XIV. TIterated Forcing
with Uncountable Support

§0. Introduction

This chapter is [Sh:250], revised. Here we consider revised support for the not
necessarily countable case. In §1 we define and present the basic properties of
k-RS iterated. This includes the case kK = Ry and so it can serve as a substitute
to X §1. The main difference is that here we have to use names which sometimes
have no value as we cannot use rank as there.

Unlike Chapter X, we do not have a useful properness to generalize, so
naturally the generalizations of completeness are in the center. In 2.1 we intro-
duce, and in 2.4 we show it does not matter much if we use the version with
games of length k = cfx or the version with a side order <g, the “pure” exten-
sion which is k-complete. Then we define iterations of such forcing notions and
prove the basic properties (2.5-2.8). This repeats §1, so against dullness this
time we waive the associativity law and simplify somewhat the definition of
the iteration. In the definition of the order except finitely many places (which
are names) the extensions are pure (i.e. <g) in the old places. The first use of
“pure” extensions is Prikry [Pr], and the first use of iterations with the dis-
tinction between old and new places (in normal support of course) is Gitik
[Gi] which uses Easton support iteration Q’s for high inaccessibles, each Q;
is ({2}, k:)-complete where for the important i’s k; = i; a subsequent proof

more similar to our case is [Sh:276, §1]. The application we have in mind is
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k=p"{0: R <8=cfd) <k} CSC{2,N}U{0:0=cf(d) <k},
and we shall iterate the forcing notion Q; which has (S, < k)-Pr, (so necessar-
ily the cardinals § < k remain cardinals), the iteration being x-Spa-iteration,
and characteristically the length of iteration is some quite large cardinal A,
i < XA = |P] < A, and we collapse all cardinals > x, < X\ (so u, play the
role of Ng, ®; in Chapter X). So we need to know of such iterations of forcing
notions having (S, < k)-Pr, which is done in 2.9. We could also deal similarly
with iterations @ of length ), A strongly inaccessible [i < A = |P;| < A] and
S C k unbounded in A. In 2.18, 2.19 we look at the case essentially cofinalities
are preserved (i.e. no § = cf(6) > k becomes of cardinality < ).

In the third section we indicate what forcing axioms we can get (3.4), and
show how e.g. Mathias forcing fits in assuming MA., (in 3.3). We then give a
solution of the first Abraham problem (3.5).

In the fourth section we show how to fit Sacks forcing. The last section is
a real application- to the second Abraham problem. In it we consider a forcing
e.g. preserving 6 < k, making the cofinality of k™ to Ro, assuming only a weak

form of “on % there is a large ideal” in which there the ideal disappears.

§1. k-Revised Support Iteration

D, is the closed unbounded filter on k.
A work of Groszek and Jech (see [J86] deal with making the continuum large

(in a different way and effect, done about the same time independently).

1.1 Definition. Here « is an infinite cardinal, but when it is an infinite ordinal
which is not a cardinal we mean |k|* (this is intended just for the case & is
collapsed during the iteration). We define the following notions and those in
1.2 and prove 1.4 by simultaneous induction on «:

(A) Q = (P, Qi 1 i < ) is a k-RS interaction (RS stands for revised support)
(B) a Q-named ordinal
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(C) a Q-named atomic condition ¢, and we define g]¢,¢[{¢} for a Q-named
atomic condition ¢ and ordinal £ when { < «, £ < a respectively and
qll¢,€) when ¢ <€ <o

(D) the x-RS limit of @, Rlim,Q which satisfies P, < Rlim,Q for every i < a
and we define p[3 € Ps for p € Rlim,Q and 3 < o ( We may omit & if
clear from the context).

Let us define and prove

(A) We define “Q is a x-RS iteration”

a = 0: no condition.
o is limit: Q = (B;, Qi i < a) is a k-RS iteration iff for every § < a,QlB
is one.
a+1:Q is an k-RS iteration iff Q[ is one, Ps = Rlim,(Q[B), and Qp is
a Pg-name of a forcing notion.
(B) We define “€ is a @-named ordinal”. It means:
(1) & is a function, Rang(¢§) C Ord.
(2) for r € Dom(§), letting 8 = £(r), we have 8 < o, and 7 € Pg x Qp.
(see an identification later).

(3) for every 1,72 € Dom(§), if 71,72 are compatible, then {(r1) = {(r2).

[What do we mean by “ri,ry are compatible”? Let 7y € Pg, * le and
re € Ppg, x Qp,. If By = [a, there is no problem in defining compatibility.
Otherwise, without loss of generality 81 < 2. Then, as noted in 1.4, Pg, * Qg,

is essentially the same as Pp, 11 and Pg, 41 < Pp, < Pp, * Qp,, so we can test
compatibility in Pg, * Qp,].

1.1A Remark. For o a limit ordinal, Dom(§) is essentially a subset of
Up<q Pss 50 § is a “partial name” for an ordinal. Note that Dom(£) is not nec-
essarily pre-dense (there is no point in requiring it to be pre-dense in J 5<a P
since this will not imply pre-density in P, = Rlim,Q, which is the forcing we

are interested in).
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Continuation of 1.1.
(C) Wesay “qis a Q-named atomic condition” if:
(1) g is a pair of functions ((g,cndq) with common domain D = D,.
(2) {q is a Q-named ordinal.
3) if rq,mp € Dg and r1,79 are compatible (see above) then cndg(rl) =
cndg(r2).

