XV. A More General
Iterable Condition Ensuring
N1 Is Not Collapsed

§0. Introduction

Chapter XI was restricted to forcing notions not adding reals in a specific way
so that under CH, Nm is always permissible. This was used to show that various
combinatorical principles of Ry were equiconsistent with the existence of (small)
large cardinals. We constructed our models starting from CH without adding
reals, so that CH also holds in the final model. But what if we want CH to fail
in the final model? Can we phrase a condition preserved by iterations, implying
N; does not collapse and include semiproper forcing and Nm? This, promised in
the first version of this book, is carried out here. We start with notions similar
to the one in Chapter X, and then move in the direction of semiproperness.
Further theorems (which shed light on preservation of not adding reals) will
appear elsewhere (see [Sh:311]). The preservation theorems from this chapter
are sufficient to prove analogue of some theorems from Chapter XI with the
negation of CH. For example adding Cohen reals to the construction of XI 1.4
we can show: If “ZFC+ 3 weakly compact cardinal” is consistent, then so is
“ZFC+2R0 = Ny + for every stationary S C S? there is a closed copy of w;
included in it”. Generally the preservation proofs generalize those of Chapter
XI, except in the case of “iterating up to a strongly inaccessible and doing one
more step (in this case 3.6). We generalize Gitik and Shelah [GiSh:191] which
improve the relevant theorem in XI (i.e. [Sh:b, XI]).
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Of course we can also add reals to the construction in XI 1.2 and get
an extension VP where R} = NYP, k= RY " and the filter generated by the
measure on « in V will include S2, and it is not clear that it will be precipitous,
see X §6. As in Chapter XI, we use for proving the preservation, partition
theorems and A-system theorems on trees: mainly 2.6 and 2.6A, 2.6B, 2.6C.
Some of them are from Rubin and Shelah [RuSh:117], see detailed history there,
on pages 47, 48.

81. Preliminaries

The replacement of RCS (revised countable support) by GRCS (defined below)
is not essential - it is intended to simplify the preservation theorems (one of
the cases in Chapter VI refers to GRCS).
1.1 Conventions. A forcing notion here, P, is a nonempty set (denoted
by P too) and two partial orders <,,,< and a minimal element §p € P,
P <pr ¢ = p < q]. Wecall p e P pure if Op <, p and we call g a pure
extension of p if p <, ¢. (In Chapter XIV=[Sh:250] this was written <p).

We denote forcing notions by P, @, R. (The forcing relation of course refers

to the partial order <).

1.2 Definition. Let M AC(P) be the set of maximal antichains of the forcing

notion P.

1.2A Remark. 1) Note: [MAC(P)| < 2/P|, P satisfies the |P|*-c.c. and if P

satisfies the A-c.c. then |[M AC(P)| < |P|<*.

2) Note

(¥) if Q is a forcing notion, A = A< > |Q| + No, kg “(Vu < A)uX° < A” and
Q' = Q@+ Levy(Ri, < A) then [MAC(Q")| = |@'| = A

1.3 Notation. Car is the class of cardinals.

IRCar is the class of infinite regular cardinals.
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RCar = IRCar U {0}.

RUCar is the class of uncountable regular cardinals.
DS is the filter of co-bounded subsets of .

n~ =nl (¢g(n) — 1) for n € V< and ¢g(n) >0

1.4 Notation. H(x) is the family of sets with transitive closure of power < ;
let <}, be a well ordering of H(x).

1.5 Definition. GRCS iteration is as defined in Ch X, except that, for each
condition all but finitely many of the atomic conditions in it are pure (or as in
Chapter XIV §1 for k =Ry, e = 1).

1.6 Fact. (x); if Q is a GRCS iteration, and for each i <$:=<9: then Q is
an RCS iteration.

(¥)2 if Q is an GRCS iteration, and for each i the order SI‘}’; is equality then
Q is essentially a finite support iteration.

(x)3 the distributivity law, etc. (Chapter X 1.5, and §1 generally) holds for

GRCS (by Chapter XIV §1).

1.7 Claim. Suppose we want to prove for all generic extensions V2 of V, that

for iteration (P;,Q; 11 < @, j < ) as in 3.1 below, for a property ¢ that:

(¥) if Q and each Q; has the property ¢ (of course @ in V, @; in VQ*Pi)
then P, has the property ¢ (in V@).

Then it is enough to prove (*) when (a) and (b) below hold:
(a) for i < j < @, Pj/P; has the property ¢ (in VQ*?i)
(b) £g(Q) is: 2, or w, or wy, or strongly inaccessible > |P;| for each i < 2g(Q).

Remark. You may add:
¢) (*) holds for all @/, (P!,Q" :i < a,j < ') for which o’ < o (not just in
i@

V, but in every generic extension of it).
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Proof. By induction on a, using 3.7 (later in this chapter) and X §1 (or XIV
§1).

§2. Trees of Models and U P

2.1 Definition.
1) A tagged tree is a pair (T, 1) such that:

(a) T is a w-tree, which here means a nonempty set of finite sequences of
ordinals such that if n € T then any initial segment of 7 belongs to T'.
T is ordered by initial segments, i.e., n < v iff 7 is an initial segment
of v.

(b) lis a partial function from T" such that for every n € T': if I(n) = I,, is
defined then I(n) is an ideal of subsets of some set called the domain

of 1, Dom(l,), and
Sucr(n) def {v : v is an immediate successor of n in T'} C Dom(l,)),

and if not said otherwise Sucr(n) ¢ I,,. Usually I, is Ro-complete.
(c) For every n € T we have Sucr(n) # 0.
2) We call (T, 1) normal if € Dom(l,,) = Dom(l,,) = Sucr(7).

2.1A Convention. For any tagged tree (T, 1) we can define I, by:
Dom(l') = {n : Suer(n) € Dom(l,), and Sucr(n) ¢ I,} and

Il ={{a:n"(a) € A} : A€ l,};
we sometimes, in an abuse of notation, do not distinguish between I and I e.g.

if II, is constantly I*, we write I* instead of I.

2.2 Definition. 1)  will be called a splitting point of (T 1) if I, is defined and

Sucr(n) ¢ I, (normally this follows but we may forget to decrease the domain
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of 1). Let split(T,1) be the set of splitting points. We will only consider trees
where each branch meets split(7', 1) infinitely often.

2) Forne T, T["]d——qf{ueT: v=norvdnorn<duv}.

2.3 Definition. We now define orders between tagged trees:
a) (Th,h1) < (Tp,h2) if T C T, and split(Ty,13) C split(Ty, 1), and Vn €
split(T2, I2) : l2(n) [Sucr, (n) = 11(n) [Sucr, (n).
(where ITA = {B: B C Aand B € I}). (So every splitting point of T5 is a
splitting point of T3, and |, is completely determined by |; and split(7%, I5)
provided that I3 is normal.)
b) (T1,h) <* (T, 12) iff (T1, lh) < (T, 12) and split(T2, l2) = split(Ty, ;) NTs.
c) (T1,h1) <® (Tn,)2) if (T1,h) <* (Ty,12) and n € Ty \ split(71,1;) =
Sucr, () = Sucr, (n)
(d) (T1,hh) <§ (T2, 12) if (T1,1h) < (Tp,)2) and n € Ty & [Sucr, ()] < p =
(n) = Sucr, (n) and n € T2 & |Suer, (n)| > p & n € Sp(Th,h) = n e
Sp(T3, I2)

SllCT2

2.4 Definition. 1) For a set I of ideals, a tagged tree (T,1) is an I-tree if for
every splitting point 7 € T' we have I, € I (up to an isomorphism).

2) For a set S of regular cardinals, an S-tree T is a tree such that for any point
n € T we have: |Sucr(n)| € S or [Sucr(n)| = 1.

3) We omit | and denote a tagged tree (T, 1) by T whenever I, = {A C Sucp(n) :
|A| < |Sucr(n)|} and |Sucr(n)| € IRCar U {1} for every n € T.

4) For a tree T, limT is the set of branches of T, i.e. all w-sequences of
ordinals, such that every finite initial segment of them is a member of T
limT = {s € “Ord : (Vn) s[n € T}.

5) A subset J of a tree T is a front if: n # v € J implies none of them is an
initial segment of the other, and every n € limT" has an initial segment which
is a member of J.

6) (T,1) is standard if for every nonsplitting point n € T, |Sucr(n)| = 1.

7) (T, 1) is full if every n € T is a splitting point.
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2.4A Remark. (1) The set limT is not absolute, i.e., if Vi C V, are two
universes of set theory then in general (im7)"* will be a proper subset of
(imT")"z.

(2) However, the notion of being a front is absolute: if V; |= “F is a front in 77,
then there is a depth function p : T' — Ord satisfying n < v & Vk < £g(n)[nlk ¢
F] — p(n) > p(v). This function will also witness in V; that F is a front.

(3) F C T contains a front iff F' meets every branch of T'. So if F C T contains
a front of T and T C T, then F NT" contains a front of 7”. Also this notion is

absolute.

2.4B Notation. In several places in this chapter we will have an occasion to
use the following notation: Assume that (T, 1) is a tagged tree, and for alln € T
there is a family a, of subsets of T such that n < v = VA € ay, 3B € a,
[B C A]. Then we can define for all @ € Ord U {oo}

Dp,(n) iff V6 < aVA € a,3v € ANsplit(T)[{p: p € Sucr(v) & Dpgy(p)} ¢ L]
Then it is easy to see that

Dp(n) def max{a € Ord U {oo} : Dp, (1)}

is well defined, and Dp,(n) < Dp(n) > a. We call Dp(n) the “depth” of n
(with respect to the family a = (a,, : n € T') and the tagged tree (T',1)). It is
easy to check that n < v = Dp(n) > Dp(v).

2.5 Definition. 1) An ideal I is A-complete if any union of less than A members
of I is still a member of I.

2) A tagged tree (T 1) is A-complete if for each n € T'N Dom(l) the ideal I, is
A-complete.

3) A family I of ideals is A-complete if each I € I is A-complete. We will only
consider Ng-complete families I.

4) A family I is restriction-closed if I € I, A C Dom(I), A ¢ I implies
INA={Be€I: BC A} belongs to L.

5) The restriction closure of I, res-cl(I) is {I/A: I € I, A C Dom(I), A ¢ I}.
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6) I is A-indecomposable if for every A C Dom(I),A ¢ I, and h: A — X there
isY C A, |Y| < X such that h=}(Y) ¢ I. We say | or I, is A-indecomposable if
each I, (or I € 1) is A-indecomposable.

7) I is strongly A-indecomposable if for A; € I(i < A\) and A C Dom([),A ¢ I
we can find B C A of cardinality < A such that for no i < X\ does A; include
B.

