=\operatorname{Levy}\left(\aleph_{1},<\kappa_{\zeta}\right)$ (in $V^{P_{\zeta}}$) is okay, as

$$
\Vdash_{P_{\zeta} * Q_{\zeta}} " A x_{\omega_{1}}\left[\aleph_{1}-\text { complete }\right] "
$$

and even $\mathrm{Ax}_{1}\left[\aleph_{1}\right.$-complete] implies (by 1.1) the required statement.]
(b) Suppose ζ is limit, $\underset{\sim}{\zeta}$ will be of the form ${\underset{\sim}{~}}^{a} *{\underset{\sim}{Q}}^{b} *{\underset{\sim}{Q}}^{c}$. Remember that $f^{*}: \kappa \rightarrow H(\kappa)$ is a Laver Diamond (see Definition VII 2.8).

If $f^{*}(\zeta)$ is a P_{ζ}-name, $\Vdash_{P_{\zeta}}$ " $f^{*}(\zeta)$ is a semiproper forcing notion", then let ${\underset{\sim}{C}}_{\zeta}^{a}=f^{*}(\zeta)$. If $f^{*}(\zeta)$ is not like that, let $\underset{\zeta}{Q_{\zeta}^{a}}=$ the trivial forcing.
${\underset{\sim}{\zeta}}_{b}^{b}$ will satisfy the following property:
$(*)$ If $\xi<\zeta, \xi$ is non-limit, $A \in V^{P_{\xi}}, A \subseteq \omega_{1}$, and A is stationary in $V^{P_{\xi}}$ (equivalently in $V^{P_{\zeta}}$) then A is stationary in $V^{P_{\zeta} * Q_{\zeta}^{a} * Q_{\zeta}^{b}}$.
(This property $(*)$ will follow from 2.6 E , it will assure that the iteration remains semiproper)
If ζ is divisible by ω^{2}, we will let ${\underset{\zeta}{\zeta}}_{b}^{b}=\underset{\sim}{Q_{\zeta}^{1}} *{\underset{\zeta}{\zeta}}_{2}^{2} *{\underset{\sim}{\zeta}}_{3}^{3}$. First in $V^{P_{\zeta}}$ choose (see 2.1, 2.3) $Q_{\zeta}^{1}=R_{1} *{\underset{\sim}{R}}_{2} *{\underset{\sim}{P}}_{T_{\zeta}}$, where $T_{\zeta}=\{b: b$ an initial segment of some $\left.a \in \bigcup_{\xi<\zeta} A_{\xi}\right\}$ ordered by being initial segment (for the definition of A_{ξ} see the definition of W_{ξ} below). From the generic subset of Q_{ζ}^{1} (and $P_{\zeta} *{\underset{\sim}{\zeta}}_{a}^{a}$) we can define, for each ω_{1}-branch B of T_{ζ}, a 2-coloring $H_{\alpha}(B)$ of $\omega_{1}: H_{\alpha}(B)=\bigcup\left\{H_{\alpha}^{\zeta}(a): \xi \in a \in B\right.$ and $\zeta>\xi \geq \alpha$ and $H_{\alpha}^{\xi}(a)$ is well defined $\}$. (See the definition of W_{ζ} below, we can say that if $H_{\alpha}(B)$ is not a 2-coloring of ω_{1} we use trivial forcing). Remember 2.4(3).

To define Q_{ζ}^{2}, we need the following concept:
We will say that a function $h:\left[\omega_{1}\right]^{2} \rightarrow 2$ is almost homogeneous if there is a partition $\omega_{1}=\bigcup_{n<\omega} A_{n}$ and an $\ell \in\{0,1\}$ such that for all n the function $h \upharpoonright\left[A_{n}\right]^{2}$ is constantly $=\ell$. We may say h is almost homogeneous with value ℓ.

We choose ${\underset{\sim}{\sigma}}_{\zeta}^{2} \in H(\kappa)$ such that
\otimes if there is $\underset{\sim}{Q} \in H(\kappa)$ such that
(i) $\underset{\sim}{Q}$ is a $P_{\zeta} *{\underset{\sim}{\zeta}}_{a}^{a} *{\underset{\zeta}{\zeta}}_{1}^{1}$-name of a forcing notion
(ii) For every $\xi<\zeta$ the forcing notion $\left(P_{\zeta} * \underset{\sim}{Q_{\zeta}^{a}} *{\underset{\zeta}{\zeta}}_{1}^{1} * \underset{\sim}{Q}\right) / P_{\xi+1}$ is semi proper, (equivalently, preserves stationarity of subsets of ω_{1})
(iii) if, in $V^{P_{\zeta} * Q_{\zeta}^{a} * Q_{\zeta}^{1}}, B$ is a branch of T_{ζ} cofinal † in $\zeta, \alpha<\omega_{1}$, then the coloring $H_{\alpha}(B)$ of ω_{1}, is almost homogeneous in $V P_{\zeta} * Q_{\zeta}^{a} * Q_{\zeta}^{1} * \underline{Q}$
then ${\underset{\sim}{\zeta}}_{\zeta}^{2}$ satisfies this.
Otherwise $\underset{\sim}{Q_{\zeta}^{2}}$ is trivial.

[^0]In $V{ }^{P_{\zeta} * Q_{\zeta}^{a} * Q_{\zeta}^{1} * Q_{\zeta}^{2}}$ we now define a set S_{ζ}, which is supposed to guess the set $\underset{\sim}{S}[G]$. More on $\underset{\sim}{S}$ will be said below (and see "overview").
We let $\alpha \in S_{\zeta}$ if for all the ω_{1}-branches B of T_{ζ} cofinal in ζ (i.e. such that $\bigcup\{a: a \in B, \operatorname{otp}(a)$ a successor ordinal $\}$ is unbounded in ζ) the function $H_{\alpha}(B)$ is almost homogeneous with value 1.
Now we let ${\underset{\sim}{\zeta}}_{\zeta}^{3}$ be the forcing notion which shots a club through the complement of S_{ζ}, unless S_{ζ} includes modulo $\mathcal{D}_{\aleph_{1}}$ some stationary set from $\bigcup_{\xi<\zeta} V^{P_{\xi}}$, in which case Q_{ζ}^{3} will be trivial. This completes the definition of Q_{ζ}^{b} when ζ is divisible by ω^{2}, otherwise Q_{ζ}^{b} is trivial.

We let $\underset{\sim}{Q_{\zeta}}={\underset{\sim}{\zeta}}_{a}^{a} *{\underset{\sim}{\zeta}}_{\zeta}^{b} *{\underset{\sim}{\zeta}}_{c}^{c}$ where $\underset{\sim}{Q_{\zeta}^{c}}$ is the addition of $\left(\aleph_{1}+2^{\aleph_{0}}\right)^{V^{P_{\zeta}}}$ Cohen reals with finite support. Clearly for $\xi<\zeta,\left(P_{\zeta} / P_{\xi+1}\right) * Q_{\zeta}$ preserves stationarity of subsets of ω_{1}, hence it is semiproper (see (a)), so Q_{ζ} is o.k. An alternative to (b): we can demand Q_{ζ}^{a} forces SPFA. If ζ is not divisible by ω^{2} let $\underset{\sim}{Q_{\zeta}}$ be $\underset{\sim}{Q_{\zeta}^{a}} *{\underset{\sim}{\zeta}}_{\zeta}^{b} *{\underset{\sim}{\zeta}}_{c}^{c}$, with $\underset{\sim}{Q_{\zeta}^{a}},{\underset{\sim}{\zeta}}_{b}^{b}$ trivial, ${\underset{\sim}{\zeta}}_{\zeta}^{c}$ as above.
(c) For ζ limit we also have to define W_{ζ} (in $V^{P_{\zeta+1}}$).
(i) W_{ζ} is a function whose domain is $A_{\zeta}=\left\{a: a \subseteq \zeta+1, \zeta \in a \in V^{P_{\zeta}}\right.$, and a is a countable set of limit ordinals and $\left.\xi \in a \Rightarrow a \cap(\xi+1) \in V^{P_{\xi}}\right\}$.
(ii) For $a \in A_{\zeta}, W_{\zeta}(a)=\left\langle H_{\alpha}^{\zeta}(a): \alpha<\operatorname{otp}(a)\right\rangle$, where $H_{\alpha}^{\zeta}(a)$ is a function from $[\operatorname{otp}(a)]^{2}=\left\{\left\{j_{1}, j_{2}\right\}: j_{1}<j_{2}<\operatorname{otp}(a)\right\}$ to $\{0,1\}$ (where otp (a) is the order type of a).
(iii) For every $\xi \in a \in A_{\zeta}$ (check definition of A_{ζ}), $a \cap(\xi+1) \in A_{\xi}$, and for $\alpha<\operatorname{otp}(a \cap(\xi+1)), H_{\alpha}^{\xi}(a \cap(\xi+1))$ is $H_{\alpha}^{\zeta}(a)$ restricted to $[\operatorname{otp}(A \cap(\xi+1))]^{2}$.
(iv) If $a \in A_{\zeta}$, we use the Cohen reals from ${\underset{\sim}{\tau}}_{\mathcal{Q}}^{c}$ to choose the values of $H_{\alpha}^{\zeta}(a)\left(\left\{j_{1}, j_{2}\right\}\right)$ when $\alpha=\operatorname{otp}(a \cap \zeta)$ or $j_{1}=\operatorname{otp}(a \cap \zeta)$ or $j_{2}=$ $\operatorname{otp}(a \cap \zeta)$ that is when not defined implicitly by condition (iii), i.e. by H_{α}^{ξ} (not using the same digit twice (digit from the Cohen reals from \left.${\underset{\sim}{\zeta}}_{\zeta}^{c}\right)$).
(v) $T_{\zeta}\left(\in V^{P_{\zeta}}\right)$ is the tree $\left(\bigcup\left\{A_{\delta}: \delta<\zeta\right.\right.$ a limit ordinal $\left.\},<_{T_{\zeta}}\right),\left(<_{T_{\zeta}}\right.$ is being an initial segment i.e. $a<b$ iff $a=b \cap(\max (a)+1))$.
There is no problem to carry the inductive definition.

Note that we can separate according to whether the cofinality of ζ in $V^{P_{\zeta}}$ is \aleph_{0} or $\geq \aleph_{1}$ (so for a club of $\zeta<\kappa$ we can ask this in V) and in each case some parts of the definition trivialize.
2.7A Toward the proof: Clearly P_{κ} is semiproper, satisfies the κ-c.c., and $\left|P_{\kappa}\right|=$ κ. In $V_{0}=V^{P_{\kappa}}$ let $T^{*}=\bigcup\left\{A_{\delta}: \delta<\kappa\right.$ (limit) $\}$, and let $<_{T^{*}}$ be the order: being initial segment. Let $T=\left\{a: a\right.$ an initial segment of some $\left.b \in T^{*}\right\}$.
So T is a tree, and the $(\alpha+1)$ 'th level of T is $\{\alpha \in T: \operatorname{otp}(a)=\alpha+1\}$. The height of T is ω_{1} (since all elements of T are countable) and all elements of T have $\kappa=\aleph_{2}$ many successors and every member of T belongs to some ω_{1}-branch.

For every ω_{1}-branch B of T we get a family of ω_{1} many coloring functions $H_{\alpha}(B):\left[\omega_{1}\right]^{2} \rightarrow 2$, by letting $H_{\alpha}(B)\left(\left\{j_{1}, j_{2}\right\}\right)=H_{\alpha}{ }^{\max (a)}(a)\left(j_{1}, j_{2}\right)$ for any $a \in B$ with $\operatorname{otp}(a)>\max \left(j_{1}, j_{2}, \alpha\right)$ successor ordinal. Now we want to show that PFA^{+}fails in $V^{P_{\kappa}}$. To this end, we will define a proper forcing notion R and R-name $\underset{\sim}{S}$ of a stationary set of $\omega_{1} . R$ will be obtained by composition. The components of R and of the proof are not new.
2.8 Definition of R. Let $V_{0}=V^{P_{\kappa}}$. Let R_{0} be $\operatorname{Levy}\left(\aleph_{1}, \aleph_{2}\right)$ (in V_{0}). In $V_{1}=V_{0}^{R_{0}}$, let R_{1} be the Cohen forcing; in $V_{2} \stackrel{\text { def }}{=} V_{1}^{R_{1}}$ let R_{2} be $\operatorname{Levy}\left(\aleph_{1}, 2^{\aleph_{2}}\right)$. Let $V_{3}=V_{2}^{R_{2}}$. Let $\left\langle B_{i}: i<i^{*}\right\rangle \in V_{1}$ list the ω_{1}-branches of T in V_{1} and $i_{0}^{*}<i^{*}$ be such that $i<i_{0}^{*} \Leftrightarrow \kappa>\sup \left[\bigcup\left\{a: a \in B_{i}\right\}\right]$. Easily in V_{1}, T has ω_{1}-branches with supremum κ (just build by hand) so really $i_{0}^{*}<i^{*}$. Forcing with $R_{1} *{\underset{\sim}{R}}_{2}$ over V_{1} does not add ω_{1}-branches to T (by 2.2), hence in V_{3} it has $\leq \aleph_{1} \omega_{1}$-branches, so let us essentially specialize it (see $2.4(3)$), using the forcing notion $R_{3}=P_{T}$ from 2.3. Let $V_{4}=V_{3}^{R_{3}}$. Let R_{4} be the forcing defined in 2.6 B , and let $V_{5}=V_{4}^{R_{4}}$. In V^{5} we now define R_{5} : it is the product with finite support of $R_{\alpha, i}^{5}\left(\alpha<\omega_{1}, i_{0}^{*} \leq i<i^{*}\right)$, where the aim of $R_{\alpha, i}^{5}$ is making ω_{1} the union of \aleph_{0} sets, on each of which $H_{\alpha}^{[i]} \stackrel{\text { def }}{=} H_{\alpha}\left(B_{i}\right)$ is constantly 0 if $\alpha \in S^{4}$, constantly 1 if $\alpha \notin S^{4}$ (remember $H_{\alpha}\left(B_{i}\right)$ was defined just before 2.8 and S^{4} was defined from $G_{R_{4}}$), see definition below. See definition 2.6B and Fact 2.6E. Let $V_{6}=V_{5}^{R_{5}}$. So the decision does not depend on i.

Now $R_{\alpha, i}^{5}$ is just the set of finite functions h from ω_{1} to ω so that on each $h^{-1}(\{n\})$ the coloring $H_{\alpha}^{[i]}$ is constantly 0 or constantly 1 , as required above (so some case for all $n<\omega$).

Lastly, let $R=R_{0} * \underset{\sim}{R_{1}} * \underset{\sim}{R_{2}} *{\underset{\sim}{x}}_{3} *{\underset{\sim}{r}}_{4}^{R_{4}} * \underset{\sim}{R}$. We define $\underset{\sim}{S}$ such that ${\underset{\sim}{S}}^{4} \subseteq \underset{\sim}{S} \subseteq{\underset{\sim}{S}}^{4} \cup\left\{\gamma+1: \gamma<\omega_{1}\right\}$ and, if $G \subseteq R$ is directed and $\underset{\sim}{S}[G]$ well defined, then all relevant information is decided; specifically: for the model N of cardinality \aleph_{1} chosen below, for every R-name $\underset{\sim}{\alpha}$ of an ordinal which belongs to N we have $(\exists p \in G)[p$ forces a value to $\underset{\sim}{\alpha}]$ (i.e., what is needed below including a well ordering of ω_{1} of order type ζ_{α} for $\alpha<\omega_{2}$).