(4) if r € Dy, letting 8 = (4(r), we have:
rIB - “endg(r) € Qp”

(note: we can add: it is forced (I-p,) that Qg = “r(8) < cndy(r)” with little
subsequent change). We define ql€ as (gg [Dl,cndg [D1) where D; = {p € Dg :
Cq(p) < &} We define g[{¢} as ((q[ D2, cndy[D2) where Dy = {p € Dy : (4(p) =
¢}, and g¢[[¢, §) similarly.

1.1B Remark. The definition would become simpler if we demand r € Py
instead of r € Pg * Qg in (B2). (e.g. we could then drop the clause “r(8) <
cndy(r)” in (4)). However, we need this more complicated definition if we want

associativity i.e. 1.5(3):

Consider a k — RS iteration Q = (P,,Qas : @ < a*). Then a condition
in P, could be of the form p = ({(r,8)},{(r,q)}) with r € Ps, ¢ € Qp.
Now assume that (a(§) : £ < §*) is an increasing continuous sequence with
a(0) = 0,a(¢*) = o*, and a(§) < B8 < B+ 1 < a(€ + 1). Then in the natural

“jsomorphic copy” of p in P!. = Rlim,Q’, where
Ql = (Pa(f)aPa(§+1)/Pa(§) €< §*> = < 5/’9,5 €< ‘5*)

B would become ¢ (as g correspond to an element of Q). However, r may not
be in P; but can only be found in P{* Q. However this is mainly an aesthetic
problem— saving here costs us some cumbersomeness in application, but no real
damage: when we prove statements on iteration Q we cannot restrict ourselves

to length a =0,1,2, or a = cf(a) etc. For diversity, we do use this way in §2.
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(D) We define Rlim,Q as follows:
if = 0 : Rlim,Q is a trivial forcing with just two compatible conditions

i.e. Rlim,.Q = {0, {(9,0)}} say with 0 < {(0,0)}

if @ > 0: we call ¢ an atomic condition of Rlim,Q, if it is a Q-named

atomic condition.

The set of conditions in Rlim,Q is

{p : p a set of A atomic conditions for some A < &;
and for every 8 < a,p|3 def {q!B: q € p} € Pg,
and p|B Ikp, “theset {¢[{B} : ¢ € p} has an upper bound in Qs"}

More precisely, the last condition in the previous paragraph means

plBl-p, “Ig0 € QpVg € pVr € Dy :
if (4(r) = B and r[B € Gp, then

0 kg, [if 7(B) € Gguthen endy(r) € Go,)”

(where Gp is the canonical name for the generic set for P).

Remember that we have defined p[8 = {q[B : ¢ € p} and p|[B,7) for
B < v < a, similarly.

The order: po < p1 iff po C p1 or just po C {g[B: g € p1 and B < a}.

The identification. Clearly for 8 < a, we have Pg C P,. We can identify
Pg x Qp with a subset of P, when S+1 = a: (p,q) is identified with p U {[¢]}
where [g] = (¢, cnd), Dom(¢) = {0}(0 the empty condition of Ps),¢(#) = 8 and
cnd(0) = q.

It is ;asy to check the demands, e.g. under this identification Pg * Qp is a

dense subset of Pgy;.
Now we have to show Pg <¢ Rlim.Q (for 8 < a). Note that any Q|3-named

ordinal (or condition) is a @-named ordinal (or condition), and see Claim 1.4(1)

below.
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1.1C Remark. Note that for the sake of 1.5(3) we allow  to be not a cardinal

and then we really use |k|*.

1.1D Remark. We can obviously define Q-named sets; but for condition (and
ordinals for them) we want to avoid the vicious circle of using names which are

interpreted only after forcing with them below.

1.2 Definition.
(1) Suppose Q is a k-RS iteration, ¢ is a @Q-named ordinal, a = £g(Q),

G € Gen(Q) (see part (2) of the Definition below). We define ¢[G] by:
() ¢Gl=vif (v <« def £g(Q) and) for some p € Dom(¢) N G+1 which
is in Py x @ we have ((p) = v.
(i) otherwise (i.e., G N Dom(¢) = 0) ¢[G] is not defined.
(1A) For a Q-named condition g, we defined ¢[G] similarly.

(2) We denote the set of G C |J, ., Pi+1 such that G N Piy; is generic over V
for each i < a by Gen(Q). We let G; = GN P;.

(3) For ¢ a Q-named ordinal and ¢ € {J,., P; let ¢ Ik “¢ = & if for every
G € Gen(Q) we have: ¢ € G = ([G] = ¢, ie. if ¢ IF “¢[G] is defined and
equal to £”. Similarly for p kg “ﬁ; =" and for p IFg “;1 €@,

<o

1.3 Remark. 1) From where is G taken in (2), (3)? E.g., V is a countable

model of set theory, G taken from the “true” universe.

2) If p,p’ € Py,p C p' and for all (§,cnd) € p' \ p there is a § < a such that
plIB b “¢[G] undefined”, then p and p’ are essentially equivalent, i.e. for all
g 2 p we have: ¢ and p’ are compatible; or equivalently, p I+ “p’ € G”.

Now we point out some properties of k-RS iteration.

