
XIV. Iterated Forcing
with Uncountable Support

§0. Introduction

This chapter is [Sh:250], revised. Here we consider revised support for the not

necessarily countable case. In §1 we define and present the basic properties of

tt-RS iterated. This includes the case K — HI and so it can serve as a substitute

to X §1. The main difference is that here we have to use names which sometimes

have no value as we cannot use rank as there.

Unlike Chapter X, we do not have a useful properness to generalize, so

naturally the generalizations of completeness are in the center. In 2.1 we intro-

duce, and in 2.4 we show it does not matter much if we use the version with

games of length ft = cfft or the version with a side order <0, the "pure" exten-

sion which is /^-complete. Then we define iterations of such forcing notions and

prove the basic properties (2.5-2.8). This repeats §1, so against dullness this

time we waive the associativity law and simplify somewhat the definition of

the iteration. In the definition of the order except finitely many places (which

are names) the extensions are pure (i.e. <0) in the old places. The first use of

"pure" extensions is Prikry [Pr], and the first use of iterations with the dis-

tinction between old and new places (in normal support of course) is Gitik

[Gi] which uses Easton support iteration Q's for high inaccessibles, each Qi

is ({2}, Ki)-complete where for the important i's κ>i = i\ a subsequent proof

more similar to our case is [Sh:276, §1]. The application we have in mind is
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K = μ+, {θ : No < θ = cf(0) < K} C S C {2,N0} U {θ : θ = cf(0) < «},

and we shall iterate the forcing notion Qi which has (5, < tt)-Pr, (so necessar-

ily the cardinals θ < K remain cardinals), the iteration being κ-Sp2-iteration,

and characteristically the length of iteration is some quite large cardinal λ,

i < X =$> \Pi\ < λ, and we collapse all cardinals > ft, < λ (so μ, ft play the

role of NO > NI in Chapter X). So we need to know of such iterations of forcing

notions having (5, < ft)-Prι, which is done in 2.9. We could also deal similarly

with iterations Q of length λ, λ strongly inaccessible [i < λ => Pi < λ] and

5 C ft unbounded in λ. In 2.18, 2.19 we look at the case essentially cofinalities

are preserved (i.e. no θ = cf(0) > ft becomes of cardinality < K).

In the third section we indicate what forcing axioms we can get (3.4), and

show how e.g. Mathias forcing fits in assuming MA</ς (in 3.3). We then give a

solution of the first Abraham problem (3.5).

In the fourth section we show how to fit Sacks forcing. The last section is

a real application- to the second Abraham problem. In it we consider a forcing

e.g. preserving θ < ft, making the cofinality of ft+ to NO> assuming only a weak

form of "on ft+ there is a large ideal" in which there the ideal disappears.

§1. ^-Revised Support Iteration

T>κ is the closed unbounded filter on ft.

A work of Groszek and Jech (see [J86] deal with making the continuum large

(in a different way and effect, done about the same time independently).

1.1 Definition. Here K is an infinite cardinal, but when it is an infinite ordinal

which is not a cardinal we mean \κ\+ (this is intended just for the case K is

collapsed during the iteration). We define the following notions and those in

1.2 and prove 1.4 by simultaneous induction on α:

(A) Q = (Pi, Qi : i < a) is a ft-RS interaction (RS stands for revised support)

(B) a Q-named ordinal
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(C) a Q-named atomic condition q, and we define tff£,</ί{£} for a Q-named

atomic condition q and ordinal ξ when ξ < α, ξ < a respectively and

q\[ζ,ξ)whenζ<ξ<a.

(D) the ft-RS limit of Q5 Rlim^Q which satisfies P^ <£ Rlim^Q f°r every i < a

and we define p\β G Pβ for p G Rlim^Q and β < a ( We may omit K if

clear from the context).

Let us define and prove

(A) We define "Q is a κ-RS iteration"

α = 0: no condition.

a is limit: Q = (Pi, Qί '• i < Oί) is a /ς-RS iteration iff for every β < α, Q\β

is one.

α -f 1 : Q is an κ-RS iteration iff Q\β is one, Pβ = Rlim^QΓ/?), and Q^ is

a P/3-name of a forcing notion.

(B) We define "ξ is a Q-named ordinal". It means:

(1) £ is a function, Rang(£) C Ord.

(2) for r G Dom(^), letting β — ξ(r), we have /? < α, and r e Pβ*Qβ.

(see an identification later).

(3) for every rι,r2 G Dom(ξ), if rι,r2 are compatible, then ξ(rι) = ξ(r2).

[What do we mean by "r*ι, r2 are compatible" ? Let ri G P/5j * Qβλ and

r2 G Pβ2 * Q^2. If î = /?2> there is no problem in defining compatibility.

Otherwise, without loss of generality β\ < /?2. Then, as noted in 1.4, Pβl * Q^j

is essentially the same as P/^+i and Pβτ+ι <$ P 2̂ <$ P/32 * Q^2, so we can test

compatibility in Pβ2 * Qβ2].

1.1 A Remark. For α a limit ordinal, Dom(£) is essentially a subset of

{Jβ<a Pβ, so ^ is a "partial name" for an ordinal. Note that Dom(£) is not nec-

essarily pre-dense (there is no point in requiring it to be pre-dense in \Jβ<a Pβ ,

since this will not imply pre-density in Pα ='Rlim«Q, which is the forcing we

are interested in).
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Continuation of 1.1.

(C) We say "q is a Q-named atomic condition" if:

(1) q is a pair of functions (Cq,cndq) with common domain D = Dq.

(2) ζq is a Q-u&meά ordinal.

(3) if r*ι, Γ2 G Dg and rι,Γ2 are compatible (see above) then cndg(rι) —

(4) if r G Dq, letting β = ζq(r), we have:

r\β\\- uc

(note: we can add: it is forced (II- p^) that Qβ \= ur(β) < cnd^(r)" with little

subsequent change). We define q\ξ as (ζq\Dι,cndq\Dι) where DI — {p G Dq :

CS(P) < £}• We define q\{ξ} as (C? \D^ end, ̂ 2) where £>2 - {p G D, : ζq(p) =

£}, and ςΓ[C,0 similarly.

1.1B Remark. The definition would become simpler if we demand r G Pβ

instead of r G Pβ * Qβ in (B2). (e.g. we could then drop the clause ur(β) <

cndg(r)" in (4)). However, we need this more complicated definition if we want

associativity i.e. 1.5(3):

Consider a K - RS iteration Q — (Pa,Qa '• OL < α*). Then a condition

in Pα* could be of the form p — ({(r,/3)}, {(r,q)}) with r G Pβ, q G Qβ.

Now assume that (α(ξ) : ξ < ξ*) is an increasing continuous sequence with

α(0) - 0,α(ξ*) = α*, and a(ξ) < β < β + 1 < a(ξ H- 1). Then in the natural

"isomorphic copy" of p in P* = Rlim^Q', where

/3 would become ξ (as g correspond to an element of Q^). However, r may not

be in P^ but can only be found in Pξ * Q^. However this is mainly an aesthetic

problem- saving here costs us some cumbersomeness in application, but no real

damage: when we prove statements on iteration Q we cannot restrict ourselves

to length α = 0, 1, 2, or α = cf (α) etc. For diversity, we do use this way in §2.
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(D) We define Rlim^Q as follows:

if a = 0 : Rlim^Q is a trivial forcing with just two compatible conditions

i.e. RliπuQ = {0, {(0,0)}} say with 0 < {(0,0)}

if a > 0: we call q an atomic condition of Rlim^Q, if it is a Q-named

atomic condition.

The set of conditions in Rlim^Q is

{p : p a set of λ atomic conditions for some λ < AC;

and for every β < a,p\β = {q\β : q G p} G Pβ,

and p\β \\-pβ "the set {q\{β} : Q € p} has an upper bound in Qβ"}

More precisely, the last condition in the previous paragraph means

p\β\\-Pβ

 u3q0ζQβVqep\/reDq:

if ζq(r) = β and r \β € GPβ then

q0 \\-Q0 [if r(β) € G$/3then cnd?(r) e Ggβ\
n

(where Gp is the canonical name for the generic set for P).

Remember that we have defined p\β = {q\β : q G p} and p\[β,7) for

β < 7 < α, similarly.

The order: p0 < Pi iff Po Q Pi or just p0 Q {q\β ' q £ Pi and β < a}.

The identification. Clearly for β < α, we have Pβ C Pa. We can identify

P^ * Qβ with a subset of Pa when /? -f- 1 = α : (p, q) is identified with p U {[q]}

where [g] = (C, end), Dom(C) = {0}(0 the empty condition of Pβ), C(0) = β and

cnd(0) = q.

It is easy to check the demands, e.g. under this identification Pβ * Qβ is a

dense subset of P/J+I.

Now we have to show Pβ <$ Rlim^Q (for β <a). Note that any Q f/3-named

ordinal (or condition) is a Q-named ordinal (or condition), and see Claim 1.4(1)

below.
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1.1C Remark. Note that for the sake of 1.5(3) we allow K to be not a cardinal

and then we really use |ft | + .

1.1D Remark. We can obviously define Q-named sets; but for condition (and

ordinals for them) we want to avoid the vicious circle of using names which are

interpreted only after forcing with them below.

1.2 Definition.

(1) Suppose Q is a κ>RS iteration, ζ is a Q-named ordinal, a — ίg(Q),

G G Gen(Q) (see part (2) of the Definition below). We define ζ[G] by:

(i) ζ[G\ = Ί if (7 < a d= tg(Q) and) for some p G Dom(C) Π G7+ι which

is in PΊ * QΊ we have ζ(p) = 7.

(ii) otherwise (i.e., G Π Dom(ζ) = 0) ζ[G] is not defined.

(1A) For a Q-named condition g, we defined q[G] similarly.

(2) We denote the set of G C \Ji<a Pi+ι such that G Π Pί+ι is generic over V

for each i < a by Gen(Q). We let d = G Π P<.

(3) For C a Q-named ordinal and q G (Ji<a Pi let q Ihg "C = ξ" if for every

G G Gen(Q) we have: q G G =» £[G] = ξ, i.e. if ς Ih "£[G] is defined and

equal to ξ". Similarly for p Ihg "g = r" and for p Ihg "g G G".

1.3 Remark. 1) From where is G taken in (2), (3)? E.g., V is a countable

model of set theory, G taken from the "true" universe.

2) If p,p' G Pα,P £ p' and for all (ξ, end) G p' \ p there is a /? < α such that

PΪ/3 lt~ "ξ[G] undefined", then p and p' are essentially equivalent, i.e. for all

q 2 p we have: <? and p' are compatible; or equivalently, p Ih "p' G G".

Now we point out some properties of κ-RS iteration.

1.4 Claim. Let Q = (P^Q^ : i < α) be a κ-RS iteration, Pa = Rlim^Q.

(1) If β < a then: Pβ C Pa and p e Pβ =ϊ p\β = p b Pa \= p\β < p; for

Pι,p2 £ P/3 we have [P/3 N p! < p2 iff Pα N Pi < P2J; and Pβ <> Pα.
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Moreover, if q G Pβ,p G Pα, then q,p are compatible in Pα iff q,p\β are

compatible in Pβ] if p\β < q, a least upper bound of <? G P/?, p G Pα is

q U pf[/3, α). Also for ft < /?2 < α and p G Pα then p|7?ι = (p|7?2) f^.

(2) If ζ is a <2-named ordinal and G, G1 G Gen(O) and G (Ί P^+i = G' Π P^+i

and ζ[G] = ξ then ζ[G'] = ξ; hence we write ζ[G Π Pξ+ι] = ξ.

(3) If/3,7 are Q-named ordinals, then Max {/3,7J (for a generic G G Gen(Q),

this name is defined if both are defined and its value is the maximum)

is a Q-named ordinal. Also Min{/2,7} (defined if at least one of them is

defined, if only one is defined the value is its value, if both are defined the

value is the minimum).

(4) If α = βo 4- 1, in Definition l.l(D), in defining the set of elements of Pa,

in the demand "β < a => p\β G P0", we can restrict ourselves to β — βo.

(5) The following set is dense in Pα : {p G Pα; for every β < α, if ri, r2 G p,

then \\-Pβ "if rl \{β] ^ 0, r2 \{β] ^ 0 then they are equal" } where Y C Pa

is dense iff for every p G P there is <?, p < g and q is equivalent to some

q' G y (i.e. g Ih V G G" and q' Ih "g G G") (can even we It-φ/j).

(6) Pa < (Πi<α 2 |P i l)<κ for limit « (where |P| is the number of elements of

P up to equivalence). Also if β < a => density(PQ:) < λ — cf(λ) and α < λ

(or just a < λ+) then density(Pa) < 2λ.

(7) If Ihp. "|Qi| < λ & Qi C y" (and λ > 2), then (essentially) |Pί+ι| <

λ'Pi'. (Why "essentially"? We have to identify P^-names of members of Qi

which \\-p. "they are equal".) We can replace |Pi| by density(Pi) and get

density(Pΐ+ι) < density (Pi) + λ + N0 Instead of "Qi C Vn it suffices that:

λ<μ = λ and: Q (i.e. set of members) is included in the closure of V under

taking subsets of power < μ.

(8) Suppose Q is an κ-RS iteration, φ(x, y) is a formula (possibly with param-

eters from V) such that:

(a) for every G G Gen(Q) there is at most one x such that (V[G], V, G) (=

"φ(x,G)", this x is called x[G] if there is such x, and x[G] is not

defined otherwise.
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(b) if G GGen(Q), χ[G\ defined then it is an ordinal < ίg(Q), call it

/?, moreover for some p G P/j+i, such that if β -f 1 = ^g(Q) then

p € Pβ * Q/?, we have:

Γ/ien there is a Q-named ordinal ζ such that: for every G G Gen(Q),

x[G] — ζ[G\ (i.e. they are both defined with the same value, or they are

both undefined).