2.9 Fact. The forcing R is proper (in V_{0}).

As properness is preserved by composition, we just have to check each R_{i} in V_{i}. The only nontrivial one (from earlier facts) is R_{5}. For this it suffices to show that the product of any finitely many $R_{\alpha, i}^{5}$ satisfies the \aleph_{1}-c.c. Let $m<\omega$, and let the pairs $\left(\alpha_{l}, i_{l}\right)$ for $l<m$ be distinct (so $\alpha_{l}<\omega_{1}, i_{0}^{*} \leq i_{l}<i^{*}$). Note that each $B_{i_{\ell}}$ (an ω_{1}-branch of T) is from V_{1}. So for some $\beta^{*}<\omega_{1}$, $i_{\ell_{1}} \neq i_{\ell_{2}} \Rightarrow B_{i_{\ell_{1}}}, B_{i_{\ell_{2}}}$ have no common member of level $\geq \beta^{*}$. Now we claim that in V_{5} (on $H_{\alpha}^{[i]}$ see in 2.8):
(*) If for each $\ell<m,\left\langle w_{\gamma}^{\ell}: \gamma<\omega_{1}\right\rangle$ is a sequence of pairwise disjoint finite subsets of $\omega_{1} \backslash \beta^{*}$, then for some $\gamma(1), \gamma(2)<\omega_{1}$, for each even $\ell<m$

$$
\left[x \in w_{\gamma(1)}^{\ell} \& y \in w_{\gamma(2)}^{\ell} \Rightarrow H_{\alpha_{\ell}}^{\left[i_{\ell}\right]}(\{x, y\})=0\right]
$$

and for each odd $\ell<m$

$$
\left[x \in w_{\gamma(1)}^{\ell} \& y \in w_{\gamma(2)}^{\ell} \Rightarrow H_{\alpha_{\ell}}^{\left[i_{\ell}\right]}(\{x, y\})=1\right]
$$

Why? First we show that this holds in V_{1} (note: $R_{5} \in V_{1}!$). Because R_{0} is \aleph_{1}-complete, it adds no new ω-sequence of members of V_{0}, hence for some $\zeta<\kappa,\left\{\left\langle\ell, w_{\gamma}^{\ell}\right\rangle: \gamma<\omega, \ell<m\right\}$ belongs to $V^{P_{\zeta}}$ and to $H(\zeta)$. Note that for each $\ell<m$, the sequence $\left\langle w_{\gamma}^{\ell}: \ell<m, \gamma<\omega\right\rangle$ is a sequence of pairwise disjoint subsets of $\omega_{1} \backslash \beta^{*}$ and remember the way we use the Cohen reals to define
the $H_{i}^{\xi}(a)$'s. We can show that for any possible candidate $\left\langle w^{\ell}: \ell<m\right\rangle$ for $\left\langle w_{\varepsilon}^{\ell}: \ell<m\right\rangle$ or even just for a sequence $\left\langle w^{\ell}: \ell<m\right\rangle, w^{\ell} \subseteq w_{\varepsilon}^{\ell}$ (for any $\varepsilon<\omega_{1}$ large enough) for infinitely many $\gamma<\omega$, the conclusion of (*) holds for $(\gamma(1), \gamma(2))=(\gamma, \varepsilon)$.
Clearly (*) implies that any finite product of $R_{\alpha, i}^{5}$ satisfies the \aleph_{1} cc.c if it holds in the right universe $\left(V_{5}\right)$. So for proving the fact we need to show that the subsequent forcing by $R_{1}, R_{2}, R_{3}, R_{4}$ preserves the satisfaction of (*).
The least trivial is why R_{3} preserves it (as R_{2} is \aleph_{1}-complete and as R_{1} and R_{4} satisfy: among \aleph_{1} conditions \aleph_{1} are pairwise compatible (see 2.6(C)).
Recall from 2.4 that for any sequence $\left\langle p_{i}: i<\omega_{1}\right\rangle$ of conditions we can find disjoint uncountable sets S_{1}, S_{2} such that for $i \in S_{1}, j \in S_{2}$ the conditions p_{i} and p_{j} are compatible. (This is also true for R_{1} and R_{4}). We will work in V_{3}. So assume that $\left\langle\underset{\sim}{\underset{\gamma}{\gamma}} \boldsymbol{\ell}: \gamma<\omega_{1}, \ell<m\right\rangle$ is an R_{3}-name of a sequence contradicting property $(*)$ in $V_{3}^{R_{3}}$. For $\gamma<\omega_{1}$ let p_{γ} be a condition deciding $\left\langle w_{\gamma}^{\ell}: \ell<m\right\rangle$, say $p_{\gamma} \Vdash{\underset{\sim}{w}}_{\gamma}^{\ell}={ }^{*} w_{\gamma}^{\ell}$. Let S_{1}, S_{2} be as above, $S_{k}=\left\{\gamma_{\alpha}^{k}: \alpha<\omega_{1}\right\}$. Let $u_{\alpha}^{\ell}={ }^{*} w_{\gamma_{\alpha}^{1}}^{\ell} \cup^{*} w_{\gamma_{\alpha}^{2}}^{\ell}$ for $\ell<m$. By thinnings out we may without loss of generality assume that the sets $\bigcup_{\ell<m} w_{\alpha}^{\ell}$ for $\alpha<\omega_{1}$ are pairwise disjoint, so we can apply $(*)$ in V_{3}. This gives us $\alpha(1), \alpha(2)$ such that for all even ℓ, $x \in u_{\alpha(1)}^{\ell}, y \in u_{\alpha(2)}^{\ell} \Rightarrow H_{\alpha_{\ell}}^{\left[i_{\ell}\right]}(\{x, y\})=0$ and similarly for odd ℓ we have $x \in u_{\alpha(1)}^{\ell} \& y \in u_{\alpha(2)}^{\ell} \Rightarrow H_{\alpha_{\ell}}^{\left[i_{\ell}\right]}(\{x, y\})=1$. Let q be a condition extending $p_{\gamma_{\alpha(1)}^{1}}$ and $p_{\gamma_{\alpha(2)}^{2}}$, then $q \Vdash " \gamma_{\alpha(1)}^{1}$ and $\gamma_{\alpha(2)}^{2}$ are as required". $\square_{2.9}$

So R is proper in V_{0}; as in V_{5}, S^{4} is stationary and R_{5} satisfies the \aleph_{1}-c.c, clearly S^{4} is a stationary subset of ω_{1} in V_{6} too; hence, by the choice of $\underset{\sim}{S}$ (just before 2.9) we have \vdash_{R} " $S \subseteq \omega_{1}$ is stationary".
2.9A Claim. In $V^{P_{\kappa}}, \mathrm{PFA}^{+}$fail as exemplified by $R, \underset{\sim}{S}$.

Proof. In $V^{P_{\kappa}}$, let χ be e.g. $\beth_{3}(\kappa)^{+}$and let $N \prec\left(H(\chi), \in,<_{\lambda}^{*}\right)$ be a model of cardinality \aleph_{1} containing all necessary information. i.e. the following belongs
 (but not $\underset{\sim}{S!}$), $\underset{\sim}{f}$ (see below), $\left\langle\underset{\sim}{B_{i}}: i\left\langle i^{*}\right\rangle, i_{0}^{*}\right.$. Suppose that $G \in V^{P_{\kappa}}, G \subseteq R$ is
directed and meets all dense sets of R which are in N. It suffices to show that $\underset{\sim}{S}[G]$ is not stationary. Note that N is a model of ZFC ${ }^{-}$etc.

Let $\underset{\sim}{f} \in N$ be the R_{0}-name of the function from ω_{1} onto κ, then easily $\underset{\sim}{f}[G]$ is a function from ω_{1} onto some $\delta<\kappa, \operatorname{cf}(\delta)=\aleph_{1}$, in $V^{P_{\kappa}}$. Note that $\underset{\sim}{T}[G] \in N[G]$ is just T_{δ}, and if $N[G] \models$ " $\underset{\sim}{B}[G]$ is an ω_{1}-branch of T cofinal in κ ", then $\underset{\sim}{B}[G]$ is as ω_{1}-branch of T_{δ} cofinal in δ, and similarly with the coloring. We will now show how we could have predicted this situation in $V^{P_{\delta}}$: Let $\underset{\sim}{h}: \omega_{1} \times \omega_{1} \rightarrow T$ be an R-name (belonging to N) which enumerates all ω_{1}-branches of T (we use the essential specialization by R_{3}) i.e.

$$
\Vdash_{R} "\left\{\left\{\underset{\sim}{h}(i, j): j<\omega_{1}\right\}: i<\omega_{1}\right\}=\left\{\underset{\sim}{B}{\underset{i}{ }}: i<i^{*}\right\} " .
$$

Then each set $\left\{\underset{\sim}{h}(i, j)[G]: j<\omega_{1}\right\}$ (for $\left.i<\omega_{1}\right)$ will be an ω_{1}-branch of T_{δ} (remember $T_{\delta}=\bigcup\left\{A_{\zeta}: \zeta<\delta\right.$ limit $\}$), some of them cofinal in δ, and these ω_{1}-branches will be in $V^{P_{\delta} * Q_{\delta}^{a}}$, as ${\underset{\sim}{\delta}}_{\delta}^{b}$ (more exactly ${\underset{\sim}{\delta}}_{\dot{1}}^{1}$, see 2.7) was chosen in such a way that no ω_{1}-branch can be added to T_{δ} without collapsing \aleph_{1}. Also all the ω_{1}-branches of $\underset{\sim}{T}[G]=T_{\zeta}$ will appear in this list.
Now we can recall how the set S_{δ} was defined: For each ω_{1}-branch B of T_{δ} (in $V^{P_{\delta} * Q_{\delta}^{a} * Q_{\delta}^{1} * Q_{\delta}^{2}}$ equivalently in $V^{P_{\delta} * Q_{\delta}^{a}}$) which is cofinal in δ, we have \aleph_{1} many coloring functions $H_{\alpha}(B)$, and there are such ω_{1}-branches. We let $\alpha \in S_{\delta}$ if for all these ω_{1}-branches B the function $H_{\alpha}(B)$ is almost homogeneous with value 1.

Now note that the set G also interprets the names for the homogeneous sets for the colorings $H_{\alpha}^{[i]}$. These homogeneous sets exist in $V^{P_{\kappa}}$ hence in $V^{P_{\xi}}$ for $\xi<\kappa$ large enough, so in $V{ }^{P_{\delta} * Q_{\delta}^{a} * Q_{\delta}^{1}}$ there is a forcing producing such sets, which, for every $\xi<\delta$ preserves stationarity of sets A, which are stationary subsets of ω_{1} in $V^{P_{\xi+1}}$ (the forcing is ${\underset{\sim}{\delta}}_{\delta}^{3} *{\underset{\sim}{\delta}}_{\delta}^{c} *\left(P_{\kappa} / P_{\delta+1}\right)$). Using the supercompactness of κ we can get such a forcing in $H(\kappa)$. But this implies that these sets are already almost homogeneous in $V^{P_{\delta} * Q_{\delta}^{a} * Q_{\delta}^{1} * Q_{\delta}^{2}}$ (see clause (b) in 2.7), so also $\underset{\sim}{S}[G]$ is in $V^{P_{\delta} * Q_{\delta}^{a} * Q_{\delta}^{1} * Q_{\delta}^{2}}$ (see the choice of R_{5} in 2.8) and $S[G]=S_{\delta}$. But the forcing Q_{δ}^{3} ensures that S_{δ} is not stationary.
2.10 Lemma. We can reduce the assumption in 2.1 to " κ is supercompact"

Proof. We repeat the proof of 2.1 with some changes indicated below. We demand that every Q_{δ} is semiproper. We need some changes also in clause (b) of 2.7 (in the inductive definition of ${\underset{\sim}{Q}}_{i}$, we let ${\underset{\sim}{\zeta}}_{a}^{a}=f^{*}(\zeta)$ only if: $f^{*}(\zeta)$ is a P_{ζ}-name, $\Vdash_{P_{\zeta}}$ " $f^{*}(\zeta)$ is semiproper" and let ${\underset{\sim}{\zeta}}_{\alpha}^{a}$ be trivial othervise. Let ${\underset{\sim}{\zeta}}_{b}^{b}$ be trivial except when for some $\lambda_{\zeta}<\kappa, f^{*}(\zeta) \in H\left(\lambda_{\zeta}\right)$, and ζ is $\beth_{8}\left(\lambda_{\zeta}\right)$ supercompact. In this case we let (in $V^{P_{\zeta} * Q_{\zeta}^{a}}$), ${\underset{\sim}{\varphi}}_{\substack{1}}$ be defined as in the proof of 2.1 except that the $R_{\alpha, j}^{5}$ are now as defined below, ${\underset{\sim}{\zeta}}_{\underset{\zeta}{2}}$ is a forcing notion of cardinality $\left(2^{\aleph_{1}}\right)^{V^{P_{\zeta} * Q_{\zeta}^{a} * Q_{\zeta}^{1}}}$ which forces MA. Now let ${\underset{\sim}{S}}_{\delta} \in V^{P_{\zeta} * Q_{\zeta}^{a} * Q_{\zeta}^{1} * Q_{\zeta}^{2}}$ be as described below, and ${\underset{\sim}{\zeta}}_{\zeta}^{3}$ is shooting a club through $\omega_{1} \backslash \underset{\sim}{S}{ }_{\delta}$ if ${\underset{\sim}{\zeta}}_{\zeta}^{a} *{\underset{\zeta}{\zeta}}_{1} *{\underset{\sim}{\zeta}}_{\zeta}^{2} *{\underset{\sim}{\zeta}}_{3}^{3}$ is semiproper, and trivial otherwise. Now $\underset{\sim}{Q_{\zeta}^{b}}=\underset{\sim}{Q_{\zeta}^{1}} * \underset{\sim}{Q_{\zeta}^{2}} *{\underset{\sim}{\zeta}}_{3}^{3}$. Lastly $\underset{\sim}{Q_{\zeta}^{c}}$ is as in the proof of 2.1 and ${\underset{\sim}{\zeta}}_{\zeta}={\underset{\sim}{\zeta}}_{\zeta}^{a} *{\underset{\sim}{\zeta}}_{b}^{b} *{\underset{\sim}{\zeta}}_{\zeta}^{c}$, now clearly ${\underset{\sim}{~}}_{\zeta} \in H\left(\beth_{8}\left(\lambda_{\zeta}\right)\right)$. This does not change the proof of 2.1 . Now we let $Q_{\kappa}=$ shooting a club called $\underset{\sim}{E}$ (of order type κ) through $\left\{i<\kappa: V \models " c f(i)=\aleph_{0}\right.$ " or $V \models$ " i is strongly inaccessible in V, λ_{ζ} well defined and i is $\beth_{8}\left(\lambda_{\zeta}\right)$-supercompact" (ordered by being an initial segment). Now it is easy and folklore that, for such Q_{κ}, we have $V^{P_{\kappa^{*}} \underline{Q}_{\kappa}} \models$ SPFA, and show as before $V^{P_{\kappa^{*}} Q_{\kappa}} \models \neg \mathrm{PFA}^{+}$.

Why the need to change ${\underset{\sim}{\zeta}}_{\zeta}^{2}$? As the result of an iteration we ask "is there $\underset{\sim}{Q}$ such that (i), (ii), (iii) of $\otimes "$, and this may well defeat our desire that $\underset{\sim}{ }{ }_{\zeta}$ hence ${\underset{\sim}{\delta}}_{1}^{1}$ belongs to $H\left(\beth_{8}\left(\lambda_{\zeta}\right)\right)$. We want to be able to "decipher" the possible "codings" fast, i.e., by a forcing notion of small cardinality, so we change $R_{\alpha, i}^{5}$'s inside the definition of R, in Definition 2.8).

We let $\gamma_{\alpha, j}$ be 0 if $\alpha \in S^{4}$ and 1 otherwise, and let $R_{\alpha, j}^{5}$ be defined by: $R_{\alpha, j}^{5}=\left\{(w, h): w\right.$ is a finite subset of ω_{1} and h is a finite function from the family of nonempty subsets of w to ω such that:

$$
\begin{aligned}
& \text { if } u_{1}, u_{2} \in \operatorname{Dom}(h) \text { and } h\left(u_{1}\right)=h\left(u_{2}\right) \\
& \text { then }\left|u_{1}\right|=\left|u_{2}\right| \text { and }\left[\zeta \in u_{1} \backslash u_{2} \& \xi \in u_{2} \backslash u_{1} \& \zeta<\xi \Rightarrow\right. \\
& \left.\left.\qquad H_{\alpha}^{[j]}\{\{\zeta, \xi\}\}=\gamma_{\alpha, j}\right]\right\} .
\end{aligned}
$$

(actually coloring pairs suffice).
2.10A Definition. 1) A function $H:\left[\omega_{1}\right]^{2} \rightarrow\{0,1\}$ is called ℓ-colored (where $\left.[A]^{\kappa}=\{a \subseteq A:|a|=\kappa\}\right)$ if $\ell \in\{0,1\}$ and there is a function $h: \mathcal{S}_{<\aleph_{0}}\left(\omega_{1}\right) \rightarrow \omega$ such that: if u_{1}, u_{2} are finite subsets of ω_{1} and $h\left(u_{1}\right)=h\left(u_{2}\right)$ then $\left|u_{1}\right|=\left|u_{2}\right|$ and $\left[\zeta \in u_{1} \backslash u_{2} \& \xi \in u_{2} \backslash u_{1} \& \zeta<\xi \Rightarrow H(\{\zeta, \xi\})=\ell\right]$.
2) Called H (as above) explicitly non- ℓ-colored if there is a sequence $\left\langle u_{\gamma}: \gamma<\right.$ $\left.\omega_{1}\right\rangle$ of pairwise disjoint finite subsets of ω_{1} such that: for any $\alpha<\beta<\omega_{1}$ there are $\zeta \in u_{\alpha}, \xi \in u_{\beta}$ such that $H(\{\zeta, \xi\}) \neq \ell$.
2.10B Claim. 1) 1-colored, 0 -colored are contradictory.
2) If H is explicitly non- ℓ-colored then it is not ℓ-colored.
3) If $M A+2^{\aleph_{0}}>\aleph_{1}, \ell<2$ and $H:\left[\omega_{1}\right]^{2} \rightarrow\{0,1\}$ then H is ℓ-colored or explicitly non ℓ-colored.

Proof. 1) Clearly H cannot be both 0 -colored and 1-colored.
2) Note also that if H is ℓ-colored, and $u_{\zeta}\left(\zeta<\omega_{1}\right)$ are pairwise disjoint non empty finite subsets of ω_{1} such that $\zeta<\xi \Rightarrow \sup \left(u_{\zeta}\right)<\min \left(u_{\zeta}\right)$ then for some $\zeta<\xi, H\left(u_{\zeta}\right)=H\left(u_{\xi}\right)$ hence $\left.H \upharpoonright\left\{\{\alpha, \beta\}: \alpha \in u_{\zeta}, \beta \in u_{\xi}\right\}\right\}$ is constantly ℓ.
3) Use R defined like $R_{\alpha, j}^{5}$ from above.

If it satisfies the c.c.c., from a generic enough subset of R_{H} we can define a "witness" h to H being ℓ-colored. If R_{H} is not c.c.c. a failure is exemplified say by $\left\langle u_{\zeta}: \zeta<\omega_{1}\right\rangle$; without loss of generality it is a Δ-system i.e. $\zeta<\xi<\omega_{1} \Rightarrow$ $u_{\zeta} \cap u_{\xi}=u^{*}$. Reflection shows that $\left\langle u_{\zeta} \backslash u^{*}: \zeta<\omega_{1}\right\rangle$ exemplifies "explicitly non- ℓ-colored".