1.4 Claim. Let Q = (P;, Q; i < a) be a k-RS iteration, P, = Rlim,Q.
(1) f 8 < o then: Ps C Py andp € Pg = p|B =p & P, F p[B < p; for
p1,p2 € Pg we have [Pg F p1 < po iff Py, F p1 < p3]; and Ps < P,.
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Moreover, if ¢ € Pg,p € P,, then ¢,p are compatible in P, iff ¢,p|8 are
compatible in Ppg; if p[8 < ¢, a least upper bound of ¢ € Ps, p € P, is
qUp[[B,a). Also for B; < B2 < a and p € Py, then p[f1 = (p!B2)[51.

(2) If ¢ is a Q-named ordinal and G,G’ € Gen(Q) and G N Pey1 = G' N Peyy
and ¢[G] = € then ([G'] = £; hence we write ([G N P¢y1] = £.

(3) If B,v are @-named ordinals, then Max {B8,7} (for a generic G € Gen(Q),
this name is defined if both are defined and its value is the maximum)
is a Q-named ordinal. Also Min{g,v} (defined if at least one of them is
defined, if only one is defined the value is its value, if both are defined the
value is the minimum).

(4) If @ = Bo + 1, in Definition 1.1(D), in defining the set of elements of P,,
in the demand “fF < a = p[f € Pg”, we can restrict ourselves to § = [.

(5) The following set is dense in P, : {p € P,; for every 8 < a, if 1,72 € p,
then Ikp, “if 71 [{B} # 0,72]{B} # 0 then they are equal” } where Y C P,
is dense iff for every p € P there is q, p < q and q is equivalent to some
¢ €Y (ie. qlF “¢ € G" and ¢’ IF “qg € G”) (can even we IFg55).

(6) |Pal < (ITicq 2P1)<" for limit o (where |P| is the number of elements of
P up to equivalence). Also if 8 < a = density(P,) < A=cf(A) and a < A
(or just a < At) then density(P,) < 2*.

(7) If IFp, “]Qi| <A&Q; CV (and A > 2), then (essentially) |Pit+1] <
MNPl (Why “essentially”? We have to identify P;-names of members of Q;
which IFp, “they are equal”.) We can replace |P;| by density(F;) and get
density(P;41) < density(P;) + A+ RNo. Instead of “Q; C V” it suffices that:
A<t = X and: Q (i.e. set of members) is included in the closure of V" under
taking subsets of power < p.

(8) Suppose @ is an -RS iteration, ¢(z,y) is a formula (possibly with param-
eters from V') such that:

(a) for every G € Gen(Q) there is at most one x such that (V[G],V,G) |
“p(z,G)”, this z is called z[G] if there is such z, and z[G] is not

defined otherwise.
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(b) if G €Gen(Q), z[G] defined then it is an ordinal < £g(Q), call it
B, moreover for some p € Pgy1, such that if 8 +1 = £g(Q) then
p € Pg*x Qp, we have:
€ G' € Gen(Q) = 3lG'] = 6.
Then there is a Q-named ordinal ¢ such that: for every G € Gen(Q),
z[G] = ¢[G] (i.e. they are both defined with the same value, or they are
both undefined).
(9) Suppose Q, ¢(z,y), z[G]( for G € Gen(Q)) are as in (8) except that clause
(b) is replaced by:
(b)’ if G €Gen(Q) and z[G] is defined, then it has the form (¢,p),¢ <
g(Q),p € Q¢[G¢] and for some g we have: ¢ € G N P¢y1, and
[ +1=1¢g(Q) = q € GN P] (and if we make the addition in 1.1(C)
clause (4) then Q¢[G N P¢] E “ql{¢} < p”) and [g € G’ € Gen(Q) =
z[G] = z[G]].
Then there is a Q-named condition q such that:

for every G € Gen(Q), z[G] = ({4[G], q[G]) (so both are defined and equal
or both are not defined).

Proof: By induction on a.
1.4A Remark. The inverse of 1.4(8) and of 1.4(9) hold, of course.

1.5 Lemma. The Iteration Lemma
(1) Suppose F is a function, then for every ordinal a there is one and only one
-RS iteration Q = (P;, Qi< al) such that:
(a) for every i,Q; = F(Qli),
(b) of <a,
(c) either af = o or F(Q) is not an (Rlim.Q)-name of a forcing notion.
(2) Suppose Q is a k-RS-iteration, a = £g(Q), 8 < a, G C Pj is generic over
V. Then in V[Gg],Q/Gs = (P;/Gp,Q: : B < i < k) is a k-RS-iteration
and Rlim,Q = Ps * (Rlim,Q/Gp) (essentially).
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(3) The Association Law: If e = a(€) (€ < £€*) is increasing and continuous,
ap = 0;Q = (P;,Q; : i < *) is a k-RS-iteration, P,- = Rlim,Q and
ag» = o and & is a successor cardinal (for k inaccessible we need to as-
sume more); then so are (Pae)s Pate+1)/ Page) : € < €*) and (Pi/Pa(g),Qi :
a(§) < i < a(f +1)) (with £-RS-Limits P,,. and Py(e41)/Pa(e) Tespec-

tively) and vice versa.

1.5A Remark. In (3) we can use ag’s which are names.

Proof: (1) Easy.

(2) Pedantically, we should formalize the assertion as follows:

(*) There are function Fy, Fi(= definable classes) such that for every x-RS-
iteration Q with £g(Q) = a, and 8 < o, Fy(Q, B) is a Ps-name QT such that:

(a) Ikp, “Q' is a K-RS-iteration of length o — 8.