(9) Suppose Q, φ(x, y),x[G]( for G G Gen(Q)) are as in (8) except that clause

(b) is replaced by:

(b)7 if G GGen(Q) and x[G] is defined, then it has the form (C,p) ?C <

^g(Q)>P £ Qζ[Gζ] and for some q we have: q G G Π Pζ+i, and

[C + 1 = ίg(<3) => q G G Π Pc] (and if we make the addition in 1.1 (C)

clause (4) then Qζ[G Π Pc] 1= U

9f{(} < p") and [q G G' G Gen(Q) =»

there is a Q-named condition g such that:

for every G G Gen(Q), x[G] = (ζq[G\, q[G}) (so both are defined and equal

or both are not defined).

Proof. By induction on α.

1.4 A Remark. The inverse of 1.4(8) and of 1.4(9) hold, of course.

1.5 Lemma. The Iteration Lemma

(1) Suppose F is a function, then for every ordinal a there is one and only one

tt-RS iteration Q = (P^, Qi : i < c^) such that:

(a) for every i, Qi = F(Q\i),

(b) at < a,

(c) either a^ = a or F(Q) is not an (Rlimκ(5)-name of a forcing notion.

(2) Suppose Q is a /s-RS-iteration, α = ig(Q),β < a, Gβ C P^ is generic over

V. Γften in V[Gβ],Q/Gβ = (Pi/Gβ,Qi : β < i < K) is a /ί-RS-iteration

and Rlim^Q = Pβ * (Rlim^Q/G/?) (essentially).
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(3) The Association Law: If α^ = α(ξ) (ξ < ξ*) is increasing and continuous,

<*o = O Q = (Pi,Qi : * < α*) is a ft-RS-iteration, Pα* = Rlim^Q and

αξ* = α* and K is a successor cardinal (for K inaccessible we need to as-

sume more); then so are (Pa($ , Pa(t+i) / Pa(£) :£<£*) and (Pi/P^^Qi :

α(f) < i < a(ξ + 1)) (with Λ-RS-Limits Pα^ and Pα(ξ+1)/Pα(ξ) respec-

tively) and vice versa.

1.5 A Remark. In (3) we can use α^'s which are names.

Proof. (1) Easy.

(2) Pedantically, we should formalize the assertion as follows:

(*) There are function ίo? Fι(= definable classes) such that for every «-RS-

iteration Q with ίg(Q) — OL, and β < a,F0(Q,β) is a P^-name Q such that:

(a) \\-Pβ "(5f is a ^-RS-iteration of length a-β".

(b) Pβ * (Rlim^O1) is equivalent to Pa = Rlim^Q, by Fι(Q,β) (i.e.,

Fifaβ) is an isomorphism between the corresponding completions

to Boolean algebras)

(c) if β < 7 < OL then \\-Pβ

 uFQ(Q\^β) = FQ(Q,β)\(Ί - β)« and

Fι(Q,/3) extends Fι(Q\^β) and Fι(Q\Ί,β) transfers the P7-name

QΊ to a P/5-name of (RlimΛ(0 \ (7~/3))-name of Qίy.^ (where Q .̂̂  =

The proof is induction on α, and there are no special problems.

(3) Again, pedantically the formulation is: There are functions F3, ̂ 4 such

that

(*) For Q-iteration, ίg(Q) = aξ*,a = (atξ : ξ < C) increasing continuous,

Fz(Q,a) is a tt-RS-iteration Q^ of length α^* such that

(a) F4(Q,ά) is an equivalence of the forcing notions Rli

(b) F3(Q\a^a\(ξ + l)) = Fs(Q,ά)\ξ

(c) 0^ is the image by F4(Q\a^ά\(ξ + 1)) of the Pa^

name

The proof is tedious but straightforward.
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1.6 Claim. Suppose we add in Definition l.l(B) also:

1.1(B)(4) if α is inaccessible > AV, and for some β < a for every 7 satisfying

β < 7 < α we have \\-Pβ "\PΊ/Pβ\ < α" then (3/3 < α)[Dom(C) C Pβ].

Then nothing changes in the above, and if λ is an inaccessible cardinal > AV

and \Pi\ < X for every i < X and Q = (P^ Qi : i < λ) is an RSK-iteration, then

(1) every Q-named ordinal is in fact a (Q fi)-named ordinal for some i < λ,

(2) like (1) for Q-named conditions.

(3)Λ = U<A*

(4) if λ is a Mahlo cardinal then Pχ satisfies the λ-c.c. (in a strong way).

1.6A Remark. As in XI §1, actually if "θ = cf(θ) > AC" is preserved by every

PQ, for α < α*, then: a < a* &cf(α) = θ implies \J@<a Pβ *s dense in Pa. In

this case, if α* is strongly inaccessible > θ and [a < a* =Φ density(Pa) < α*]

then Pa* satisfies the α*-c.c.

§2. Pseudo-Completeness

We think here of replacing KI by, say, κ+. So we want to deal with forcing

notions not collapsing any cardinal < κ+, but possibly collapsing ft++, and

possibly adding reals and changing the cofinality of AC++ to say NQ So on the

one hand we want to have support < AS, and even a κ+-RS; and on the other

hand some amount of pseudo completeness (expressed in Definition 2.1 below).

Further consideration lead to finite pure.

We deal with forcing notions Q satisfying:

2.1 Definition. Let 7 be an ordinal, 5 C {2} U {λ : λ a regular cardinal }.

1) Now Q satisfies (5,7)-Prι if:

(i) Q = (|Q|, <, <o) (here \Q\ is the set of elements of Q)

(ii) as a forcing notion, Q is (|Q|, <), with a least element 0g

(iii) <o is a partial order (of |Q|).

(iv) \p <0 q =$> p < q]
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(v) pure decidability: for every cardinal θ G S and Q-name r, such that

"~Q "l € θ" and p e Q for some q e Q and β e θ we have: p <0 g and

ςf lhQ "if θ = 2 then r - β and if θ > N0 then r < /?"

(vi) for each p G Q in the following game player I has a winning strategy:

for i < 7 player I chooses p2* G Q such that p <0 P2i A /\ p,,- <0 p2ί

j<2i
and then player II chooses p%i+ι G Q such that p2i <o P2z+ι

Player I loses if he has some time no legal move, which can occur in limit

stages only.

2) Q = (|<9|,<,<o) satisfies (S,7)-Pr+, if (i)-(v) hold and (Q, <0) is 7-

complete (i.e. if pi G Q for i < β < 7, and i < j < β => pi <0 PJ

then for some p G Q we have: i < β => pi <0 p).

3) A forcing notion (Q, <) satisfies (5,7)-Prχ (or (5,7)-Pr+), if there is a

relation <o such that (Q,<,<o) satisfies (5,7)-Prι (or (5,7)-Prj1")).

4) Q satisfies (5,7) — Pr^ or 5 — Prj" if it satisfies (i) - (v) of part (1) (note:

the ordinal 7 does not appear in conditions (i)-(v) of 2.1(1)).

5) If a member of S is an infinite ordinal δ which is not a regular cardinal,

we mean cf(ί) (occurs e.g. when Q G Vp and 5 G V).

6) If Q = (\Q\, <, <o) then Q is defined as follows:

the set of elements is {u : u C Q, and if u ^ 0 then for some q G u,

(Vp G u)(3r G u)(p < r & ^ <o r) and there is r* G Q such that for

every such q, r* is a <o-upper bound of {r G u : q <o r}},

ί/ιe order ui < u^ iff tti = u2 or for some q% G u^ for every ^i G 1/1,

9ι < 92,

ί/ie pure order u\ <o tt2 iff Ui = u2 or for some g2 G ιt2 witnessing

u2 G Q f°r every q\ G ui witnessing ui G Q we have (Vp G uι)(3r G

^ι)[p < r&^i <o r <o 92] (this is naturally used in 2.7; we usually

identify p G Q with {p} G Q).

2.2 Fact.

(1) If K < 71, 72 < κ+ ίften (5,7ι)-Prι is equivalent to (5,72)-Prι.

(2) If K 4- 1 < 7 < κ+ and D« (which can be stated as, i.e. an equivalent

formulation is: there is a sequence (Ca : a < κ+),Ca C α closed, for



690 XIV. Iterated Forcing with Uncountable Support

limit α the set Ca is unbounded in a and [αi G Ca => Caι = Ca Π αi],

and cf(α) < K => \Ca\ < K) and Q satisfies (5, 7)-Prι then Q satisfies

(S,κ+)-Pπ.

(3) Assume Q satisfies (5, 7)-Prι. If λ < 7, and λ G 5 then in VQ still λ is a

regular cardinal (or at least !hQ "cf(λ) = cfy(λ)"). If 2 G S, then Q does

not add bounded subsets to 7.

(4) If Q satisfies (5, 7)-Prι, λ G 5, λ regular, and for every regular μ, 7 <

μ < X =H!-Q "μ is not regular" (e.g., [7, λ) contains no regular cardinal)

then X is regular in V®.

(5) If Q satisfies (5, 7)-PiΊ, 7 > ω + 1, then Q is S-semiproper.

(6) Similar assertions (to 1-5) holds for (S, j)-Pr^ (but in (2) we do not need

DΛ) and (5,7)-Prf implies (5,7)-Prι.

(7) In 2.1(6), <^, <J are quasi orders of the set of elements of Q and for p,

q G Q we have

(i) Qϊp<q*ϊQϊ{p}<{q},

(ϋ) Q 1= p <o 9 ̂  Q N {p} <0 {g}

(on incompleteness see inside 2.7(D)).

(8) Assume Q — (|Q|, <, <o) satisfies:

(*) P < q < r & p <o r => p <o q

then in Definition 2.1(6):

if </, ςr/; G iti witness u\ G Q Λen there is g G ϊ/i such that #' <0

q & ̂  <o q

Also: if g; G HI witness HI G Q and q' < q £ uι then g' witness MI G Q,

provided that

(9) In definition 2.1(6), if MI ^ u% and ^2 witness u\ <o ^2 then u\ <o ^2 ^o

(or more formally u\ <o {#2} <o ^2) so {{p} : p G Q} £ Q is dense.
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Proof: Straightforward. E.g. for (2), note that otp(C<5) < K for all δ < κ+.

Without loss of generality a G Cg => a is even (so Cza+\ = 0). So in stages α,

player I can apply his strategy to the play (pΊ,pΊ+\ : 7 G Cα)). D2.2

2.2A Remark. Concerning 2.2(2) note that DNO always holds trivially (see

[Sh:351, §4]). The equivalence of this formulation of square to the standard one

is similar to the proof in [Sh:351, §4].

2.3 Definition. (5, < κ)-Prι will mean (£,7) — Pri holds for every 7 < K.

2.4 Fact. The following three conditions on a forcing notion ζ), a set 5 C

{ 2 } U { λ : λ a regular cardinal } and regular /ς are equivalent:

(a) there is Qf = (Q', <, <0) such that (Q', <), (Q, <) are equivalent forcing

notions and Q' satisfies (5, κ)-Pΐι.

(b) for each p e Q, in the following game (which lasts K, moves) player II has

a winning strategy:

in the iih move player I chooses λ^ G 5 and a Q-name Ti of an ordinal

< λi, then player II chooses an ordinal α* < A^. In the end player II wins

if for every a < K there is pa G Q, p < pa such that for every i < a we

have pa Ih "either λ^ = 2 & r* = α^ or λ^ > α0 fer^ < α^".

(c) like (a) but moreover (Q', <0) is ^-complete (i.e. Q' satisfies (5, κ) — Pr+).

(d) like (a) but moreover (Q1 <o) is K-directed complete, i.e.

if B C Q, |J5| < AC and for each finite B' C B there is a <o-upper bound

to βx, ίften -B has a <o-least upper bound.

Proof, (d) => (c) = >̂ (α): trivial.

(α) ^> (6): As Q, Q' are equivalent, there is a forcing notion P and / : Q -» P,

/' : Q7 —> P both preserving < and incompatibility and with dense ranges.

Choose <? G Q' which essentially is above p i.e. /'(<?) Ihp "/(p) G GP" . We

describe a winning strategy (in the game from (b) of 2.4) for player II: he plays

on the side a play (for q) of the game from 2.1(vi) for Q1 where he uses a

winning strategy (whose existence in guaranteed by (a)). In step i of the play
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(for 2.4(b)) he already has the initial segment (PJ : j < 2i) of the simulated

play for 2.1(vi). If player I plays λ^, TI in the actual game, player II defines

Pzi £ Qf (for player I) in the simulated play by the winning strategy of player

I there and then he chooses pu+iipu <o Piί+i £ Q1', which force for some α^:

Xi = Oίi if \i — 2, Ti < Oίi if λ^ > NO (exists by 2.1 (v)) (more formally, for some

TI G Q, we have /'(pzi+i) Ihp "/(rί) € Gp" and r^ forces Ti — α^ & λ^ = 2 or

Ti < αi & λi > NO, alternatively we can interpret T$ as a Q'-name using /, /')

and then plays α^ in the actual play. In the end for α < «, there is p* G Q such

that f(p2a) ^P "f'(p2a) G Gp", now p^ exists and is as required.

(fr) => (cί): Fix a winning strategy Stp for player II in the game from 2.4(b) for

each p G Q. We define Q' as follows

Q' = {(P, (λi,Γi,αi :i < 0) :P ^ <?> and (λi^ Γi)«t i < ξ)

is an initial segment of a play of the game

from 2.4(b) for p in which

player II uses his winning strategy Stp}.