2.5A Remark. As indicated by the names, if I is strongly A-indecomposable
then I is A-indecomposable at least when A is regular. [Why? Given A, h as in
2.5(6), let A; = h=1({j : j < i}); if for some i, A; ¢ I we are done, otherwise
by 2.5(7) there is Y C A, |Y| < A A\, Y € A;. But as X is regular > |Y|,
i(*) =sup{h(z) +1:2 € Y} < A hence Y C A;,), contradiction.]

2.6 Lemma. Let 6 be an uncountable regular cardinal (the main case here
is @ = N;). Let I be a family of 8%-complete ideals, (Tp,1) a tagged tree,
A={neT:0<|Sucr,(n)| <6}, meTo\A=Il,e€l&Sucr,(n) ¢l,] and
[ne A= Sucr,(n) C{n"(i): i<} and H :Tp — 6 and & = (e, : n € A),
is such that e, is a club of . Then there is a club C of 6 such that: for each
§ € C there is T5 C Ty satisfying:

(a) Ts a tree.

(b) If n € Ty, |Sucy, ()| < 6, then Sucyy () = Sucr, (1), and if [Suc(n)| =

6, then Sucr,(n) = {n" (i) : i <8} N Sucr,(n) and § € ey.
(c) n € Ts \ A implies Sucr;(n) ¢ 1.
(d) for every n € Ts: H(n) < 6.

Proof. For each ¢ < 6 we define a game O. The game lasts w moves, in the nth
move 7, € Tp of length n is chosen.
For n = 0 necessarily 7 = ().
For n =m+ 1: If |Sucr,(nm)| = 0, then the first player chooses 7,41 €
Suer (1), M1 (m) < C.
If |Suer, (nm)| < 6, then the first player chooses any 7,41 €
Sucr, (Mm)-
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If m ¢ A, then the first player chooses A, € 1, and then the
second player chooses 7,1 € Sucr, (Mm) \ Am.

At the end, the second player wins if for all n, H(n,) < ¢ and |Sucr, (n,)| =
0 = ¢ € e,,. Now clearly

(%) if for a club of ¢ < 6 the second player has a winning strategy for
the game O¢, then there are trees T (as required).
Let S = {0 < 6 : second player does not have a winning strategy for the game
Os}; we assume that S is stationary, and get a contradiction.

Let for § € S, Fs be a winning strategy for first player in 05 (he has a
winning strategy as the game is determined being closed for the second player).
So Fjs gives for the first (n — 1)-moves of the second player, the nth move of
the first player.

Let x be regular large enough, and let (Np, €) < (H(x), €) be such that
0+1C Ny, |No| =6, (Tp,l) € Ny, € € Ng, and (F5: 6 € S) € Nyp. We can find
N; < Np such that |N;| < 8, N1 N @ is an ordinal and (Tp,1) € Ny, (F5:6 €
S) € Ny and € € N;. Let 6 def N; N 6. Since S was assumed to be stationary,
we may assume § € S.

Now we shall define by induction on n,n, € To N N; of length n, such that
(ne : £ < n) is an initial segment of a play of the game Os in which the first

player uses his winning strategy Fj.

Case 1.n=0:

We let g = (). (The A € |, are not mentioned as they are not arguments of

Fy).

Case 2. For n =m+ 1, n,, € A : the first player has a winning strategy Fj for
the game 0s. So Fs gives us 7,. Now if |Sucr, (7m)| < 6 then Sucr,(nm) C N1
(because Tp, 7 belongs and N3 N6 is an ordinal), hence 7, € Ny as required.
If |Sucr,(7m)| = 6 then necessarily Sucy, (7m) € {nm (i) : i < 0}, 9 =
Nm " (i),1 < & (as the play is of the game Os), so necessarily i € N; hence (as

Im € N1) also 7, € Ny.
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Case 3. Lastly if n = m + 1,n,, ¢ A : so Fs gives us A%, € |, which is not
necessarily in Ny, however let A* = |J{A$, : ¢ € S, and there is a play of O¢ in
which (7 : £ < m) were played and the first player plays according to F¢ (this
play is unique) and the strategy F¢ dictates to the first player to choose AS,} .

Now A* is in N; (as F € Nj) and as the union of < § members of Iy, it
belongs to |, hence A* N Sucr,(nm) is a proper subset of Sucr, (7m), so there
is Nm " (i) € Sucr, (7m) \ A*, so there is such i € Ny (so necessarily 7 < §). Let
the second player choose 7, = 7, " ().

So we have played a sequence (1, : n € w) of elements of Ny, always
obeying F; so this sequence was produced by a play of 05 in which the first
player plays according to the strategy Fs. But then for all n : 1, € N; =
H(n,) € Ny, so H(n,) < 4, and

M € N1 = e,, € N1 = 6 =sup(e,, NJ) =6 € ey,;

hence second player wins in this play. So Fs cannot be a winning strategy.

Contradiction, so S is not stationary. U6

2.6A Lemma. Suppose (T}, 1) is an [-tree, 6 regular uncountable, (4, : n € T)
is such that: A, is a set of ordinals, [p <v = A, C A,] and

(*) (a) S € RUCar,

(b) def I\ {I : |Dom(I)| < u} is u*-complete or at least strongly -
indecomposable for every u such that p € S or p € pef (SN A,) for
some 1 € T and

(c) Tis 6-complete and |pef (SN A,)| < 6 for n € T and § < min(S)

(d) |Ay| < min(S) forneT

Then there is T, (T,1) <* (T1,1), such that:
if A\ € A, NS and v € T' then for some a,(\) < X for every p such that
v < p € limTt we have a, () > sup(AN U, Apin)-
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Proof. Tt is enough to prove the existence of a T as required just for v = ( ) (as
we can repeat the proof going up in the tree). This can be proved by induction
on max(pcf (SN Ay)) (exist see [Sh:g, I 1.9]). Let ax(n) = sup(4, N X).

As this lemma (2.6A) is not used in this book we assume knowledge of
[Sh:g].
Let a ¥ sn Ay (if a is empty we have nothing to do), © = maxpcf (a), and
(fa : @ < p) be <;_,[q-increasing cofinal. Let {b. : € < &()} be cofinal in
J<pula] e.g. this set is {{Uge bo[a] : ¢ C pefa\ {u} finite} so e(x) < 6 hence by

an assumption I’ is |e(*)|-complete.

For € < ¢(x), ¢ < u we define:
()¢ there is a subtree T" of T', (T',1) <* (I",1) such that for every n € lim(7")
and A, € a\ b, we have ay, (n[n) < fe(An).
It suffices to find such 7" (for some ¢,() as: maxpcf (b:) < maxpcf (a), so
we can apply the induction hypothesis on 7".
In V define for ¢ < p and € < g(x).

B¢ S {n € lim(T) : for some € < &(x) for every A € a'\ b, we have

n<w=ax(nn) < fe(A)}

Bee et {n € im(T) : for every A € a\ be,n <w = ax(nin) < fe(N)}

Clearly B¢ is closed and B¢ = |J B¢.. Now ( < & < p = B¢ C B, (as
e<e(*)

fe <uc.qa) fe) and im(T) = UC<# Be (as (f¢ : ¢ < u) is cofinal in ], . An),
hence using 2.6B(3) below (with p, €(*) here standing for 6, ¢; there) for some
¢(*¥) < p and € < g(*) and T" we have (T,1) <* (T",1) and lim(T") C B¢.. So

(*)2 holds, but as said above this suffices. 64

Question. If I € H(x) is there a countable N < (H(x), €, <}) such that: T € N
and for every A € RCarn N, letting I def {J €1:Jis \"-complete }, there is
(N :n € (T,1)) an IM-suitable tree (see Definition 2.10) such that N <y N, (’\)?
(Or replace RCar by a thinner set.)

2.6B Lemma. Let (T, 1) be an I-tree, I a family of ideals,
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1) If H:T — pand pt0 < X and [ is A - complete then there is 7' such that
(T, 0 < (T',1)
nv €T & tg(n) = lg(v) = H(n) = H(v)

2) If im(T) = J;c9 Bi,6 < A, I'is X - complete and each B; is a Borel set
then there is T' such that

(T,0) < (T,
for some i :[limT' C B;]
3) If 6 is regular uncountable, lim(T") = U Bi, and B; is a Borel subset of
lim(T'), increasing with ¢, and (*) belo;v< 6l’lolds then
(a) for some i < § and T' we have (T,1) <* (T”,1) and lim(T”") C B,
(b) if in addition n € T\ split((T, 1)) = |Sucr(n)| < 6 then in (a) we can
demand (T, 1) <® (T",1)
where
(x) every I €I is §*-complete or at least strongly 6-indecomposable (see
2.5(7)).
4) Assume im(T) = U;pU.., Bie, €ach B;. is a Borel set, [i < 6 =
€; < o], I is o-complete, and each I € I is strongly 6-indecomposable, and
B, 4 U

c<e, Bi, is increasing in ¢ and

[n € T \ split(T, 1) = |Sucr(n)| < o).

Then for some i < 6 and € < ¢; and T" we have (T,1) <® (T",1), and
hm(T’) g Bi,e‘

2.6C Remark. 1) We can combine 2.6B(3), (4) with 2.6A.

2) To what can we weaken “strongly 6-indecomposable”? A sufficient condition
is the existence of a precipitous normal filter E on 6 such that for every I € I
and A; € I for i < 6 and A* € It there are z; € A* for i < 6 such that
{ieA*:{z;:j<i} £ A} #0 mod E

3) We can elaborate 2.6B(4). We can have t C “>Ord be a tree with no w-
branch, (B, : n € t) a sequence of subsets of lim(T") such that:
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() if n € max(t) then B, is Borel
(B) if n € t is not maximal, then (a) or (b)
(a) Iis |Suc¢(n)|*-complete, By, = |J{B, : v € Suci(n)}
(b) (By-(sy : m"(i) € Sucy(n)) is increasing and letting 6, = cf(otp({s :
n"(i) € t})), I is strongly 6,-indecomposable.

Now we prove by downward induction on 7 € t that

(*)n there are (1”,1) and v such that: n < v € max(t), (T,1) <* (T',1) and
lim(T") € B; or in the game corresponding to |J{B, : 7 < p € max(t)}
the first player wins

4) We can combine 2.6C(3) with 2.6B(3).

Proof. 1), 2) By [RuSh:117] or see here XI 3.5, 3.5A.