(b) Ps * (RlimKQT) is equivalent to P, = Rlim.Q, by Fi(Q,5) (ie.,
F1(G,B) is an isomorphism between the corresponding completions
to Boolean algebras)

()if 8 < v < a then Ip, “Fo(QIv,8) = Fo(@,B)(y — B)* and
F1(Q, B) extends Fy(Qlv,3) and Fi(Qlv,B) transfers the P,-name
Q- to a Pg-name of (R]im,c(C:)T I(y—pf))-name of QIY_ 3 (where Q_Ty_ 5=
Rlim, (@Y, 1 <v—B)).

The proof is induction on «, and there are no special problems.

(3) Again, pedantically the formulation is: There are functions F3, Fy such

that
(*) For Q-iteration, £g(Q) = ag-,a = (a¢ : £ < £*) increasing continuous,
F3(Q, @) is a k-RS-iteration Q' of length - such that

(a) F4(Q,a) is an equivalence of the forcing notions Rlim.Q, Rlim,Q".

(b) F3(Qlag,al(€ +1)) = F3(Q,&)1¢

(c) QL is the image by Fi(Qlag,@l(€ + 1)) of the Pa, = Rlim,(Qlox)-
name FO(Q[ag_,_l,ag).

The proof is tedious but straightforward. Oy s
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1.6 Claim. Suppose we add in Definition 1.1(B) also:

1.1(B)(4) if « is inaccessible > &, and for some 3 < « for every v satisfying
B < v < a we have I-p, “|Py/Pg| < a“ then (38 < a)[Dom(¢) C Pg].

Then nothing changes in the above, and if A is an inaccessible cardinal > &
and |P;| < ) for every i < A and Q = (P;, Qi 11 < A) is an RSy-iteration, then

(1) every Q-named ordinal is in fact a (Q[i)-named ordinal for some i < X,

(2) like (1) for @-named conditions.

(3) Pr=U;cy P

(4) if X is a Mahlo cardinal then P satisfies the A-c.c. (in a strong way).

1.6A Remark. As in XI §1, actually if “6 = cf(f) > &” is preserved by every
Py for a < o*, then: a < a* &cf(a) = 0 implies (g, Pp is dense in P,. In
this case, if o* is strongly inaccessible > 6 and [a < a* = density(Pa) < o*]

then P, satisfies the a*-c.c.

§2. Pseudo-Completeness

We think here of replacing R; by, say, ™. So we want to deal with forcing
notions not collapsing any cardinal < &%, but possibly collapsing x**, and
possibly adding reals and changing the cofinality of k** to say Ry. So on the
one hand we want to have support < &, and even a k*-RS; and on the other
hand some amount of pseudo completeness (expressed in Definition 2.1 below).
Further consideration lead to finite pure.

We deal with forcing notions @ satisfying:

2.1 Definition. Let v be an ordinal, S C {2} U{X: X a regular cardinal }.
1) Now Q satisfies (S,~)-Pr; if:
(1) @ = (]QI, <, <o) (here |Q)| is the set of elements of Q)
(ii) as a forcing notion, @ is (|Q|, <), with a least element g
(iii) < is a partial order (of |Q|).
(iv) [P<oq=p<q
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(v) pure decidability: for every cardinal § € S and Q-name 7, such that
IFq “7 € 6” and p € Q for some q € Q and 8 € § we have: p <y q and
qlkg “if 0 =2 then 7 = B and if § > Ry then 7 < 87

(vi) for each p € Q in the following game player I has a winning strategy:
for © < v player I chooses py; € Q such that p <o p2; A A p;j <o p2
and then player II chooses p2i+1 € Q such that py; <g pjzjji

Player I loses if he has some time no legal move, which can occur in limit

stages only.

2) Q = (|Q|, <, <o) satisfies (S,7)-Pry, if (i)-(v) hold and (Q, <o) is -
complete (ie. if p, € Q fori < B8 < v,and i < j < B = p; <o pj
then for some p € Q we have: i < 8 = p; <¢ p).

3) A forcing notion (Q, <) satisfies (S,7)-Pr; (or (S,v)-Pr}), if there is a
relation <g such that (Q, <, <o) satisfies (5,7)-Pry (or (S,v)-Pr{)).

4) Q satisfies (S,7v) — Pr] or S — Pr{ if it satisfies (i) - (v) of part (1) (note:
the ordinal «y does not appear in conditions (i)-(v) of 2.1(1)).

5) If a member of S is an infinite ordinal § which is not a regular cardinal,
we mean cf(§) (occurs e.g. when @ € VF and S € V).

6) If Q = (|Q|, <, <o) then @ is defined as follows:

the set of elements is {u : u C @, and if u # () then for some ¢ € u,
(Vp € w)(Fr € u)(p < r & q <o 7) and there is r* € Q such that for
every such g, 7* is a <g-upper bound of {r € u: q <o r}},

the order u; < ug iff u3 = ug or for some gz € uy for every q; € uq,
Q1 < g2,

the pure order uy <g ug iff uy = us or for some g € uy witnessing
ug € Q for every q; € u; witnessing u; € Q we have (Vp € u;)(3r €
u)[p < r&qi <o r <o ¢o] (this is naturally used in 2.7; we usually

identify p € Q with {p} € Q).