The order <o is:

(Mλi.Ti.αi : » < 0) <o (P', (λj, Γ , α : < < ξ'»

iff (both are in Q') and

p = p', ξ < £', and for i < ξ

A* = λ^,Ti = rj, Oίi = α^

and the order < on Qx is

P = (P, {λ^Ti, a* : i < 0) < P7 = (P', (λ ,I^ <4 : i < ξ'))

iff (both are in Q' and) p <o p' or Q N p < p', and p' Ihg "A^ = 2 & TI — OLi or

λi > NO & ji < OLi" for every i < ξ.

The checking is easy. Note that

(α) the map p *-> (p, <>) is a dense embedding of (Q, <) into (Q', <).
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(β) hence Qf-names are essentially Q-names,

(7) (P, (λi, Γi, at : i < 0) II-Q' "(V* < ξ)[(λi = 2 -» Γi = α<) & (λ< > H0 -> Γi <

αOΓ

(ί) for (d) note that every <o-directed set is linearly ordered by <o and if its

cardinality is < AC then it has a <0-lub. U2.4

2.4 A Remark . So (5, /c) — Pri and (5, AC) — Pr]1" are "essentially" the same

(for /c regular).

2.5 Definition.

(1) Assume P is a <£-increasing sequence of forcing notions.

(a) Let

Genr(P) d=f {G : for some (set) forcing notion P* : /\ P< <£ P*
i<a

and G* C P* generic over V

and G - G* Π (J PJ.
i<α

(b) For a set E1 of regular cardinals we say that P obeys E if for 7 G E1

we have: Pα = |J P^ and P/? satisfies the 7-0.c. for β < 7. We say
β<Ί

that P strongly obey E if in addition β < 7 G jB => \Pβ\ < 7.

(c) Let -B(P) = {7 < ίg(P) : 7 is strongly inaccessible , uncountable and

β < 7 => P7 satisfies the 7-c.c.}, £7β(P) = {7 G £(P) : /3 < 7 =»

1^1 < 7}

(2) If Q — (Pi : i < α) or Q = (Pi,Qi : i < α) where P^ is <$-increasing,

obeying E (so here we ignore the Q^s) we define a Q-E-n&me r almost

as we define (\Ji<α Pi)-names, but we do not use maximal antichains of

\Ji<aPi
(*) r is a function, Dom(r) C (Ji<a Pi and for every directed G G

Genr(Q), τ[G] is defined iff Dom(r) Π G ^ 0 and then τ[G] G V[G]

[from where "every G..." is taken? e.g., V is countable, G any set from

the true universe] and r is definable with parameters from V(J{G} (so
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T is really a first-order formula with the variable G and parameters

from V) and (V/J G E Π £(Q))(37 < /3)[Dom(r) Π Pβ C P7].

Now Ihg has a natural meaning. If E is not mentioned we mean: any

fixed E Π (lg(Q) + 1) = £(Q) understood from the context, normally just

£({Pi : i < α)), below we fix E - E* .

(3) For Q-names TO, . . . ,Γn-ι we let {TO,... ,Γn-ι} be the name for the set

that contains exactly those Ti[Q] that are defined. For p G Q (i.e., p G

Ui<α ft) we let p Ih "r - x" if for every G such that p G G G Genr(Q) we

have τ[G] - x. (But see 2.6(2).)

(4) A Q-S-named [j,/?)-ordinal C is a <5-£-name ζ such that if ζ[G] — ξ then

j < ξ < β and (3p G G Π Pξn«)ί> I^Q "C - Γ (where α - €g(Q)). If we

omit α[j,/3)" we mean [0,*g((Q)) - [0,α).

2.5A Remark. 1) We can restrict in the definition of Genr(Q) to P* in some

class K, and get a K-variant of our notions.

2) Note: even if in 2.5(1) we ask Dom(r) to be a maximal antichain it will not

be meaningful as in the appropriate PS, we have Λi<5 ft "$ ft but it will not

in general be a maximal antichain.

2.5B Remark. Note that we wrote PξΠα not P(ξ+i)nα Compare this to the

remark LIB. We will not have a general associativity law, but the definition

of Sp^ - Lim^Q will be slightly simplified. As said earlier we can interchange

decisions on this matter (this does not mean this is the same iteration, just that

it has the same relevant properties). Of course also Ch.X can be represented

with this iteration.

2.5C Remark. Note that a Q — 0-named ordinal ζ is Q — £"*-named ordinal

zjff for every β G E* Π E(Q) for some 7 < β we have Ihg "ζ φ [7, /?)".



§2. Pseudo Completeness 695

2.6 Fact.

(1) For P = (Pi : ί < ίgP), a <£ increasing sequence of forcing notions

and P-named [j, /2)-ordinal ζ and p € \Ji<a Pi there are £, q and qι such

that p < q G \Ji<egp Pi and: either q Ihp "ςfi G G", gi € ffe, £ < α,

[p G Pf => <? = qι] and <?ι Ihp "£ = f" or </ Ihp "ζ is not defined" (and

even p Ihp "(is not defined").

(2) For P as above, and P-named [j, /3)-ordinals ζ, ξ, also Min{C, £}, Max{C, £}

(naturally defined, so Max{C,f}[G] is defined iff a ζ[G\, ξ[G] are defined,

and Min{C,£}[G] is defined iff ζ[G\ is defined or ξ[G\ is defined); both are

P-named [j, β)-ordinals.

Similarly for Min{ξ0, - , fn-ι}» Max{ξ0, - , ξn-i} ̂  P - £-named or-

dinals.

(3) For P as above, n < ω and P-named ordinals ξι,...,ξn and p G

Ui<^g(p) -Pi there are ζ < a and q G P£ such that, first: p < # or at least

q lhpc "p G P;/(?PC for some i < tg(P)n (actually i = mm{i : p G PJ)

and second: for some t G {!,...,n} we have q f C "~p "C = ί̂  =

Max{ξι,... ,ξn}" or P N~p "Max{^ι,... ,ξn} not defined", in the second

case we can add q Ihp "̂  not defined". Similarly for Min.

(4) Convention: If Q = (Pi,Qi : i < α), P^ is <£-increasing, we may write Q

instead of (Pi : i < α).

2.6A Convention. E* is a class of strongly inaccessible cardinals > K fixed

for this section, not mentioned usually. So a P-named (e.g. ordinal) mean a

P-(EΠE(P))-named (e.g. ordinal). Outside this section the default value is the

class of strongly inaccessible > K.

[The reader can simplify life using E* = 0, he will lose only 2.7(4), hence case

II of 3.4, so this is a reasonable choice.]

2.7 Definition and Claim. Let e G {1,2}. We define and prove by induction

on α the following simultaneously (all forcing notions satisfying 2.1 (i)- (iv)):
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(A) Q = (Pi, Qi : i < a) is a K — Spe-iteration or really AC — Spe - E*-iteration

(the Q's below will have this form).

(B) A Q-named (that is Q-E*-named) atomic condition q (or atomic \j,β)-

condition, β < α) and we define q\ξ, q\{ξ}, q \ [ ξ , ζ ) for a Q-named atomic

condition q and ordinal ξ < ζ < a (or Q-named ordinals ξ, ζ instead £, ζ).

(C) If q is a Q-named (or really Q-E*-named) atomic [j,/3)-condition, ξ < α,

then q\ξ is a (Qfξ)-named atomic [j, Min {/3, ξ})-condition and <?f{ξ} is

a Pξ-name of a member of Qξ or undefined (and then it may be assigned

the value 0q ί? the minimal member of Qξ).

(D) The K — Spe-limit of Q, Spe - LimKQ, (really Spe — E* - Lim^Q) denoted

by PQ, for Q as in clause (A), and p\ξ and Dom(p) for p G Spe — Lim^Q? C

an ordinal < a (or Q-named ordinal ζ etc.).

(E) Spe - Lim^Q satisfies (i)-(iv) of Definition 1.2 and it obeys E* Π E(Q) (so

if ίg(Q) G E* Π E(Q) then Spe - Lim/,(Q) = |J Pβ). Also if β < α,
/3</p(Q)

/? € E* Π -B(Q) and C is a (Qί/?)-named ordinal then it is a (ζ)f7)-named

ordinal for some 7 < /3; similarly for atomic condition.

(F) If /? < α = ^g(Q) then Pβ C Spe - Lim^Q (as models with two partial

orders, even compatibility is preserved) and [p G Pβ => p\β = p] and

[Pa 1= "P < 9" => P/3 N "Pt/ϊ < ςft)9"] and [Pα N "p <0 g" => P/j N "pί/? <o

gΓ/3"] and Pα N "pf/3 < p". Also ςf G Pβ,p G Spe - Lim^Q are compatible

iff q,p\β are compatible in Pβ. In fact if q G P/?, P/? |= "pf/3 < g" then

q U (pί[/3,α) is a least upper bound of p, <?, and if P/? |= "p\β <o ς" even

a <o-least upper bound of q. Hence Pβ <£ (K — Spe — Limκ(Q)) and so

/3 < 7 < ^g(Q) =*Pβ<$ P7-

(G) The set of p G P^ such that for every β < a we have Ihp^ "pf{/?} is a

singleton or empty", is a dense subset of Pα. Also we can replace Qβ by

Qβ (see Definition 2.1(6)) and the set of "old" p G Pa is a dense subset of

the new (but actually do not use this).
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Proof and Definition.

(A) Q = (Pi, Qi : i < α) is a K — Spe-iteration if Q \ β is a K — Spe-iteration for

β < α, and if a = β 4- 1 then Pβ — Spe-Limκ(Q\β) and Qβ is a P/3-name

of a forcing notion as in Definition 2.1(l)(i)-(iv).

(B) We say q is a Q-named atomic [7, β)-condition when : <? is a Q-name (i.e.

a Q — E*-name), and for some £ = £g, a Q-named [7, β)-ordinal (i.e. a

Q — E*-named [j,/?)-ordinal), we have Ihg "£ has a value iff q has, and if

they have then j < ζ < Mm{β,£g(Q)} and q G Qζ" . Now ρ|£ will have

a value iff £ς has a value < £ and then its value is the value of q. Lastly,

q\{ξ} will have a value iff ζq has the value ξ and then its value is the value

of q (similarly for ξ and tf f[C£) and <?Γ[C>£))

(C) Left to the reader.

(D) We are defining Spe — Lim^Q (where Q — (P^ Qi : i < a) of course). It is

a triple Pa = (|Pα|» <> <o) where

(a) |Pα| is the set of p = {qi : i < i*} satisfying:

(i) i* < rt,

(ii) if e = 1, 0 < p (see below)

(iii) each q^ is a Q-named atomic condition, and for every ξ < α, lhpξ

"ptίίj = {<7ΐΓ{£} : ^ < **} if not empty, has a <o-upper bound in Qξ

or at least a weak <0-upper bound i.e. for some nonempty u C Γ and

r e Qξ we have Λ<«. V^et* * KO < Qj \{ξ} and Λ^n ft \{ξ} <o r and

V ί 6uΛ, €uftΓ{ί} <o qj\{ξ} (i.e. ςffίί} € Q )".
€

(b) for p G Spe - LimΛ(Q) and ξ < £g(Q) we let:

we define similarly pf[C,0» Pt{C}, Pt[C,ί)-

(c) Pα |= "p1 <0 p
2" iff for every ξ < a we have (letting pi = {ςf : i < i€(*)}

for ^ = 1,2):

{^2 fξ : i < i2(*)} \\-Pζ "p2 \{ξ} = 0 => p1 \{ξ} = 0 and one of the following

holds:
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(i) {flί Γ{£>: * < **(*)} are equal for * = 1,2,

(ii) letting u1, u2 be as in clause (a)(iii) above for ςflί{^}, <?2t{£} respec-

tively for some j% G u2 for all j\ < il(*) if ζqι = ξ and j\ G it1 then

(note (i) V(ii) means Q N p1 f{£} <0 p
2 \{ξ})

~ξ
(iii) e = 2 and pl \{ξ} = 0" .

(d) Pa[=pi<ι?iS

(i) for every ξ < ίg(Q) we have (letting p* = {q% : i < i*(*)}, <£ = 1, 2):

{g2ίξ : i < z2(*)} lhPξ Vf{ξ} = 0 =» pHίί} = 0 and one of the

following occurs: pl f{ξ},p2 \{ξ} are equal as subsets of Qξ, or for some

h < ̂ 2(*) for a11 Ji < ̂ (*) we nave Qξ ^ "[tfJ! < ̂ 2]" (i e tne order

of Q ) .
e

(ii) for some n < ω and Q-named ordinals £ι, . . . , £n

 we have:

for each ζ < tg(Q), p2\ζ lhPς "if ζ £ {ξl7 . . . ,ξn} then: p1 ί{C} - 0 and

e - 2 or Q N "[{r[GPc] : r € pι,Cr = C} <o {r[GPζ} : r € p2,Cr -
~ C

C}]", note that the truth value of C = ξe is a Pζ-name so this is well

denned. Note: pl \{ζ} = 0 not just = 0Qi but q e p1 => -ι[ξ = C?[^c]]

We then (i.e. if (i)-f(ii) ) say: pi < p2 over {ξi, . . . ,ξn}

Lastly (as said above) if p E ft - Spe - Lim^Q then we let p\ξ = {r \ξ : r G P}

and Dom(p) = {ζg : q G p} and similarly pfC, pf[C,0> Pt[CO-

(E) : Let us check Definition 2.1 (l)(i)-(iv) for Pa

 d= Spe - Lim^Q:

<Pa is a partial order: Suppose p0 < Pi < P2 Let n^, ξj, . . . ,ξ^ appear

in the definition of pi < pe+ι. Let n = n° 4- n1, and

if 1 < i < n1

Now for ^ = 0,1 and ξ < α we have Ihp^ "if pt+ι \ξ is in the set GQ then

Pt\{ξ} < Pι+ι\{ξ} in Q ", hence lhPί "if p2Γξ is in the set Gζ then
~ ξ

P2\{ξ}mQ".
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Also for C < ot we have p2\ζ IHP< "if ζ φ {ξι,...,ξn} then (in Q )

Po r{C} <o Pi \{ζ} <o P2 Γ{C}" or e = 2, Po Γ{C} - 0" - So we finish.