3) Similar to the proof of 2.6. First we prove clause (a). Without loss of
generality (T',1) is standard, so for notational simplicity it is full (see Definition
2.4(6), (7)). For each ¢ < 6 let O¢ be the following game with w moves, letting
no = () and in the n’th move 7, € T is chosen; the first player chooses A, € I,
and the second player 7,41 € Sucr(nn) \ An. In the end U, ., 7 € lim(T),
and the second player wins the play if | J,, 7, € Bc. It suffices to prove for some
¢ < 8, the second player has a winning strategy. So otherwise for each ¢ the first
player has a winning strategy F¢. Let x be large enough, N1 < (H(x), €, <}),
[Ny]| < 8,6 % Ny 6 < 0 such that (T,1),(Bc : ¢ < 6) and (F, : ¢ < 6)
belongs to Ni. We shall simulate a play (Am, Pm+1 : m < w) of D5 such that
NMm+1 € No. Assume (Ag,mey1 : £ < m) is already defined. Let S}, = {¢ < 6:
there is an initial segment of a play of O¢ in which the first player uses the
strategy F, and the second player plays (m, : £ < m)}, note that such initial
segment is unique, for a given ¢. For ¢ € S/, let A$, be the (m + 1)’th move
of the first player, for such a play with the second player using the strategy
F;, so (AS, : ¢ € S,) € Ny, also clearly § € S}, hence |S},| = 6 and by the
assumption (x) for some B € N1, B C Sucr(1hm), |B| < 0 and Acesr B € A
As B e N; and N1 N8 =4, clearly B C N; and choose i € B\ Afn and let

Nnt1 = Nm " (i)
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For proving clause (b), defining O¢ if |Sucr(n,)| < 6 we change the rule
and let player I choose 1,41 € Sucr(n,).
4) We define, for { < 6 and € < e¢ a game ¢ as in the proof of 2.6B(3)
clause (a) for B¢ .. If for some { < 0, € < e; the second player wins then
we get the desired conclusion. Otherwise as each such game is determind (as
B¢ . is a Borel set) there is a winning strategy F¢ . for the first player. As |
is |e¢|T-complete, there is one strategy F; good in all the games F¢ (¢ < &)
simultaniously (take the union of the sets suggested by all those strategies). So

F¢ is a winning strategy in o¢, and we can proceed as in the proof of 2.6B(3).

U268

2.7 Definition. Let I be a set of Ro-complete ideals, S a set of regular cardinals,
R; = Min (S) and P a forcing notion.
1) We say that (7,1, 5\,§_, ¢) is a (I, P, S)-tree if:
a) (T,1) is a I-tree (see Definition 2.4(2))
b) A is a function from T to S
c) §_ is a function with domain 7" such that for every n € T, §—(n) is a
P-name of an ordinal < A(n)
d) ¢ is a function from T\ {()} such that each {(n) is an ordinal.
2) We say that the (I, P, S)-tree (T, 5\,§_, ¢) obeys a function F if there are
fronts J, C T for n < w (see Definition 2.5 (2)) such that every member

of J,+1 has a strict initial segment in J,, and n € J,, implies

<SucT(n),l,,, (Cw):ve SucT(n))> =
F(n,wli, (A1), €m18), <nid)) : £ < bg(m)))

where w(n] is {k : nlk € U,c,, Je}-

2.7A Definition. We say that the forcing notion P satisfies UP(I, S, W) (the
“universal property”), where W C w; is stationary, S a P-name of a set of
uncountable regular cardinals (in V') which contains XY, provided that: letting

S* = S*[S] = {k : Kk regular < |P|, ¥ “k ¢ S”}, for every p € P there is a
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function F, (with domain and range as implied implicitly in (2)) such that: for
any (I, P,S*)-tree (T, 1, )\, ¢, () obeying F, and any Tt, (T,1) <* (T',1) there
is ¢ € P, p <pr q such that:
qI-p “there is € lim 7" such that: if sup{{(n[¢): ¢ < w and {(n[¢) < w;}

is not obtained and belongs to W then: for every m < w satisfying

X(nIm) € S, for some £ < w we have g(n[m)[Gp] < {(nte) < X(ntm)”

2.7B Notation. 1) If I is the set {JP4 : A > Ry, X is regular} (where J54 =
{B C A : sup(B) < sup(A)}) then we may omit it. We let ), def (),
&n o £m), Gy 4 &(n). If S = {X;} we may omit it and omit . If S = RUCar"
we may write * instead of S. If W = w; we may omit it (note: no object can
serve as two among I, S and W, so no confusion should arise).

It is always understood that the trivial [ is in I (even if we write I = ),
a trivial I is the empty set with domain a singleton.

2) If not said otherwise, we shall ignore the non-Ra-complete members of I, i.e.

UP(L,S,W) means UP(I',S,W) where I' = {I € I: I is Ry-complete}.

2.7C Remark. 1)Why do we use S* and why can we require S* C |P|*?
(a) S isonly a name (if S was a set € V, §* =S is 0.k.) and

(b) P-names of an ordinal < A, A = c¢fA > |P|* have an apriori bound.

2) A reader may use S = {X;} all the time.

2.7D Claim. 1) In Definition 2.7, if § = RUCar" we can replace in 2.7(1)(c)
“a P-name of an ordinal < A(n)” by “a P-name of a member of V”, in 2.7A
demand g (ntm) = ¢(n[(£)) and omit X and get an equivalent definition (we can
also replace < |P| by < Min{k : P satisfies the k-c.c.}).

2) The forcing notion P satisfies UP(I, S, W) iff its completion (to a complete
Boolean algebra) satisfies it (assuming <,,=<).

3) If Q satisfies UP(L,*,W) (i.e. as in part (1)) and I is p*-complete (e.g.
I = () then any “new” countable set of ordinals < p is included in an “old”
countable set of ordinals i.e. one from V.

4) Q satisfies UP((, ) iff Q is proper
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5) Q satisfies UP(0,{X;}) iff Q is semiproper.

6) If Q satisfies UP(I,S,W) and I C 1;,S; C S and W; C W then Q satisfies
UP(I1,S1, Wh).

7) In Def. 2.7A, we can replace S by any set S’ of uncountable regular cardinals
of V, such that I-p “SN|P|T =8 N |P|*".

Proof. (sketch) (1) is easy.

(2) Note that F is defined on sequences of names, and it is well known
that P-names can be canonically translated to Q-names, if P is a dense subset
of Q.

(3) Use 2.6B(2) repeatedly.

(4), (5): If I = @, then each branch of an I-tree is itself an I-tree, so a
strategy from XII 1.1 (or 1.7(3)) easily yields a function F'.

(6) Easy.

(7) By 2.7C(1)(b). Us2.7p

2.7E Convention. 1) We write Fy,(n, (Ae,;§e,Ce: £ < lg(n))) for

F(n,w, <(Ae,§e,Ce) c < lg(ﬂ)>);

we omit Ag when § = {¥;}.
In Definition 2.7, the value F gives to Sucr(n) is w.lo.g. {n" (o) : o < A}

for some )\, and we do not strictly distinguish between A and Sucp(n).

2.8 Definition. 1) For an ideal collection I, a set S of uncountable regular
cardinals, (where X; = min(S), and I is Ny-complete) and x regular large
enough, we say a countable model N < (H(x), €, <}) is strictly (I, S, W)-
suitable for x iff N Nw; € W and in the following game the second player has
a winning strategy (letting Ng = N).

in the nth move: the first player chooses I, € IN N,, and set A, (not
necessarily in N,,), A, € Dom(I,), A, € I,
then the second player chooses z, € (Dom(I)) \ A; and let N,y1 O Skolem
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Hull of Ny, U {z,,} such that for each A € SN N,,:
sup(Np4+1 NA) = sup(N, N A)

2) If W is omitted we mean W = wy, if S is omitted we mean {R;}, if both are

omitted we write strictly I-suitable.

2.9 Claim. A model N < (H(x), €, <}) is strictly (I,S, W)-suitable for x iff
there is an [-tagged tree (T\,1) and (N, : € T) such that:

a) N=N;,,{I,S;W}e N

b) Ny < (H(x), €, <) is countable

¢) Nate < Ny

d) for A € SN Ny, k <lg(n) we have: sup(N, N A) = sup(Nyp N A)

e) foreveryne T and I e IN N,

{v: n Qv,v a splitting of (T,1) and |, = I} contains a front of 7"
f) neN,.
g) NNw; € W.

Proof Easy: from a winning strategy we can build a tree, and for any such tree
(N, : n € T) a winning strategy of player II is to choose some 7,41 € T, 1, <
Tn41 Preserving Uesn NeUNCN, =N,,. Oae

2.10 Definition. Fix I, S, W.

1) An I-tagged tree of models is an I-tagged tree (T, I) whose nodes 7 are used
to label countable models N,, (we write this as N = (N, : n € (T*,1)))
satisfying the following:

(a) for n € T we have N, < (H(x), €, <}) is a countable model.
(b) Ny contains all necessary information, in particular I,S, W.
(¢c) n <v e T implies N, < N,
(d) for n € T we have n € N, and I,) € N,,.
Whenever we have such an I-tagged tree N of models, we write N, =
Uk<w Nati for all n € lim(T).
2) We call such a tree I-suitable if
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(e) Vn € TVI e INN, {v € T : v € split(T),1, = I (or just they are
isomorphic)} contains a front of 7"
3) We call N suitable* if instead of (e) we only have
(e)* Vne TVI e INN{v € T : v € split(T),1, <rk I} (see 2.10A below)
contains a front of 7.
4) We call N R;-strictly (I,S, W)-suitable if N is suitable and in addition
(f) for some 6 € W, for all n € T we have: N, Nw; =6
5) we call N strictly (I, S, W)-suitable, if in addition to clauses (a) — (e) we
have:
(g) for all v € T, A € SN Nj there is §, < X such that Vn € T
[v < n = sup(N, N A) =6,
6) We call N uniformly suitable or X;-uniformly suitable if (g) or (f) respec-
tively hold only for all 5 € lim(T).

Remark. Note: for suitable trees, S is essentially redundant so we may omit
it or allow names. Similarly so for W. In 2.9 and 2.10 we omit W when it is
w1, and omit S when S = {®;}, so I-suitable means (I, {R; },w;)-suitable. Let

n € (T,1) means n € T and we write T' when | is clear.

2.10A Definition. 1) For ideals Ji, J, we say
J1 <rk J2
if there is a function h witnessing it, i.e. h : Dom(J2) — Dom(J;) is such that
for every A C Dom(J;) : A # @ mod Jo = h'"'(A) # 0 mod J;

or equivalently, J» D {h~1(A4) : A € J1}.
2) For families I;,I, of ideals we say I; <gg I if there is a function H
witnessing it i.e.

(i) H is a function from I; into I

(ii) for every J € I; we have J <gg H(J)

3) For families I, Iy of ideals, I; =gx I if [} <gpg I2&ly <gpg [;.

2.10B Fact. Assume I <gg I, where I, I’ are families of ideals.
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1) If (N, : € (T,1)) is a I'-suitable* tree and I € Ny, then (N, : n € (T,1))
is also I-suitable*.

2) If (N, : n € (T, 1)) is [-suitable*, then there is a tree (T”,V) satisfying the
following:
(a) T" C T (but in general not T' < T”, as the function I’ will be different)
(b) split(T”,1") = T N split(T', 1)
(c) (Ny:me (T,V1)) is I-suitable.

Proof. (1) Should be clear, as <gx is transitive ( as a relation among ideals
and also among families of ideals).