2.2 Fact.
(1) If k < 1, v2 < k¥ then (S,71)-Pry is equivalent to (S, y2)-Pri.
(2) f k+1 < v < st and O, (which can be stated as, i.e. an equivalent

formulation is: there is a sequence (Co : @ < k¥),Cq C « closed, for
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limit o the set C, is unbounded in a and [a; € Cy = Cu, = Cy Ny,
and cf(a) < kK = |Cy| < k) and Q satisfies (S,7v)-Pr; then @ satisfies
(S, k1)-Pry.

(3) Assume Q satisfies (S,7)-Pr;. If A <+, and A € S then in V9 still ) is a
regular cardinal (or at least I-g “cf(\) = cfV(\)”). If 2 € S, then Q does
not add bounded subsets to 7.

(4) If Q satisfies (S, 7)-Pr1, A € S, X regular, and for every regular p, v <
p < XA =g “u is not regular” (e.g., [y, ) contains no regular cardinal)
then X is regular in V9.

(5) If Q satisfies (S, v)-Pry, ¥ > w + 1, then Q is S-semiproper.

(6) Similar assertions (to 1-5) holds for (S, 7)-Pr{ (but in (2) we do not need
O,) and (S, 7)-Prf implies (S,~)-Pr;.

(7) In 2.1(6), <9, S? are quasi orders of the set of elements of Q and for p,
q € @ we have

(i) QFp<ge QF {p} <{g},
(i) QFp <oq ¢ QF {p} <o {q}
(on incompleteness see inside 2.7(D)).

(8) Assume @ = (|Q|, <, <o) satisfies:

(*) p<qg<r&p<or=p<oq

then in Definition 2.1(6):
if ¢/, ¢" € u; witness u; € Q then there is ¢ € u; such that ¢’ <g
7&q¢" <ogq.
Also: if ¢’ € uy witness u; € Q and q' < q € uy then q witness u; € 0,
provided that

() p<qg<r&p<or=>q<or.

(9) In definition 2.1(6), if u1 # ug and go witness u; <g ug then u; <g g2 <o us

(or more formally u; <g {g2} <o u2) so {{p} : p € Q} C Q is dense.
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Proof: Straightforward. E.g. for (2), note that otp(Cs) < k for all § < k+.
Without loss of generality oo € Cs = « is even (so Caaq1 = 0). So in stages a,

player I can apply his strategy to the play (py,py+1: 7 € Ca)). PP

2.2A Remark. Concerning 2.2(2) note that Oy, always holds trivially (see
[Sh:351, §4]). The equivalence of this formulation of square to the standard one
is similar to the proof in [Sh:351, §4].

2.3 Definition. (S, < k)-Pry will mean (S,v) — Pr; holds for every v < .

2.4 Fact. The following three conditions on a forcing notion Q, a set S C

{2} U {A: X a regular cardinal } and regular x are equivalent:

(a) there is Q' = (Q', <, <o) such that (Q’, <), (Q, <) are equivalent forcing
notions and Q' satisfies (S, )-Pr;.

(b) for each p € Q, in the following game (which lasts x moves) player II has
a winning strategy:
in the ith move player I chooses A; € S and a @-name 7; of an ordinal
< A, then player II chooses an ordinal a; < A;. In the end player IT wins
if for every a < k there is p, € Q, p < p, such that for every i < a we
have p, IF “either \; =2 & 7, =a; 0or Ay > ap &1 < o

(c) like (a) but moreover (Q', <o) is k-complete (i.e. Q’ satisfies (S, &) — Pr{).

(d) like (a) but moreover (Q' <o) is s-directed complete, i.e.
if B C Q, |B| < k and for each finite B’ C B there is a <¢-upper bound
to B’, then B has a <g-least upper bound.

Proof. (d) = (¢) = (a): trivial.

(a) = (b): As Q, Q' are equivalent, there is a forcing notion P and f : Q@ — P,
f' : Q@ — P both preserving < and incompatibility and with dense ranges.
Choose ¢ € Q' which essentially is above p i.e. f'(q) IFp “f(p) € Gp” . We
describe a winning strategy (in the game from (b) of 2.4) for player II: he plays
on the side a play (for q) of the game from 2.1(vi) for Q" where he uses a

winning strategy (whose existence in guaranteed by (a)). In step i of the play
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(for 2.4(b)) he already has the initial segment (p; : j < 2i) of the simulated
play for 2.1(vi). If player I plays A;, 7; in the actual game, player II defines
p2i € Q' (for player I) in the simulated play by the winning strategy of player
I there and then he chooses p2;1,p2i <o p2i+1 € Q', which force for some a;:
T =0y if A =2, 7; <oy if A; > Vo (exists by 2.1(v)) (more formally, for some
r; € Q, we have f'(p2i+1) IFp “f(r;) € Gp” and r; forces 7, = o; & A\; =2 or
Ti < a; & A\; > Vo, alternatively we can interpret 7; as a Q'-name using f, f')
and then plays ; in the actual play. In the end for a < «, there is p}, € @ such
that f(p3,) IFp “f'(P2o) € Gp”, now p? exists and is as required.

(b) = (d): Fix a winning strategy St, for player II in the game from 2.4(b) for
each p € Q. We define Q' as follows

Ql = {(p7 <A‘H T4, 0 - 1< g)) ‘D € Q, and <)‘i7 Ti,0 ° 1< E)
is an initial segment of a play of the game
from 2.4(b) for p in which

player II uses his winning strategy St p}.