<o is a partial order: check.

P <o <7 => P < <?' By the definition; easy.

So in Definition 2.1, (i), (ii), (iii), and (iv) hold.

We still have to check that Q obeys E* Π E(Q), now by the induction

hypothesis the only thing to check is: if α = ίg(Q) = /3 + 1, /3 G E * Π E(Q)

then Pβ — \J PΊ. This follows as β > «, and each (Q f/?)-named ordinal is a
7<0

(Q Ϊ7)-named ordinal for some 7. This is true by the definition of a Q — E-named

ordinal.

(F) , (G) We leave the checking to the reader (for the first sentence of (G) see

2.10(1) below). D2.7

2.8 Claim. Suppose Q = (Pi,Qi : i < α) is a K — Spe-iteration (so Pa =

Spe-Lιmκ(Q)).

1) If p < q in Pa then there are r, n, ξi < . . . < ξn < a such that:

(a) r e Pa

(b) q < r

(c) p<r above {ξι,...,ξn}

2) We can find such r simultaneously for finitely many p^ < q.

Remark. In fact we can have rf[ξn,α) = q\[ξn,a).

Proof. 1) We prove this by induction on α

Case 1: α = 0. Trivial.

Case 2: α = /3 + l.

Apply the induction hypothesis to Q \β, pf/?, g f/3 (clearly Q \β is an κ-Spe-

iteration, p\β = Pβ, q\β e Pβ and P/? |= "p < ς", by 2.7).

So we can find r7, m, {ξ(,..., ξ'm} such that:

(a)' r' G P/3

(b)' P^
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(c)' p < r' (in Pβ) above {&,... ,fm}.

Let n = m + 1, and

= /# < / € € { ! . . . , m }

and lastly r = r U (q\{β}).

Case 3: a is a limit ordinal.

Let p < q (in Pα) above {£ι, . . . ,fn}. We choose by induction on t < n,

Tίiβliξϊ SUCΠ

(α) rte

(β) n <

(7) q\βι<rι

(δ) βe < βl+l < a

(ε) β0 = 0, r0 = 0Po

(0 for ί G {0, . . . , n- 1} we have: either r^+i Ih α^+ι = ξ|+1" and £?+1 < ̂ +1

or βι+ι = βt&Ti+\ = r^ and r^ U (ςf[/3,o:)) l^pα "ξ^+i is not defined".

Carrying the definition is straight: for i = 0 use clause (ε). For i +

1 < n when the second possibility of clause (C) fails there is r', such that

re U (gf [/?,«)) < r' G Pα, and r' lhPα "ξm is defined", so there are r" ,

f|+1 such that r' < r" G Pα and r" Ih "&+ι - ^*+1" so as "ξ|+1 is a Q-

named ordinal" we know that ξ|+1 < a and r"f£g+1 Ihp^,, α^+ι = ^|_|_ι" Let

= max{/3^, ξ|+1}, and r^+i = r/; t^+i So we have carried the induction.

Apply the induction hypothesis to Q\βn p\βn, ^n\ it is applicable as βn <

α, and Pβn \= "p\βn < q\βn < rn" . So there are m < ω, ξι < . . . < £m < /3n

and r* such that P n̂ |= rn < r*" and p <r* (in P^ ) above {ξi, . . . , ξm}. Now

let r d= r* U (q\\βn, α)), clearly g < r and p < r above {ξi, . . . , ξm, /?n}

2) Should be clear. D2.s

2. 8 A Claim. Let Q be a ^ - Sp2-iteration (of length α).
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(1) If β < a and ζ is a P^-name of a Q-named [/J, α)-ordinal ί/ien for some

Q-named [/?, α)-ordinal ξ

l ho"C = f

(2) The same holds if we replace "ordinal" by "atomic condition" .

(3) If β is a Q-named ordinal, and for each β < α, ζβ is a Q-named [/?, α)-

ordinal then for some Q-named ordinal ξ

(4) Similarly for atomic conditions.

Proof. Easy. Π2.8Λ

2.8B Discussion. Why do we use iteration of kind Sp2 when Spj may seem

simpler? Think that we want say ft, κ+ to play the roles of N0, NI in Ch.X.

Suppose (Pi,Qi : i < AV+) is an ft+ — Sp1-iteration which is nice enough such

that U Pi is a dense subset of Pκ+ . Suppose further that for i < ft"1" , we have
i<κ+

{pi} G Pα such that: lhp i "p^ G Qi, and for every # such that g G QΪ, 0Q{ <o ^

there is r such that q <Q r e Qi and r is incompatible with pi (in Qi)". These

are reasonable assumptions for the iterations we have in mind.

Let u — {i < κ+ : {pi} G Gpα}, so this is a Pα-name of a subset of κ+.

As U Pi is a dense subset of κ+ clearly I^PK+ "u is an unbounded subset
i<κ+

of ft+". But for each p G P^+ and α < κ+ w.l.o.g. we have some n and

6 < • - . <ξn<κ+ such that i € Λ + \ { ξ ι , . . . , ξ n } = ^ p t i l l - '% <opΓ{iΓ-

Now there is g G P^, such that p <0 q (i.e. for every i we have q\i lhP.

"Pf{i} <o q\{i}") and for every i G α \ {ξι,...,ξn} we have !hPί "ς(i), Pi

are incompatible in Q^" . So q\\- "u Π α C {ξ1? . . . , ξn}" . As α was an arbitrary

ordinal < κ;+, necessarily H~PK+ "u has order type < α;" , but as indicated earlier

\\-Pa "sup(u) = /ς+". Together lhP^+ "cf(ft+) = K0", certainly contrary to our

desires.
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So the use of our choice is e = 2. Where is this used? In the proof see end

of the proof of 2.13 (hence also in 2.14, 2.15).

2.9 Claim. Let Q = (Pi, Qi : i < a) be an ft-Sp2-iteration, Pa = Sp2 — LimκQ

(as usual).

(1) If /?, 7 are Q-named [j, ̂ g(Q))-ordinals, then Max{/3,7} (defined naturally)

is a Q-named [j, £g(Q))-ordinal.

(2) If α = /?o + 1, in Definition 2.7, part (D), in defining the set of elements of

Pa we can restrict ourselves to β = /30 Also in such a case, Pa = Pβ0 * QβQ

(essentially). More exactly, {pU{<?} : P ̂  Pβo> Q a P/30-
name °f a member

of QβQ} is a dense subset of PQ,, and the order pi (Jί^i) ^ Pz Ufe} iff

[Pi < Pi (in Pβo) and P2 II~PPO "^i < ^2 in Q/?0"] is equivalent to that

of Pα, in fact is the restriction of <p° to this set, so we get the same

completion to a Boolean Algebra.

(3) |Pα| < (Σi<α 2l P i l)N, for limit α (where of course |P| - \{p/ w: p G P}|

po « Pi iff P^ IK "Pi-^ € GP" for € = 0,1).

(4) If lhPi "|Qi| < μ", μ a cardinal, then |Pί+ι| < 2'Pίl 4- μ.

(5) If Ihp. "d(Qi) < μ" then d(P;+ι) < d(Pi) 4- μ, where d(P) is the density of

P.

(6) For α limit d(Pα) < 2Σί<«d(Pί).

(7) If P = Q then P is essentially complete, i.e. for every maximal antichain

IQ U Zi of P with J0 Π Ii = 0, for some q € P, for every p G J0 U Ii, ςf is

compatible with p iff p G JQ

. Check. D;2.9

2.10 Claim. Suppose (K is regular and):

(a) Q = (Pi,Qi : i < a) is a AC - Sp2-iteration (and of course Pα = Sp2 -

Limκ(Q)

(b) Ihp. "(Qi, <o) is 19-complete" for i < a

(c) θ < K

Then
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(1) (Pα, <o) is ^-complete, in fact: if δ < 0, (pi : i < δ) is <o-increasing then

it has an <o-upper bound (in fact, as in 2.7(G))

(2) for β < α, Pa/Pβ is ^-complete.

(3) In fact we can get <0 —lub if this holds for each Qi.

Remark. We deal with Pr+ and not Pri (here and later) just for simplicity

presentation, as it does not matter much by 2.4.

Proof: Straightforward.

(1) So assume δ < θ and pi G Pa for i < δ and [i < j < δ => Pi <0 PJ]. Now it

is enough to find p G PO such that

i < δ => pi <o p

Ihg "Dom(p) = (J Domfe)"

lhpc "pf{C} is a singleton or 0".

Let pi = {qτ

Ί : 7 < 7i} where 7^ < K and for each ζ < ζi,q'ζ is Q-π&med

atomic condition, say Ihg "ql

Ί G Qζί", where ζl

Ί is a Q-named ordinal which is

ζqi. Now for each β < a let <£ be a P^-name of a well ordering of Qβ. For

each ΐ(*) < ί,7(*) < 7i let r^*A be the following Q-named atomic condition:

Let ζ < α, Gζ C Pζ generic over V and ζ /*A[Gχ] = C> now work in V[GJ,

let iϋζ = {i < δ : for some 7 we have (7(6^] = ζ}, and for each i e wς let

wί = {7 < Ίi '• C^GC] = C}) clearly not empty; moreover for some β G u^ we

have

(V£ G ̂ )(^7 G ^)(qlβ.[Gζ] <o ^[G^] & ^[G<] ^ ̂ 7!

and let υ = {7 G i : ^JGC] <0 ^[G<]}, clearly also υf is not empty.

(As Pi is <0-increasing, Wζ is an end segment of δ and z(*) G Wζ.) We define

1: For some i G Wζ we have:
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By the definition there is r G Qi such that 7 G i^ => ql

Ί[Gζ] <0 r.

We let r^ be the <ζ[Gζ] - first such r

Case 2: Not case 1.

Let w'ζ = {i ewζi for no j e wς Π i do we have (PJ \{ζ})[Gζ] = (pi \{ζ})[Gζ\}.

Note, w'ζ has no last member and moreover is unbounded in 5; let j(i) =

mm(w'ζ \ (i + 1)) for i G w'ζ.

For each i G w^ by 2.2(9) we know there is βi G ΐA^ such that

[7 e t f ̂  QC[GC] N «<^GC] <0 <$VcΠ

Hence by 2.2(9) we know (ςr^ [Gζ] : i G w£) is a <o-increasing sequence

in Qζ[Gζ], hence it has a <o-upper bound; so let rΐl be the <£[G]-least Sc-

upper bound of such a sequence in Qζ[Gζ}. Because of the "such" the choice

depend on £, Gζ but not on i(*), 7(*). Now

P d= ίr^**) i(*) < * and 7(*) < 7^*)}

is as required.

2), 3) Similar proof and will not be used (or use the associativity law, see

2.21(3) (which could be proved before 2.10)). D2.ιo

2.11 Definition. Let Q = (P^ Qi : i < a) be an K - Sp2-iteration

(1) We say y is a (Q, ζ) — E*-name (again we usually omit E*) if. y is a Pα-name,

ζ is a Q — E*-named [0, α)-ordinal, and: if β < a , GPa C Pa is generic

over V and for some r G GPa Π Pβ, r \\-Q "C = /?", ^en y[GPβ] G V[CP/3]

is well defined and depends only on Gpa Γ\Pβ so we write y[Gpa Γ\Pβ\] and

if Gpa C Pα is generic over V, C[^P«] not well defined then 2/[GPJ is not

well defined.
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(2) If p G Pα, GPa C Pa generic over V\ (or just in Genr(Q)), thenp[GPo] is

a function, Dom(p[GPJ) - {ζq[GPo\ : q e p} and (p[GPJ)(e) - {q[GPo\ :

qεpandζq[GPa] = ε}.

2.12 Claim. Suppose

(a) (5 — (Pi> ζ?i •' 2 < α) is a ft — Sp2-iteration

(1) Assume that g is an atomic Q-named condition and ξ is a Q-rmmed ordinal

and ς fξ is defined naturally (i.e. if G G Gen(Q), and £0 = ζ[G] and

C - ζg[G\ then C < ί => (?ΓC)[G] = ?[G], and C > ί ̂  OgK)[G] not

defined). Then g f ξ is an atomic Q-condition with C(gtf) — min{Cgj^} (see

2.9(1)). Similarly for q\[ξ,a). we can let Pξ d= {p G Pa : p f f - p} and it

has the natural properties.

(2) Assume in addition

(b) p G Pα, C is a Q-uamed [0, α)-ordinals

(c) r is a (Q, C)-named member of Pa/Pζ

(d) K a successor (or just not a limit cardinal)

Then: there is q G Pα such that:

(*) ίfξ<a,GξC Pe generic over F, and ζ[Gξ] = ξ then (p\ξ)[Gξ\ =

(q\ζ)[Gt] and ( q \ [ ζ , a ) ) [ G t ] = r \ [ ζ , a ) [ G ζ ]

In fact q = (p\ζ) U [rί[C^)] will do where p\ζ = {p'\ζ : p' G p},

rr[C,α) = { r / r [C,α) : r / er} .

(3) If in (2) in addition

(c)' r is a (Q, ζ")-name of a member of Pa/Pζ above pf[ζ, α)

ί/ien we can add p < q (but now g = p U (r Γ[£, α)).