(2) For each n € split(T, 1) pick an ideal I;, € 1N Ny, I}, <rx I, such that:
forallv e T, forall I' e INN, : {ne Tt . I = I} contains a front of W,
This can be done using a bookkeeping argument.

Now define T” as follows: If n € T”\ split(T, 1), then Sucy(n) = Sucr(n). If
n € T' Nsplit(T, 1), then I}, is already defined and it belongs to NV, . Let g, be a
witness for l;, <rK Iy, 50 g, introduces an equivalence relation on Sucr(n). Let
A, be a selector set for this equivalence relation, i.e. g, [ A, is 1-1 and has the
same range as g,. Note that we can choose g, and A, in N,. So without loss of
generality we may assume that g,[A, is the identity, and let Sucr(n) = A,.

Oz.108

2.11 Claim. Assume I is a restriction closed family of ideals, S a P-name of a

set of regular uncountable cardinals, P a forcing notion, I is Ng-complete and

W C w;. Then TFAE:

(A) P satisfies UP(L,S,W).

(B) for large enough regular x, if 8* = {A ¥p “A ¢ §” and A < |P|} and
N = (N, : n € (T,1)) is a (I,S*,W)-suitable tree of models for x (see
Definition 2.10(2)) and p € Ny N P, then there is a ¢ € P, p <, ¢, such
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that:

qlFp “for somen € lim 7T ( in (VP)) U Nyt Nwy € Wor:
k<w
for every k <w, and A € SN Ny, and

@ € Npi, a P—name of an ordinal < A

we have a[Gp] < sup[U(N,,rn N
ie. g IFp “for some n € lm(T) : if sup(Ugcy, Notk Nw1) € W then

sup(U Nntk[GPI N A) = sup(Uy Ntk N A) for A € S0 (U Nyte)”
(B)* Like (B) replacing suitable by suitable*.

2.11A Remark. We can use, in (B), “A € § N Ny 1x[Gp]” instead of “A €
SN Nypi” if in 2.7(1) we change all A(n) to be P-names. Such a change would
not hurt the rest of this chapter.

Proof. (A) = (B)

So let (N, : n € (T, 1)) be (I, S, W)-suitable tree of models for x and p €
Ny N P. We should find ¢ as in (B). There are F' € N witnessing UP(I, S, W)
for p and xo € N() (such that <} € N(y) where {F, P,2IP1} € N¢y N H(xo).

Now we form an (I, P,S)-tree (T, IT,X,g, ¢) which obey F, and a func-
tion h : T — T satisfying [p Q v = h(n) < h(v)] and [n € Tt =
{1, X(n),€(n),C(n)} € Ny, and:

(¥)1 for every n € TT,\ € N, NS*,I € IN N, and § € N, a P-name of
an ordinal < ), for some front J of T consisting of splitting nodes of (T',1)

above 7,

[ve J = (A(r),§(1)) = (A, €)]
veJ=1 =1

Note that as F' € Ny < N, necessarily

[veJ & peSucr(v) = ¢, € Ny
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Now apply Def 2.7A to (T1,15,X,£,¢) so in VP we get ¢ € P and ne lim(T1)
(a P-name) as required there (i.e. forced by ¢ to be so), now there is a P-name

v € im(T') such that A, _, h(nlk) < v; so g, v are as required.
(B) = (4)
Easy. Choose x large enough, and let us define a function F' which will exemplify

(A). Let (A, : n < w) be pairwise disjoint infinite subsets of w, with Min(4,,) >
nandw=___ A

n<w “ N

Now
F(n,w, (M, 61,G) : 1 < Lg(n)) = <Y*,I*, (z(v):v e Y*)>

is defined as follows: let n be the unique n < w such that |w| € A,, son < £g(n),
and let v = vy, = 77in, we let Ny, ® the Skolem Hull of {S, I, n}U((A1, &, &) : I <
n) in (H(x), €, <%); and let (I}, Ay, €my Crn) : m € Ay) be the <} -first list of
this form of all tuples (I, A, & ¢)suchthat I € N,NI, A € RUCarNN,,§ € N,
a P-name of an ordinal < A and { € N,, an ordinal.

Lastly,
Y* ={n"(z) : € Dom(I},,)}
I"={{n"(z):z € B} : Be I};,;}
A(n”(x)) = A
£(n" () = &l
¢(n"(z)) = sup(Aju N N,)
So let (T, 1, X, €,¢) be an (I, P,S)-tree obeying F.
Now apply (B) to (N, : v € T) and get ¢, 7 as required in (A), i.e. they are as
required in 2.7(3).

(B)* = (B) Easy as a suitable tree is a suitable* tree.

(B) = (B)* By 2.10B(2). D211
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2.12 Claim. If §,P,I,W,z € H(x) and S* is as in 2.7A (ie. $* = {6 :
0 = cf(d) < |P| and ¥p “0 ¢ S}, eg. S = {N;1}), I is Ny-complete or for
each I € I, Kk € S we have I is k-indecomposable, then there is a N;-strictly,

uniformly (I, S, W)-suitable tree N with x € Ny.

Proof. We will construct this tree in three steps: first we find a suitable tree,
then we thin it out to be a uniformly suitable tree, then we blow up the models
to make it N;-strict. For notational simplicity let S = {®;} so §* = {X;} .
First Step: An easy bookkeeping argument (to ensure 2.10(e)) yields an (I U
{J5d9})-suitable tree (N, : n € (T,1)); so for n € im(T) we let N, = |J Nype.
Hence we get that for all n € lim(T), for all I € (IN N,) U {J5d}, :}j:re are
infinitely may k such that n[k € split(T,1) and Sucr(nlk) = {n"(z) : = €
Dom(I)}.

Second Step: Define H : T — wy by H(n) = sup(N, Nw1) < w1. Apply 2.6 to
get a subtree 7", and a limit ordinal § € W C w; such that clauses (a) — (d) of
2.6 hold. By clause (d) of 2.1, for all n € TV, N, Nw; C 4. Let dg < 61 < ...,
U, 0n =9, and let

Ty % {n e T Vk < £g(n), if Sucr(nlk) = {nlk"(a) : a < wy}

(so Sucr/(ntk) = {nlk" () : a < 8}) then n(k) = dx}.

Clearly T» will be Rj-uniformly suitable.

Third Step: For n € Ty, let N,’, =the Skolem hull of N, U d. So N,’, Nw; D 4.
Conversely, let v € lim(1z), n < v, then N, Ué C N,, so N; C N, hence
NyNw C 4. So NyNwy = 4, i.e. (N, :n € Ty) is an Ry-strictly by (I, S, W)-tree
of models (see Definition 2.10(4)).

We claim that this tree is still suitable. Indeed, let n € Ty, v € lim(T3),
n<vand I € 1IN N,. Then for some a < 4, I is in the Skolem hull of N, U a.
Let k < w be such that o € Ny Nwi, k < £g(n). Then since (N, : n € T3)
was suitable, there is £ > k such that 1,;, = I. So (N,’, :n € Ty) is also suitable.
U212
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2.12A Conclusion. If P satisfies UP(I,$,W) and Sis asin 2.7A (or S = {R;})
(recall that this notation implies I is Ro-complete, 8; € S, W C w, stationary)
then I-p “W is stationary”. Moreover, if W C W is stationary then also IFp “W

is a stationary subset of w;”.

Proof. The “moreover” fact is by 2.7D(6) (i.e. monotonicity in W).

Assume that p I+ “C is a club of w; and CNW = ”. By 2.12 we can find
an Ry-strictly (I, S, W)-suitable tree of models (N, : ) € (T, 1)) with C,p € Ny,.
Let 6 = NNuwy, so 6 € W. By UP(I,S,W) we can find a condition ¢ as in
2.11(B) in particular p <, q. Clearly ¢ IF “N[G] Nw; = 6” and, trivially
p Ikp “C is unbounded in Njy[G] Nw;” hence p IF “Ny[G] Nw; € C”. So
qgl-“e CNW?”. Uz.124

2.12B Remark. From now we shall use 2.11+2.12 freely. Usually we assume
I, S satisfies 2.6A(x)(a)+(b), S = {X1} is the main case. We could have started
with 2.11(B) as a definition of UP but did not as the definition 2.7 was closer
to Chapter XI.

2.13 Remark. From the proof of 2.12 we can conclude that in 2.11; in clause
(B) we can replace “(I, S, W)-suitable” by “Ni-strictly (I, S, W)-suitable, N, N

w1 = 6 € W”, and then the condition ¢ will be Ny-semi generic.

2.14 Conclusion. 1) If P satisfies UP(I,S, W), @ a P-name of a purely proper
forcing then P x Q satisfies UP(L, S, W).

2) If $ = {¥;}, Q purely semiproper is enough.

3) Generally Q is purely (S, W)-semiproper is enough where:

Q is (S, W)-semiproper when: if x regular large enough, @ € N < (H(x),
<INl =Ro, p€ QNN and NNw; € W then there is ¢, p <, q € Q,
such that:

g IF “for every A € NNS, if ¢ € N is a Q-name of an ordinal < A then

a[Gg] < sup (NN A)”.
(Note that Q is (S, W)-semiproper iff Q satisfies the UP(0,S,W)).
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4) Suppose Qo is a proper forcing (in V), A > |Qo|™, (of course A = ARo >

density of Qo suffices), I € V is a A*-complete family of ideals which is A*-

directed under <gk and IFq, “Q1 is a forcing notion satisfying U P(I)”.
Then Qo * Q; satisfies UP(I) (in V).

5) In 4) we can add W.

6) If Q satisfies the \-c.c., satisfaction of “Q satisfies UP(I,S,W)” depend on

S N X only so we shall ignore S \ A. For notational convenience we will demand
URCard\X C S.

Proof. 1), 2), 3), 5), 6). Left to the reader.
4) Let x be regular large enough and let (N, : 7 € (T, 1)) be an I-suitable
tree of models for ¥, (po,pl) € Qo * Q1 and {(po,Pl),Qo * Ql,]I} € Nyy. For

n € im(T) we let N, def Uk<w Notk- As X > |Qol™°, as T is AT-complete, by
2.6B(1) w.l.o.g. for n € T we have: N, N Qo depends only on £g(n) and hence
Ny, N Qg is the same for all branches 7 € lim(T"). Now for each 1 € lim(T),
in V' N, is a countable elementary submodel of (H(x), €, <}) hence there is
¢° € Qo,po <pr ¢°, and ¢° is (N,, Qo)-generic.

Now for each g,po <pr g € Qo, let

By = {n € im(T) : q is (N, Qo)-generic}.

So im(T) = U{By : po <pr q € Q}
Note

(*) for n € im(T'), po <pr ¢ € Qo, we have: n € B, iff for any maximal
antichain J € N, of Qq, we have: [r € J \ N,, = r,q incompatible].