The order <y is:
(pa <)\iafi,ai 1< g)) SO (p/’ (A:, I;’ a{i i< €l>)

iff (both are in Q') and
p=p,6<¢, andfori<¢
)\i = )\Q,Ii = T',u a; = a;
and the order < on Q' is
p=(p NiTi, 11 <€) <p = (0, (N 15, o 11 <))

iff (both are in Q' and) p <o p’ or QEp <p',and p' kg “N\i =2 & 1; = a; or
Ai > Vo & 75 < ;” for every i < €.

The checking is easy. Note that
(c) the map p +— (p, <>) is a dense embedding of (Q, <) into (Q’, <).



§2. Pseudo Completeness 693

(B) hence Q'-names are essentially Q-names,

() (P, Moy Tir 0 18 <€) g “(Vi< [N =2—>Ti=0a) &N 2Ry — 7 <
)]’

(8) for (d) note that every <o-directed set is linearly ordered by <q and if its

cardinality is < k then it has a <p-lub. 0.4

2.4A Remark . So (S,k) — Pr; and (S, k) — Pr{ are “essentially” the same

(for k regular).

2.5 Definition.

(1) Assume P is a <o-increasing sequence of forcing notions.

(a) Let

Gen' (P) def {G : for some (set) forcing notion P* : /\ P, < P*
i<a
and G* C P* generic over V
and G=G*n | J R}
i<a
(b) For a set E of regular cardinals we say that P obeys E if for v € E

we have: P, = |J Pp and Pjg satisfies the y-c.c. for 8 < . We say
B<y
that P strongly obey E if in addition 8 <y € E = |Ps| < 7.

(c) Let E(P) = {y < £g(P) : vy is strongly inaccessible , uncountable and
B < v = P, satisfies the v-c.c.}, Es(P) = {y € E(P) : B < v =
|Psl <7}

2 UEQ=(P:i<a)orQ= (Pi,Qi 1 1 < a) where P; is <¢-increasing,

obeying E' (so here we ignore the @;’s) we define a Q-E-name 7 almost

as we define (J

Uica P

(x) 7 is a function, Dom(7) C ;.o P and for every directed G €
Gen"(Q), 7[G] is defined iff Dom(7) N G # 0 and then 7[G] € V[G]

[from where “every G..." is taken? e.g., V' is countable, G any set from

i<a Pi)-names, but we do not use mazimal antichains of

the true universe] and 7 is definable with parameters from VU{G} (so
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T is really a first-order formula with the variable G and parameters
from V) and (V8 € E N E(Q))(3y < B)[Dom(r) N P3 C P,).
Now IF5 has a natural meaning. If E is not mentioned we mean: any
fixed E N (£g(Q) + 1) = E(Q) understood from the context, normally just
E((P;:i< a)), below we fix E = E* .

(3) For Q-names Tq,...,Tn_1 We let {To,...,Tn_1} be the name for the set
that contains exactly those 7;[Q] that are defined. For p € Q (ie., p €
Ui<o Pi) we let p I “7 = z” if for every G such that p € G € Gen"(Q) we
have 7[G] = z. (But see 2.6(2).)

(4) A Q-E-named [j, §)-ordinal ¢ is a @-E-name ¢ such that if ¢[G] = ¢ then
J<€<PBand (Ip € GN Pya)p kg “¢ =€ (where a = 2g(Q)). If we

omit “[4, )" we mean [0,4g((Q)) = [0, a).

2.5A Remark. 1) We can restrict in the definition of Gen”(Q) to P* in some
class K, and get a K-variant of our notions.

2) Note: even if in 2.5(1) we ask Dom(r) to be a maximal antichain it will not
be meaningful as in the appropriate P;, we have A, ; P; < Ps but it will not

in general be a maximal antichain.

2.5B Remark. Note that we wrote Peng not P¢y1)na. Compare this to the
remark 1.1B. We will not have a general associativity law, but the definition
of Spy — Lim,Q will be slightly simplified. As said earlier we can interchange
decisions on this matter (this does not mean this is the same iteration, just that
it has the same relevant properties). Of course also Ch.X can be represented

with this iteration.

2.5C Remark. Note that a Q — (-named ordinal (is Q — E*-named ordinal
iff for every 8 € E* N E(Q) for some v < 3 we have kg “¢ ¢ [v,0)".
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2.6 Fact.

1)

®3)

For P = (P, : i < fgP), a < increasing sequence of forcing notions
and P-named [j, 8)-ordinal ¢and p € Ui<q P: there are &,q and ¢; such
that p < g € U;cpgp Pi and: either ¢ bp “nn € G, 1 € P, € < o
[pe Pe=q=q]and g lFp “¢ =& or glrp “Cis not defined” (and
even p IFp “C is not defined”).

For P as above, and P-named [j, 8)-ordinals ¢, £, also Min{¢, £}, Max{¢, £}
(naturally defined, so Max{(, £}(G] is defined iff a ¢[G], £[G] are defined,
and Min{(¢, £}(G] is defined iff ¢[G] is defined or {[G] is defined); both are
P-named [3, 8)-ordinals.

Similarly for Min{_§0, .. ,gn_l}, Max{£o, . . - y€n—1} for P — E-named or-
dinals.