(4) If in (2) in addition

(c)+ r is a (Q, C)-named of a member of Pa/Pζ purely above p\[ζ, a)

then we can add p <o q (and now g = p U (r f[£, α)).

Proof. Straightforward (think particularly on the case ζ[G] G E* Π E(Q)).
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2.13 Claim. Suppose

(a) Q — (Pi, Qi : i < a) is a K — Sp2-iteration

(b) each Qi satisfies ({2,0ι},N0) - Pri

(c) each Qi satisfies 2.1(l)(v) for θ G {2,6>ι}

(d) K is successor

Then

1) Pa satisfies 2.1(l)(v) for θ G {2,6>ι}

2) for β«x, Pa/Pβ satisfies 2.1(l)(v) for θ € {2,0ι}

Proof. 1) Let p G Pa and r be a Pα-name of an ordinal < 0, 0 e {2, #ι}. We

define a Q-named [0, α)-ordinal £: for r e Pβ, r Ih "( = /?" ίj(f

(a) there are 4,7 such that r U (pt[/3,α)) <0 q G Pβ and ςr|y3 = r\β (= r) and

7 < 0 and ς Ih "if 0 = 2, then r = 7 and: if 0 > 2 then r < 7"

(b) for no β' < β and r', r\β' < r' G P/?/ does (r7,^7) satisfies (a).

Note that: if β is a limit cardinal we can get (by 2.8) a contradiction to

clause (b).

However we would like to apply 2.12(2) and for this we need to prove that

ζ is a Q-named ordinal, i.e. a Q — E*-named ordinal. So (by 2.5C) let β < λ,

β G E* Π E(Q), and it suffice to find 7 < β such that \\-Q "C φ [τ,/?)" But

p\β G P/3 = U P7, so for some 7 < /?, p|y3 G P7 and this 7 is as required
7<0

because we are using Sp2 (and not Spx), that is; because if p \ β < q G Pβ then

Let q* be a (Q,C)-named member of Pa as in clause (a). Let pQ = p

and pi = p0 U (g*r[C>«))> now Po <o Pi ^ «̂ by 2.12(4). We now define

P2 = Pi U {Γg '• 9 € Pi} where rq is defined as follows

(*) if β < α, GPβ C P^ generic over V and Cgl^pJ = /? and in VfGpJ there

is r such that

(i) Qβ[Gpβ]\=«p\{β}<*{r}zQβ[GPβγ

(ii) for some r\ G P/j+i we have: ri f/3 G Gp^ and n f {β} = r and: ri

forces (ll-p^ ) C = β + 1 or rι forces C ^ /^ + 1 and in the former case
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if θ = 2 the condition r\ U (pi \[β -h 1, α)) forces a value to r, if 0 7^ 2

forces a bound to r

rg[G/j] is the <β[Gβ] -first such a member otherwise it is $Qβ.

Let us choose now β < a minimal such that

(g) there are r\ G Pβ and 7 < 0 such that p2|7? < ^i and n U (p2\[β,Cί)) Ih

"θ = 2,τ <7or 0^2, 1^7".

There is such /? as for some β < a and r we have p2 f/3 < r £ P/3 » and

r Ih "£ = /?" and see the choice of ζ and pi, p2; actually we can use β = a.

If β = 0 we are done. If /? is limit without loss of generality, by 2.8 for some

n < ω and ξι < . . . < ξn < β we have: p2 \β < τ\ above {ξι , . . . ,ξn}.

By the choice of r\ there are q € Pα and 7 < # such that: ς|7? = ri and

rι U (p2Γ[/3,α)) <o 9 and q lhPα "0 = 2, r = 7 or θ ^ 2, r < 7", just use

q = Π\J (P2\\β,a)). Hence β' = ζn + 1, r' - n K£n + 1) satisfy: r' <= Pξn+ι,

P2 Γ^ < r7, ςf t^ - ̂ Γ(ίn + I) = ri r(ξn + 1) = r7, and q lhPa «fl - 2, r = 7 or

β ^ 2, r < 7" and r7 U (pt[/?7,α)) <0 r
7 U (gt[/?7,α)). So by the definition of

ζ we have r7 Ih "£ < /37" and of course /37 < β. So we get a contradiction to

the choice of β. Lastly assume β = j + 1, and let Gfpj. C P^ be generic over V

such that 7*1 \j e Gpj . If for some q e pi we have Cg[^Pj] = 3 (so we could use

ΐq £ Pi) tne contradiction is gotten similarly using the definition of p2 (note

that for θ ^ 2 we use the result for θ = 2!). In the remaining case we can

decrease β by the definition of <0°< (as we use Sp2 rather than SpjJ).

2) Same proof (or 2.21(2)). Π2.ι3

Now 2.10 -h 2.13 suffice to show that no bounded subset of K, is added by the

K - Sp2- iteration (if say each Q< has ({<9 : H0 < θ = d(θ) <κ}U {2}, 7) - Prf

for 7 < «. But we may like to deal with iterations which e.g. add reals. The

next claim does better.

2.14 Claim. Assume

(a) Q = (Pi, Qi : i < a) is a « — Sp2-iteration
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(b) each Qi satisfies the ({(9}, NI) - Prf, and θ = cf(θ) > H0

(c) K is a successor cardinal.

Then

(1) Pa satisfies ({0},Nι) - PrJ-

(2) also for β < α, Pα/P^ satisfies ({0},Nι) - Pr+.

Proo/ of2.14. Before proving, (in 2.14E) we define and prove in 2.14A - 2.14D,

retaining our 0, /ς, K - Sp2-iteration Q, and α = ίg(Q). We can assume that

2.14 holds for any case with a' < a instead of α

2.14A Definition.

(1) Γi = {(p, (,τ) '- P £ Pa and ζ is a Q-named [0, α)-ordinal and r is a Pα-

name of an ordinal < 0 such that: if p G Ga C Pα, Gα generic over V and

£[Gα] = ζ then for some r G Gα Π P^ and ε < θ we have r lhpα "r < ε"}

(2) Γ2 = {(p, C>l) ^ IV. Ihg "ζ is a non limit ordinal", and for every β < a

we have: if there are r and q such that P/3 \= "p\β < r", r G P/?, lhP/3 "ςι G

9^ & pf{/3} <0 f and r U {?} lhQ "C - β + 1" or r U {?} Ihg "C ^ /? 4- 1"

ίften we can use ς = pf{^}}

(3) For y = (p, ζ, τ) let us define a Pα-name ^^ for Ga C Pa generic over V

wy[Ga] — {β < a : for some r e GaΓ\Pβ and q G p we have

r^ll-<5 t t C s [G f P/ 5 ]=^ and

r and -(3r7 G P/3+ι)(r < (/^)

&rΊhg "C is not = )

2.14B Subclaim.

(1) If le {1,2} and (p,C,r) ^ Γ^ and p <0 Pi e Pα then(Pl,ζ,τ) eΓέ

(2) If p G Pα and r is a P^-name of an ordinal < 0 ίften for some (p', ζ', r f ) G

we have p <0 p
x and p' \VPa "τ' = r"
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(3) If (p, C,τ) £ Γi ίften for some (p',C',r') € Γ2 we have p <0 p', lhPβ "£' < C

andτ '>τ" .

Proof. 1) Read the definitions.

2), 3) Like the proof of 2.13. Π2.ι4β

2.14C Subclaim. If y — (p, ζ", r) 6 Γ2 then the (P^-name of a) set wy satisfies:

(a) lhPα «β G wy => /? < C"

(b) if Gα C Pa is generic over V and β £ wy[Ga] then some r G Gα Π Pβ

forces this; in fact if r lhPα "/? G wy" then r f/3 lhPa "/? G w/.

(c) lhPcy "̂  is a finite subset of α"

Proof. For clauses (a), (b) read 2.14A(3), so let us prove clause (c).

If not, for some Gpa C Pa generic over V, and wy[Gpa} is infinite, and let

Co < 0 - be the first ω members. Let δ d= \Jn<ω ζn, so V[GPa] \= "cf (δ) =

»oM.

Let ί and (ζn : n < α;} be the corresponding Pα-names, so there are

r G Gpo and /? and 5 < α such that r lhPα "ζ" = β and δ = δ (and ̂  is

infinite)". Now as ζn[Ga] G t/;y, by Definition 2.14A(3) (the clausep\β < r) we

have pfCn[^α] ^ Gα; and as this hold for every n we have p\δ G Gα, so as we

can increase r w.l.o.g. p\6 < r. Hence by 2.8 without loss of generality for some

n < <j, and ξι < . . . , < ξn < α, we have pfί < r above {£ι,..., ξn} so letting £0

be: β if β < δ, 0 if β > δ and letting ξ = sup[δ Π {ξ0, fi, , ξn}] we know that

ξ < ί and r lhPα

 u<u;y Π (ξ, δ) ̂  0" hence for some ε and ri, we have r < TI G Pa

and ε G (^, δ) and ri lhPα "ε G wy". But by the definition ofwy, i.e. by 2.14C(b)

we have: r±\ε lhPe "ε G wy" and clearly n fε lhPe "pί{ε| <0 rf{ε}" hence by

the definition of wy we have (rifε) U (rf{ε}) ^Pe+1 "C is not = ε + 1" hence

(as C is a ζj-named ordinal) there is r2 such that (rifε) U (rf{ε}) < r2 G Pε+ι

and r2 \\-Q "ζ = ε -f 1". But ε 4-1 ^ /3 by the choice of £0 and ξ and ε, and

r lhPα "C = β" so r2, r should be incompatible in P. But

r t(ε + 1) < (ri fε) U (rfίε}) < r2 G Pe+ι.
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[Why? As r < 7*1, and choice of r% (twice).]

Hence by 2.7 clause (F) we know r, r% are compatible, contradiction. Π2.14C

2.14D Subclaim. If y = (p,C,l) € Γ2 then we can find p+, ζn, rn for n < α;

such that:

(a) p <o P+ € Pa

(b) (p+,Cn,Tn)eΓι

(c) if Ga C Pα is generic over V, then Cn[<?α] is the n-th member of wy[Ga]

if there is one, if so then for some r £ GC^GC,] we have p+ ίCn[Gα] < r and

r U (p+Γ{Cn[Gβ]}) lhpα « if C[GPJ - Cn[Gα] 4-1 then r(Ga] < rn[Ga]
n.

Proof. Straight using 2.10 (for θ = NI) to have a <o-upper bound, and taking

care of n work as in 2.14B(2) i.e. as in 2.13. Π2.14D

2.14E Completion of the proof of 2.14. We concentrate on part (1) (the

proof of part (2) being similar or use 2.21(3), and it is not used). By 2.7, clause

(E) we know that (i) - (iv) of Definition 2.1(1) holds, and by 2.10(1) not only

clause (vi) of Definition 2.1(1) and the extra demand from Definition 2.1(2)

hold, so the problem is to verify clause (v) in Definition 2.1(1), i.e. the pure

decidability. So let p G Pa and r is a Pα-name and p\\- "r < θ", we have to find

</, j such that p <0 q £ Pa and j < θ and q lhPα "r < jn. So we can replace p,

r by p', r1 if p <0 pr and p' Ih "r < r1 < θ". By subclaim 2.14B(2)+(3) w.l.o.g.

for some ζ the triple (p, ζ", r) belongs to Γ2 We choose by induction on n < ω,

pn, p+ and ((ζη,τη,jη,τ'η) : η G nω) such that:

(a) po - P, r() = r, C{> = C = J{)

(b) (pn,C»?»Γτ7) ^ Γ2 for each n < ω, η G nω

(c) pn <0 Pn <0 Pn+1

(d) for each n and 77 £ nω we have:

(ΐ) OV<fc) : fc < ̂ } list ^(pn.C^Γ,) U {0}

(n) Jr7Λ(/c) is a Q-named [0, α)-ordinal

(iii) Tη~/k) is a P^.^^name of an ordinal < θ
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(iv) if Ga C Pa is generic over V, and β = jη[Ga], and p+ \(β + 1) G Ga

and β = ζη[Ga] then τ'η.(k}[Ga] > τη[Ga]

W (p^M*>'2v<fc))€ Γ l

(e) pn+ι \\-Pa "Crf (fc) < .?><*), and CrΓ(A ) is πon limit and r^/,} > r^(A;)" for

n < ω, η G nu;, and k < ω.

The case n = 0 is straight. Having arrived to stage n, i.e. pn and ("77, IT?

for η G n-α; are defined and as required, list (nω) as (ηι : I < ω) and choose

by induction on I < ω, p+^, jηι~(k), Tη^(k) for k < ω such that Pn,o = Pn,

Pni ^o Pn^+i an<^ ^n^+i satisfies tne requirements of p+ for η = ηt which is

possible by Subclaim 2.14D. Then let p+ = (J^^ί^ (^ ^s a ^o-upper bound

of {Pnt : ^ < ω}; by 2.10 + assumption (b) of 2.14 it exists, but why it still

satisfies the demands? By Subclaim 2.14B(1)). Now the choice of Pn+i, ζη~(k)ι

IV (fc) f°r η £ U(jji k < ω is by Subclaim 2.14B(3) again using 2.10(1).

Again there is p"1", a <o-upper bound of {pn : n < ω}, it satisfies p <Q pn <o

p+ G Pa and letting 7 = supjr^ : jη = 0} < θ we can prove p+ Ih "τη < 7

when τη is defined". For this we prove by induction on j < a that p\j \\-p0 "if

η G ω>ω and jη < j then τη < 7" (similarly to the proof of 2.13). As r = T{>

we are done. 1^2.14

Remark. Actually the tree we use is of finite splitting.