The needed forcing ${\underset{\sim}{\zeta}}_{\zeta}^{2}$ is not too large ($\leq \lambda_{\zeta}$), and by 2.10B it essentially determines the $\gamma_{\alpha, j}$ (i.e., we can find $\gamma_{\alpha, j}^{0}$ so that if we have an appropriate G, the values of the $\gamma_{\alpha, j}$ will be $\gamma_{\alpha, j}^{0}$). So we have at most one candidate for $\underset{\sim}{S}[G]$, namely S_{δ}, and if $\omega_{1} \backslash S_{\delta}$ is not disjoint to any stationary subset of ω_{1} from $V^{P_{\delta}}$ modulo $\mathcal{D}_{\aleph_{1}}$, we end the finite iteration defining Q_{δ} by shooting a club through $\omega_{1} \backslash S_{\delta}$.
Why is Q_{δ} still semiproper? Clearly ${\underset{\sigma}{\zeta}}_{a}^{a},{\underset{\sim}{\zeta}}^{1},{\underset{\sim}{\zeta}}_{\zeta}^{2}$ are semiproper and so preserve stationarity of subsets of ω_{1}, and also ${\underset{\sim}{\zeta}}_{\zeta}^{3}$ do this and $\underset{\sim}{Q_{\zeta}^{c}}$ satisfies the c.c.c. So it is enough to prove that. Now use Rss (see chapter XIII §1 but assume on δ (remember we should shoot a club through $\underset{\sim}{E}$) that we have enough supercompactness for δ) to show that we still have semiproper \equiv not destroying the stationarity of subsets of ω_{1} for the relevant forcing.
This finish the proof that we can define the iteration \bar{Q} as required. Lastly in the proof of the parallel of 2.9 A we use also $E \in N$ hence $\delta \in E$.
$\square_{2.10}$
2.11 Claim. If $\alpha(0), \alpha(1) \leq \omega_{1}$ and $|\alpha(0)|<|\alpha(1)|$, then
$A x_{\alpha(0)}$ [semiproper] $\nvdash A x_{\alpha(1)}$ [proper] (assuming the consistency of ZFC $+\exists$ a supercompact).

Proof: Similar. [Now the Laver Diamond is used to guess triples of the form
 is a stationary subset of ω_{1} ". In (b) from the colourings corresponding to the branches we decode a sequence $\left\langle S_{\alpha}^{*}: \alpha<\alpha(2)\right\rangle$ of stationary sets and try to shoot a club through $\omega_{1} \backslash{\underset{\sim}{\alpha}}_{\alpha}^{*}$ for one of them such that ${\underset{\sim}{i}}_{i}^{\delta} \backslash{\underset{\sim}{\delta}}_{\delta}$ is stationary for every $i<\alpha(1)$ (in addition to the earlier demands.]
2.12 Observation. Properness is not productive, i.e. (provably in ZFC) there are two proper forcings whose product is not proper.

Proof: Let T be the tree $\left.{ }^{\left(\omega_{1}>\right.}\left(\omega_{2}\right), \triangleleft\right)$; now one forcing, P, adds a generic branch with supremum ω_{2}, e.g., $P=T$ (it is \aleph_{1}-complete). The second forcing, Q, guarantees that in any extension of V^{Q}, as long as \aleph_{1} is not collapsed, T
will have no ω_{1}-branch with supremum ω_{2}^{V}. Use $Q=Q_{1} *{\underset{\sim}{2}}_{2} *{\underset{\sim}{Q}}_{3}$, where Q_{1} is Cohen forcing, $Q_{2}=\operatorname{Levy}\left(\aleph_{1}, 2^{\aleph_{1}}\right)$ in $V^{Q_{1}}$ (so it is well known that in $V^{Q_{1 *} Q_{2}}, \operatorname{cf}\left(\omega_{2}^{V}\right)=\omega_{1}$, and T has no branch with supremum ω_{2} and has no new ω_{1}-branch so has $\leq \aleph_{1} \omega_{1}$-branchs), and Q_{3} is the appropriate specialization of T (like R_{3} in the proof of 2.1, see Definition 2.3). Since in $V^{P \times Q}$ there is a branch of T cofinal in $\omega_{2}{ }^{V}$ not from V and $V^{P \times Q}$ is an extension of V^{Q}, \aleph_{1} must have been collapsed (see 2.4(3)).
We could also have used the tree ${ }^{\omega_{1}>} 2$, but then we should replace "no ω_{1-} branch with supremum $\omega_{2}{ }^{V}$ " by "no branch of T which is not in V ". $\quad \square_{2.12}$
2.13 Discussion. Beaudoin asks whether SPFA $\vdash A x_{1}$ [finite iteration of \aleph_{1-} complete and c.c.c. forcing notions]. So the proofs of 2.1 (and 2.2) show the implications fail (whereas it is well known that already $\mathrm{Ax}\left(\right.$ c.c.c.) $\Rightarrow A x_{1}$ (c.c.c.)).

But \aleph_{1}-complete forcing would be a somewhat better counterexample. We have
2.14 Fact. $\mathrm{SPFA} \vdash A x_{1}\left[\aleph_{1}\right.$-complete $]$.
2.14A Reminder. We recall the following facts and definitions (see XIII):
(1) If P and Q are \aleph_{1}-complete, then \Vdash_{P} " Q is \aleph_{1}-complete".
(2) For $\left\langle A_{i}: i<\omega_{1}\right\rangle$ such that $A_{i} \subseteq \omega_{1}$ we define the diagonal union of these sets as $\nabla_{i<\omega_{1}} A_{i}=\left\{\delta<\omega_{1}:(\exists i<\delta)\left(\delta \in A_{i}\right)\right\}$.
If $A_{i} \subseteq \omega_{1}$ is nonstationary for all $i<\omega_{1}$, then $\nabla_{i<\omega_{1}} A_{i}$ is nonstationary (and if A_{i} is stationary for some i, then $\nabla_{i<\omega_{1}} A_{i} \supseteq A_{i} \backslash(i+1)$ is stationary).
(3) If $S \subseteq \omega_{1}$ is stationary, then the forcing of "shooting a club through S " is defined as $\operatorname{club}(S)=\{h: h$ an increasing continuous function from some non-limit $\alpha<\omega_{1}$ into $\left.S\right\}$. We have $\Vdash_{\operatorname{club}(S)}$ " $\omega_{1} \backslash S$ is nonstationary", and for every stationary $A \subseteq S$ we have $\vdash^{\operatorname{club}(S)}$ " A is stationary".

Proof of 2.14. Suppose $V \models$ SPFA, and P is an \aleph_{1}-complete forcing, $\underset{\sim}{S}$ is a P-name, and \Vdash_{P} "S $S \subseteq \omega_{1}$ is stationary". For $i<\omega_{1}$ let $\left(P_{i}, S_{i}\right)$ be isomorphic to (P, S), and let P^{*} be the product of $P_{i}\left(i<\omega_{1}\right)$ with countable support; so
$P_{i} \lessdot P^{*}, P^{*}$ is \aleph_{1}-complete, and ${\underset{\sim}{S}}_{i}$ is a P^{*}-name and $\Vdash_{P_{i}}$ " P^{*} / P_{i} does not destroy stationarity of subsets of ω_{1} ".

Let $\Xi=\left\{A \in V: A \subseteq \omega_{1}, A\right.$ is stationary and \Vdash_{P} " $S \sim A$ is not stationary" $\}$. Clearly if $A \in \Xi$ and $B \subseteq A$ is stationary then $B \in \Xi$. Let $\left\{A_{i}: i<i^{*}\right\} \subseteq \Xi$ be a maximal antichain $\subseteq \Xi$ (i.e., the intersection of any two elements is not stationary).

So, by $1.12\left|i^{*}\right| \leq \omega_{1}$, so without loss of generality $i^{*} \leq \omega_{1}$ and define $A_{i}=\emptyset$ for $i \in\left[i^{*}, \omega_{1}\right)$. Let $A=\nabla_{i<\omega_{1}} A_{i}$. Then also $\Vdash_{P} " A=\nabla_{i<\omega_{1}} A_{i}$ ", so we have:
(i) \vdash_{P} " $S \sim \sim \cap$ is not stationary", and
(ii) for every stationary $B \subseteq \omega_{1} \backslash A$, for some $p \in P$, we have $p \Vdash_{P^{*}}$ " $S \sim B$ is stationary".
Let $\hat{S} \stackrel{\text { def }}{=} \omega_{1} \backslash A$. So \hat{S} is stationary (as \Vdash_{P} " S is stationary"). Also, clearly,
(iii) for each $i<\omega_{1}$, and stationary $B \subseteq \hat{S}$ for some $p \in P_{i} \lessdot P^{*}$, we have $p \Vdash_{P^{*}}$ "S $S_{i} \cap B$ is stationary".
As P^{*} is the product of the P_{i} with countable support, P^{*} / P_{i} does not destroy stationarity of subsets of ω_{1}, so we have
(iv) for every stationary $B \subseteq \hat{S}, \Vdash_{P^{*}}$ "for some $i, S_{i} \cap B$ is stationary".

Let ${\underset{\sim}{S}}^{*}$ be the P^{*}-name: $\nabla_{i<\omega_{1}} S_{i} \stackrel{\text { def }}{=}\left\{\alpha<\omega_{1}:(\exists i<\alpha) \alpha \in{\underset{\sim}{S}}_{i}\right\}$. So $\Vdash_{P^{*}}$ "for every stationary $B \subseteq \hat{S}$ (from V), we have $B \cap S_{\sim}^{*}$ is stationary".

In $V^{P^{*}}$ let Q^{*} be shooting a club $\underset{\sim}{C}$ through $A \cup S^{*}$ (i.e., $Q^{*}=\{h: h$ an increasing continuous function from some non-limit $\alpha<\omega_{1}$ into $\left.A \cup S\right\}$ ordered naturally). Now Q^{*} does not destroy any stationary subset of ω_{1} from V (though it destroys some from $V^{P^{*}}$). So $P^{*} *{\underset{\sim}{Q}}^{*}$ does not destroy any stationary subsets of ω_{1} from V; hence by Lemma 1.3 it is semiproper. Now if $G \subseteq P^{*} *{\underset{\sim}{*}}^{*}$ is generic enough, for each $i<\omega_{1}, G \cap P_{i}$ is generic enough such that $\underset{\sim}{S}{ }_{i}[G]$ is well-defined, and since $C^{*}=\underset{\sim}{C}[G]$ is a club set and $C^{*} \subseteq A \cup \nabla_{i<\omega_{1}}{\underset{\sim}{S}}_{i}[G]$, we have $\hat{S} \cap C^{*} \subseteq \nabla_{i<\omega_{1}} S_{i}[G]$. As \hat{S} is stationary, for some $i, S_{i}[G]$ is stationary so the projection of G to $G_{i} \subseteq P_{i}$ is as required, and we have finished. $\square_{2.14}$
2.15 Remark. A similar proof works if $P=P^{a} *{\underset{\sim}{P}}^{b}$, where P^{a} satisfies the \aleph_{1}-c.c. and ${\underset{\sim}{P}}^{b}$ is \aleph_{1}-complete in $V^{P_{a}}$, if we use $P^{*}=\{f: f$ a function from ω_{1} to $\left.\underset{\sim}{P}, f(i)=\left(p_{i}, q_{i}\right) \in P^{a} *{\underset{\sim}{P}}^{b},\left|\left\{i: p_{i} \neq \emptyset\right\}\right|<\aleph_{0},\left|\left\{i: q_{i} \neq \emptyset\right\}\right|<\aleph_{1}\right\}$. Note that necessarily even any finite power of P^{a} satisfies the \aleph_{1}-c.c. In short, we need that some product of copies of P is semiproper, i.e:
2.16 Fact. [SPFA] Suppose Q is a semi proper forcing notion, and there is a forcing notion P and a family of complete embeddings $f_{i}\left(i<i^{*}\right)$ of P into Q such that:
(a) for any $p \in P$ and $q \in Q$ for some i, the conditions $f_{i}(p), q$ are compatible with Q.
(b) the forcing $Q / f_{i}(P)$ does not destroy the stationarity of subsets of ω_{1}.

Then for any dense subsets \mathcal{I}_{α} of P for $\alpha<\omega_{1}$, and $\underset{\sim}{S}$ a P-name of a subset of ω_{1}, \Vdash_{P} " $S \subseteq \omega_{1}$ is stationary" there is a directed $G \subseteq P$, not disjoint to any $\mathcal{I}_{\alpha}\left(\right.$ for $\left.\alpha<\omega_{1}\right)$ such that $\underset{\sim}{S}[G]$ is a well defined stationary subset of ω_{1}.

Proof. Like 2.14. We define $A \subseteq \omega_{1}$ satisfying for $\underset{\sim}{S}$ and P the following conditions (from the proof of 2.14): (i), (ii), hence (iii), (iv) (with $P_{i}=f_{i}(P)$ and $\left.\underset{\sim}{S} i=f_{i}(\underset{\sim}{S})\right)$.

§3. Canonical Functions for $\boldsymbol{\omega}_{1}$

3.1 Definition. 1) We define by induction on α, when a function $f: \omega_{1} \rightarrow$ ordinals is an α-th canonical function:
f is an α-th canonical function (sometimes abbreviated " f is an α-th function" iff
(a) for every $\beta<\alpha$ there is a β-th function, $f_{\beta}<f \bmod \mathcal{D}_{\omega_{1}}$
(b) f is a function from ω_{1} to the ordinals, and for every $f^{1}: \omega_{1} \rightarrow$ Ord, if $A^{1}=\left\{i<\omega_{1}: f^{1}(i)<f(i)\right\}$ is stationary then for some $\beta<\alpha$ and β-th function $f^{2}: \omega_{1} \rightarrow$ Ord the set $A^{2} \stackrel{\text { def }}{=}\left\{i \in A^{1}: f^{2}(i)=f^{1}(i)\right\}$ is stationary,
2) If we replace a "stationary subset of ω_{1} " by " $\neq \emptyset \bmod \mathcal{D}$ " $(\mathcal{D}$ any filter on ω_{1}); we write " f is a (\mathcal{D}, α)-th function". Of course we can replace ω_{1} by higher cardinals.

Remember
3.2 Claim. 1) If $\alpha<\omega_{2}, \alpha=\bigcup_{i<\omega_{1}} a_{i},\left\langle a_{i}: i<\omega_{1}\right\rangle$ is increasing continuous, each a_{i} is countable, and $f_{\alpha}(i) \stackrel{\text { def }}{=} \operatorname{otp}\left(a_{i}\right)$ then f_{α} is an α-th function.
2) If for every α there is an α-th function, then $\mathcal{D}_{\omega_{1}}$ is precipitous; really "for every $\alpha<\left(2^{\aleph_{1}}\right)^{+}$there is α-th function" suffices, in fact those three statements are equivalent.
3) If f is an α-th function; $Q=\mathcal{D}_{\omega_{1}}^{+}=\left\{A \subseteq \omega_{1}: A\right.$ is stationary $\}$ (ordered by inverse inclusion) then \Vdash_{Q} "in $V^{\omega_{1}} / G_{Q}$, we have: $\left\{x: V^{\omega_{1}} / G_{Q} \vDash\right.$ " x is an ordinal $\left.<f_{\alpha} / G_{Q} "\right\}$ is well ordered of order type α " (remember $V^{\omega_{1}} /{\underset{\sim}{Q}}_{Q}$ is the "generic ultrapower" with universe $\left\{f /{\underset{\sim}{G}}_{Q}: f \in V\right.$ and $\left.f: \omega_{1} \rightarrow V\right\}$ and G_{Q} is an ultrafilter on the Boolean algebra $\left.\mathcal{P}\left(\omega_{1}\right)^{V}\right)$.
4) Any two α-th functions are equal modulo $\mathcal{D}_{\omega_{1}}$.
5) Similarly for the other filters (we have to require them to be \aleph_{1}-complete, and for (1) - also normal).

Proof. Well known, see [J]. We will only show (1): Let $A^{1}=\left\{i: f(i)<f_{\alpha}(i)\right\}$ be stationary. So there is a countable elementary model $N \prec H(\chi)$ (for some large χ) containing $\alpha, f,\left\langle a_{i}: i<\omega_{1}\right\rangle$ such that $\delta \stackrel{\text { def }}{=} N \cap \omega_{1} \in A^{1}$. We have $f(\delta)<f_{\alpha}(\delta)=\operatorname{otp}\left(a_{\delta}\right)$, and $a_{\delta}=\bigcup_{i \in N} a_{i} \subseteq N$, so there is $\beta \in N$ such that $f(\delta)=\operatorname{otp}\left(a_{\delta} \cap \beta\right)$. Let $A^{2}=\left\{i \in A^{1}: f(i)=\operatorname{otp}\left(a_{i} \cap \beta\right)\right\}$. Since $A^{2} \in N$, $f \in N, \beta \in N,\left\langle a_{i}: i<\omega_{1}\right\rangle \in N$ and $\delta \in A^{2}$, we can deduce A^{2} is stationary.

The following answers a question of Velickovic:
3.3 Theorem. Let κ be a supercompact. For some κ-c.c. forcing notion P not collapsing \aleph_{1} we have that V^{P} satisfies:
(a) there is $f \in{ }^{\omega_{1}} \omega_{1}$ bigger $\left(\bmod \mathcal{D}_{\omega_{1}}\right)$ than the first ω_{2} function hence the Chang conjecture fails.
(b) $P F A$ (so $\mathcal{D}_{\omega_{1}}$ is semiproper hence precipitous).
(c) not $P F A^{+}$

Outline of the proof: In 3.4 we define a statement $(*)_{g}$, which we may assume to hold in the ground model (3.5). We define a set $S_{\chi}^{g} \subseteq \mathcal{S}_{<\aleph_{1}}(\chi)$ and we show that if $(*)_{g}$ holds, then S_{χ}^{g} is stationary (3.8). In 3.9 we recall that the class of S_{χ}^{g}-proper forcing notions is closed under CS iterations, so assuming a supercompact cardinal we can, in the usual way, force $A x\left[S_{\chi}^{g}\right.$-proper]. Finally we find, for each $\alpha<\omega_{2}$, an S_{χ}^{g}-proper forcing notion R_{α} such that $A x\left[R_{\alpha}\right] \Rightarrow$ $f_{\alpha}<\mathcal{D}_{\omega_{2}} g$.
3.3A Remark. Remember that the first clause of 3.3(a) implies that Chang's conjecture fails, so the negation of $3.3(\mathrm{a})$ is sometimes called the "weak Chang conjecture".