Hence, B, is a closed subset of lim(T'), (as if € lim(T) \ By then for
some J € MAC(Qo) "Ny, and 7 € J \ N, we have r,q are compatible; then
for some m < w, J € Ny, and nfm < v € im(T) still implies r € J \ N,
(because N, N Q, = N, N Qo) but r,q compatible. So lim(T) \ B, contains the
neighborhood determined by n[m).
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So by 2.6B(2) if A > |Qo|™, for some ¢ € Qo and T’ we have: p° <pr G,
(T,1) <* (1",1) and lim(T") C By. So q kg, “Ny[Gq,]Nw1 = N, Nw; for every
n € T" and clearly q IF “(Np[Gq,] : 7 € T") is an I -suitable* tree of models for
x”. Why the suitable* not suitable? There may be n € T", I € INN,[Gg,]\ Ny;
we get the I-suitable* by 2.14A below.

So we can finish easily. O2.14

2.14A. Assume that (N, : n € (T,1)) is a (I, S, W)-suitable* tree, Q is a
forcing notion satisfying -c.c. and (I, <grg) is s-directed. Then kg “(N,[G] :
n € (T,1)) is (I, S, W)-suitable*”.

Proof. First we claim that for each name [, if p IF “I € I” then there is J € I
such that p IF “I <gg J”. Indeed, since () satisfies the k-c.c. we can find a set
Y C1, |Y| < k such that pI- “I € Y”. Now let J be a <gg-upper bound for
Y. So for all I' € Y we have I’ <grg J. The function witnessing this relation
will also witness it in V?, hence p IF “I <gg J”.

Now work in V[G]. Let I € Ny[G] N 1. Applying the claim we have just
proved, in N, we can find J € N, N1 such that I <gg J. In V[G] the set
{z € TNl . n Qv,J <grk |,} contains a front F of T, F is also a front in

V[G], so by transitivity of <gx we are done. O2.144

2.15 Theorem. Suppose

a) Qo is a forcing notion, satisfying UP(I, So, W)

b) IFQ, “Q1 is a forcing notion satisfying UP(I;, S1,W)”. So: So,I1 are Qo-
names and S; is a Qo * Q1-name.

¢) A= AR > |MAC(Qo)|, and [I € Iy = AIPem(DI = )]

d) I; is A*-complete. (i.e. kg, “each I € I; is A*-complete ”).

e) {Ri} CSo C {u: R <p=ct(p) <A}

f) Ip C T and I\ Iy is A*-complete and (I \ Ip, <gk) is A*-directed (or just
k-directed where Qo satisfies the x-c.c).

g) kg, “for every I € I for some I’ € I,I <gk I'"” (Srk - Rudin Keisler
order, see 2.10A), moreover I’ € I \ I, (hard to fail this addition).
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h) §=S0N S ie. $10 (SoU (1Qol,IQo * @ul]).

Then Qo * Ql satisfies UP(L, S, W)

2.15A Remark. 1) Comparing with Ch XI, 5.1 we lose a little: we demand

A > |[MAC(Qo)| instead demanding A > |Qo| but this seems marginal, (see (*)
of 1.2A(2)).

2) More on <gg is this context see §4.

2.15B Example. Let Qo = Nm, Q; = Levy(Ry, A1) (for some large enough
A1 (in V@) Q3 = Nm (in V0%@1) Q3 = Levy(X;, A3) for some even larger
A3, etc., then Qo, Qo * (Q1*Q2), (Qo * (Q1*Q2)) * (Q3* Qa), ... satisfy UP(I)
for appropriate I, by 2.15.

Before we prove 2.15 we will remind the reader of a definition and a

combinatorial lemma.

2.16 Definition. For a subset A of (an w-tree) T' we define by induction on
the length of a sequence 7, resp(n, A) for each n € T. Let resp(( ), 4) = ().
Assume rest(n, A) is already defined and we define resp(n”(a), A) for all
members 1" (a) of Sucr(n). If n € A then resr(n”(a), A) = resr(n, A) (),
and if n ¢ A then resr(n”(a),A) = resr(n, A)"(0). If n € lim(T), we let
res(n, A) = Ure,, res(nlk, A).

Ezplanation. Thus res(T, A) & {resp(n,A) : n € T} is a tree obtained by
projecting, i.e., gluing together all members of Sucr(v) whenever v ¢ A.

We state now (see Chapter XI, 5.3):

2.17 Lemma. Let )\, u be uncountable cardinals satisfying A<# = X and let
(T,1) be a tagged tree in which for each n € T either |Sucr(n)| < p or I(n)
is A*-complete. Then for every function H : T — ) there exist T” satisfying
(T,1) <* (T',1) such that for n',n? € T’ we have: (letting A = {p € T :
|Sucr ()| < p}):

resy(n', A) = resp(n?, A) implies:
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H(n') = H(n?) and n' € A & n? € A, and: if n € T’ N A, then Sucr(n) =
Sucr (1)

Proof of Theorem 2.15. Let x be large enough. Let (N, : n € (T,1)) be an
R;-strictly (I, S, W)-suitable tree of models for x such that

{Qo,@1,80,51,10,11,W} € Ny, and (po,p1) € (Qo *x Q1) N N(),

let p = Min{p : A* > A}, so p > Ro, o > [Dom([)| for I € Iy, p = cf(u), and
A = A<K. Let us define a function H with domain T: H(n) is the pair

(N,, N MAC(Qo), isomorphism type of (N, Nppo. .., Nytagm-1), M, c)C€N<))

so |Rang(H)| < A. By the lemma above there is T satisfying (T, 1) <* (T1,1)
such that for n,v € T :

resp(n,A) =resy(v,A) = H(n) = Hv) & [n€ A<= v € 4]
where A = {n € T : |Sucr(n)] < u}

let T* = {resr(n, A) : n € T'}.

We can find T? satisfying (71,1) < (72,1) such that the mapping 7 —
rest(n, A) on T2, is one to one onto T*. By 2.6A (for S = {RX;}) without loss
of generality for some § < wy, 7 € im(T") = 6 = UJ,,, NpreNwi, by the proof
of 2.12 without loss of generality n € T! => N, Nw; = §; and looking at the
definition without loss of generality 6 € W. Let N;eST(n, A= N, for n € T2

By assumption (f) we have (N], : v € T*) is an (Iy, So, W)-suitable tree for
X, Po € Qo N N(’>. So there are go,po <pr go € Qo, and Qp-name v € lim(7T™)
such that qo IFQ, “Uy N, 1£[Gqo] N A and Uy Ny N A has the same supremum
for A € So N Nyi”-

Let T+ = {n € T' : resr(n, A) = vifg(n)}, this is a Qp-name.

Let g0 € G C Qo, G generic over V, and let v = V[G].

Now we need:

2.18 Fact. 1) (N,[G] : n € (I't[G], 1)) is an I [G]- suitable* tree for x.
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2) For n € lim(T*[G]) and & € (S} USo[G]) N Uy<,, Ntk we have:
sup(U Nn;k[G] N K,) = Sup(U Nn[k N I‘.',).
k k

3) Moreover if in (2) we choose 7 in some further generic extension, it still
holds.

Proof of 2.18. 1) One point is Ny[G] Nw; = N, Nwi(€ wy) which follows by
the choice of qo, v as Ry € Sg (in fact N,[G]Nw;y = 6, for every n € T, as N
was Nj-strict). Another point is that for I € I[G] N N,[G], n € T*[G] we have

{v:nQveT*(G]and I =1, or at least I <gg I,}

is a front of (T+[G])!", this follows as : if I € N,[G] N1;[G] then there is
Y € N, |Y| <1Qol (even |Y| < & if Qo satisfies the -c.c) such that

(31/)(1 <RK I'eY&I'e I[\]Io),

note I ¢ Ip. Now Y NI\ I has a <gk-upper bound in I hence in IN NV, by the
assumption on I \ Iy being A*-directed, A > |Qo| (or k-directed, Qo satisfying
the k-c.c.).

2) If kK > X then k > |Qo| hence this is immediate; so assume £ < A.
Let v = v[G] be the branch we obtained by applying UP(L,S,W) to Qo,
and let 7 € lim(T™") be any branch. Now there is an isomorphism g = g,
from {J, Nypx onto Uy, N,y such that g(n[l) = vil for £ < w, g[N() = the
identity, g”(Nyte) = Ny, for £ < w, and necessarily g[(MAC(Qo) N Ny) =
the identity (as NyNMAC(Qo) = N,NMAC(Qo)). Now for every o € U, N,
a Qg-name of an ordinal < k,qa is just a maximal antichain of Qo with a
function from it to ordinals. So g(a) = a and of course g(k) = k. So as the
isomorphism g is onto |J, Ny 1k we see that go IFg, “if n € im(T*[Gq,]) then
a = gy(a) < sup(Uy Nptk NK)” as required.

3) Same proof as g can still be defined. Os.18
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Continuation of the proof of 2.15: By the fact 2.18 in V[G] there are v; and
q1 such that @[G] [p1 <pr q1; @1 IF “v1 a branch of T%[G], and for
Kk € $1[G]NN,, we have sup(U,c,, Nuite N &) = sup Upcy, (N 1¢[G] N K)”].
Now, back in V, there are v1,¢; and g6 € G such that ¢} IFgq, “q1,v1 are
as above” (actually v, is a Qo-name of a Q;-name); w.l.o.g. go = qp(€ Qo) as
the existence proof works for any G such that go € G. Note (gp,¢1) € Q and
v1 € lim(T%) C lim(T') are as required (remembering 2.15A(3)).
U215

Now clearly
2.19 Claim. 1) If (a forcing notion) P satisfies the (I, W) - condition (see Ch

XI) then P satisfies UP(I,W) [look at Definition 2.7, 2.7A]

2) if P = Nm'(D) (see chapter X), D an R, - complete filter, I = {I : for some
A C Dom(D) satisfying A # @ mod D wehave Il = {X C A: X =0 mod D}}
then P satisfies UP(I)

3) Let (T*,1*) be an I-tagged full tree, and

P ={(T0): (T*,1") < (T,1), and for every n € lim(T") we have
(3%°n)[nln is a splitting point of (T, 1)}

ordered by inverse inclusion.
P’ ={(T1): (T*,1%)I" <* (T,1) for some n € T*}

ordered by inverse inclusion.
Then

(a) P, P’ satisfies UP(I)
(b) if for A regular

Vn € lim(T™*) 3%°n YA € (I};,,) "I, 4 is not A-indecomposable]

then ”_P' “Cf()\) = No”.
(c) if (Vn € Lm(T™*))3In A\
then IFp “cf()) = Ro”.

VA € (I7,,)" [I,1A4 is not A-indecomposable]

m>n nin
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4) Let A = cf(A) > Ny, S C {6 < A : cf(8) = N } stationary, club(S) = {h:
h an increasing continuous function from some ¢ + 1 < w; into S} ordered by

inclusion. Then club (S) satisfies UP({I}) if I is a uniform filter on \.