2.15 Conclusion. Assume

(a) Q = (Pi, Qi : i < a) is a K, — Sp2 - E*-iteration

(b) each Qi satisfies (5, < K) - Pr^" and (N0 G 5 => 2 G S)

(c) K successor

(1) Pa satisfies (5, < K) - Pr^

(2) for β < α, Pα/^9 satisfies (5, < K) -

Remark. 1) Note: if ft is not a cardinal we can replace it by |/ί|+; &ΐ/£ during

the iteration |κ|+ may increase.
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2) We can replace Prf by Pri with minor changes but because of 2.6 the gain

is doubtful.

Proof. By 2.10, 2.14 (and 2.7 of course). D2.ι5

2.16 Discussion. Suppose α is an ordinal and Q = (P^, Qi : i < a) is a

K — Sp2-iteration (so Pa — Sp2 — Lim/c(Q)). We may wonder whether:

(a) If a is strong inaccessible and density(P^) < a for i < a then density(Pα) ==

α.

(b) If a is a Mahlo and Mi < a[\Pi\ < α], then Pa satisfies the α-c.c.

As unlike X §1 we use antichains of (J Pi (rather than antichains which
i<a

are maximal in P whenever /\ PI <£ P) this is not clear. Note that in 2.17
i<a

below, we can weaken the Pri demand to lhpα "0 remains regular" .

2.17 Lemma. Suppose Q = (P;, Qi : i < a) is a κ-Sp2 — E*-iteration, K > N0

a successor cardinal, S C {2} U {μ : NO < μ,μ regular }, HO € 5 = 2 G 5, and

each Qi (in VPί), has (5, < K) - Pr^ (see 2.1(4)). Then:

(1) If K < θ G S and cf (α) = θ then \Ji<a P< is dense in Pα.

(2) If a is strongly inaccessible > min(5 \ K), α > |P$| -f ft for i < α (or just

Pi satisfies the α-c.c.) and a G E* then Pa satisfies the α-chain condition

(in a strong sense).

(3) If each Qi satisfies (RCar \ K, K) — Prf and has power < χ, then Pa has

a dense subset (even a <o-dense subset) of power (2^+x)<κ and satisfies

(3) If α is strongly inaccessible and E* Π α is a stationary subset of α and

[i < α => I Pi I < α] or at least [i < α => P^ satisfies the λ^-c.c. for some

λi < α] then Pa satisfies the α-chain condition (a strong version indeed).

Proof. 1) Left to the reader.

2) Choose θ G S \ K. Let (PJ : j < α) be a sequence of elements of PQ, now as

α G E* we have PJ G \Ji<a Pi- Let A — {j < a : cf(j) = #}, this is a stationary

set. For j e A choose TJ G (Ji<c PΪ, TJ > PJ \j (why such TJ exist? by part (1)),
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say TJ G PUJ), i(j) < j. Let C = {i : j limit, Vi < j3j < j f a G PΊ]}. This is a

club subset of α.

By Fodor's lemma we can find B C C Π A stationary such that for all

j i i f a £ B we have i ( j ι ) = i(fa) and TJI = Tj2 = r or at least r^, rj2 are

compatible in \Ji<i(jl}

 pi and let r jι» rja ^ r e U<iϋ1)
 P*

(Remember that |P^| < a or at least Pi satisfies the α-c.c. for i < a)

But for any such j\ < fa the condition r U PJI \\jι, fa) U pj2 \\J2,a) is a

common upper bound for PJI , pj2 .

(3) Like III 4.1 use only names which are hereditarily < AC (see below).

(4) Like part (2) using 2.7(E) (so 2.5(1) (b)) instead using part (1). D2.i7

We may wonder about K - Spe-iterations which essentially do not change

cofinality.

2.18 Definition. We define for an Spe-iteration Q, and cardinal μ (μ regular),

what is a Q-name hereditarily < μ, and in particular a Q-named [j, α)-ordinal

hereditarily < μ and a Q-named [j, α)-atomic condition hereditarily < μ, and

which conditions of Spe-LimκQ
 are hereditarily < μ (formally they are not

special cases of the corresponding notions without the "hereditarily < μ"). For

simplicity we are assuming that the set of members of Qi is in V . This is done

by induction on a = ίg(Q).

First case, a = 0

trivial

Second case, a > 0

(A) A Q-named [j, α)-ordinal ξ hereditarily < μ is a Q-named [j, α)-ordinal

which can be represented as follows: there is ((pi,ξi) : i < i*),i* < μ, each

ξi an ordinal in [j, a),pi G P& is a member of P^ hereditarily < μ and for

any G G Genr(Q), ζ[G] is (" iff for some i we have

(a) P i €G,Ci = C

(b) if PJ € G then Ci < <,- V (ζt = ζjki < j)
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(B) A Q-named [j, α)-atomic condition q hereditarily < μ, is a Q-named [j, α)-

atomic condition which can be represented as follows: there is ((pi, ζi, qi) :

i < i*),ί* < μ,ζi G b',α),pi G PC i,ft € V, and for any G G Genr(<5),</[G]

is q iff for some i:

(a) PieG,q = ft, and Pi lhpCi "g G QCί"

(b) if ft G G then Ci < 0 V (Ci = Cj & * < j)

(C) A member p of Pα = Spe - LimΛ(Q) is hereditarily < μ if each member of

r is a Q-named atomic condition hereditarily < μ.

(D) A Q-name of a member of V hereditarily < μ is defined as in clause

(B), similarly for member x G VPa such that y G transitive closure of

x & y φ V => 12/| < μ.

2.19 Claim. Suppose (Pi,Qi : z < α) is an K —Spe-iteration, Pα = Spe-Lim^Q,

AC a successor cardinal, each Qi (in VPi) satisfies (RCarv x \ «, K) — Prf. Tften

(1) {p G Pα P hereditarily < K} is a dense subset of Pα, even a <o-dense

subset

(2) Pα preserve "cf(ί) > K"

(3) for every p G Pα and r a Pα-name of an ordinal there are p*, p <o p* G Pα,

and Λ G V, a set of < K ordinals such that q \\-pa "τ G A".

Proof. Should be clear. D;2.19

2.20 Remark. We can also get a similar theorem for forcing notions (Q, <, <o)

as in 2.1 where instead of <o is ^-directed complete (see 2.4(d)) we demand

that (vi) ("strategical completeness" of <0).

2.21 Claim. (1) Suppose F is a function and e — {1,2}, then for every ordinal

α there is Spe-iteration Q = (Pi, Qi : i < α^}, such that:

(a) for every i,Qi = F(Qfi),

(b) αf < α,

(c) either α^ = α or F(Q) is not an (RlimQ)-name of a forcing notion.
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(2) Suppose Q is an ft — Spe-iteration of length a and β < a, Gβ C Pβ is generic

over V, ίften in V^G/j], <9/G/j = (Pi/Gβ,Qi : /? < i < α) is an Spe-iteration

and Spe — Lim(Q) = Pβ * (Spe - LimQ/G^) (essentially).

(3) If Q is an ft - Sp2-iteration, p G Sp2 — Lim(<5), P/ = {# G P; : <? >

p\i}, Q'i = {p^Qi^P> P\{i}} then Q = {/*, Q( : i < IgQ) is (essentially) an

Spe iteration (and Sp2Lim(<3/) is P£ *).

Proof. Should be clear. IU2.12

§3. Axioms

We can get from the lemma of preservation of forcing with (5, 7) - Prf by

K — Sp2 iteration (and on the λ-c.c. for then) forcing axioms. We list below

some variations.

3.1 Notation. 1) Reasonable choices for S are

(A) S% = RUCar<κ = {μ : μ a regular cardinal, N0 < μ < ft}

(B) Si = {2} U RCar<« = {2} U {μ : μ a regular cardinal, N0 < μ < ft}

(C) If we write "< ft" instead < ft (and S<κ instead S^) the meaning

should be clear.

2) [Convention] E* is the class of strongly inaccessible cardinal > ft.

3.2 Fact. Suppose the forcing notion P satisfies (5,7) — Pri

(1) If 2 G 5 then P does not add any bounded subset of 7.

(2) If μ is regular, and \i(i < μ) are regular, and {μ} U {\i : i < μ} C 5, D

here is a uniform ultrafilter on μ, θ = cf(Πi<μλi/D) (λ^-as an ordered

set) then P satisfies (5 U {#}, 7') - Pri whenever μ^' < 7, (μ^1 is ordinal

multiplication). We can do this for all such θ simultaneously.

(3) If λ G 5 is regular, μ < 7 then for every / : μ — > λ from Fp, for some

g : μ — > λ from V for every α < μ, f ( a ) < g(oί).
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Proof. (1) and (3) are clear.

For (2), fix an increasing cofinal (modulo D) sequence (/^ : a < θ) in Y[ X?
i<μβ

if θ = cf ( Π λ</JD0) with \l G 5, μ = μθ G 5.
i<μ

To play the game DI for (S(J{Θ}, 7')— Pri from 2.4(b), player II on the side plays

the U2 game for (5, 7) but for move β in DI, he uses moves (ζ : IJ7</3 CT < C <

£0) in D2, he also chooses Cα's during the play. If player I chooses a Xβ e 5, r/3,

in DI, player II copies Γs move to 0)2 and plays his answer from there and let

C/3 = U7</9 Cγ + l If player I plays in the β-th move Xβ = cf(Πj<μ Xptj/Dβ),

Tβ, player II simulates μ moves of 0)2 :

Then player II finds Oίi such that {j : a? < fai(j)} € D and plays this α; and

let ζβ = U7</3 C7 + M-

It is clear that α^ is as required, and as μ^' < 7, D2 does not end before DI.

Π3.2

3.3 Claim. Suppose MA<K holds (i.e., for every P satisfying the NI-C.C. and

dense Ii C P (for i < α < K) there is a directed G C Q such that Λ;<α ̂ n^ /

0). Tften the following forcing notions are equivalent to forcing notions having

the (RUCar,*)-Pri.

(1) Mathias forcing; {(w, A) : w C α; finite, A C α; infinite} with the order

(wι,Aι) < (W2, AZ) iff lϋi C iy2 C lϋi U AI, ^2 C AI.

(2) The forcing from VI §6(=[Sh:207], Sect. 2).

(1) Let P' be the set of (w, A, B) satisfying: w C ω finite, B C ω infinite,

C A C α;, with the order

(n i, A!, fix) < (ιι;2, A2, B2) iff (u>ι, AI) < K, A2)

and B2 C* B^i.e. , J52 \ J3ι finite)
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(wι, A\, BI) <0 (w2, A2, B2) iff: wι = w2

B2 ^ B\.

Let us check Definition 2.1: (i) - (iv) easy.

Note that {(w, A, A) : (w, A, A) G P'} is dense in P', and isomorphic to

P.

Proof of (υ). Let μ > H0 be a regular cardinal, τ a P'-name, Ihp "r < μ. Let

p = (w, A, B) be given. Choose by induction on i < ω,m, Bi such that

(a) B0=B(CA)

(b) Hi — Min(β-j)

(c) J5ί+ι C Bi \ {nj

(d) for every u C {0,1,2,..., nj (not just C {n0,nι,... ,nj!) one of the

following occurs:

for some α^u < μ, we have (u,Bi+\,Bi+\) Ihp "r = ai?n"

or for no infinite C C Bi+ι and α < μ do we have (u,C,C) Ih "r = α"

There is no problem to do this, now q = (w, A, {rii : i < ω}) satisfies:

(e) p < q G P' and even p <0 q.

(f) q Ihp/ "r G {α;,u : i < α; and u C {0,1, 2 , . . . , nj}".

[Why? If not, then for some α G μ \ {α?ΐ,u '• i < ω and u C {0,1,..., τii}}

and r we have q < r e P' and r Ihp/ "r = α". Let r = (vjA7,^') so

B' C ^l7, β7 is infinite, β7 C* {n^ : i < ω} and A! C A. As v is finite

and by the definition of C* there is i < ω such that: υ C {0, ...,71*} and

B' \ {0,... ,ni} C {nj : j < ω}. So without loss of generality Mm(B') > n^,

and A' = B'\ so by the choice of Bi+\, (υ,Bi+ι,Bi+ι) Ih "r = α^,n", but

a/ ^ Qj ΐ)υ so (v,Bi+ι,Bi+ι), r = (v,A',B') are incompatible, contradiction]. So

q is as required.

Proof of (vi). Suppose pi(i < 7) is <0-increasing so Pi — (w,A,Bi) and

Bi C ^4, and J?ΐ is C* decreasing. It is well known that for 7 < AC, MA<K

implies the existence of an infinite B C ω such that (Vi < j)B C* Bi. Now

(w, A, B) G P' and i < Ύ =ϊ Pi <o (w, A, B), as required.

(2) Left to the reader (similar to the proof of (1)). Π3.3
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3.4 Discussion - Proofs. Let K, < λ, λ regular. Each of the following gives

rise naturally to a forcing axiom, stronger as λ is demanded to be a larger

cardinal (so if λ is supercompact we get parallels to PFA).

If φ is a property of forcing notions, let Ax<a(φ, λ, μ) be the following

statement: For every forcing notion P of size < μ if P satisfies φ and ϊ = (Xi :

i < i* < λ) is a sequence of dense subsets of P and ((KJ,§J) : j < j* < α) a

sequence of pairs, with Sj a P-name of stationary subset of KJ, where KJ is a

regular uncountable cardinal < λ then there is a Z-generic subset G of P such

that (as say i < i* => Ii Π G ^ 0 and) j < j* =Φ §j[G] a stationary subset of

*j

Case /. We assume K is successor cardinal and use Q of length λ, a K — Sp2-

iteration, lhp. "|Q;| < λ", each φ having (S*,«)- PrJ" and £ € {0,2} and

(usually) 0{μ:μ<λ is strongly inaccessible}-

Now PΛ — K — Sp2-Lim^Q have the (S^, K) — Pr+ by 2.15, so all regular

μ < K remain regular and every λ' E («, λ) is collapsed (in the general case i.e.

if Q "generic" enough). But λ is not collapsed if it is strongly inaccessible (by

2.17(2)). If 2 E S£, no bounded subset of K is added. We can get Ax<κ((S^ «)-

Pri, λ ,λ + j . Note: if λ is in V, supercompact with Laver diamond, we get

Ax((S£,<«)-Prι,λ,oo) (see VII).