Proof of $3.3 A$. Let $M=\left(M, E, \omega_{1}, \ldots\right)$ be a model with universe ω_{2} which codes enough set theory. Assume that there exists an elementary submodel $N \prec M$ with $\|N\|=\aleph_{1},\left|\omega_{1}^{N}\right|=\aleph_{0}$. Let $\delta=\omega_{1}^{N}=\omega_{1} \cap N$. In M we have the function f from 3.3(a) and also a family $\left\langle f_{\alpha}, E_{\alpha}: \alpha<\omega_{2}\right\rangle,\left(f_{\alpha}\right.$ is an α-th canonical function, $E_{\alpha} \subseteq \omega_{1}$ is a club set, $\left.f_{\alpha} \upharpoonright E_{\alpha}<f \upharpoonright E_{\alpha}\right)$ as well as a family $\left\langle E_{\alpha, \beta}: \alpha<\beta<\omega_{2}\right\rangle$ of clubs of ω_{1} satisfying $f_{\alpha} \backslash E_{\alpha \beta}<f_{\beta} \backslash E_{\alpha \beta}$. For $\alpha<\beta$, $\alpha, \beta \in N$ we have $\delta \in E_{\alpha, \beta} \cap E_{\beta}$, so
(A) $(\forall \alpha, \beta \in N)\left[\alpha<\beta \Rightarrow f_{\alpha}(\delta)<f_{\beta}(\delta)\right]$
(B) $(\forall \alpha \in N):\left[f_{\alpha}(\delta)<f(\delta)\right]$

So the set $\left\{f_{\alpha}(\delta): \alpha \in N\right\}$ is uncountable (by (A)) and bounded in ω_{1} (by (B)), a contradiction.
3.4 Definition. Let f_{α} be the α 'th canonical function for every $\alpha<\omega_{2}$ (so without loss of generality the f_{α} are of the form described in 3.2(1)). Let
$g: \omega_{1} \rightarrow$ Ord. We let $(*)_{g}$ be the statement:

$$
(*)_{g} \quad \text { for all } \alpha<\omega_{2} \text { we have } \quad \neg\left(g<\mathcal{D}_{\omega_{1}} f_{\alpha}\right)
$$

By 3.2(4) this definition does not depend on the choice of $\left\langle f_{\alpha}: \alpha<\omega_{2}\right\rangle$.
3.5 Remark. It is easy to force a function $g: \omega_{1} \rightarrow \omega_{1}$ for which $(*)_{g}$ holds: let $P=\left\{h:\right.$ for some $\left.i<\omega_{1}, h: i \longrightarrow \omega_{1}\right\}$ ordered by inclusion. P is \aleph_{1-} complete and $\left(2^{\aleph_{0}}\right)^{+}$-c.c., so assuming CH we get $\aleph_{1}^{V^{P}}=\aleph_{1}^{V}$ and $\aleph_{2}^{V^{P}}=\aleph_{2}^{V}$. Let $\left\langle f_{\alpha}: \alpha<\omega_{2}\right\rangle$ be the first ω_{2} canonical function in V, then they are still canonical in V^{P}, and it is easy to see that for any $f: \omega_{1} \rightarrow \omega_{1}$ in V we have $V^{P} \models \neg\left(g<\mathcal{D}_{\omega_{1}} f\right)$ where g is the generic function for P.
3.6 Definition. 1) We call $N \prec\left(H(\chi), \in,<_{\lambda}^{*}\right) g$-small (in short $g-s m$ or more precisely (g, χ)-small) if N is countable and $\operatorname{otp}(N \cap \chi)<g\left(N \cap \omega_{1}\right)$.
2) We let $S_{\chi}^{g} \stackrel{\text { def }}{=}\left\{a: a \in \mathcal{S}_{\leq \aleph_{0}}(\chi), a \cap \omega_{1}\right.$ is an ordinal and $\left.\operatorname{otp}(a)<g\left(a \cap \omega_{1}\right)\right\}$
3.7 Definition. We call a forcing notion $Q g$-small proper if. for any large enough χ and $N \prec\left(H(\chi), \in,<_{\chi}^{*}\right)$, satisfying $\|N\|=\aleph_{0}, Q \in N, p \in N \cap Q$ such that N is g-small there is $q \geq p$ which is (N, Q)-generic. We write g-sm for g-small.
3.7A Observation. 1) Any proper forcing is g-sm proper.
2) Without loss of generality g is nondecreasing.

Proof. 1) Trivial.
2) Let $E=\left\{\alpha<\omega_{1}: \alpha\right.$ is a limit ordinal such that $\beta<\alpha \Rightarrow g(\beta)<\alpha$ and $(\forall \beta<\alpha)(\exists \gamma)(\beta<\gamma<\alpha \& g(\gamma)>\beta)\}$, and let

$$
g^{\prime}(\alpha)= \begin{cases}g(\alpha) & \text { if } \alpha \in E, g(\alpha) \geq \alpha \\ \sup \{g(\beta): \beta<\alpha\} & \text { otherwise }\end{cases}
$$

Now, for our definition g^{\prime}, g are equivalent but g^{\prime} is not decreasing. $\square_{3.7 A}$
3.8 Claim. 1) $(*)_{g}$ holds
iff for every $\chi \geq \aleph_{2}$ the set S_{χ}^{g} is a stationary subset of $\mathcal{S}_{<\aleph_{1}}(\chi)$ iff $S_{\aleph_{2}}^{g}$ is a stationary subset of $\mathcal{S}_{<\aleph_{1}}\left(\aleph_{2}\right)$
iff for some $\chi \geq \aleph_{2}, S_{\chi}^{g}$ is a stationary subset of $\mathcal{S}_{<\aleph_{1}}(\chi)$.
2) For a forcing notion Q and $\chi>2^{|Q|}$ we have: Q is g-sm proper iff Q is S_{χ}^{g}-proper (see V1.1(2)).
3) If $(*)_{g}$ holds and Q is g-sm proper then

$$
\vdash_{Q} "(*)_{g} "
$$

Proof. 1) first implies second
Assume $(*)_{g}$ holds, $\chi \geq \aleph_{2}$ is given, and we shall prove that S_{χ}^{g} is a stationary subset of $\mathcal{S}_{<\aleph_{1}}(\chi)$. Let $x \in H\left(\chi_{1}\right)$ and $\chi_{1}=\beth_{3}(\chi)^{+}\left(\right.$e.g $\left.x=S_{\chi}^{g}\right)$.

We can choose by induction on $i<\omega_{1}, N_{i} \prec\left(H\left(\chi_{1}\right), \epsilon,<_{\chi_{1}}^{*}\right)$ increasing continuous, countable, $x \in N_{i} \in N_{i+1}$. Clearly for each i we have $\delta_{i} \stackrel{\text { def }}{=} N_{i} \cap \omega_{1}$ is a countable ordinal, and the sequence $\left\langle\delta_{i}: i<\omega_{1}\right\rangle$ is strictly increasing continuous. Now letting $N=\bigcup_{i<\omega_{1}} N_{i}$, then $\omega_{1}+1 \subseteq N \prec\left(H\left(\chi_{1}\right), \in,<_{\chi_{1}}^{*}\right)$ and N has cardinality \aleph_{1}, so otp $(N \cap \chi)=\alpha$ for some $\alpha<\omega_{2}$; let $h: N \cap \chi \rightarrow \alpha$ be order preserving from $N \cap \chi$ onto α.
Note: letting $a_{i}^{1} \stackrel{\text { def }}{=} N_{i} \cap \chi, a_{i}=\operatorname{rang}\left(h\left\lceil a_{i}^{1}\right)\right.$ we have: α is $\bigcup_{i<\omega_{1}} a_{i}$ where a_{i} is countable increasing continuous in i and $f_{\alpha+1}(i) \stackrel{\text { def }}{=} \operatorname{otp}\left(a_{i}\right)+1$ is an $(\alpha+1)$-th function (see 3.2(1)). Also $C=\left\{i: \delta_{i}=i\right\}$ is a club of ω_{1} so by $(*)_{g}$ we can find $i \in C$ such that $f_{\alpha+1}(i) \leq g(i)$, so otp $\left(N_{i} \cap \chi\right)=$ $\operatorname{otp}\left(a_{i}^{1}\right)=\operatorname{otp}\left(a_{i}\right)<f_{\alpha+1}(i) \leq g(i)=g\left(\delta_{i}\right)=g\left(N_{i} \cap \omega_{1}\right)$. I.e. for this i, N_{i} is g-sm; easily $N_{i} \cap \chi \in S_{\chi}^{g}$ and it exemplifies that S_{χ}^{g} is stationary.
second implies fourth. Trivial
fourth implies third. Check. (note: for $\chi \geq \aleph_{2}, \operatorname{otp}(\chi \cap N) \geq \operatorname{otp}\left(\omega_{2} \cap N\right)$).
third implies first. Let $\alpha<\omega_{2}, \alpha=\bigcup_{i<\omega_{1}} a_{i}$, where a_{i} are increasing continuous each a_{i} countable, so $f_{\alpha}(i) \stackrel{\text { def }}{=} \operatorname{otp}\left(a_{i}\right)$ is an α-th function and let C be a club of ω_{1}. Let $\bar{a}=\left\langle a_{i}: i<\omega_{1}\right\rangle$. Let χ be regular large enough (e.g.
$\geq \beth_{3}^{+}$). Clearly

$$
\left\{N \cap \aleph_{2}: N \text { is countable, } N \prec\left(H(\chi), \in,<_{\chi}^{*}\right)\right\}
$$

is a club of $\mathcal{S}_{\aleph_{0}}\left(\aleph_{2}\right)$. So by assumption for some countable $N \prec\left(H(\chi), \in,<_{\chi}^{*}\right)$ we have $C, \bar{a} \in N$ and
(i) $\operatorname{otp}\left(N \cap \aleph_{2}\right)<g\left(N \cap \omega_{1}\right)$.

But as $\bar{a} \in N$ also $f_{\alpha} \in N$ and we have $\left[j<N \cap \omega_{1} \Rightarrow a_{j} \in N \Rightarrow a_{j} \subseteq N\right]$ hence $\bigcup\left\{a_{j}: j<N \cap \omega_{1}\right\} \subseteq N \cap \alpha$ but this union is equal to $a_{N \cap \omega_{1}}(\bar{a}$ is increasing continuous:) so, as $\alpha \in N$,
(ii) $\operatorname{otp}\left(a_{N \cap \omega_{1}}\right)<\operatorname{otp}\left(a_{N \cap \omega_{1}} \cup\{\alpha\}\right) \leq \operatorname{otp}\left(N \cap \omega_{2}\right)$.

But
(iii) $f_{\alpha}\left(N \cap \omega_{1}\right)=\operatorname{otp}\left(a_{N \cap \omega_{1}}\right)$.

By (i) + (ii) + (iii) we get $f_{\alpha}\left(N \cap \omega_{1}\right)<g\left(N \cap \omega_{1}\right)$ and trivially $N \cap \omega_{1} \in C$, but C was any club of ω_{1}, hence $\left\{j<\omega_{1}: f_{\alpha}(j)<g(j)\right\}$ is stationary. As α was any ordinal $<\omega_{2}$ we get the desired conclusion.
(2) This is almost trivial, the only point is that to check S_{χ}^{g}-properness it is enough to consider models $N \prec\left(H(\chi), \in,<_{\chi}^{*}\right)$, but for sm-g properness we should consider $N \prec\left(H\left(\chi_{0}\right), \in,<_{\chi_{0}}^{*}\right)$ for all large enough χ_{0}. First assume Q is g-sm proper, and we shall prove that Q is S_{χ}^{g}-proper; and let χ_{0} be large enough (say $>\beth_{2}(\chi)$). Let M be the Skolem Hull of $\left\{\alpha: \alpha \leq 2^{|Q|}\right\} \cup\{Q, \chi\}$ in $\left(H\left(\chi_{0}\right), \in,<_{\chi_{0}}^{*}\right)$. Note $\|M\|=2^{|Q|}<\chi$ hence $\operatorname{otp}\left(M \cap \chi_{0}\right)<\chi$ and there is an order-preserving $h: M \cap \chi \rightarrow\left(2^{|Q|}\right)^{+} \leq \chi$ onto an ordinal belonging to N. Let N be a countable elementary submodel of $\left(H\left(\chi_{0}\right) \in,<_{\chi_{0}}^{*}\right)$ to which $x=\langle Q, \chi, M, h\rangle$ belongs, and $(N \cap \chi) \in S_{\chi}^{g}$. Let $N^{\prime} \stackrel{\text { def }}{=} N \cap M$, so $N^{\prime} \cap \omega_{1}=$ $N \cap \omega_{1}, N^{\prime}$ is a countable elementary submodel of $\left(H\left(\chi_{0}\right), \in,<_{\chi_{0}}^{*}\right)$ and

$$
\begin{aligned}
\operatorname{otp}\left(N^{\prime} \cap \chi_{0}\right) & =\operatorname{otp}\left(h^{\prime \prime}\left(N^{\prime} \cap \chi_{0}\right)\right) \leq \operatorname{otp}(N \cap \operatorname{Rang}(h)) \\
& \leq \operatorname{otp}(N \cap \chi)<g\left(N \cap \omega_{1}\right)=g\left(N^{\prime} \cap \omega_{1}\right) .
\end{aligned}
$$

[Why? as h is order presserving; as N is closed under h, h^{-1} and $N^{\prime} \prec N$; as $\operatorname{rang}(h) \subseteq \chi ;$ as $N \cap \chi \in S_{\chi}^{g}$; as $N^{\prime}=N \cap M$ respectively.]
Applying " Q is g-sm proper" to N^{\prime}, for every $p \in Q \cap N^{\prime}$ there is q such that
$p \leq q \in Q$ and q is (N^{\prime}, p)-generic. But $Q \cap N=Q \cap N^{\prime}$ and $\left[q\right.$ is (N^{\prime}, p)-generic $\Leftrightarrow q$ is (N, p)-generic] as $N \cap 2^{|Q|}=N^{\prime} \cap 2^{|Q|}$. As we can eliminate " $x \in N$ " (as some such x for some $\chi^{\prime}, H\left(\chi^{\prime}\right) \in H\left(\chi_{0}\right)$ and χ^{\prime} belongs to $\left.N\right)$ we have proved Q is S_{χ}^{g}-proper.

The other direction should be clear too.
3) Let $\chi=\left(2^{|Q|}\right)^{+}$.

By part (2) we know Q is S_{χ}^{g}-proper; by V 1.3-1.4(2) as Q is $S_{\chi}^{g}-$ proper, we have that \Vdash_{Q} " $\left(S_{\chi}^{g}\right)^{V} \subseteq \mathcal{S}_{<\aleph_{1}}(\chi)^{V^{Q}}$ is stationary". Clearly \Vdash_{Q} " $\left(S_{\chi}^{g}\right)^{V} \subseteq\left(S_{\chi}^{g}\right)^{V^{Q}}$ " hence \Vdash_{Q} " $\left(S_{\chi}^{g}\right)^{V^{Q}}$ is a stationary subset of $\mathcal{S}_{<\aleph_{1}}(\chi)$ ". So by part (1) (fourth implies first), we have \vdash_{Q} " $(*)_{g}$ ".

3.9 Claim.

Assume $(*)_{g}$ (where $\left.g \in{ }^{\omega_{1}} \omega_{1}\right)$. Then the property "(a forcing notion is) g-sm proper" is preserved by countable support iteration (and even strongly preserved).

Proof. Immediate by V 2.3 and by 3.8(2) above.
3.10 Claim. Suppose, $g \in{ }^{\omega_{1}} \omega_{1}$, and $(*)_{g}$ holds, κ supercompact, $L^{*}: \kappa \rightarrow$ $H(\kappa)$ is a Laver diamond (see VII 2.8) and we define $\bar{Q}=\left\langle P_{i},{\underset{\sim}{j}}: i \leq \kappa, j<\kappa\right\rangle$ as follows:
(i) it is a countable support iteration
(ii) for each i, if $L^{*}(i)$ is a P_{i}-name of a g-sm proper forcing and i is limit then ${\underset{\sim}{Q}}_{i}=L^{*}(i)$, otherwise ${\underset{\sim}{Q}}_{i}=\operatorname{Levy}\left(\aleph_{1}, 2^{\aleph_{2}}\right)$, (in $V^{P_{i}}$, i.e. a P_{i}-name).

Then
(a) P_{κ} is g-sm proper, κ-c.c. forcing notion of cardinality κ, and $\aleph_{2}^{V\left[P_{\kappa}\right]}=$ κ
(b) $A x_{\omega_{1}}[g$-sm proper $]$ holds in $V^{P_{\kappa}}$
(c) $P F A$ holds in $V^{P_{\kappa}}$
(d) in $V^{P_{\kappa}}$ for every $\alpha<\kappa, g$ is above the α-th function (by $<\mathcal{D}_{\omega_{1}}$).

Proof. \bar{Q} is well defined by III 3.1B.

Clearly $\Vdash_{P_{i}}$ " Q_{i} is g-sm proper" - by choice or as $\operatorname{Levy}\left(\aleph_{1}, 2^{\aleph_{2}}\right)^{V\left[P_{i}\right]}$ is \aleph_{1}-complete hence proper hence (by 3.7) g-sm proper. So by 3.9 the forcing P_{κ} is g-sm proper; P satisfies κ-c.c. by III 4.1 hence $\Vdash_{P_{\kappa}}$ " κ regular, \aleph_{1}^{V} regular".

The use of Levy $\left(\aleph_{1}, 2^{\aleph_{2}}\right)^{V\left[P_{i}\right]}$ for i non-limit will guarantee $\kappa=\aleph_{2}$ in $V^{P_{\kappa}}$. Also $\left|P_{\kappa}\right|=\kappa$ is trivial, so (a) holds.