For P as above, n < w and P-named ordinals §15--,én and p €
U'i<€g(l3) P; there are ( < a and ¢q € P; such that, first: p < g or at least
ql-p. “p € Pi/Gp, for some i < £g(P)” (actually i = min{i : p € P;})
and second: for some ¢/ € {l,...,n} we have q[( IFp “C = & =
Max{£1,...,6n}" or pIFp “Max{{1,...,€n} not defined”, in the second
case we can add ¢ IFp “€¢ not defined”. Similarly for Min.

Convention: If Q = (P,-,Qi : i < a), P; is <-increasing, we may write Q

instead of (P; : i < a).

2.6A Convention. E* is a class of strongly inaccessible cardinals > & fixed

for this section, not mentioned usually. So a P-named (e.g. ordinal) mean a

P-(ENE(P))-named (e.g. ordinal). Outside this section the default value is the

class of strongly inaccessible > k.

[The reader can simplify life using E* = (), he will lose only 2.7(4), hence case

IT of 3.4, so this is a reasonable choice.]

2.7 Definition and Claim. Let e € {1,2}. We define and prove by induction

on « the following simultaneously (all forcing notions satisfying 2.1 (i)- (iv)):
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(A)

(B)

(©

(E)

(F)

(G)
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Q= (P, Qi1 < @) is a kK — Sp,-iteration or really x — Sp, — E*-iteration
(the Q’s below will have this form).

A Q-named (that is Q-E*-named) atomic condition q (or atomic [j, 8)-
condition, 8 < a) and we define qlé, g[{g}, g[[&, ¢) for a Q-named atomic
condition ¢ and ordinal { < { < a (or @-named ordinals €, ¢ instead ¢, ().
If ¢ is a Q-named (or really Q-E*-named) atomic [j, 8)-condition, ¢ < a
then g1¢ is a (Q1€)-named atomic [j, Min {8, ¢})-condition and q[{¢} is
a Pe-name of a member of Q¢ or undefined (and then it may be assigned
the value (g, , the minimal member of Q).

The & — Sp,-limit of @, Sp, — Lim.Q, (really Sp, — E* — Lim,Q) denoted
by Py for Q as in clause (A), and p[¢ and Dom(p) for p € Sp, — Lim,.Q, &
an ordinal < o (or @-named ordinal £ etc.).

Sp, — Lim, @ satisfies (i)-(iv) of Definition 1.2 and it obeys E* N E(Q) (so

if £g(Q) € E* N E(Q) then Sp, — Lim,(Q) = |J Pp). Also if 8 < q,
B<lg(Q)
BEE*NE(Q)and (isa (Q1B)-named ordinal then it is a (Q[v)-named

ordinal for some vy < (; similarly for atomic condition.

If 3 < a = £g(Q) then Pg C Sp, — Lim,Q (as models with two partial
orders, even compatibility is preserved) and [p € Ps = p[8 = p] and
[Pk “p < g’ = Py “plB < qlf] and [Py F “p <o ¢" = P5 = “pIB <o
q!B”] and P, F “pIB < p”. Also ¢ € Pg,p € Sp, — Lim,Q are compatible
iff ¢, p|3 are compatible in Pg. In fact if ¢ € Pg, Pg |= “p|8 < ¢q” then
qU (pl[B, @) is a least upper bound of p,q, and if Pg = “p[f8 <o q¢” even
a <o-least upper bound of q. Hence Ps < (k — Sp, — Lim,(Q)) and so
B<v<(gQ)= Py <Py

The set of p € P, such that for every 8 < a we have IFp, “p[{3} is a

singleton or empty”, is a dense subset of P,. Also we can replace Qg by

Qp (see Definition 2.1(6)) and the set of “old” p € P, is a dense subset of
the new (but actually do not use this).
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Proof and Definition.

(A) Q =(P;, Qi: i< a)is ak— Sp,-iteration if Q!B is a k — Sp,-iteration for
B < a, and if @ = B + 1 then Py = Sp,-Lim,(Q[B) and Qp is a Pg-name
of a forcing notion as in Definition 2.1(1)(i)-(iv).

(B) Wesay gisa Q-named atomic [4, 8)-condition when : gisa Q@-name (i.e.
a Q — E*-name), and for some ¢ =¢qg 2 Q-named [j, 3)-ordinal (i.e. a
@ — E*-named [}, 3)-ordinal), we have IFg “C has a value iff g has, and if
they have then j < ¢ < Min{5, £g(Q)} and q € Q¢”. Now ¢[¢ will have
a value iff gg has a value < £ and then its value is .the value of g. Lastly,
q[{¢} will have a value iff ¢4 has the value £ and then its value is the value
of ¢ (similarly for £ and g[[(,€) and ¢[[¢, £)).

(C) Left to the reader.

(D) We are defining Sp, — Lim,Q (where Q = (P;, Qi 1 i < o) of course). It is
a triple P, = (|Pa|, <, <o) where

(a) |Pal is the set of p = {g; : i <14} satisfying:

(i) ©* < K,
(ii) if e =1, @ < p (see below)
(iii) each g; is a @-named atomic condition, and for every £ < a, IF P
“pI{&} def {@:1{€} : i < i*} if not empty, has a <¢-upper bound in Q¢
or at least a weak <g-upper bound i.e. for some nonempty u C * a;ld
T € Q¢ we have A;_;. VjEu ¢ [{&} < q;1{¢} and /\,-Eu qil{¢&} <o T and
View Njew 61} <o ¢;1{€} (ie. q1{E} € Q ).