So (even if we assume E* = 0) the theorems of §2 are strong enough to deal

with such iterations get forcing axioms etc. Of course you may then look for

forcing notions which can serve as iterant, of course ^-complete and ^-complete

θ~*~-c.c. forcing notions can serve. For some more see §4, §5 below.

Case II. Like Case I (but K, may be limit > HO) with (ft + 1) — Sp2-iteration each

Qi-having (S^κ + 1) — Prf and every λ' G («, λ) is collapsed. Here we can

get Ax<\ ((S£, K + 1) — PrJ, λ, λ+ J . Here λ is not collapsed (even Pχ satisfies

the λ-c.c.) if it is strongly inaccessible Mahlo (by 2.17(4)). If λ is supercompact

with Laver diamond we get Ax<\ ((S£, K + 1) — Pr, λ, oo J .

The situation is similar to that of case 1: this time better using a non

empty E* e.g. the one of 3.1(2).
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Case lll\ Like case 1 but Qi satisfies (5^., AC^) - Pr/~, Ki+ι >density(Pi) and AC^

strictly increasing with i. So in VFχ, X is still inaccessible (though not strongly

inaccessible) .

Here we better do a variant of §2 (i.e. 2.6A -2.21) without AC. Let E* be the class

of strongly inaccessible > NO- In Definition 2.7 there, the restriction of \p\ for

p G AC - Sp2 - Lim<2 is only: β G E* Π E(Q) =» for some 7 < /?, p\β G PΊ (this

change 2.7(D), the above statement replaces (A)(i)). For any Q and β < a

(= ig(Q) we define a partial order <o,0 on Pα: p <o,0 # iff pf/3 = q\β and

P <o #• Now 2.10 is changed to

(*) if i G (/3,α) ^Il-Pi (Qi, <Q^) is ^-complete then (Pα, <o,0) is ^-complete.

In Claim 2.12 we can omit clause 2.12(2)(d).

In Claim 2.12 becomes

(*) for (our kind of) <3, and β < a — ^g(Q), and regular θ assume i G

β(a) =φlhpi "Qi satisfies ({^};^ι) - Pr^, and Pβ satisfies the 0-c.c. and

p lhpα "r < β" then for some q and C? we have p <o,0 q £ P&, and

9i^"r<C<0"

Ca.se VI: Like case I but AC is an uncountable inaccessible (possibly weakly)

cardinal.

The problem with applying §2 is rooted in assumption (d) in 2.12(2),

which is needed for the iteration as presented. We should change 2.7 as follows

in 2.7(D) allow z* < AC, but demand Ihg "{ζqi[G} : i < i*} has order type < AC".

Of course we should assume each Pi has at least ({AC}, KI) — Pr]1". However,

does this really add compared to Case II?

3.5 Conclusion. Suppose λ is strongly inaccessible, limit of measurables,

λ > AC, AC successor. Then for some λ-c.c. forcing P not adding bounded subsets

of AC, |P| = λ, and Ihp "2* = λ = AC+, and for every A C AC there is a countable

subset of λ not in

Proof. Use case I of 3.4. We use AC - Sp2-iteration (P^, Qi : i < λ), \Pi\ < λ. For

i even: let AC^ be the first measurable > |Pi|, (but necessarily < λ). Then Qi is
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Prikry forcing on «$ and Qi+ι is Levy collapse of «t to K. (Compare X 5.5.)

Π3.5

§4. On Sacks Forcing

We continue 3.3, 3.4. Assume for simplicity λ is strongly inaccessible, λ > K.

We want to show that we can find an K — Sp2-iteration which force some Ax[. . .].

A natural way is to use a preliminary forcing notion R.

A natural candidate is: R = {Q : Q G H(X),Q an K — Sp2-iteration of

forcing notions satisfying (5, tt) — PrJ" }. As an example, we will prove this for

Sacks forcing.

4.1 Lemma. Suppose

(i) R is an NI -complete forcing notion.

(ii) For r G R, Qr = (PI : ί < αr), PI is <£-increasing in i and if j < ar

has cofinality ω\, then every countable subset of α;, which belongs to

Vp* belongs to Vp^ for some i < j. We write Pr for P£r

(iii) If r1 < r2 then Qr* < Qr* (end extension), so Prι <$ Pr*

(iv) If r £ R and Q is a P^-name of a forcing notion, ί/ien for some

r1 > r, αrι > αr and P^+1 = Par * Q7 and Ihpn " if Q does satisfy

the c.c.c. then Q' = Q"

(v) If r^ for (ζ < δ) is increasing, δ <ω\, then for some r

** < r and αr = ^J αrc .
ζ<δ ζ<δ

Let P[Gβ] be \J{P[ : r G Gβ, i < αr}, so it is an P-name of a forcing notion.

Then Ihfl [!!~P[GR] "f°r anY ^i dense subsets of Sacks forcing, there is a directed

subset of Sacks forcing not disjoint to any of them"].

Remark. Remember Qsacks — {r : r C ω><2 is closed under initial segments

nonempty and (Vr? G τ)(3z/)(τ/ < z/ & v~ (0) G r & v (1) G r)} and TI < r2 if

τ C .
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R*P[QR}
Proof. Let for ξ < ω\, Iξ be R * P^βj-name of dense subset of QSacks for

ξ < ω\ (Quacks is Sacks forcing in the universe V). W.l.o.g. the Xξ are open.

We will find a c.c.c. subset Q' of Qs*^,[fβl such that Iζ Π Q' is dense in Q' for

each ξ < ω\. Then any generic subset of Q' intersects all Zξ's.

For a subset E of Sacks forcing let var(E') be {(n,τ) : r G E, n < ω}

ordered by (m, n) < (™2, τ2) iff ni < n2, τ2 C n and n Πnι^ 2 = r2 Π
nι^ 2.

(If D C var(Qsαcfcs) is sufficiently generic, then rjr> = U{τfn : (n, τ) G d} is

a condition in Qsacks)- We now define by induction on ζ < cji, r(ζ), and D^

such that (the order as the one on Q Sacks)'-

(a) r(ζ) G β is increasing, αr(£)-increasing continuous.

(b) £>£ is a Pr^+1)-name of a countable subset of Qsacks-

(c) If T G £>£, 77 G r then r^ = {ί̂  : 77 Λ z^ G r} belongs to Dζ. (We use

round parentheses to distinguish it from r^j, see clause (f)).

(d) I f r ι , r 2 G D c t h e n { ( } , (0) "η : η G n}, {(}, (1) A η : 77 G r2} and their

union belongs to Dζ.

(e) Let ξ < C, then for every TI G Dζ there is τ2 G Dζ such that TI < τ2

and for every r2 G Dζ there is TI G Dξ such that TI < τ2.

(f) If T G Dζ then for some n for every 77 G n2 Π T we have T^J = {i/ G

T : z/ < 77 or η < v} belongs to Iζ (i.e. is forced (Ihβ) to belong to it).

(g) Suppose C is limit, then P^J^ = ^ί(C) *^C? «C is [var Ue<C ^CJ"

(the α -th power, with finite support).

(h) the generic subset of Qζ gives a sequence of length ω of Sacks con-

ditions; closing the set of those conditions by (c) -f (d) + (f) we get

Dζ

We have to prove that Qζ satisfies the KI-C.C. in VR*Ptχr(U: (to get a

generic subset by (iv)). If £ < u i this follows by countability. Let ζ = ω\.

[ -in
var Uf<c^d satisfies the HI-C.C. where n < ω.

So let J be a R * P^9--name of a maximal antichain of var U<^ Dξ\ .

def Λ*Pr(c)

We can find a ξ < ζ, cf (ξ) = H0 such that J| = {x : x G Va ,^ and every
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p G (R*Pr^(ζ})/(R*Pr^}) force x to be in J] is pre-dense in [var (J7<ξ LU *

(exists by (e) and assumption (i)). Check the rest.

Notice that we have used:

(a) ifY C Uξ<ξ0

 D& £o < C» Y £ Fp"^o) and y is a pre-dense subset

of Uξ<£0 ̂  (^ does no^ matter where but e.g., in Vp) then y is a

pre-dense subset of (Jξ<c -^ξ? because

(al) every r G £)ξ0 is included in a finite union of members of Y.

(a2) every r e \Jξ<ε<ζ Dε is included in some member of DξQ.

4.2 Remark. 1) This argument works for many other forcing notions, e.g.,

Laver forcing.

2) The var(Sacks) was introduced by author to show Sacks forcing may

not collapsed ^2 (see Baumgartner and Laver [BL]).

3) In later work Velickovic get results for > NI dense sets.

§5. Abraham's Second Problem -
Iterating Changing Cofinality to ω

5.1 Definition. Let 5 be a subset of {2} U {K, : K is regular cardinal}, D a

filter on a cardinal λ (or any other set). For any ordinal 7, we define a game

D*(5, 7, D). It lasts 7 moves. In the i-th move player I choose a cardinal ̂  G 5

and function FI from λ to ^ and then player II chooses α^ < «;$.

Player II wins a play if for every i < 7,

d((ftj, Fj, Oίj : j < i)) = {ζ < λ : for every j < i we have

[Ki = 2 => Fj(ζ) = otj] and [KJ > 2 => F^C) < α^]} ̂  0 mod D.

5.1 A Remark.

(1) This is similar to the game of X4.9, but there we also demand d({κj, F3 , QJ :

j < -y) ^ 0 mod D.

(2) If not said otherwise, we assume that λ \ {ζ} G D for ζ < λ.
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(3) If D is an ultrafilter on λ which is /^-complete for each K e S and \Ύ\~*~-

complete (if 7 a cardinal 7-complete) then player II has a winning strategy

(if 7 is a cardinal, 7-completeness suffices).

(4) Of course only F i \ d ( ( κ j , F j , a j : j < i)) matters so player I can choose

only it.

5.2 Definition. For F a winning strategy for player II in D*(5, 7, D), D a

filter on λ (we write λ = λ(£>)), we define Q = QF,\ = ζ?F, s,7,£>, with

Q = (\Q\, <,<o) as follows.

Part A. Let (T,H) G Q iff

(i) T is a nonempty set of finite sequences of ordinals < λ.

(ii) η G T => η\i G T, and for some (unique) n and 77 of length n we

have: T Π n^λ = {77^ : ί < n}, |Γ Π n+1λ| > 2; we call η the trunk of

Γ, 77 = tr(Γ) = tr(Γ, /f) (it is unique).

(iii) if is a function, T \ (tr(T) ̂  : ̂  < ίg(tr(Γ))} C Dom(#) C ω>λ.

(iv) for each η G Dom(if), #(77) is a proper initial segment of a play

of the game ό)*(5, 7,-D) in which player II use his strategy F so

H(η) = (λfW, Ff (η\ a?^ : i < i*W) and <^> < 7.

(v) if tr(Γ) < η G Dom(#) Π Γ we have {( < λ : r / Λ (ζ) G Γ} = d(tf(r/))

(see Definition 5.1).

(vi) convention: if p = (T, H) we may write η G p for 77 G Γ.

Part 5. (Γi, #ι) < (T2, ^2) (where both belong to Q) iff Γ2 C TI and for each

η G T2, if tr(Γ2) < η then ^1(77) is an initial segment of #12(77).

Part C. (Ti, #ι) <0 (Γ2,ίf2) (where both belong to Q) if (Ti, fίi) < (Γ2, ff2)

and tr(Γι) = tr(Γ2).

5.2A Remark . (1) So if (Γ, H) G QF,λ and F,λ,£>,7, 5 are as above,

η G T, 77 > tr(T) ί/ien d(H(η)) ^ 0 mod -D. (So this forcing is similar to

Namba forcing, but here we have better control of the sets Sucτ(η)>)

(2) We can of course generalize this to cases where we have different strategies

(and even different λ's and Z}'s) in different nodes.



724 XIV. Iterated Forcing with Uncountable Support

(3) If (Γ,fl» G QF,Λ for £ = 1,2 #ιΓT = #2ίT then (T,#ι), (T,#2) are

equivalent (see Chapter II).

5.2B Notation . For p = (T, H) G QF> λ and η G Γ let pM = (T^, if), where

TW = {i/ G Γ : v < η or 77 < v}. Clearly p < pM G QF, λ

5.3 Lemma. If Q = QF,s , -γ,D and £) is a uniform filter on \(D) then

Proo/. Let r?Q - LKtr(p) : P £ QQ}

Clearly if (T£, HI) G GQ for ί = 1,2 then for some (Γ, ff) G GQ,

(ϊi, #*) < (T, £Γ); hence tr(ϊi) < tr(Γ), hence tr(Γι, HI) U tr(T2,ff2) is in
ω>X. Hence ηq is a sequence of ordinals of length < ω.

For every p = (T, ff) G Q, and n, there is η G Γ Π nλ, hence p < pW G Q

(see 5.2B), and p[r7' Ih "tg(ηq) > n" because η < tr(pW) and for every q G Q

we have q \\-Q "tr(ςr) < ?]Q". So Ihg "T^Q has length > n" hence Ihg "T/Q has

length ω".