Proof. We will only give a sketch of (2), leaving the other claims to the reader.
We will use the following fact about Nm'(D):

(x) If pe Nm'(D), a is a Nm'(D)-name of an ordinal, then there is ¢, p <* ¢
such that the set {n € ¢ : for some 8 we have g I+ “aq = (3"} contains a
front.

This fact follows easily from 2.6B(2) (let H : P — {0,1} be defined by
H(n) = 1 iff pI”! decides @, define H(n) = limpe, (H(nin)) for 1 € lim(p), and
find ¢ such that H is constant on lim(q)). Let I be such that the ideal dual to
D is in it.

Now let (Ny : n € (T, 1)) be an Ry-strictly I-suitable tree, {p, D} € Ny a
condition. We can now find a condition ¢, p <* ¢, an index set (p, : 7 € p) of
conditions and a function f : ¢ — T satisfying the following:
1.If n < v in g, then f(n) < f(v)

2. For all 1 in g, Sucr(f(n)) # 0 mod D and |, is the ideal dual to D

3. For all n in g, Sucq(n) C Sucr(f(n))

4. For all n in q, py € Ny, tr(py) = n, plm <* Dn-

5. For all nin ¢, p, < g,

6. For all 7 in ¢, all names a in Ny(,), the set {v € q : p, decides a} contains

a front of py,.

We can do this as follows: by induction on n < w we choose ¢gN™(Dom(D))
and ((f(n),pn,Sucq(n)) : n € ¢gN™(Dom(D))) satisfying the relevant demands. If
n < Lg(tr(p)) this is trivial. If we have defined for n, for each v € ¢gN™(Dom(D))
and 1 € Sucy(v), we do the following. We can find f(n) satisfying (1)+(2)
because (N, : n € (T,1)) is I-suitable. We choose p, using a bookkeeping
argument to take care of (4)+(6), using (x). Then we choose Sucq(n) such that
(3) and (5) are satisfied.
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Now let G be Nm'(D)-generic, ¢ € G. Now G defines a generic branch

n through g¢. This induces a branch v through T by: v = |, f(nIn). Let
a € Nypk, then there is £ such that p,pe I+ “a = B and 8 € Ny € N,

Uz.19

2.19A Remark. 1) Note: 2.19(1) tells us that various specific forcing notions
satisfy UP(I, W) via Chapter XI 4.4, 4.4A, 4.5, 4.6.

2) We leave to the reader to compute the natural S’s.

§3. Preservation of the UP(I,S, W) by Iteration

3.1 Definition. We say that Q = (P;, Qi 11 < a) satisfies ( I j, X j, pi,j, Sij ©
(t,7) € W*) for W provided that the following hold:

(0) W* C {(t,4) : ¢ < j < a,1 is not strongly inaccessible}, W* D
{(i +1,j) : i <j < a} (we can use some variants, but there is no
need),

(1) Q is a GRCS iteration.

(2) P,; = Pj/P; satisfies UP(I; j,S; ;, W) for (i,j) € W* (in VF¥).

(3) for every I € I ;, the set Dom(I) is a cardinal, I is )\:fj-complete (in
V), Aij < |Dom(I)| < pi; and [MAC(F;)| < Aij, and A;; > Ro and
(Iij, <rk) is Af; - directed (note that I; ; is from V and not V%,
and ¢ < Ajj < Wi j)-

(4) if i(0) < (1) < i(2) < «,(i(0),4(1)) € W™ (i(1),i(2)) € W*
then (Ai(1),i2)) @50 = Aq),i2)- (Hence Aj0)41) < Ki(0),i(1) <
Ai(1),i(2)")

(5) for every I € I3y and i(0) < 4(1) < 4(2) < 4(3) such that
(i(0),4(1)) € W* and (i(2),i(3)) € W* we have: I is Xg ;1)
complete.

(6) if i(0) < i(1) <i(2),

(i(0),4(1)) € W*, (i(1),1(2)) € W™, (i(0),i(2)) € W*
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and then $;0),i(2) is Si(0),i(1) N Si(1),s¢2) [this holds if (always) S; ; =
{R1}, and essentially if (always) S;; = RUCar |. (Remember - by
2.13(6) every x € RCar \ |Pyyy|" C RCar \ Aj(1),i(2) is considered to
be in S;(0y,i(1)-)

Note:

3.1A Remark. If I is AT - complete, k < AT,

ADom(D)|<p, [ N\ mi<p=][[m<u and

Iel i<a<k <o

1 4y {Iicoli: a<k, w<pl;el}

(product [],., I; defined in 4.11(1)) then M5 is At - complete, I € Ilxl =
|Dom(I)| < p and (Il¥, <rk) is & - directed (see more in 4.11).
We shall use 3.1A freely.

3.2 Lemma. If Q = (P, Qn : n < w) satisfies (I; j, X j, i j, S5 1 < J < w)

for Wand I = | Ipnt1 then P, = RlimQ satisfies UP(I,S,W) where
S = {X: X is regular > Ny and for every n, cf()\) € S} (a P,-name.)

n<w

3.2A Remark. For the case <p#< use VI 1.10.

Proof. Let I, = I ny1 and A\j = X541 and p; = 4441, note that P ;41 = Qi
[see 3.1(2)], so Qn satisfies the I,-condition, |Pi] < X, and py < A =
(Nig1) M < pigre
Let (N, : n € (T,1)) be an Ry-strict (I, S, W)-suitable tree of models for
X, N(yNwy € W,pe NyN P, and {W, Q, ({In, An,ptn) : n <w)} € Ny,.
The proof will combine the proof of Ch XI 6.2 and the argument in
preservation of (semi) properness.
We now define by induction (similarly to Ch XI§1) on n < w, a tree T,
such that (letting A, = {n € T : |Sucr(n)| < pn}):
(i) To=T
(ii) (Tn,1) is an I-tree
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(iii) (T, 1) <* (Tnt1, V)

(iv) if n,v € Tpy1,res(n, Ap) = res(v, A,) then
(a) NyN MAC(Pn41) = Ny N MAC(Ppy1)
(b) the structures

(N, Notpagm—1)s - -» N()> M, €)een,, and

<NI/7Nu[lg(l/)—1)7 e 7N( Y Vs c>c€N<)

are isomorphic

(v) if n € Tny1, [Sucr, (n)| < pn then Sucr, ., (n) = Suer, (n).

This is done by applying to (T}, 1) Lemma 2.17 (for the function H implicit
in (iv), and (A, u) there correspond to (Ap41, 4tn) here).

In the end let T* def Mp<o ITn; now for every n we have (Tp,, 1) <* (T*,1);
why? if n € T*, then for some n (Vk < £g(n))[lytk € U<y, Le], hence for
k >mn, Sucp,(n) = Sucr,,,(n).

We let T, Lef {res(v, An) : v € T*}.

We now define by induction on n < w, pn,qn,n, and P,-name v, such
that:

(a) gn € Py

(b) gnt1ln=gn

(c) pIn <pr gn

(d) gn IF “vn € lim(T}7)” (lim is taken in V=)

(€) gnt1 IF “res(Vn+1, An) = vn” (more exactly res(vny1, {res(p, Ant1) : p €

An}) =vn)

(f) gn41 v “if p € Um T* res(p, Ap) = vy, then

( U Np[n)[Gpn] Nwyp = N() Nwq

n<w
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moreover for every & € (N, (See1 U [|[Pe |7, |P.]]) which belongs to

Un<w Notn We have

n<w n<w

sup {( U Now)[Gp,] N n] = sup [( U Ny N n} ”

(8) M €T", 1 QA Mnt1,lg(nn) =n

(h) res(nn, An) = vnln

(i) po = P,Pn <pr Pnt1 € Ny, and ppln = ppy1ln (we can get this from
chapter VI).

() pnlIn <pr qn

(k) if Kk € Ny, a regular cardinal, ¢ € N,,, is a P,-name of an ordinal < s
then for some m, and 8 € N,, we have 8 is a Pp-name of an ordinal < &

and pm41lk “a < Bork ¢ 5.

The induction step is done as in the proof of 2.15 (remember that by 3.1(3)
(Li,j, <Rk) is A} ;-directed), (plus bookkeeping for (k) if <pr#< we use VI 1.10).
Us.2

3.3 Lemma.
1) If Q = (Pa, Qo : @ < wy) satisfies (Ia,8, Aa,8) HafrSas + @ < B < wi
& a non-limit ) for W, and I = J{I;; : ¢ < j < wy,% non-limit } then
P = P, = RlimQ satisfies UP(I, S, W) where

S= (] (Sas IRl IRD)

(a,8)

2) For P = Rlim Q as above, |J
every p € P there is ¢ such that p <,. g€

P, is a dense subset of P, moreover for
P,.
3) We can replace w; by a § such that cfd < \;; and I-p, “cfé € S, ;” for

a<wy
a<lwiy
any (i,7) € W*.

Proof. 1) Let (N, : n € (T,l)) be an Rj-strict (I,S,W)-suitable tree of
models for x,N(y Nw; € W, {W,Q, ((Is,8,Aa,8 Ba,8:Sa,8) : a < B <
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w1, non-limit )} belongs to Ny and p € P,, N N(y. So I € N, hence
(as NpyNwy = Ny Nwy):

(*) for every n € T, 1, € I; ; for some i < j < N¢y Nw.

Let 0=v% <7 <72<-.., Upcwn =8 = N) Nw; and each y14, is a
successor ordinal. We repeat the proof of 3.2 (again remembering 3.1(3)) using
P, instead P,, and get ¢ = qu,, V., as there.

The new point is why p <, ¢, and not only p[é = p[(U,<p, Tn) <pr ¢
The answer (as in Chapter XI, proof of 2.6) is: Let ("(p;) be prompt names as
in XTI 1.9. By (k) above ¢ forces ¢"(p;) to be bounded by 6 = Ny Nwy, so we
can finish.

2) We have proved this: for every p € F,,, by 2.12 we can find (N, : n €
(T,1)) and g € P,,,p <pr g, as above; g is as required.

3) Almost the same proof. [Osz.3

3.4 Conclusion. 1) For Q an iteration as in 3.1, and limit § < £g(Q) such
that cf(d) = wy and [i < j <4, i non-limit = (i,5) € W*] then |J, ;P is a
dense subset of Ps.
2) Instead cf(8) = wy, it is enough that for some i < 4, IFp, “cf(d) = wy”,
3) Also if 4 is strongly inaccessible, |P;| < 6 for ¢ < & then

(a) conclusion of (1) holds.

(b) Py satisfies the k-c.c. (in a strong sense: A-system lemmal)
4) In (1) we can weaken the demand on W*, it is enough: for some unbounded
ACéwehave i<j&ic A& je A= (i,j) € W*.
5) Moreover in (4) we can replace A by a set of strictly increasing sequences
of ordinals < 4, such that [p € t = 7(0) = 0],[m < k < lgn&n € t =
(n(n),n(k)) € W*] and [n € t& a < 6 = Vpe(o,5 1" (B) € t]. Of course this

is because we can use a sequence from t as (yo,71,...) in 3.3. Similar claims

holds for 3.5, 3.6.