The proof of (b) is like the consistency of \Vdash_{P} " $A x_{\omega_{1}}$ [proper]", in VII 2.8 hence (by $3.7 \mathrm{~A}(1)$) we have $\Vdash_{P_{\kappa}}$ " $P F A$ " i.e. (c) hold.

So it remains to prove (d), so let $\alpha<\aleph_{2}^{V\left[P_{\kappa}\right]}=\kappa$. This will follow from $3.10 \mathrm{~A}, 3.10 \mathrm{~B}, 3.10 \mathrm{C}$ below together with (b) above. Let us define a forcing notion R_{α} :
3.10A Definition. $R_{\alpha}=\left\{\left\langle a_{i}: i \leq j\right\rangle: j\right.$ is a countable ordinal, each a_{i} is a countable subset of α and $\left\langle a_{i}: i \leq j\right\rangle$ is increasing continuous, and for i a limit ordinal $\left.\operatorname{otp}\left(a_{i}\right)<g(i)\right\}$. The order is: $p \leq q$ iff p is an initial segment of q.
We can assume g is nondecreasing (see 3.7A(2)).
3.10B Observation. R_{α} is g-sm proper.

Proof. Left to the reader.
3.10C Observation. If $G \subseteq R_{\alpha}$ is sufficiently generic, then G defines an increasing continuous sequence $\left\langle a_{i}: i<\omega_{1}\right\rangle$ with $\bigcup_{i<\omega_{1}} a_{i}=\alpha$ and hence defines an α-th canonical function below g.
$\square_{3.10,3.3}$

Answering a question of Judah:

Question. Does $A x[$ Countably Complete $*$ c.c.c.] imply PFA?
3.11 Claim. The answer is no.

Proof. Countably complete forcings and c.c.c. forcings and also their composition are ω-proper. So we have

$$
P F A \Rightarrow \mathrm{Ax}[\omega \text {-proper }] \Rightarrow \mathrm{Ax}[\text { countably complete } * \text { c.c.c. }] .
$$

We will show that the first implication cannot be reversed:
3.12 Definition. $\bar{c}=\left\langle c(i): i<\omega_{1}\right\rangle$ is a ω-club guessing for ω_{1} means that $c(i)$ is an unbounded subset of i of order type ω for each limit ordinal i less than ω_{1}, such that every closed unbounded subset c of ω_{1} includes $c(i)$ for some limit ordinal $i<\omega_{1}$.
3.13 Claim. (1) If \bar{c} is a ω-club guessing for ω_{1}, and P is ω-proper, then \Vdash_{P} " \bar{c} is a ω-club guessing for ω_{1} ".
(2) $\diamond \omega_{1}$ implies that there is a ω-club guessing for ω_{1} (so a ω-club guessing can be obtained by a small forcing notion).

Proof. (1): Let $\underset{\sim}{C}$ be a name for a closed unbounded subset of $\omega_{1}, p \in P$. We need to find a condition $q \geq p$ and some $i<\omega_{1}$ such that $q \Vdash_{P} " c(i) \subseteq C$ ". Let $\left\langle N_{i}: i<\omega_{1}\right\rangle$ be an increasing continuous sequence of countable models $N_{i} \prec\left(H(\chi), \in<_{\chi}^{*}\right), \chi$ large enough, $\{p, \underset{\sim}{C}, P\} \in N_{0}$. Let $\delta_{i}=N_{i} \cap \omega_{1}$. Let $C^{*}=\left\{i<\omega_{1}: \delta_{i}=i\right\}$. Now C^{*} is closed unbounded, so there is some i such that $c(i) \subseteq C^{*}$, say $c(i)=\left\{i_{0}, i_{1}, \ldots\right\}, i_{0}<i_{1}<\ldots$. Let $q \geq p$ be $N_{i_{\ell}-}$ generic for all $n<\omega$. So $q \Vdash$ " $i_{\ell}=N_{i_{\ell}}[G] \cap \omega_{1}=N_{i_{\ell}} \cap \omega_{1}$ ", and clearly \Vdash " $N_{i_{\ell}}[G] \cap \omega_{1} \in \underset{\sim}{C}$ ", so $q \Vdash " c(i) \subseteq C$ ".
(2) Should be clear.
3.14 Claim. Suppose $\bar{c}=\left\langle c_{\delta}: \delta<\omega_{1}\right\rangle$ is such that: c_{δ} is a closed subset of δ of order type $\leq \alpha^{*}$. Let
$R_{\bar{c}} \stackrel{\text { def }}{=}\left\{(i, C): i<\omega_{1}, C\right.$ is a closed subset of $i+1$, such that for every $\left.\delta \leq i, \sup \left(c_{\delta} \cap C\right)<\delta\right\}$,
order is natural. Let
$\mathcal{I}_{\gamma} \stackrel{\text { def }}{=}\left\{(i, C) \in R_{\bar{c}}: \gamma<\max (C)\right\}$.
Then: $R_{\bar{c}}$ is proper, each \mathcal{I}_{γ} is a dense subset of $R_{\bar{c}}$, and if $G \subseteq R_{c}$ is directed not disjoint to each \mathcal{I}_{γ}, then $C^{*}=\cup\{C:(i, C) \in G\}$ is a club of \aleph_{1} such that: $\delta<\omega_{1} \Rightarrow \sup \left(C \cap c_{\delta}\right)<\delta$.

Proof. Straight.
For proving " $R_{\bar{c}}$ is proper" denote $q=\left(i^{q}, C^{q}\right), i^{q}=\operatorname{Dom}(q)$, let $N \prec(H(\chi), \in$,$\left.<_{\chi}^{*}\right), N$ countable, $p \in N \cap R_{\bar{c}}$, and $\left\{\bar{c}, R_{\bar{b}}, \alpha\right\} \in N$. W.l.o.g. $\beth_{7}^{+}<\chi$. Let $\delta=N \cap \omega_{1}$, and so we can find $\left\langle N_{i}: i<\delta\right\rangle$, an increasing continuous sequence of elementary submodels of $\left(H\left(\beth_{7}^{+}\right), \in\right), N_{i} \subseteq N, N \cap H\left(\beth_{7}^{+}\right)=\bigcup_{i<\delta} N_{i}$ and $p \in N_{0}$. So we can find $i_{0}<i_{1}<\ldots, \delta=\bigcup_{\ell<\omega} i_{\ell}$ such that $\omega_{1} \cap N_{i_{\ell}+1} \backslash N_{i_{\ell}}$ is disjoint to c_{δ}. Let $\left\langle\tau_{n}: n<\omega\right\rangle$ list the $R_{\bar{c}}$-names of ordinals from N, and we can choose by induction on n a condition p_{n}, q_{n} such that: $p \leq p_{0} \in N_{i_{0}+1}, i^{p_{0}}$ is $N_{i_{0}} \cap \omega_{1}$, and $\left[i^{p}, N_{i_{0}+1} \cap \omega_{1}\right)$ is disjoint to $C^{p_{0}}, p_{n} \leq q_{n} \in R_{\bar{c}} \cap N_{i_{n}+1}, q_{n}$ force a value to ${\underset{\sim}{\tau}}_{\ell}$ if $\ell \leq n \& \tau_{\ell} \in N_{i_{n}+1}$, and $q_{n} \leq p_{n+1}, i^{p_{n+1}}=N_{i_{n+1}} \cap \omega_{1}$, and $\left[i^{p_{n+1}}, N_{i_{n+1}} \cap \omega_{1}\right.$) is disjoint to $c^{p_{n+1}}$. Now $\left\langle p_{n}: n<\omega\right\rangle$ has a limit as required.

Another presentation is noting:
$(*)$ for each $p^{*}=\left(i^{*}, C^{*}\right) \in R_{\bar{c}}$ and dense subset \mathcal{I} of P, there is a club $E=E_{q, \mathcal{I}}$ of ω_{1} such that:
for every $\alpha \in E, \alpha>i^{*}$, and there is $\left(i^{\alpha}, C^{\alpha}\right) \in R_{\bar{c}},\left(i^{\alpha}, C^{\alpha}\right) \geq$ $\left(\alpha, C^{*}\right) \geq\left(i^{*}, C^{*}\right),\left(i^{\alpha}, C^{\alpha}\right)$ is in \mathcal{I} and $i^{\alpha}<\min (E \backslash(\alpha+1))$.
$(* *)$ if $p \in N \prec\left(H(\chi), \in,<_{\chi}^{*}\right), N$ countable, $\left\{\bar{c}, R_{\bar{c}}, \alpha^{*}\right\} \in N$, and $\mathcal{I} \in N$ a dense subset of $R_{\bar{c}}$, then $E_{p, \mathcal{I}} \cap N$ has order type $N \cap \omega_{1}$ hence for unbounded many $\alpha \in N \cap E_{p, \mathcal{I}}$, the interval $[\alpha, \min (E \backslash(\alpha+1)))$ is disjoint to $c_{N \cap \omega_{1}}$.
3.14A Conclusion. $\mathrm{PFA} \Rightarrow$ there is no ω-club guessing on ω_{1}. On the other hand "Ax[ω-proper] + there is a ω-club guessing" is consistent, since starting from a supercompact we can force $A x[\omega$-proper] with an ω-proper iteration (see V3.5).
3.15 Remark. The generalization to higher properness should be clear: for α additively indecomposable, $\operatorname{Ax}[\alpha$-proper $]$ is consistent with existence of $\langle c(i)$: $i<\omega_{1}$ and α divides $\left.i\right\rangle$ as in 3.12 only the order type of $c(i)$ is α (for a club of i 's), for it to be preserved we use $\bar{c}=\left\langle c(i): i<\omega_{1}\right.$, and α devides $\left.i\right\rangle$ such that for every γ the set $\left\{c(i) \cap \gamma: i<\omega_{1}\right.$ divisible by α and $\left.\gamma \in C(i)\right\}$ is countable.

On the other hand $\operatorname{Ax}[\alpha$-proper $]$ implies there is no $\left\langle c(i): i<\omega_{1}, \alpha \omega\right.$ divides $i\rangle$ such that: $c(i)$ is a club of i of order type $\alpha \omega$ and for every club C of ω_{1} for some $i, c(i) \subseteq C$.

§4. A Largeness of $\mathcal{D}_{\omega_{1}}$ in Forcing Extensions of L and Canonical Functions

The existence of canonical functions is a "large cardinal property" of ω_{1}, or more precisely, of the filter $\mathcal{D}_{\omega_{1}}$. For example, the statement "the α-th canonical function exists for any α " will hold if $\mathcal{D}_{\omega_{1}}$ is \aleph_{2}-saturated, and it implies that the generic ultrapower $V^{\omega_{1}} / G_{Q}$ (see $3.2(3)$) is well-founded. If we know only that ω_{1} is a canonical function, we can conclude that the generic ultrapower is well-founded at least below ω_{1}^{V}.

It was shown by Jech and Powell [JePo] that the statement " ω_{1} is a canonical function" implies the consistency of various mildly large cardinals. Jech and Shelah [JeSh:378] showed how to force the \aleph_{2}-th (or the $\theta^{\text {th }}$, for any θ) canonical function to exist (this is weaker than " ω_{1} is a cannonical function"). After this paper Jech reasked me a question from [JePo]: "if the function ω_{1} is a canonical function, does $0^{\#}$ exist?" We give here a negative answer. Our proof which uses large cardinals whose existence is compatible with the axiom $V=L$, is in the general style of this book: quite flexible iterations, quite specific to preserving \aleph_{1}. We thank Menachem Magidor for many stimulating discussions on the subject. Subsequently Magidor and Woodin find an equiconsistency results with different method.
This section consists of two parts: First we define a large cardinal property $(*)_{\lambda}^{1}$ and show (in 4.3)

$$
\operatorname{Con}\left((\exists G)\left[V=L[G]+G \subseteq \omega_{1} \text { is generic for a forcing in } L+(\exists \lambda)(*)_{\lambda}^{1}\right]\right)
$$

assuming the existence of $0^{\#}$ or some suitable strong partition relation. Then we show (in 4.6, 4.7) that $(*)_{\lambda}^{1}$ implies that there is a generic extension of the
universe in which ω_{1} is a λ-function, and make some remarks about possible cardinal arithmetic in this extension.

We think that the proof of 4.6 is also interesting for its own sake, as it gives a method for proving large cardinal properties of $\mathcal{D}_{\omega_{1}}$ from consistency assumptions below 0 \#.
4.1 Definition. $\lambda \rightarrow^{+}(\kappa)_{\mu}^{<\omega}$ means that for every club C of λ and function F : $[\lambda]^{<\omega} \rightarrow \mu$ there is $X \subseteq C, \operatorname{otp}(X)=\kappa$ such that: $u_{1}, u_{2} \subseteq X \cup \min (X),\left|u_{1}\right|=$ $\left|u_{2}\right|<\aleph_{0}, u_{1} \cap \min (X)=u_{2} \cap \min (X)$ implies $F\left(u_{1}\right)=F\left(u_{2}\right)$. Let $\lambda \rightarrow(\kappa)_{<\lambda}^{<\omega}$ mean: if $F:[\lambda]^{<\omega} \rightarrow \lambda, F(u)<\min (u \cup\{\lambda\})$, then for some $X \subseteq \lambda, \operatorname{otp}(X)=\kappa$ and $F \upharpoonright[X]^{n}$ constant for each n.

By the known analysis
4.2 Remark. 1) If λ is minimal such that $\lambda \rightarrow(\kappa)_{\mu}^{<\omega}$ then $\lambda \rightarrow(\kappa)_{<\lambda}^{<\omega}$ and λ is regular and $2^{\theta}<\lambda$ for $\theta<\lambda$, from which it is easy to see $\lambda \rightarrow^{+}(\kappa)_{\mu}^{<\omega}$. Such λ 's are Erdős cardinals, which for $\kappa \geq \omega_{1}$ implies the existence of $0^{\#}$ so implies $V \neq L$. But of course it has consequences in L.
2) Remember $A^{[n]}=\{b: b \subseteq A,|b|=n\}$.
3) Of course $\mu \geq 2$ is assumed.
4) $\lambda \rightarrow^{+}(\kappa)_{\mu}^{<\omega}$ implies λ is regular, $\mu<\lambda$, and $\lambda \rightarrow^{+}(\kappa)_{\mu_{1}}^{<\omega}$ for any $\mu_{1}<\lambda$.
4.3 Claim. If in $V: \lambda \rightarrow^{+}(\kappa)_{\kappa}^{<\omega}$ and κ is regular uncountable, (hence $\lambda>2^{\kappa}$) then in $V^{\operatorname{Levy}\left(\aleph_{0},<\kappa\right)}$ and even in $L^{\operatorname{Levy}\left(\aleph_{0},<\kappa\right)}$ (the constructible universe after we force with the Levy collapse) $(*)_{\lambda}^{1}$ is satisfied, where:
4.4 Definition. For λ an ordinal, $(*)_{\lambda}^{1}$ is the following postulate: for any $\chi>2^{\lambda}$, and $x \in H(\chi)$, there are N_{0}, N_{1} such that:
(a) N_{0}, N_{1} are countable elementary submodels of $\left(H(\chi), \in,<_{\chi}^{*}\right)$
(b) $x \in N_{0} \prec N_{1}$
(c) $\operatorname{otp}\left(N_{0} \cap \lambda\right)=\operatorname{otp}\left(N_{1} \cap \omega_{1}\right)$
(d) in N_{1} there is a subset of $\operatorname{Levy}\left(\aleph_{0}, N_{0} \cap \omega_{1}\right)$ generic over N_{0}.
(e) The collapsing map $f: N_{0} \cap \lambda \rightarrow \omega_{1}$ defined by $f(\alpha)=\operatorname{otp}\left(N_{0} \cap \alpha\right)$ satisfies:
whenever $u \in N_{0}, u \subseteq \lambda,|u| \leq \aleph_{1}$, then $f \upharpoonright u \in N_{1}$ (note $f \upharpoonright u$ is $f \upharpoonright\left(u \cap N_{0}\right)$).
Proof of 4.3. Straightforward: let $G \subseteq \operatorname{Levy}\left(\aleph_{0},<\kappa\right)$ be generic over V hence it is also generic over L (note: $\left.\operatorname{Levy}\left(\aleph_{0},<\kappa\right)^{V}=\operatorname{Levy}\left(\aleph_{0},<\kappa\right)^{L}\right)$. It is also easy to check that $V[G] \vDash " \lambda \rightarrow^{+}(\kappa)_{\kappa}^{<\omega}$ and even $\lambda \rightarrow^{+}(\kappa)_{\left(2^{\kappa}\right)}^{<\omega}$ " because $\left|\operatorname{Levy}\left(\aleph_{0},<\kappa\right)\right|<\lambda$, see 4.2.