Obviously, lhg

 αRang(r/Q) C λ". Why !hQ "sup Rang(ryQ) = λ"? Because

for every (T, H) G Q and a < λ, letting η d= tr(Γ), clearly d(H(η)) ^ 0 mod D

(see Definition 5.2) but D is uniform, hence there is β G d(H(η)), β > α, so

r/ Λ (/3) G T, and (T, ff) < (T, H)hΛ Wl G Q and (Γ, H)b" Wl lhQ

 uη" (β) <

ηQ

n hence (T, H)h " (/3)] Ih "supRang(r7Q) > /?", as α < β we finish. D5.3

5.4 Lemma. If λ, 5, 7, D are as in Definition 5.1, N0 ^ 5, F a winning strategy

of player II in D*(5,7,D) and cf(7) > NO, Λen QF,A satisfies (5,cf(7)) - Prf

(see Definition 2.1(2)). [So if 2 G 5, then forcing by QF,X add no bounded

subsets of 7] .

Proof. In Definition 2.1, parts (i), (ii), (iii), (iv) and part (vi) are clear. So let

us check part (v). Let K G 5, τ be a Q-name, Ihg "r G K" and p = (Γ, H) G Q.

We define by induction on n, pn = (Tn, #n) and (α^ : η G Tn Π
 nλ) such that:
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(a) PQ = p, Pn <0 Pn+l, Tn Π U^\ = Tn+1 Π
 n^λ

(β) if ry G Γn Π nλ, and there are q G Q and α < /ς satisfying

(*) If pi?1 <o 4 € Q, α < ft and <? It- "if « - 2, r = α, if « > N0, r < α"

^j.!, α^ satisfy this.

Let pω be the limit of (pn : n < ω), i. e., pω = (Tω, ffω) where Γ^ d=

Γln<u, Tn and #wfa) is the limit of the sequences Hn(η) (for ηeTω\ (tr(T) |̂  :

ί < ίg(trT)}). It is well denned as cf(7) > N0 and pn <0 pω G Q. We now

prove two facts:

5.4A Fact . If p = (Γ, H) e Q and / : T Π n+1λ -» « and K € 5, ίften there

is p' = (T', H') G Q and (/^ : η <E nλ Π Γ) with /^ < «, such that:

(a) p <o P7

(b) r n n n ^λ = τ / n n ^λ

(c) for every η G T' Π nλ we have: « = 2 and /fSucT'fa) is constantly = βη

or K > NO and Rang(/fSucτ/(ry)) C ̂ .

Note that we may allow / to be a partial function; now if « — 2 then / f Suc^' (η)

is defined on all or undefined on all. If K > NO, /ίSuc^/(r7) may be a partial

function. Similarly in 5.4B.

Proof. For each η G T Π nλ we have: H(η) is a proper initial segment of a play

of the game D*(5, 7, £>), and it lasts iH^ moves. Player I could choose in his

iH(^-i}\ move the cardinal K, and the function fη : X — > ft,

Λ(0 = /ft ' (0) (which is < K) if T? ~ (C) € T

/η(ζ) =0 if otherwise.

So, for some βη, H(η) Λ (α, fη, βη) is also a proper initial segment of a play of

D*(5, 7, I>) in which player II uses the strategy F. So there is p' = (T', H')

such that H'\(T' \ nλ) - H\(T' \ nλ) and ff7(τy) - H(η)*((κ, fη, βη)) for

η G TΠ nλ. (If is partial for /c = 2 we should do this twice: for definability and

for value.)
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We can easily show

5.4B Fact . If p = (Γ, H) G Q, m < ω, and ft G 5 and / : T — > «, ί/ien for some

pi = (Ti, jffi) G Q, p <o Pi, and for every k < m we have [« = 2 & /f(Γι Π f c λ)

is constant] or [« > NI & f\(Tι Γ\kλ) is bounded below «].

Proof. W.l.o.g. m > £g(trp). We define by downward induction on n G

[£g(trT),rn] the condition rn, p <o rn+1 <o rn G Q, rn satisfying the con-

clusion of 5.4B for p^ for every η G p of length n. For n = m this is triv-

ial. For n < ra, use Fact 5.4A m — n times, for fc G (n, m] for the function

yn+l . Trn+l n n+lλ _, κ defined by: /^(η) is 7 if

(Vι/)[ι/ G Γr-+1 Π fcλ -> (« - 2 & /(*/) =7) V (K > NO & /(ι>) < 7)];

now r^g^trp^ is as required]. Πδ.4B

Continuation of the proof of 5.4- By repeated application of 5.4B we can define

by induction on n, qn G Q such that qβ = pω (see before 5.4A) and qn <o ςn+ι

and /?£ for ry G T*n, ^g(ry) < n such that:

(a) /3^ = α^ if this is well-defined, β® =-l otherwise (on aη see (β) above).

(b) when K > H0: tg(η) < n & η* (ζ) G Γ^ =» /5-+1 > ̂  <c>

whenever the later is well defined.

(c) when κ = 2: ig(η) < n & rf (ζ) G Γ^^1 =Φ 0J+1 - /3^ <ζ> (so both

are defined or both not defined).

Lastly let qω G Q be such that qn <o qω for n < ω.

Now if At > HO (is regular), we claim

" <

Clearly p <Q qω £ Q and Un<u> /^<> < κ so *^s suffices Why does this hold? If

not, then for some q' and /?, qω <q' £ Q, g; Ihg "r = /?" and K > β > \Jn /3<>.

Let 77 = tr (<?'), so 77 G Γςw , and aη is well defined, and > β. But as 77 G Πn<u; TQn

and /?<> > ̂  = Qη, and we get a contradiction.
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If AC = 2, we note just that for some η € TQω, the number aη is well defined,

hence β^(η] is defined hence $• is defined for I e [tτ(qω),tg(η)}. Π5.4

Remark. We can rephrase much of this lemma as a partition theorem on trees

as in [RuSh:117].

5.5 Lemma . Suppose Q = (Pi, Qi : i < λ) is a K - Sp2-iteration, |P<| < λ

for i < λ,7 < ft, each Q$ has (5,7) — Pr+ and K regular and even successor,

S C {2} U {# : θ regular uncountable < K} and in V, .D is a normal ultrafilter

on λ (so λ is a measurable cardinal). Then !hpλ "player II wins £>*(£, 7, £>)".

Proof. Let ^4 = {μ < λ : (Vi < μ)[|Pi| < μ], μ strongly inaccessible Mahlo

cardinal > K}.

Let G\ C PX be generic over V and for α < λ let Ga = G Π Pα.

W.l.o.g. player I choose P\-names of functions and cardinals in S. Now

we work in V and describe player IΓs strategy there (see proof of XIII 1.9).

For each μ G A the forcing notion Pχ/Pμ has (S, 7) — Prj1"; hence, player II

has a winning strategy F(Pλ/Gμ) G V[G?μ] for the game from 2.1(l)(vi), so

F(Pλ/Gμ) is a Pμ-name, (F(Pχ/Gμ) : μ) a P\-name. Let us describe a winning

strategy for player II (for the game ό)*(5,7, .D)).

So in the i-th move player I chooses 0* G 5 and /i : λ —» .̂ Player II

chooses in his z-th move not only α^ < θi but also Ai, /», 7^, ((p^ : j <i) : μ E.

Ai) such that

(0) 7i is an ordinal < λ,

(1) j <i=>Ίj < Ίi

(2) A* € A 4i <Ξ y, ̂  C Π ,̂ Aj and ̂  - Πj<5 Λ

(3) l h α Λ : λ - , ^ , ^ G 5 "

(4) for μ e Ai, ($ : j < 2i + 2) is a Pμ-name of an initial segment of a play

as in (vi) of 2.1(1) for the forcing Pλ/Gμ, p£.+1 lhPλ/Gμ "/,-(μ) = g^ if

θj = 2, ̂ (μ) < α^ if ̂  > N0

υ, g£ a Pμ-name.
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In the i-ih stage clearly A® = Γ\j<i 4? n A is in D, and let 7? —

so 7Z° < λ and choose 7^ G (7?, λ) such that <9; is a Py-name. For every

μ G A®, μ > 7^, we can define Pμ-names pί^, pi^+u αi* sucn that:

(a) lhpμ "(p^ : j < 2i + 2) is an initial segment of a part as in (v) of 1.1(1)

for Pχ/Pμ in which player II uses his winning strategy ~F(Pχ/Gμ).
α/*(μ) ^ αf if fl = 2, Λ(μ) < αf if & > H0".

Now as αf is a Pμ-name of an ordinal < « < μ, it is P^(μ)-name for

some β[μ] < μ (as Pμ satisfies the μ-c.c. see 2.17(2)). By the normality of the

ultrafilter D, on some A] C A®, β[μ] = βi for every μ G 'Uj. Let 7^ — 7^ -f ft.

Easily for each i < σ, lhpλ "{μ G ̂  : p^+i € (?λ} 7^ 0 mod £>", so we

finish.

Π5.5

5. 5 A Comment.

We can present it (and the proof of XIII 1.4) slightly differently.

In V let

W, - {(pμ :μeA):At D^ = (β : j < i),

lhpμ "(p^ : j < i) is a <0 -increasing sequence in P\/Pμ"}

and let

i

We define on W a relation < by:

(p^'1 :μ G A!> < (p^'2 : μ G A2) iff

AI 2 ^2 and μ G ^2 => Pμ'1 is an initial segment of pμ'2

Clearly < is a partial order on W, and for p = (pμ : j < i) let

B(p) = {μ € ̂  : {̂  : j < i} C

so clearly
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(a) lhPλ "p1 < p2 implies ^(p1) D 5(p2)"

(b) lhPλ "JB(p) φ 0 mod D"

(c) For every a < λ, p € W; and P\-names θ € S and / : λ — > θ there is q,

p < q G Wi+i and a P\ name r of an ordinal < θ such that:

(*) if q = (qμ : μ G A9), and μ G A9, then ς£+1 forces

(0 = 2 & /(μ) = r) V (0 > No & /(μ) < l)

Now we can solve the second Abraham problem. (See also X 5.5.)

5.6 Conclusion . Suppose λ is strongly inaccessible {μ < λ : μ measurable } is

stationary, K = cf(κ) < λ a successor cardinal, K+ΠRUCar C S C {2}(J{Θ : θ <

K regular uncountable}. Then for some forcing notion P we have: |P| — λ, P

satisfies λ-c.c. and (5, «) - Prf and lhP "λ = |κ|+" (so lhPμ 2^1 = λ): and for

every A C λ, for some δ < λ, there is a countable set a C ί, which is not in

V[A Π ί]. We can also get suitable axiom (see 3.5).

Proof. Should be clear (see 3.4 Case I (and 5.4)). U5.6

5. 6 A Remark . 1) We can also prove (by the same forcing) the consistency

of "there is a normal filter on λ to which {δ < X : cf(δ) — H0} belongs which

is precipitous" if in addition there is a normal ultrafilter on λ concentrating on

measurables.

2) We can use (5, < K) — Pri— forcing notions.

5.7 Discussion. Can we weaken the assumption cf (7) > NO in 5.4 to cf (7) > NO

and/or allow K — H0? The answer is yes if {2, K} C 5.

As in 5.4A, 5.4B we can assume p = (T, H) satisfies

(*) for η G p, ^g(^) > tr(p) and there are q and α < K such that p^ <o q 6 Q

and g Ih "ft = 2 & r = a or AC > NO & r < α" then p\ η\ aη satisfies this.
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Let for η G Tp of length > ^g(tr(p)):

Pp(η) = {A C \ : for some initial segment y of the game continuing

Hp(η), we have d(y) C A}

(where d is from Definition 5.1).

Note that as 2 G S we have

(**) A C λ =Φ A G PP(T7) V (λ \ A) € Ppfa)

(* * *) if 4 6 Ppfa), ACBeX then £ e Pp(ry).

We define a function rkp : T* = {77 : tr(p) < ry € Γ} -> Ord U {00} by

defining by induction on the ordinal ζ when rkp(r/) > £, the definition is splited

to cases.

.4. ζ limit

Case 5. C - 1

> 1 iff a^ is not well defined (and η G T*)

C. C = ε + l>l

so ε > 0; let rkp(τy) > ζ iff: tr(p) <ηeTp and the set {/9 < λ : rkp(τ/ Λ (/3)) > ε}

belongs to Pp(ή).

So rk(ry) = 0 if a,, is well defined and rk(r?) - C > 0 if -^(rk(η) > ζ + 1), C

minimal, and rk(τ?) = oo if rk(r/) > C for every ζ>l. Now the proof is splited:

Subcase Cl. rkp(tr(p)) = cx>.

Clearly for η € T*, if ιkp(η) = oo then {β < X : rkp(rf {/?)) - 00} e Pp(r?).

Hence we can find q such that p <Q q £ Q such that:

tr(p) < η e Tq =Φ rkp(ry) = oo.

There is r such that q < r e Q and r forces a value to r, so αtr(r) is well

defined but tr(p) < tr(r) G Tr C Tq hence rkp(tr(r)) = oo hence atr(r)
 is not

well defined, contradiction.

Subcase C2. rkp(tr(p)) < oo.

So choose η G Tq, tr(p) < η e Tp such that α^ is not defined and, under those

restrictions, rkp(ry) is minimal.
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Let

A = {7 < λ : 77^(7) G p and aη~(Ί} is not defined}.

We can find q, pW <o q and d(Hq(η)} is included in A or disjoint to it.

In the second case we can easily get "aη well defined", contradiction. So

assume d(Hq(η)) C A, and neccessarily there is v G d(HQ(η)) such that

rkp(ι>) < rkp(^) by the definition of rank. We get easy contradiction.