Proof. Easy. Us.4

3.5 Lemma. Suppose Q = (Pi,Qi : 1 < k) satisfies (I; j, Ai j, @i 5, 84,51 1 <J <
K, i non-limit ) for W, x is strongly inaccessible | P;| 4 A; j + s j +|Dom(I)| < &
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for every (i,j) € W*, I € I, j and I = |, ; I;,;. Then P = lim(Q) satisfies the
condition UP(I, S,W) where S = {) : for every (i,7) € W*, in V¥ cf()\) € S;
(or X =cf XA > |Pj|)}.

Proof. Let (N,, : n € (T,1)) be an R;-strict (I, S, W)-suitable tree of models
for x. Choose for each € T a strictly increasing sequence (7,’7' 'n < w) of

non-limit ordinals from N, N such that 0 =9, sup(N,N«k) =J and

n<w M
Yok < Y for k < lg(n). Let Ayn = {p €T :|Sucr(n)| < uwﬁ:’wrl}.
We define by induction on n,T, such that
(i) =T
(ii) (Tn,1) is an I-tree
(iii) (Tna l) <* (Tn+1,|)
(iv) if n € Ty, and £g(n) < n thenn € T4
V)ifn e T, lgn) =n n vy € Thy1,m S vg € Tpyr and
res(vy, Apn) = res(vo, Ay n) then
(a) Nuy N MAC(Pyp) = Ny, N MAC(Pyy ).
(b) the structures

(Nuyy Nustegwi)-1)» - - - » N(ys V1, €)cen,,  and

<NV27NUzI(lg(uz)—1)’---aNn .. -7N( )aVZaC)cEN,,

are isomorphic.

There is no problem in this: Let T* = (,, ., Tn, easily (T, 1) <* (T,1) for
every n (by (iii) and (iv)). The rest is like the proof of 3.3. The only difference is
that instead of actual ordinals <y, we will have prompt names: y, = 'ygn. We can
use XI 1.10 to get the conditions p, € P:yn- Also remember that every Q-named
ordinal {(< k) is bounded below & (as for § < k of cofinality Ry, Uacs Pais a
dense subset of Pj). O35

3.6 Theorem. Suppose

(a) & is strongly inaccessible,
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(b) Q = (Pi,Qj + 1 < k) satisfies (I;j, Aij, paj,Sa5 1 1 < J < K,i
non-limit) for x, W, |P;| < & for i < K, P =, P
(¢) IFp, “Qx satisfies UP(L, Sk, W), I is k-complete” and (I, <gk) is
(< k) - directed.
(d) I=LUU{L,;: (i,7) € W*}.
(€) 8 =i ewSisN Sk.
Then P, * Q, satisfies UP(L,S,W).

Remark. This generalizes Gitik, Shelah [GiSh:191] which improves the relevant
theorem in XI §6.

Proof. Let (Ny, : n € (T, 1)) be an Ny-strict (I, S, W)-suitable tree of models for
X, Ny Nwi € W, (pa,ps) € (Pe * Qx) N Nyy. You may assume, for simplicity
that S;; = {R1},S« = {R1} = S. Let T be as in the proof of the previous
theorem. Let G* C Levy(Rq,2X) be generic over V. Let k = |J,,., an, each
Qn+1 @ successor, ag = 0, oy < op1, Un«‘J an =k (in V[G*]!).
We choose by induction on n, 8, Grn € V[G*|, Ty, Vs such that
(a) Gp C Pg,, Gy generic over V, Gny1 N Pa, = Gp, oy < Bn < Pry1 <K,
(b) T® =T*, T CT™,
(c) (Ny[Gp] :n € (T™1)) is an I,-suitable* tree of models for x, I, = (J{L,; :
(i,5) € W*, i > B} UL,
(d) Np[Gr]lNwy =N(yNw, forallneT,
(e) T™ has a unique member of length k,, vy,
(f) if H is a function (from V'), Dom(H) =T, H(n) € l,, forn<w, J, is a
front of T and [n € Jp41 = Vz<egn’7w € Jy)and n € J, = I, € I then
for infinitely many n, there exists my, k, > n such that v, [k, € J,,, and

Un+t1(kn) € H(vnlky).

Now G = |J Gr is a generic subset of P, over V (as Py satisfies the
K-c.C., every mag{?x(;lal antichain in Py is contained in some P, , hence meets
some G).

We define T* = {n € T': Ny[G]Nw; = Ny Nws}.

We define a depth function on T%:
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Dp(n) >0 iff neT°.

Dp(n) > a(>0) iff for every 8 < «
for every I € I, N N,[G], there is v, I <grx I,, n < v € T® such that
{i: v* (i) € T%, Dp(v" (3)) > B} # 0 mod I,.

Easily Dp € V[G] and its definition is absolute. [y < v € T* = Dp(v) <
Dp(n))] and Dp(()) = oo as |J,,.,, ¥n Witnesses (in V[G*]).

So in V[G], T® def {v eT*: Dp(v) = oo} is the desired tree (i.e. we can

continue as in 2.15 with Py, @, here corresponding to Qo, @1 there). Os6

3.7 Lemma. Suppose Q = (Pi,Qj 11 < o, j < o) satisfies (I; 5, i j, pi,5, 4,5 :
i < j < a,i non-limit) for W;i(x) < a is a non-limit, G;.) € P;) generic
over V, and (i¢ : ¢ < f) is an increasing continuous sequence of ordinals in
V[Gi),io = i(*),ig = o, each a¢y1 a successor ordinal.

In V[Gi(], we define P} = P; /Gy, Q¢ = Qa/Gix), @' = (PL,Q;: ¢ <
B,§ < B), then, in V[Gi(*)],Q’ satisfies (I, ig, Nic,ies Hic,icr Sicrie * ¢ < ¢ < 6,¢

a non-limit) for W.

Proof. Straightforward. Us.7

3.8 Conclusion. For every function F, stationary W C w; and ordinal a* there
are a < o* and a GRCS iteration Q of length a satisfying (I; ;, As j, pi,j, Si,55 1 <
j < a, i non-limit ) for W with (Qi,ﬂi,,-+1,§i,i+1) = F(Qi) and @ = o* or
a < o*, and F(Q) does not satisfy () below or there is 8, 8+ w < a and
Nn ¥ Py, “I MAC(P3)| = Ry

(*)F(Q) has the form (Q,1,S),Q a P,-name of a forcing notion satisfying
UP(L,S,W), and (a) or (b) below holds:
(a) IFp, “a # Ry” (ie. k4 “la] < X2”) and for some A the family I is
A*t-complete, where A = APom(Dl whenever I € Lj,i<j<a and
|IMAC(P,)| < X and (I, <gg)-is At-directed.
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(b) IFp, “a=Ry” (ie. a is strongly inaccessible, |P;| < a for i < a), I
is a-complete and I € I; j&i < j < a = [Dom(/)| < a and (I, <gk)

is a-directed.

Proof. Straightforward. Us.s

84. Families of Ideals
and Families of Partial Orders

4.1 Definition. 1) We call an ideal J fine if {z} € J for every x € Dom(J).
2) We call the ideal with domain {0}, which is {0}, the trivial ideal.

4.2 Claim. 1) If an ideal J is not fine then J <gg “the trivial ideal”. (See
2.10A for the definition of <gg).

2) In 2.10B we can weaken the hypothesis to I; <gg I3 where I “ LU {the
trivial ideal}. The same holds in similar situations.

3) <rk is a partial quasiorder (among ideals and also among families of ideals).
Proof. Easy. Oyg.0

4.3 Definition.
1) For an (upward) directed partial or just quasi order L = (B, <) we define

an ideal idy:
id, ={ACB: forsomey€ L wehave AC{zeB: —y<z}}.

(Equivalently the dual filter fil, is generated by the “cones” L, def {z €
L : y < z}.) We call such an ideal a partial order ideal or a quasi order
ideal. We let Dom(L) = Dom(id;)(= B), but we may use L instead of
Dom(L) (like Vz € L) abusing notation as usual.
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2) For a partial order L let dens(L) = Min{|©| : © C Dom(L) is dense i.e.
(Va € Dom(L))(3b € ©)[a < b])} (this applies also to ideals considered as
the quasi order (I, C)).

3) For a family £ of directed quasi orders let idg = {id;, : L € L}.

4.4 Fact.

1) idy is A-complete iff L is A-directed.

2) dens(L) = dens(id( <), C)

3) If h: Ly — Ly preserves order (i.e. Vz,y € L, (z <y = h(z) < h(y))) and
has cofinal range (i.e. Vx € Ly3y € Li(z < h(y))) thenidr, <grk idr,.

4) h : Ly — Lo exemplifies idr, <gk idr, iff for every zo € Lo there
is xy € Ly such that: y € Ly & 1 <1, y = z2 <p, h(y) (ie. for
y € Ly : -z <, h(y) = —z1 <r, y but h is not necessarily order

preserving).

5) the ideal id(z, <) is fine iff (L, <) has no maximal element.

Proof. Straight. E.g.
4) Note: h exemplifies idy, <idy, iff

(VA g Ll)(A 7é @ mod idLl — (Vﬁliz S Lg)[h"(A) n {y € Lg 1 X2 SLz y} 7é @])
if

(Vzo € Ly)(VAC L1)[A#0 mod id, — h"(A)N{y € Ly : z2 <1, y} # 0]

)
! (Vzo € Lo)[{y € L1 : ~z2 <r, h(y)} =0 mod idy,]
if
(Vza € La)(3z1 € L1)(Vy € L1)(=z2 <1, h(y) = ~71 <1, ¥)
f

(Vo € Ly)(3z1 € L1)(Vy € L1)(z1 <1, Yy — 2 <L, h(y))

Us.4
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4.5 Fact. 1) For every ideal J (such that (Dom(J)) ¢ J), let J; = id(y,c),
then
(i) Jp is a partial order ideal
(if) [Dom(Jy)] = |J] < 2iPomI
(i) J <gpk J1
(iv) if J is A-complete then (J,C) is M-directed hence J; is A-complete
(v) dens(J,C) = dens(J1,C)
2) For every dense © C J we can use id(g,c) and get the same conclusions.

3) For every ideal J there is a directed order L such that:
J <grk idr, dens(J) = dens(L) and:
for every M if J is A-complete then so is idy..

Proof. Least trivial is (1)(iii), let A : J — Dom(J) be such that h(A) €
(Dom(J)) \ A (exists as (Dom(J)) ¢ J). Let J; = id(y,c).

If X C Dom(Ji) = J,X ¢ Ji and A % h”(X) belongs to J, then
{B € J:-AC B} €idyc) = J1 (by the definition of id(;c)) hence (as
X ¢ Jy) for some B € X,A C B, so h(B) € h(X) = A contradicting the

choice of h(B) (as A C B). Ugs

4.5A Remark. So we can replace the ideals by partial orders without changing

much the relevant invariants such as completeness or density.