Let $\chi>2^{\lambda}$, in $L[G]$ and we shall find N_{0}, N_{1}, f as required for $L[G], x \in$ $H(\chi)^{L[G]}$ (because $L[G]$ is the case we shall use, $V[G]$ we leave to the reader). In V we can find a strictly increasing sequence $\left\langle\alpha_{i}: i<\kappa\right\rangle$ of ordinals $<\lambda$, indiscernible in $\left(H(\chi)^{L[G]}, \in, \lambda, G\right)$, each $\alpha_{i} \in C^{*} \stackrel{\text { def }}{=}\{\alpha<\lambda: \alpha$ belongs to any club of λ definable in $\left.\left(H(\chi)^{L[G]}, \in, \lambda, G\right)\right\}$ (so each α_{i} is a cardinal in $L[G]$). We define, by induction on $n, i_{n}, N_{0, n}, N_{1, n}$ such that (α) $\omega \leq i_{n}<i_{n+1}<\omega_{1}, i_{n}$ is limit, $i_{0}=\omega$
(β) $N_{0, n}$ is the Skolem Hull of $\{x\} \cup\left\{\alpha_{i}: i<i_{n}\right\}$ in $\left(H(\chi)^{L[G]}, \in, \lambda, G\right)$
$(\gamma) N_{1, n}$ is the Skolem Hull of $N_{0, n} \cup \bigcup\left\{o t p\left(N_{0, n} \cap \lambda\right)+1\right\} \cup\left\{f_{u}: u \in N_{0, n}\right.$ is a set of at most \aleph_{1} of ordinals $\left.<\lambda\right\}$ where $f_{u}: u \cap N_{0, n} \rightarrow \omega_{2}$ is defined by $f_{u}(\alpha)=\operatorname{otp}\left(N_{0, n} \cap \alpha\right)$ in the model $\left(H(\chi)^{L[G]}, \in, \lambda, G\right)$.
($\delta i_{n+1}=\operatorname{otp}\left(N_{1, n} \cap \omega_{1}\right)$.
There is no problem to do this. Let $i_{\infty} \stackrel{\text { def }}{=} \sup \left\{i_{n}: n<\omega\right\}$.
Finally let $N_{0}=\bigcup_{n<\omega} N_{0, n}$ and $N_{1}=\bigcup_{n<\omega} N_{1, n}$. Now N_{0}, N_{1}, f are not necessarily in $L[G]$ but we now proceed to show that they satisfy requirements (a)-(e) from $(*)_{\lambda}^{1}$. Clauses (a) and (b) are clear, since the models N_{0} and N_{1} are unions of elementary chains and $N_{n}^{0} \prec N_{n}^{1}$ and $x \in N_{0, n}$.

Clearly $N_{1, n} \cap \kappa$ is an initial segment of $\kappa\left(\right.$ as $\left.V[G] \vDash \kappa=\aleph_{1}\right)$, so $N_{1, n} \cap \kappa$ is an initial segment of $N_{1, n+1} \cap \kappa$. Hence $\operatorname{otp}\left(N_{1} \cap \kappa\right)=\sup \left\{\operatorname{otp}\left(N_{1, n} \cap \kappa\right)\right.$: $n<\omega\}=\sup \left\{i_{n}: n<\omega\right\}=i_{\infty}$. Since $\left\{\alpha_{i}: i<i_{\infty}\right\} \subseteq N_{0}$ and the α_{i} are strictly increasing, we have $\operatorname{otp}\left(N_{0} \cap \lambda\right) \geq \operatorname{otp}\left\{i_{\alpha}: \alpha<\bigcup_{n<\omega} i_{n}\right\}=i_{\infty}$. So $\operatorname{otp}\left(N_{0} \cap \lambda\right) \geq \operatorname{otp}\left(N_{1} \cap \kappa\right)$.
For the converse inequality, note that $N_{0, n} \cap \lambda$ is an initial segment of $N_{0, n+1} \cap \lambda$ (as the α_{i} are indiscernible and in C^{*} and see Definition 4.1) so otp $\left(N_{0} \cap \lambda\right)=$
$\sup \left\{\operatorname{otp}\left(N_{0, n} \cap \lambda\right): n<\omega\right\} \leq \sup \left\{\operatorname{otp}\left(N_{1, n+1} \cap \omega_{1}\right): n<\omega_{1}\right\} \leq \operatorname{otp}\left(N_{1} \cap \omega_{1}\right)$. So (c) holds.

Next we have to check (d). Note that N_{0} is the Skolem Hull of $\left\{\alpha_{i}: i<i_{\infty}\right\}$. Let $\delta=N_{0} \cap \kappa$; by the previous sentence also $\delta=N_{0, n} \cap \kappa$, and even $N_{0} \cap L_{\kappa}=$ $N_{0, n} \cap L_{\kappa}$. Let $G=\left\langle G_{\alpha}: \alpha<\kappa\right\rangle$, so $\bigcup G_{\alpha}$ is a function from ω onto α. Define $Q=\operatorname{Levy}\left(\aleph_{0}, \aleph_{1}\right)^{N_{0}}, \mathcal{P}=\left\{\mathcal{I} \cap Q: N_{0} \models\right.$ " \mathcal{I} is a dense subset of $\left.Q\right\}$ ". Now in $V[G]$, we see that Q is $\operatorname{Levy}\left(\aleph_{0}, \delta\right)$ and \mathcal{P} is a countable family of subsets of Q. Hence for some $\alpha<\kappa, Q$ and \mathcal{P} belongs to $V\left[\left\langle G_{\beta}: \beta<\alpha\right\rangle\right]$. Without loss of generality $\alpha>\delta$, and α is divisible by $\delta \times \delta$ and without loss of generality $\alpha \in N_{1,1}$ (this is a minor change in the choice of the $N_{0, n}, N_{1, n}$'s). Define $f: \alpha \rightarrow \delta$ by $f(\delta i+j)=j$ when $j<\delta$, now $f \circ\left(\bigcup G_{\alpha}\right)$ is a function from ω onto δ, is generic over $V\left[\left\langle G_{\beta}: \beta<\alpha\right\rangle\right.$] (for $\operatorname{Levy}\left(\aleph_{0}, \alpha\right)$) hence is generic over N_{0} and it belongs to N_{1}, so demand (d) holds (alternatively we can demand $\left\langle\alpha_{i}: i<\kappa\right\rangle \in V$ and proceed from this.)

Finally clause (e) follows as $N_{0, n} \cap \lambda$ is an initial segment of $N_{0} \cap \lambda$ hence defining $f: N_{0} \cap \lambda \rightarrow \kappa$ by $f(\alpha) \stackrel{\text { def }}{=} \operatorname{otp}\left(N_{0} \cap \alpha\right)$, used in clause (e) we have: for $u \in N_{0, n},|u| \leq \aleph_{1}, u \subseteq \lambda$, we have $u \cap N_{0, n}=u \cap N_{0, n+1}=u \cap N_{0}$ (by the choice of the α_{i} 's) and f_{u} (defined is clause (γ) above) is $f \upharpoonright u$ (i.e. $f \upharpoonright\left(u \cap N_{0}\right)$) which we have put in $N_{1, n+1}$.

So N_{0}, N_{1}, f are as required except possibly not being in $L[G]$. But the statement that such models N_{0}, N_{1} exist is absolute between $L[G]$ and $V[G]$.
4.5 Claim. $0^{\#}$ implies that if $\aleph_{0}<\kappa<\lambda$ (in V) then $L^{\operatorname{Levy}\left[\aleph_{0},<\kappa\right]}$ satisfies $(*)_{\lambda}^{1}$.

Proof. Left to the reader as it is similar to the proof of 4.3 .
4.6 Main Lemma. If $(*)_{\lambda}^{1}, \lambda=\operatorname{cf}(\lambda)>\aleph_{1}$, and $2^{\aleph_{0}}=\aleph_{1}$ then for some forcing notion P :
(i) P satisfies the \aleph_{2}-c.c and has cardinality $\left(\lambda^{\aleph_{1}}\right)^{+}$.
(ii) P does not add new ω-sequences of ordinals.
(iii) \Vdash_{P} " ω_{1} (i.e. the function $\left\langle\omega_{1}: \alpha<\omega_{1}\right\rangle$) is a λ-function".
(iv) \vdash_{P} " $2^{\aleph_{1}}=|P|=\left[\left(\lambda^{\aleph_{1}}\right)^{+}\right]^{V "}$ (so for $\mu \geq \aleph_{1}$ we have $\left(2^{\mu}\right)^{\left[V^{P}\right]}=$ $\left.\left(2^{\mu}\right)^{V}+\lambda^{\aleph_{1}}\right)$.
(v) in V^{P}, for large enough χ and $x \in H(\chi)$ and stationary $S \subseteq \omega_{1}$ there is a countable $N \prec(H(\chi), \epsilon), x \in N$ such that $N \cap \omega_{1} \in S$ and $(\forall f \in N)\left[f \in N \& f \in{ }^{\omega_{1}} \omega_{1} \Rightarrow(\exists \alpha \in \lambda \cap N)\left[N \cap \omega_{1} \in \mathrm{eq}\left(f_{\alpha}, f\right)\right]\right]$, where eq $\left(f_{\alpha}, f\right) \stackrel{\text { def }}{=}\left\{i<\omega_{1}: f_{\alpha}(i)=f(i)\right\}$, and f_{α} is an α-th function (and $\left.\left\langle f_{\alpha}: \alpha<\lambda\right\rangle \in N\right)$.
4.6A Remark. (a) Let us call a model $N \prec\left(H(\chi), \in,<_{\chi}^{*}\right)$ "good" if $(\forall f \in$ $\left.N \cap{ }^{\omega_{1}} \omega_{1}\right)(\exists \alpha \in \lambda \cap N)\left[N \cap \omega_{1} \in \operatorname{eq}\left(f_{\alpha}, f\right)\right]$ (where $\bar{f}=\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ is as above); note that this implies eq $\left(f_{\alpha}, f\right) \subseteq \omega_{1}$ is stationary.

Let, for $x \in H(\chi)$,

$$
\mathcal{M}_{x} \stackrel{\text { def }}{=}\left\{N \cap 2^{\aleph_{1}}: N \text { is good and, } x \in N\right\}
$$

Note $\mathcal{M}_{x} \cap \mathcal{M}_{y}=\mathcal{M}_{\{x, y\}}$. So (v) can be rephrased as:
(v) ${ }^{\prime}$ The family $\left\langle\mathcal{M}_{x}: x \in H(\chi)\right\rangle$ is a base for a nontrivial filter on $\mathcal{S}_{<\aleph_{1}}\left(2^{\aleph_{1}}\right)$ (i.e. on the Boolean algebra $\left(\mathcal{S}_{<\aleph_{1}}\left(2^{\aleph_{1}}\right)\right)$.)
(b) Note that 4.6(ii) implies $\Vdash_{P} \mathrm{CH}$, and (i) and (ii) together imply that P does not change any cofinalities.
(c) $4.6(\mathrm{v})$ implies almost 4.6 (iii): for some $\beta \leq \lambda,\left\langle\omega_{1}: \alpha<\omega_{1}\right\rangle$ is a β-th function.

Proof of (c). Let $f: \omega_{1} \rightarrow \operatorname{Ord}, S \stackrel{\text { def }}{=}\left\{i: f(i)<\omega_{1}\right\}$ is stationary, and assume that for all $\alpha<\lambda$ and α-th function f_{α} the set eq $\left(f, f_{\alpha}\right) \cap S$ is nonstationary (if there is such a f_{α}) say disjoint to the club set C_{α}. Let N be a model as in (v) containing all relevant information. Let $\delta=N \cap \omega_{1}$ so $\delta \in S$. Then for some $\alpha \in N$ we have $\delta \in \operatorname{eq}\left(f, f_{\alpha}\right) \cap S$ where $f_{\alpha} \in N$ is an α-th function. But as $\alpha \in N$ we also have $\delta \in C_{\alpha}$, a contradiction.
4.7 Conclusion. 1) If in V we have $\lambda \rightarrow^{+}(\kappa)_{\kappa}^{<\omega}$ (or just $0^{\#} \in V, \aleph_{0}<\kappa<\lambda$ are cardinals in V or just $V=L^{\operatorname{Levy}\left(\aleph_{0},<\kappa\right)}$ and $\left.V \models(*)_{\lambda}^{1}\right)$, then in some generic
extension V^{P} of $L, 2^{\aleph_{0}}=\kappa=\aleph_{1}^{V}$ and $2^{\mu}=\lambda^{+}$when $\kappa \leq \mu \leq \lambda, 2^{\mu}=\mu^{+}$ when $\mu>\lambda$ and ω_{1} is a λ-th function (and (v) of 4.6).
2) We can, in the proof of 4.6 below, have $\alpha^{*}=\gamma$ if $\operatorname{cf}(\gamma)>\lambda, \gamma$ divisible by $|\gamma|$ and $|\gamma|=|\gamma|^{\aleph_{1}}$ (just more care in bookkeeping) so $\Vdash_{P}{ }^{"} 2^{\aleph_{1}}=|\gamma|$ " is also possible.
3) If e.g. (1) above, and we let $Q=\operatorname{Levy}\left(\aleph_{2}, \lambda^{+}\right)^{V^{P}}$ then in $V^{P * Q}$ we have $2^{\aleph_{0}}=\aleph_{1}, 2^{\aleph_{1}}=\aleph_{2}$ (and conditions (iii) $+(\mathrm{v})$ from 4.6 hold but λ is no longer a cardinal) and $V^{P}, V^{P * Q}$ has the same functions from ω_{1} to the ordinals.
4) We can have in 4.6(1), that V^{P} satisfies $2^{\mu}=\lambda$ for $\mu \in[\kappa, \lambda)$ and $2^{\aleph_{1}}=\lambda$ (and $2^{\mu}=\mu^{+}$when $\mu \geq \lambda$ and ω_{1} is a λ-th function).

We shall prove 4.7 later.
Proof of Lemma 4.6. We use a countable support iteration $\bar{Q}=\left\langle P_{\alpha},{\underset{\sim}{\alpha}}_{\beta}: \alpha \leq\right.$ $\left.\alpha^{*}, \beta<\alpha^{*}\right\rangle$, such that:
(1) $\alpha^{*}=\left(\lambda^{\aleph_{1}}\right)^{+}$
(2) if $\beta<\lambda$, then Q_{β} is adding a function $f_{\beta}^{*}: \omega_{1} \rightarrow \omega_{1}$:

$$
\begin{gathered}
Q_{\beta}=\left\{f: \text { for some non-limit countable ordinal } i<\omega_{1},\right. \\
\left.f \text { is a function from } i \text { to } \omega_{1}\right\},
\end{gathered}
$$

order: inclusion.
(3) if $\beta=\lambda+\lambda \beta_{1}+\beta_{2}$ where $\beta_{1}<\beta_{2}<\lambda$ then ${\underset{\sim}{\beta}}_{\beta}$ is shooting a club to ω_{1} on which $f_{\beta_{1}}^{*}$ is smaller than $f_{\beta_{2}}^{*}$:
$\underset{\sim}{Q_{\beta}}=\left\{a:\right.$ for some $i<\omega_{1}, a$ is a function from $\{j: j \leq i\}$ to $\{0,1\}$ such that: $\{j \leq i: a(j)=1\}$ is a closed subset of $\left.\operatorname{sm}\left({\underset{\sim}{~}}_{\beta_{1}}^{*},{\underset{\sim}{\beta_{2}}}_{*}^{*}\right)\right\}$
where $\operatorname{sm}(f, g) \stackrel{\text { def }}{=}\left\{i<\omega_{1}: f(i)<g(i)\right\}$,
order: inclusion.
(4) if $\beta<\left(\lambda^{\aleph_{1}}\right)^{+}, \beta \geq \lambda^{2}$ and for some $\underset{\sim}{g}, \underset{\sim}{A}$ and $\gamma \leq \beta$ and p we have
$\otimes_{\underline{g}, A, \gamma, p}^{\beta} \quad \underset{\sim}{g}$ is a P_{γ}-name of a function from ω_{1} to $\omega_{1}, \underset{\sim}{A}$ is a P_{γ}-name of a subset of ω_{1} and $p \in P_{\beta}$:

$$
\begin{gathered}
p \Vdash_{P_{\beta}} \text { "A is a stationary subset of } \omega_{1} \text {, but for no } \alpha<\lambda, \\
\text { is eq }\left[\underset{\sim}{g},{\underset{\sim}{\alpha}}_{\alpha}\right] \cap \underset{\sim}{A} \text { stationary" }
\end{gathered}
$$

then for some such $\left(g_{\beta}^{*}, A_{\beta}^{*}, \gamma_{\beta}^{*}, p_{\beta}^{*}\right)$, with minimal γ_{β}, the forcing notion $\underset{\sim}{Q_{\beta}}$ is killing the stationarity of $\underset{\sim}{A_{\beta}^{*}}$, that is: $\underset{\sim}{Q_{\beta}}=\left\{a\right.$: for some $i<\omega_{1}, a$ is a function from $\{j: j \leq i\}$ to $\{0,1\}$ and $\{j: j \leq i$ and $a(j)=1\}$ is closed and if $p_{\beta}^{*} \in{\underset{\sim}{G}}_{P_{\beta}}$ then a is disjoint to ${\underset{\sim}{A}}_{\beta}^{*}\}$
order: inclusion
(5) if no previous case applies let $\underset{\sim}{A}=\emptyset, \gamma_{\beta}=0,{\underset{\sim}{\beta}}_{\beta}=0_{\omega_{1}}$, and define Q_{β} as in (4).
There are no problems in defining \bar{Q}. Let $P=P_{\left(\lambda^{\aleph_{1}}\right)^{+}}$.

Explanation. We start by forcing the f_{α} 's, which are the witnesses for the desired conclusion and then forcing the easy condition: $f_{\alpha}<f_{\beta} \bmod \mathcal{D}_{\omega_{1}}$ for $\alpha<\beta<\lambda$. Then we start killing undesirable stationary sets. Note that given $f \in V^{P_{i}}$, maybe in $V^{P_{i}}$ we have $S=\left\{\alpha<\lambda:\right.$ eq $\left[f, f_{\alpha}\right]$ is stationary in $\left.V^{P_{i}}\right\}$ has cardinality λ, and increasing i it decreases slowly until it becomes empty, so it is natural to use iteration of length of cofinality $>\lambda$ e.g. $\lambda^{\aleph_{1}} \times \lambda^{+}$(ordinal multiplication) is O.K. The problem is proving e.g. that \aleph_{1} is not collapsed.

Continuation of the proof of 4.6.

The main point is to prove by simultaneous induction that for $\alpha \leq\left(\lambda^{\aleph_{1}}\right)^{+}$ the conditions $(a)_{\alpha}-(e)_{\alpha}$ listed below hold:
$(a)_{\alpha}$ forcing with P_{α} adds no new ω-sequences of ordinals.
$(b)_{\alpha} P_{\alpha}$ satisfies \aleph_{2}-c.c.
$(c)_{\alpha}$ the set P_{α}^{\prime} of $p \in P_{\alpha}$ such that each $p(\beta)$ is an actual function (not just a P_{β}-name) is dense.