4.6 Conclusion. For any family of ideals I there is a family of £ of directed
partial order such that

(1) I<rk {idr,<) : (L, <) € £}

(i) 1£] < 1]
(iii) sup{|L|: (L,<) € L} < sup{|J|: J€I}) < (sup{2PomUI:. JeT})
(iv) sup{ dens(L,<):(L,<) € L} = sup{ dens(J,C): J € I}

(v) if I is A-complete then every (L, <) € L is A-directed.

Proof. Easy. U4
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4.7 Definition. For a forcing notion @), satisfying the k-c.c., a @Q-name L of a
directed partial (or just quasi) order with (for notational simplicity) Dom(L) €

V; let L* = ap,(L) be the following partial order
Dom(L*) = {a: a C Dom(L) and |a| < Kk}

a<*biff kg "(Vyea)(Bzebd)[L =y <z]
(this is a quasi order only, e.g. maybe a <* b <* a but a # b).

4.8 Claim. For a forcing notion @ satisfying the x-c.c. and a @Q-name L of a
A-directed partial order (with Dom(L) € V for simplicity) such that A > k we
have:

(i) apk(L) is A-directed partial order (in V and also in V?).

(i) lapx(L)| < [Dom(L)|<"

(iil) kg “idg (6] <rK idap.(L)

”

Proof. We leave (i), (ii) to the reader. We check (iii). Let G C @ be generic
over V, and in V[G] we define a function h from ap.(L) to Dom(L[G]):
h(a) will be an element of Dom(L[G]) such that

(Vz € a)L[G] E “z < h(a)”.

We can now easily verify the condition in 4.4(4). Oas

4.9 Conclusion. 1) Suppose Q is a forcing notion satisfying the x-c.c., I; a
Q-name of a family of A-complete filters and A\ > k. Then there is, (in V), a
family Iy of A-complete filters such that:
(i) ko ‘I <rx I”
(ii) |Ia| = |4
(i) sup{|Dom(J)| : J € I3} = sup{(2#)<": some ¢ € Q forces that some
J € I; has domain of power p}.
2) If I, has the form {id(;, <) : (L, <) € £} then in (iii) we can have
(iif)’ sup{|Dom(J)| : J € Is} = sup{u<* : some ¢ € Q force some (L,<) € L
has power u}.
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Proof. Easy. 040

4.9A Remark. The aim of 4.8, 4.9 is the following: We will consider iterations
(P;,Qi i < ) where IFp, “Q; satisfies UP(L;)”, but I; may not be a subset of
the ground model V. Now 4.9 gives us a good <grg-bound I; in V', and we can

prove (under suitable assumptions) that P, will satisfy the UP(lJ, ., Ii)-

4.10 Definition. 1) We say a family I of ideals is k-closed if for every a < &
and J; € [ for i < o there is J € I, A\, ., Ji <rk J. It is strongly k-closed it is
k-closed, and it is closed under restriction.

2) We say a family £ of partial orders is k-closed if {id; : L € L} is.

4.11 Fact. 1) Let (J; : i < a) be a sequence of ideals; we define J =[], ., J;
as the ideal on []; ., (Dom(J;)) generated by {U; 4 [[;<a Al fori,j < a we
have A7 C Dom(J;) and for each i < o we have A¢ € J;}, then

(i) J is an ideal

(ii) [Dom(J)| = [T« [Dom(J5)]

(iii) dens(J) <[], dens(J;)

(iv) if each J; is A-complete then J is A-complete

(v) Ji <gg J for each i < &

(vi) if for each 4, (Dom(J;)) ¢ J; then (Dom(J)) ¢ J

(vii) if J; = id(r, <,) then J is naturally isomorphic to id; <) where
(L, <) = [lica(Li, <i)
2) This product is associative.

4.12 Definition. 1) For k a regular cardinal the s-closure of a family I of

ideals is

]IU{HJz': a<k,J; €I}
i<a
2) Similarly for a family of partial orders
4.13 Fact. For a family I of ideals let I’ be the s-closure of I, then:
(@) 'l < o<
(if) I’ is k-closed
(iii) sup ey |Dom(J)| < ('sup jep(|Dom(J)])<"
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(iv) if I is A-complete so is I
(v) sup e (dens(J)) < ( sup,ep dens (7))
(vi) if I = {idg : L € L} then I' =pg id where L' is the s-closure of £ (in

fact, I, id, are isomorphic)

Proof: Easy. 0413
The following claim gives better cardinality restrictions in §3 (and 2.17)
and not having to use “not too large I for P; in the iteration for the sake of

Q;” (also alternative proofs). Here S is just {X;}.

4.14 Claim. Suppose Q satisfies UP(I, W), Q satisfies the x-c.c. and (N, : n €
(T, 1)) is an Ry-strict (I, W) - suitable tree of models (for x). LetI' ={I € I: I
is k-complete } and assume I’ is k-closed, N, Nw; =6 € W.

Then for every p € Ny N Q there is an (N(y, Q) - semi generic ¢,p <,; ¢ € Q
such that

q IkQ” there is T" C T such that (N,[Gq] : n € (T",1))
is a Wy-strictly (I’ W) - suitable* tree of models”

Proof. Let G C Q be generic over V. Let 6 = Ny Nw;. By 2.14A we know that
(Ny[G] : n € (T,1)) is (I', W)-suitable*, but it is not necessarily Nj-strict. So
let (in V[G]) :

T* =T*[G| % {neT: N,)[G]Nw = 6}.
UP(I,W) implies that we can find ¢ such that p <, q and g forces that T*
contains a branch, but we want T* to contain even an (I', W)-suitable* tree.

Define (in V[G])) a depth function Dpy as follows:
Dpr(n) > aiff:n e T* and VB < aVI € I' N N,[G] Fv, € T*
79 vn & T <pic by & {p: p € Sucr-(v), Dpr(p) = B} ¢ u,).

Clearly Dpy : T* — Ord U {oo} is well-defined, and if n < v, then

Dpr(n) = Dpr(v).
For each n € T', define A, as follows:

if n ¢ split(T*,1) or I, ¢ I', then A, =0

otherwise A, = {p € Sucr-(n) : Dpy(n) = Dpr(p)}.
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If A, €I, let B, = Ay, otherwise let B, = (). Now we return to V. So for
each 7 we have a name B, such that I-g “B, € I, € I"””. As I is k-complete
and Q satisfies the -c.c., there is By € |, such that kg “B, C B;”. Now

define T as follows:
T° = {n: for all £ < £g(n), if Iyre € I' and nI¢ € split(T\, 1), then n(¢) ¢ By}.

So we have (T, 1) <* (T°,1), and (N, : 7 € (T°,1)) is still an R;-strictly (I, W)-
suitable* tree of models. So we can find a condition ¢ and a name n such that
p <pr g and ¢ IF “n € 1im(T°) and for all £ < w: Nyp[G] Nwy = 6”. We now
claim

(%) qIF “ for all £ < w, Dp,(nl€) = 0o”.

So work in V|[G], where q € G. Clearly n[{ € T* for £ < w and assume toward
condition \/, Dpp(n1€) < co. As n < v(€ T*[G]) = Dp(n) > Dp(v) for some
by < w, (V€ > £o)[Dpr(nlf) = ag < o0]. Let mo = 1. By definition of Dpr,
there are I € Np[G] N1’ and B < ap + 1 such that for all v € T*: if n < v, and
I <gk 1, and v € split(T, 1) then {p € Sucy«(v) : Dprp(p) > B} € I,,. W.lo.g.
B = ao. Since (N,[G] : v € T?) is suitable*, and 7 is a branch, we can find
£, > £, such that (letting m = n[41): I <grk l,, and Sucy(n1) ¢ lp,; now as
£y > £ clearly n Q4 n; and (by the choice of £9) Dpy(n1) = ap; by those things
and by the previous sentence {p € Sucz«(n:1) : Dpp(p) = ao} € |,,. But then
we must have n[(4; 4 1) € {p € Sucp-(m): Dpyp(p) = ao} C Ay, = By, C B,.
This is impossible as n[(¢1 + 1) € T°. So we have proved (*). Now it is easy
to see that T'[G] = {n € T*|G] : Dpy(n) = oo} satisfies all requirements. (14 14

We can conclude (and it should be easy for a reader who has arrived here):

4.15 Iteration Lemma. Suppose:
(a) (P;,Qj:i < a,j <a)isan RCS iteration
(b) for every i for some n we have Ibp, . “|P;| < Ry”

(c) W C w; stationary
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(d) for each i for some P;-name of regular cardinal £; > X; (in V') and P;-name

L:
(o) P; satisfies the g;-c.c. (i.e. if p lbp, “k; = £” then P;[{q € P;,q > p}

satisfies the k-c.c.) and

(B) IFp, “Q; satisfies U P(I;,W) and [; is &; - complete.”

Then

(1) P, satisfies UP(I, W) for some (Min;<qk;)-complete I(e V) (i.e. I is -
complete where K ef Min{x : for some i and p € P;,plkp, k; = K).

(2) Ucs Ps is a dense subset of Ps (¢ limit ordinal < a) if: ¢f(6) = Ry or
I-ps “cf(d) = Ry” or § strongly inaccessible and A, s |P;| < 4.

(3) also the existence lemma holds, (like 3.8).

Proof. Should be clear. U415
We note:

4.15A Claim. 1) In 4.15, we can use the “strong preservation” version (and

it works).

4.16 Lemma. The following property, U P, (I, W), is preserved (even strongly
preserved) by iterations as in 4.15, and implies that forcing by @ add no real,
where:

UP,on (I, W) is satisfied by the forcing notion Q, if: for any (N, : n € (T, 1))
an Np-strict (I, W)-suitable tree of models for y, such that for every n,v €
T, of the same length hy, is an isomorphism from N, onto N,,hy.(Q) =
Q, hnprevre € hpy and: if n* € lim(T) and Gy- is a directed subset of
Uecw Nne1e N Q, not disjoint to any dense subset of J, ., Ny~te N Q defined
in (Unew Nootms  Npe1e, @, bye1e)e<w then there is ¢ € Q such that ¢ I-g
“there is v € lim(T") (in V?) such that |, An=e,v1e(G N Nype) is a subset of
Gq”.

4.16 A Remark. 1) This property relates to the UP(I, W) as E-complete re-
late to E-proper (see V §1).
2) Who satisfies this condition? W-complete forcing notions, Nm'(D), Nm(D)
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(D is Na-complete) Nm(l)(T,CD) (® is Na-complete), and shooting a club
through a stationary subset of some A = cf(A) > N; consisting of ordinals
of cofinality w (and generally those satisfying the I-condition from Chapter
XI).

Proof: Should be clear (and will be elaborated elsewhere, see [Sh:311]). g6