Before we proceed to define $(d)_{\alpha}$, note that for each $\beta<\alpha$ (using the induction hypothesis),

$$
\begin{aligned}
& \Vdash_{P_{\beta}} \text { "CH and }\left|{\underset{\sim}{Q}}_{\beta}\right|=\aleph_{1} \text { and }{\underset{\sim}{Q}}_{\beta} \text { is a subset of } \\
& H \stackrel{\text { def }}{=}\left\{h: h \in V \text { is a function from some } i<\omega_{1} \text { to } \omega_{1}\right\} \in V \\
& \text { ordered by inclusion". }
\end{aligned}
$$

So (as P_{β} satisfies the \aleph_{2}-c.c.), the name $\underset{\sim}{Q_{\beta}}$ can be represented by \aleph_{1} maximal antichains of $P_{\beta}:\left\langle\left\langle p_{\zeta, h}^{\beta}: \zeta<\omega_{1}\right\rangle: h \in H\right\rangle$, i.e. for each $\zeta<\omega_{1}, p_{\zeta, h}^{\beta}$ forces $h \in \underset{\sim}{Q_{\beta}}$ or forces $h \notin{\underset{\sim}{Q}}_{\beta}$. So, $u_{\beta}^{*} \stackrel{\text { def }}{=} \bigcup_{\zeta, \ell} \operatorname{Dom}\left(p_{\zeta, \ell}^{\beta}\right)$ is a subset of β of cardinality $\leq \aleph_{1}$ (all done in V). We may increase u_{β}^{*} as long as it is a subset of β of cardinality $\leq \aleph_{1}$. W.l.o.g. $p_{\zeta, h}^{\beta} \in P_{\beta}^{\prime}$.

Call $u \subseteq \alpha$ closed (more exactly \bar{Q}-closed) if $\beta \in u$ implies: $u_{\beta}^{*} \subseteq u$ and $g_{\beta}^{*}, A_{\beta}^{*}$ are names represented by \aleph_{1} maximal antichains $\subseteq P_{\beta}^{\prime}$ with union of domains $\subseteq u_{\beta}^{*}$ and $\operatorname{Dom}\left(p_{\beta}^{*}\right) \subseteq u_{\beta}^{*}$. W.l.o.g. each u_{β}^{*} is closed. For a closed $u \subseteq \alpha$ we define P_{u} by induction on $\sup (u):$ let $P_{u}=\left\{p \in P_{\alpha}: \operatorname{Dom}(p) \subseteq u\right.$ and for each $\beta \in \operatorname{Dom}(p), p(\beta)$ is a $P_{u \cap \beta}$-name $\}$. Let $P_{u}^{\prime}=P_{u} \cap P_{\alpha}^{\prime}$. Lastly let $(d)_{\alpha} P_{u} \lessdot P_{\alpha}$ for every closed $u \subseteq \alpha$; moreover $(e)_{\alpha}$ if $u \subseteq \alpha$ is closed, $p \in P_{\alpha}^{\prime}$ then:
(1) $p \upharpoonright u \in P_{u}^{\prime} \subseteq P_{\alpha}^{\prime}$ and
(2) $p \upharpoonright u \leq q \in P_{u}^{\prime}$ implies $q \cup[p \upharpoonright(\operatorname{Dom}(p) \backslash u)]$ is a least upper bound of $p, q\left(\right.$ in $\left.P_{\alpha}^{\prime}\right)$.
Of course the induction is divided to cases (but $(a)_{\alpha}$ is proved separately). Note that $(\mathrm{e})_{\alpha} \Rightarrow(\mathrm{d})_{\alpha}$.

Case A: $\alpha=0$ Trivial
Case B: $\alpha=\beta+1$, proof of $(b)_{\alpha},(c)_{\alpha},(d)_{\alpha},(e)_{\alpha}$.
So we know that $(a)_{\beta}-(e)_{\beta}$ holds. By $(a)_{\beta}$ (as noted above), Q_{β} has power \aleph_{1}. So we know P_{β} satisfies \aleph_{2}-c.c., and $\Vdash_{P_{\beta}}$ " Q_{β} satisfies the \aleph_{2}-c.c." hence P_{α} satisfies the \aleph_{2}-c.c., i.e. $(b)_{\alpha}$ holds.

If $p \in P_{\alpha}$, then $p(\beta)$ is a countable subset of $\omega_{1} \times \omega_{1}$ from $V^{P_{\beta}}$, hence by $(a)_{\beta}$ for some $f \in V$ and q we have $p \upharpoonright \beta \leq q \in P_{\beta}$ and $q \Vdash_{P_{\beta}} " p(\beta)=f "$. By
$(c)_{\beta}$ w.l.o.g. q is in P_{β}^{\prime}. So $q \cup\{\langle\beta, f\rangle\}$ is in P_{α}, is $\geq p$ and is in P_{α}^{\prime}; so $(c)_{\alpha}$ holds.

As for $(d)_{\alpha}$ and $(e)_{\alpha}$, if $p \in P_{\alpha}^{\prime}$, we can observe $(e)_{\alpha}(1)$ which says: " $p \upharpoonright u \in P_{u} \subseteq P_{\alpha}$ ". [Why? If $\beta \notin u$, it is easy, so assume $\beta \in u$; now just note that $p \upharpoonright(\beta \cap u) \in P_{\beta \cap u} \lessdot P_{\alpha}$ by the induction hypothesis, now $p \upharpoonright \beta \Vdash_{P_{\beta}}$ " $p(\beta) \in \underset{\sim}{Q_{\beta}}$ ", but ${\underset{\sim}{\beta}}$ is a $P_{\beta \cap u}$-name, $P_{\beta \cap u} \lessdot P_{\beta}$ (as u is closed and the induction hypothesis), so by $(d)_{\beta}$ we have $(p \upharpoonright u) \upharpoonright \beta \Vdash_{P_{u \cap \beta}}$ " $p(\beta) \in Q_{\beta}$ "; so $p \upharpoonright u \in P_{\alpha}$ and as $\operatorname{Dom}(p \upharpoonright u) \subseteq u$ we have $\left.p \upharpoonright u \in P_{u}.\right]$

Next $(e)_{\alpha}(2)$ follows (check) and then $(d)_{\alpha},(e)_{\alpha}$ follows.
Case C: α limit $\operatorname{cf}(\alpha)>\aleph_{0}$, proof of $(b)_{\alpha},(c)_{\alpha},(d)_{\alpha},(e)_{\alpha}$.
Clearly $P_{\alpha}=\bigcup_{\beta<\alpha} P_{\beta}$ (as the iteration is with countable support), hence $(c)_{\alpha}$ follows immediately; from $(c)_{\alpha}$ clearly $(b)_{\alpha}$ is very easy [use a Δ-system argument, and CH$]$, and clause $(\mathrm{e})_{\alpha}$ also follows hence $(\mathrm{d})_{\alpha}$.
Case D: α is limit $\operatorname{cf}(\alpha)=\aleph_{0}$, proof of $(b)_{\alpha},(c)_{\alpha},(d)_{\alpha},(e)_{\alpha}$.
As in Case (C), it is enough to prove $(c)_{\alpha}$. So let $p \in P_{\alpha}$. Let χ be regular large enough; $N_{0} \prec N_{1}$ be a pair of countable elementary submodels of $\left(H(\chi), \in,<_{\chi}^{*}\right)$ to which $\bar{Q}, \alpha, \lambda, p$ belongs, satisfying (a)-(e) of $(*)_{\lambda}^{1}$ in Def 4.4.

We can find an ω-sequence $\left\langle u_{m}: m<\omega\right\rangle$ such that:
(i) each u_{m} is a member of N_{0}, and is a bounded subset of α of power $\leq \aleph_{1}$ which is closed for $\bar{Q} \upharpoonright \alpha$
(ii) $u_{m} \subseteq u_{m+1}$
(iii) if $u \in N_{0}$ is a bounded subset of α of power $\leq \aleph_{1}$ closed for $\bar{Q} \upharpoonright \alpha$ then for some m we have $u \subseteq u_{m}$.

There is no problem to choose such a sequence as the family of such u 's is directed and countable. Let $\left\langle\mathcal{I}_{m}: m<\omega\right\rangle$ be a list of the dense open subsets of P_{α} which belong to N_{0}.

Note that in general, neither $\left\langle u_{m}: m<\omega\right\rangle$ nor $\left\langle\mathcal{I}_{m}: m<\omega\right\rangle$ are in N_{1}.
Let $\delta \stackrel{\text { def }}{=} N_{0} \cap \omega_{1}$ and note that $\delta \in N_{1}$. Let R be $\operatorname{Levy}\left(\aleph_{0}, \delta\right)^{\omega}$, the ω th power of $\operatorname{Levy}\left(\aleph_{0}, \delta\right)$ with finite support, so R is isomorphic to $\operatorname{Levy}\left(\aleph_{0}, \delta\right)$ and it (and such isomorphisms) belongs to N_{1} so there is $G^{*} \in N_{1}$, a (directed) subset of R, generic over N_{0}. Note that from the point of view of $N_{0}, \operatorname{Levy}\left(\aleph_{0}, \delta\right)$ is $\operatorname{Levy}\left(\aleph_{0}, \aleph_{1}\right)$ hence $\left(\left(\operatorname{Levy}\left(\aleph_{0}, \aleph_{1}\right)\right)^{\omega}\right)^{N_{0}}=\left(\operatorname{Levy}\left(\aleph_{0}, \delta\right)\right)^{\omega}$, so G^{*} is an $N_{0^{-}}$
generic subset of $\left(\operatorname{Levy}\left(\aleph_{0}, \aleph_{1}\right)^{\omega}\right)^{N_{0}}$. Let $G^{*}=\left\langle G_{\ell}^{*}: \ell<\omega\right\rangle$. Note that $N_{0}\left[G^{*}\right] \vDash Z F C^{-}$and $N_{0}\left[G^{*}\right] \subseteq N_{1}$.

By the induction hypothesis $P_{u_{m}} \lessdot P_{u_{m+1}} \lessdot P_{\left(\sup u_{m+1}\right)+1} \lessdot P_{\alpha}$ for every m. Now we choose by induction on $m<\omega, p_{m}$ and $G_{m} \subseteq P_{\alpha} \cap N_{0}$ such that:

$$
\begin{aligned}
& p \leq p_{m} \leq p_{m+1} \\
& p_{m+1} \in \mathcal{I}_{m} \cap N_{0} \\
& p_{m} \upharpoonright u_{m} \in G_{m} \\
& G_{m} \subseteq N_{0} \cap P_{u_{m}}^{\prime} \text { is generic over } N_{0} \\
& \bigcup_{\ell<m} G_{\ell} \subseteq G_{m} \\
& G_{m} \in N_{1}, \text { moreover } G_{m} \in N_{0}\left[\left\langle G_{\ell}^{*}: \ell \leq m\right\rangle\right]
\end{aligned}
$$

Why is this possible? Arriving to $m(>0)$ we have $P_{u_{m-1}}^{\prime} \lessdot P_{\alpha}, G_{m-1} \subseteq$ $P_{u_{m-1}}^{\prime} \cap N_{0}$ is generic for N_{0}, we can choose p_{m} as required ($p_{m} \in \mathcal{I}_{m} \cap N_{0}$ and $p_{m-1} \leq p_{m}$ and $\left.p_{m} \upharpoonright u_{m-1} \in G_{m-1}\right)$. Also $P_{u_{m}}^{\prime}=P_{u_{m}} \cap P_{\alpha}^{\prime}$ belongs to N_{0}, (as $\bar{Q}, P_{\alpha}^{\prime}$, and u_{m} belongs), now it has cardinality \aleph_{1} (and of course all its members are in V as well as itself), so some list $\left\langle r_{\zeta}^{u_{m}}: \zeta<\omega_{1}\right\rangle$ of the members of $P_{u_{m}}^{\prime}$ of length ω_{1} belongs to N_{0}. So as $\delta=N_{0} \cap \omega_{1} \in N_{1}$, clearly $P_{u_{m}}^{\prime} \cap N_{0}=\left\{r_{\zeta}^{u_{m}}: \zeta<\delta\right\}$ belongs to N_{1} and N_{1} "know" that it is countable.

As G_{m}^{*} is a subset of $\operatorname{Levy}\left(\aleph_{0}, \aleph_{1}\right)^{N_{0}}=\operatorname{Levy}\left(\aleph_{0}, \aleph_{1}^{N_{0}}\right)^{N_{0}\left[\left\langle G_{\ell}^{*}: \ell<m\right\rangle\right]}$, generic over $N_{0}\left[\left\langle G_{\ell}^{*}: \ell<m\right\rangle\right]$ there is in $N\left[\left\langle G_{\ell}^{*}: \ell \leq m\right\rangle\right]$ a subset of $P_{u_{m}}^{\prime} \cap N_{0}$ generic for $\left\{\mathcal{I}: \mathcal{I} \in N_{0}\left[G_{m-1}\right]\right.$ and $\mathcal{I} \subseteq P_{u_{m}}^{\prime}$ and \mathcal{I} is dense in $\left.P_{u}\right\}$ extending G_{m-1}. So in N_{1} and even $N_{0}\left[\left\langle G_{\ell}^{*}: \ell \leq m\right\rangle\right]$ we can find $G_{m} \subseteq P_{u_{m}} \cap N_{0}$ generic over N_{0} with $p_{m} \upharpoonright u_{m} \in G_{m}$ and $G_{m-1} \subseteq G_{m}$.

Note: as $P_{u_{m}} \lessdot P_{u_{m+1}}$ we succeeded to take care of " $G_{m} \subseteq G_{m+1}$ ". Let $G=\bigcup_{m} G_{m}, \delta=N_{0} \cap \omega_{1}$. We define $q=q_{G}$, a function with domain $\alpha \cap N_{0}$: for $\beta \in u_{m} \cap N_{0}$ let
$q_{G}^{\prime}(\beta)=\bigcup\left\{r(\beta)\right.$: for some $m<\omega$ we have $r \in G_{m}$ and $r(\beta)$ is an actual (function not just a P_{β}-name) $\}$
$q_{G}(\beta)$ is: $q_{G}^{\prime}(\beta) \cup\left\{\left\langle\delta, \operatorname{otp}\left(N_{0} \cap \beta\right)\right\rangle\right\}$ if $\beta<\lambda$, and $q_{G}^{\prime}(\beta) \cup\{\langle\delta, 1\rangle\}$ if $\beta \geq \lambda$.
Clearly q is a function with domain $\alpha \cap N_{0}$, each $q(\beta)$ a function from $\delta+1$ to ω_{1}. (Here we use the induction hypothesis (c) $)_{\beta}$.)

If $q \in P_{\alpha}$ then we will have $q \in P_{\alpha}^{\prime}$ and q is a least upper bound of $\bigcup_{m<\omega} G_{m}$ and of $\left\{p_{m}: m<\omega\right\}$. Hence in particular $q \geq p$ thus finishing the proof of $(c)_{\alpha}$, hence (as said above) of the present case (Case D). Now we shall show:
$\otimes q \upharpoonright u_{m} \in N_{1}$ for each $m<\omega$
Clearly $q_{G}^{\prime} \upharpoonright u_{m} \in N_{1}$ as $G_{m} \in N_{1}$ (and $P_{u_{m}}^{\prime} \in N_{1}$), hence to prove \otimes we have to show that $\left\{\left\langle\beta,\left(q_{G}(\beta)\right)(\delta)\right\rangle: \beta \in u_{m}\right\}$ belongs to N_{1}. Now $\left\{\langle\beta,(q(\beta))(\delta)\rangle: \beta \in u_{m} \cap N_{0} \backslash \lambda\right\}$ is $\left\{\langle\beta, 1\rangle: \beta \in u_{m} \cap N_{0} \backslash \lambda\right\}=\left(u_{m} \cap N_{0} \backslash \lambda\right) \times\{1\}$ belongs to N_{1} as $u_{m} \in N_{0} \prec N_{1}$ and as said earlier, as $N_{0} \cap \omega_{1} \in N_{1}$, $N_{0} \vDash\left|u_{0}\right| \leq \aleph_{1}$ we have $u_{m} \cap N_{0} \in N_{1}$ and $\lambda \in N_{0} \prec N_{1}$. Next the set $\left\{\langle\beta, q(\beta)(\delta)\rangle: \beta \in u_{m} \cap N_{0} \cap \lambda\right\}$ is exactly $f \upharpoonright u_{m}$, where f is the function from 4.4(e).

So by Claim 4.8 below we finish.
Case E: α nonzero, proof of $(a)_{\alpha}$.
So by cases $(B),(C),(D)$ we know that $(b)_{\alpha},(c)_{\alpha},(d)_{\alpha},(e)_{\alpha}$ holds.
Now we imitate the proof of Case (D) except that in (i) and (iii) we omit the "bounded in α ". So now $P_{u_{m}} \lessdot P_{\alpha}$ " is justified not by " $(c)_{\beta}$ for $\beta<\alpha$ " but by $(c)_{\alpha}+(d)_{\alpha}$. We can finish now, by using again 4.8.

4.8 Claim. If

(a) $N_{0} \prec N_{1} \prec\left(H(\chi), \in,<_{\chi}^{*}\right)$ are countable, \bar{Q} is as in the proof of 4.6, $\bar{Q} \in N_{0}, \alpha=\ell \mathrm{g}(\bar{Q}) \in N_{0}, \delta=N_{0} \cap \omega_{1}, \operatorname{otp}\left(\lambda \cap N_{0}\right)=\operatorname{otp}\left(N_{1} \cap \omega_{1}\right)$, and part (d) of $(*)_{\lambda}^{1}$ of Definition 4.4 holds.
(b) $G \subseteq P_{\alpha} \cap N_{0}, G$ is directed,
(c) there is a family U such that:
(α) if $u \in U$ then $u \in N_{0}, u \subseteq \alpha$ is closed (for \bar{Q} i.e. $\alpha \in u \Rightarrow u_{\alpha}^{*} \subseteq u$) of power $\leq \aleph_{1}$,
(β) $\bigcup\{u: u \in U\}=N_{0} \cap \alpha, U$ is directed (by \subseteq) and if $u \in N_{0}$ is closed (for \bar{Q}) bounded subset of α of cardinality $\leq \aleph_{1}$ then $u \in U$.
(γ) if $u \in U$ then $G \cap P_{u}$ is generic over N_{0}
(δ) if $u \in U$ then $G \cap P_{u} \in N_{1}$
(d) $q=q_{G}$ is defined as in case D of the proof of 4.6 above, i.e. $\operatorname{Dom}(q)=\alpha \cap N_{0}$ and
$q^{\prime}(\beta)=\bigcup\left\{r(\beta)\right.$ for some $u \in U, r \in G_{m}, r(\beta)$ an actual function $\}$.
$q(\beta)$ is: $q^{\prime}(\beta) \cup\left\{\left\langle\delta, \operatorname{otp}\left(N_{0} \cap \beta\right)\right\rangle\right\}$ if $\beta<\lambda, q^{\prime}(\beta) \cup\{\langle\delta, 1\rangle\}$ otherwise.
Then
(i) q is in P_{α} (and even in P_{α}^{\prime})
(ii) $q \in P_{\alpha}^{\prime}$ is a least upper bound of G.

Proof. We prove by induction on $\beta \in N_{0} \cap \alpha$ that $q\left\lceil\beta \in P_{\alpha}\right.$ (hence $\in P_{\alpha}^{\prime}$).
This easily suffices.
Note. if $u \in N_{0}$ is closed and $\subseteq u^{\prime} \in U$ then we can add it to U.
Case 1: $\beta=0$, or β is limit. Trivial.
Case 2: $\beta=\gamma+1, \gamma<\lambda$. Check.
Case 3: $\beta=\gamma+1, \beta \geq \lambda$.
We should prove $q\left\lceil\gamma \Vdash_{P_{\gamma}} " q(\gamma) \in{\underset{\sim}{\gamma}}_{\gamma} "\right.$. Recall that u_{γ}^{*} is the subset of γ (of size \aleph_{1}) which was needed for the antichains defining Q_{γ}, and $\delta=N_{0} \cap \omega_{1}$. Clearly u_{γ}^{*} and $u_{\gamma}^{*} \cup\{\gamma\}$ belongs to U (being closed bounded and in N_{0}). As $G \cap P_{u_{\gamma}^{*} \cup\{\gamma\}}$ is generic over N_{0}, clearly
$q \upharpoonright \gamma \Vdash_{P_{\gamma}} " q(\gamma)$ is a function from $\delta+1$ to ω_{1}, such that for every non limit $\zeta<\delta$ we have $q(\gamma) \upharpoonright \zeta \in \underset{\sim}{Q_{\gamma}}$ ".

Noting $(q(\gamma)) \upharpoonright \zeta$, where $\zeta \leq \delta$, is of the right form; and $\gamma \geq \lambda \Rightarrow$ $(q(\gamma))^{-1}(\{1\})$ is closed and by the choice of $q(\gamma)(\delta)$, clearly it is enough to prove that:
\otimes_{a} if $\lambda \leq \beta<\lambda^{2}$ and $\beta=\lambda+\lambda \beta_{1}+\beta_{2}, \beta_{1}<\beta_{2}<\lambda$
then $q \upharpoonright \beta \vdash_{P_{\beta}}$ " $f_{\beta_{1}}^{*}(\delta)<f_{\beta_{2}}^{*}(\delta)$ "
\otimes_{b} if $\lambda^{2} \leq \beta<\ell g(\bar{Q})$ then $q \upharpoonright \beta \Vdash " p_{\beta}^{*} \in{\underset{\sim}{G}}_{Q_{\beta}} \Rightarrow \delta \notin{\underset{\sim}{A}}_{\beta}^{*}$ ".
Now \otimes_{a} holds as $q \Vdash_{P_{\alpha}}$ " $\left\langle f_{\gamma}^{*}(\delta): \gamma \in N_{0} \cap \alpha\right\rangle$ is strictly increasing" (just see how we have defined $q_{G}(\gamma)$ in clause (d) of 4.8 above).

So let us prove \otimes_{b}; remember ${\underset{\sim}{\beta}}_{\beta}$ is a $P_{u_{\beta}^{*}}$-name and (u_{β}^{*} being closed) $\underset{\sim}{A} A_{\beta}, g_{\beta}^{*}$ are $P_{u_{\beta}^{*}}$-names, $p_{\beta}^{*} \in N_{0} \cap P_{u_{\beta}}^{\prime}$. If $q \upharpoonright u_{\beta}^{*} \Vdash$ " $\delta \notin \underset{\sim}{A} A_{\beta}$ or $p_{\beta}^{*} \notin G_{P_{u_{\beta}^{*}}}$ " we
finish. Otherwise there is $r, q\left\lceil u_{\beta}^{*} \leq r \in P_{u_{\beta}^{*}}\right.$ and $r \Vdash$ " $\delta \in{\underset{\sim}{A}}_{\beta} \& p_{\beta}^{*} \in G_{P_{\beta}}$ "; w.l.o.g. $r \in P_{u_{\beta}^{*}}^{\prime}$. As $G \upharpoonright P_{u_{\beta}^{*}} \in N_{1}$ by the proof of \otimes in 4.6, case D (near the end), also $q \upharpoonright u_{\beta}^{*} \in N_{1}$, and remembering $\beta \in N_{0} \Rightarrow P_{\beta} \in N_{0}$ and $\delta \in N_{1}$, and $P_{u_{\beta}^{*}}$, $P_{u_{\beta}^{*}}^{\prime} \in N_{1}$ and $\underset{\sim}{A} A_{\beta}, p_{\beta}^{*} \in N_{1}$, clearly w.l.o.g. $r \in N_{1}$. As $\beta \in N_{0},{\underset{\sim}{\beta}}_{\beta}^{*} \in N_{0} \subseteq N_{1}$ is a $P_{u_{\beta}^{*}}$-name and $\delta \in N_{1}$, w.l.o.g. r forces a value to $g_{\beta}^{*}(\delta)$, say \Vdash " $g_{\beta}^{*}(\delta)=\xi(*)$ ".

Now $\xi(*) \in N_{1}$ hence $\xi(*)<\operatorname{otp}\left(N_{1} \cap \omega_{1}\right) \leq \operatorname{otp}\left(N_{0} \cap \lambda\right)$ (here we are finally using 4.4(c)), hence there is $\gamma \in \lambda \cap N_{0}$ such that $\xi(*)=\operatorname{otp}\left(N_{0} \cap \gamma\right)$.

But now (see definition of $\underset{\sim}{Q}{ }_{\beta}$) we have $r \vdash_{P_{\beta}}$ "eq[${\underset{\sim}{\beta}}_{\beta}^{*}, \underset{\sim}{f}] \cap \underset{\sim}{A}{\underset{\beta}{\beta}}$ is not stationary, so it is disjoint to some club ${\underset{\sim}{\beta}}_{\beta}^{*}$ of ω_{1} " where ${\underset{\sim}{\beta}}_{\beta}^{*}$ is a P_{β}-name and w.l.o.g. $C_{\beta}^{*} \in N_{0}$.
[Why? As $g_{\beta}^{*}, f_{\gamma}^{*},{\underset{\sim}{A}}_{A}^{A} \in N_{0}$ there is a P_{β}-name ${\underset{\sim}{\beta}}_{*}^{*}$ such that $\Vdash_{P_{\beta}}$ " if eq $\left[g_{\xi}^{*}, f_{\gamma}^{*}\right] \cap \underset{\sim}{A} A_{\beta}$ is not a stationary subset of ω_{1} then ${\underset{\sim}{\beta}}_{\beta}^{*}$ is a club of ω_{1} disjoint to this intersection, otherwise $\left.C_{\beta}^{*}=\omega_{1} "\right]$.

So \Vdash " C_{β}^{*} is a club of ω_{1} ". By the induction hypothesis for β (in particular (b) $)_{\beta}$ from the proof of 4.6 which says that P_{β} satisfies the \aleph_{2}-c.c.), for some \bar{Q}-closed bounded $u \subseteq \beta,|u| \leq \aleph_{1}, u \in N_{0}$ and ${\underset{\sim}{C}}_{\beta}^{*}$ is a P_{u}-name.

By the induction hypothesis $q \upharpoonright \beta \in P_{\beta}^{\prime}$; now by the construction of $q, q \upharpoonright \beta \vdash_{P_{\beta}}$ " $C_{\beta}^{*} \cap \delta$ is unbounded in δ " hence $(q \upharpoonright \beta) \cup r$ i.e. $r \cup(q \upharpoonright(\beta \cap \operatorname{Dom}(q) \backslash$ $\left.\left.\left.u_{\beta}^{*}\right)\right)\right]$ is in P_{α}^{\prime}, is an upper bound of $q \upharpoonright \beta$ and r and it forces $\delta \in{\underset{\sim}{C}}_{\beta}^{*}$, hence $\delta \in$ $e q\left[g_{\beta}^{*}, f_{\gamma}^{*}\right] \Rightarrow \delta \notin A_{\beta}^{*}$. But the antecedent holds by the choice of r, γ and $\xi(*)$. So we finish the proof.

Continuation of the proof of 4.6: So we have to check if conditions (i)-(v) of 4.6 hold for $P=P_{\alpha^{*}}$. Now (i) holds by $(b)_{\alpha^{*}}+(c)_{\alpha^{*}}\left(\alpha^{*}\right.$ is the length of the iteration- $\left(\lambda^{\aleph_{1}}\right)^{+}$); condition (ii) holds by $(a)_{\alpha^{*}}$. Condition (iii) should be clear from the way $Q_{\alpha}\left(\lambda \leq \alpha<\alpha^{*}\right)$ were defined (see the explanation after the definition of Q_{α}). Prove by induction on $\gamma<\lambda^{+}$that
$(*)_{\gamma}$ if $\underset{\sim}{g}$ is a P_{γ}-name of a function from ω_{1} to $\omega_{1}, \underset{\sim}{A}$ is a P_{γ}-name of a subset of ω_{1} and $p^{*} \in P_{\gamma}$ then:
if $p^{*} \Vdash$ " for every $\alpha<\lambda$ the set $\underset{\sim}{A} \cap e q(\underset{\sim}{g}, \underset{\sim}{f})$ is not stationary subset of ω_{1} "
then $p^{*} \Vdash$ " $A \subseteq \omega_{1}$ is not stationary".

Arriving to γ let $\left\langle\left({\underset{\sim}{~}}_{\zeta}, \underset{\sim}{A}, p_{\zeta}^{*}\right): \zeta<\lambda\right\rangle$ list the set of such triples (their number is $\leq \lambda$ as $\left|P_{\gamma}\right| \leq \lambda=\lambda^{\aleph_{1}}$ and P_{γ} satisfies \aleph_{2}-c.c. and the list includes such triples for smaller γ^{\prime} s). For each ζ we can find a club E_{ζ} of λ^{+}such that: if $\alpha<\beta \in E_{\zeta}$, then for some P_{β}-name $\underset{\sim}{C_{\alpha, A_{\zeta}, g_{\zeta}}}$ we have

$$
\begin{gathered}
\vdash_{P_{\lambda+}} \text { "if }{\underset{\sim}{C}}_{\zeta} \cap e q\left(\underset{\sim}{g_{\zeta}}, \underset{\sim}{f}\right) \text { is not stationary } \\
\text { then it is disjoint to }{\underset{\sim}{C}}_{\alpha, A_{\zeta}, \underline{g}_{\zeta}} \text { " } \\
\Vdash_{P_{\lambda+}} \text { " } C_{\alpha, A_{\zeta}, g_{\zeta}} \text { is a club of } \omega_{1} " .
\end{gathered}
$$

For any $\delta \in \bigcap_{\zeta<\lambda} E_{\zeta}$ which has cofinality $>\aleph_{1}$, we ask whether when choosing $\left(g_{\beta}^{*},{\underset{\sim}{A}}_{\beta}, \gamma_{\beta}, p_{\beta}^{*}\right)$ do we have a candidate $\left(\underset{\sim}{g}, \underset{\sim}{A}, \gamma^{\prime}, p\right)$ as in $\otimes_{\underline{g}, \underset{A}{\delta}, \gamma^{\prime}}^{\delta}, \gamma^{\prime} \leq \gamma$.

If for every such δ the answer is no, we have proved (*); if yes, we get easy contradiction.

For finishing the proof of condition (iii) note that we can let $f_{\lambda}(i)=\omega_{1}$, and prove by induction on $\alpha \leq \lambda$ that ${\underset{\sim}{\alpha}}_{\alpha}$, is an α 'th function as follows: $\beta<\alpha<\lambda \Rightarrow f_{\beta}<\mathcal{D}_{\omega_{1}} f_{\alpha}$ (see $Q_{\lambda+\lambda \beta+\alpha}$'s definition) and if $S \subseteq \omega_{1}, f \in{ }^{\omega_{1}} \omega_{1}$, $S \cap \mathrm{eq}(f, \underset{\sim}{f})$ not stationary for every $\alpha<\lambda$ we get S is not stationary by the definition of Q_{β} (for $\beta \in\left[\lambda^{2}, \alpha^{*}\right)$) so if $g<\mathcal{D}_{\omega_{1}} f_{\alpha}$ then for every $\beta \in[\alpha, \lambda)$ the set eq $\left[g, f_{\beta}\right]$ is not stationary and compare the definition of the α 'th function and the definition of the forcing condition).

Lastly clause (iv) of 4.6 holds as $\alpha^{*}=\left(\lambda^{\aleph_{1}}\right)^{+}$, each Q_{α} has cardinality \aleph_{1}, and $P_{\alpha^{*}}^{\prime}$ is a dense subset of $P_{\alpha^{*}}$. Finally, condition (v) follows from 4.8.
4.9. Proof of 4.7. 1)By 4.3, $(*)_{\lambda}^{1}$ holds in $L^{\mathrm{Levy}\left(\aleph_{0},<\kappa\right)}$ and λ is regular hence $\lambda^{\aleph_{1}}=\lambda$. By 4.6 we can define a forcing notion P in $L^{\operatorname{Levy}\left(\aleph_{1}<\kappa\right)},|P|=$ $\left[\lambda^{+}\right]^{L\left[\operatorname{Levy}\left(\aleph_{0},<\kappa\right)\right]}=\lambda^{+}$as required.
2) Iterate as above for α^{*} with careful bookkeeping.
3) Left to the reader.
4) Lastly over V^{P} force with $\operatorname{Levy}\left(\lambda, \lambda^{+}\right)$such that $2^{\aleph_{1}}=\lambda$.
4.10 Discussion. 1) Can we omit the Levy collapse of λ^{+}in the proof of 4.7(4) and still get $2^{\aleph_{1}}=\lambda$ (and $\left\langle\omega_{1}: i<\omega_{1}\right\rangle$ is the λ-th function)? Yes, if we strengthen suitably $(*)_{\lambda}^{1}$. (e.g. saying a little more than there is a stationary set of such $\left.\lambda^{\prime}<\lambda,(*)_{\lambda^{\prime}}^{1}\right)$.
2) In 4.6 we can add e.g. that in $V^{P}, A x\left[\right.$ proper of cardinality \aleph_{1} not adding reals as in XVIII §2]. We have to combine the two proofs.
3) Suppose $V \models$ " $(*)_{\lambda}^{1}$ ", and for simplicity, $V \models$ "G.C.H., λ is regular $\neg(\exists \mu)[\lambda=$ $\left.\mu^{+} \& \mu>\operatorname{cf} \mu \leq \aleph_{1}\right] "$. (E.g. $L^{\operatorname{Levy}\left(\aleph_{0},<\kappa\right)}$ when $0^{\#}$ exists, κ is a cardinal of V.) For some forcing notion $P,|P|=\lambda^{+}$, and in V^{P} we have: ω_{1} is an $\omega_{3^{-}}$ th function, $\Vdash_{P} " \aleph_{1}=\aleph_{1}^{V}, \aleph_{2}=\left(\aleph_{2}\right)^{V}, \aleph_{3}=\lambda, \aleph_{4}=\left(\lambda^{+}\right)^{V}$ and CH and $2^{\aleph_{1}}=\aleph_{4} "$, (so we can then force by $\operatorname{Levy}\left(\aleph_{3}, \aleph_{4}\right)$ and get $2^{\aleph_{1}}=\aleph_{3}$).

Proof. 3) Let $R=\operatorname{Levy}\left(\aleph_{2},<\lambda\right), R$ is \aleph_{2}-complete and satisfies the λ-c.c. and $|R|=\lambda$, so forcing by R adds no new ω_{1}-sequences of ordinals, make λ to \aleph_{3}. Let $P_{\alpha^{*}}^{\prime}$ be the one from 4.6 (or $4.7(2)$). As R is \aleph_{2}-complete, also in V^{R} we have: $P_{\alpha^{*}}^{\prime}$ satisfies the \aleph_{2}-c.c., and $P_{\alpha^{*}}^{\prime}$ has the same set of maximal antichains as in V. So the family of $P_{\alpha^{*}}^{\prime}$-name of a subset of ω_{1} (or a function from ω_{1} to ω_{1}) is the same in V and V^{R}. So clearly $P_{\alpha^{*}}^{\prime} \times R$ is as required. $\quad \square_{4.10}$

Problem. Is ZFC $+" \theta$ is an α-th function for some α (for $\mathcal{D}_{\omega_{1}}$)" $+\neg 0^{\#}$ consistent? For $\theta \in\left\{\aleph_{1}, \aleph_{\omega_{1}}\right\}$ or any preassumed θ ? (Which will be $<2^{\aleph_{1}}$.)

[^0]: \dagger Note: members of B are subsets of ζ with last element, so $\{\max (a): a \in$ $B\}$ is a subset of ζ.