(b) for p € Sp, — Lim,(Q) and ¢ < £g(Q) we let: ¢
ple = {rig:r e p)
pI{E} = {ri{e} :r e ph,
we define similarly p[[¢, &), p[{¢}, pI[¢;€)-

(c) P, = “p' <o p?” iff for every € < a we have (letting p¢ = {q¢ : i < if(x)}
for £=1,2):
{g21€ i < i%()} Ikp, “p*1{€} =0 = p'{£} = 0 and one of the following
holds:
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(1) {gf1{¢}: i < ®(x)} are equal for £ = 1,2,
(i) letting u!, u? be as in clause (a)(iii) above for ¢*[{¢}, ¢?[{¢} respec-
tively for some ja € u? for all j; < ¢!(x) if gq;l = ¢ and j; € u! then
Oc F gk, 1e} <o 2%, HEN
(note (i)V(ii) means @ F p*[{€} <o p?{€})
(iii) e =2 and p'[{¢} = (2)5
(d) Po | p' < p*iff
(i) for every ¢ < £g(Q) we have (letting p® = {¢f : i < i*(x)}, £=1,2):
{g21€ : i < i2(x)} IFp, “P*I{€} = 0 = p*I{¢} = 0 and one of the
following occurs: p! [{¢}, p?[{¢} are equal as subsets of Q¢, or for some
Ja < i%() for all j; < i'(x) we have Q¢ F “[g}, < ¢2,]” (i.e. the order
of Q).
(ii) for some n < w and @Q-named ordinals &1, .., 6n we have:
for each ¢ < £g(Q), p21¢ IFp, “if¢ & {£1,...,&n} then: p'1{¢} = O and
e=2or @ F“UrlGr] :r € p1,¢r = (Y <o {r[Gp] : 7 € p2,{r =
¢}]”, note tghat the truth value of ¢ = &, is a P;-name so this is well
defined. Note: p' [{¢} = 0 not just = fg, but g € p' = —[¢ = (,[G¢]]-
We then (i.e. if (i)+(ii) ) say: p1 < p2 over {£1,...,6n}.

Lastly (as said above) if p € kK — Sp, — Lim.Q then we let p[¢ def {rl¢:r e P}
and Dom(p) = {{, : ¢ € p} and similarly pI¢, pl[¢,€), pI(¢,§)-
(E) : Let us check Definition 2.1 (1)(i)-(iv) for P, def Sp, — Lim,Q:
<Pa is a partial order: Suppose py < p1 < p2. Let nf, §1, . ’§n‘ appear
in the definition of p; < pgs1. Let n = n® +nl, and
€ if1<i<nal

&= &, ifn! <i<nl4n?
Now for £ = 0,1 and { < o we have IFp, “if pp1[€ is in the set G5 then

pel{&} < pe+11{¢} in Q ”, hence IFp, “if pa]€ is in the set G¢ then po[{{} <

X ¢
p2{é}in @ 7.
3
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Also for ( < a we have pa[( IFp, “if ¢ & {£1,...,€n} then (in Q )
¢
pol{¢} <o p11{¢} <o p2[{C}" or e =2, po[{¢} = 0”. So we finish.

<y is a partial order: check.

p <o ¢ = p < q: By the definition; easy.

So in Definition 2.1, (i), (ii), (iii), and (iv) hold.

We still have to check that Q obeys E* N E(Q), now by the induction
hypothesis the only thing to check is: if a = £g(Q) = B+ 1, 8 € E* N E(Q)

then Py = |J P,. This follows as 8 > k, and each (Q[3)-named ordinal is a
Y<B
(Q1v)-named ordinal for some 7. This is true by the definition of a @ — E-named

ordinal.
(F) , (G) We leave the checking to the reader (for the first sentence of (G) see
2.10(1) below). U7

2.8 Claim. Suppose Q = (P;,Q; : i < @) is a k — Sp,-iteration (so P, =
Sp,—~Lim,(Q)).
1) If p < q in P, then there are ,n, & < ... < £, < a such that:
(a) r € P,
(b) g<r
(c) p <rabove {&,...,&}.
2) We can find such r simultaneously for finitely many py, < q.

Remark. In fact we can have r[[¢,, a) = q[[é,, ).

Proof. 1) We prove this by induction on o
Case 1: o = 0. Trivial.

Case 2: a=(+1.
Apply the induction hypothesis to Q 3, pI3, g[8 (clearly Q[ is an k— Sp,-
iteration, p|@ = Pg, q[8 € Pg and Pg |= “p < ¢”, by 2.7).
So we can find 7', m, {{],...,&.,} such that:
(a)! " € P
(b) Pslqlf <t
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(c) p <’ (in Pg) above {&1,...,&n}.

Let n & m+ 1, and

_ & fte{l...,m}
Ee_{ﬂe iff=n

and lastly » = U (¢[{8}).

Case 3: o is a limit ordinal.

Let p < ¢ (in Py) above {£1,... 1én}. We choose by induction on ¢ < n,

T, Be, & such that

(a) r¢ € Pg,,

(B) Te < Tesr

(7) alBe <o

(8) Be < Bev1 <«

(6) Bo=0,10=0p,

(¢) for £ € {0,...,n—1} we have: either ro1 IF “€oy1 = &5, and &7 1 < Bes
or Ber1 = Be&rey1 = e and 1o U (1B, @)) Ikp, “§e+1 is not defined”.
Carrying the definition is straight: for ¢ = 0 use clause (¢). For £ +

1 < n when the second possibility of clause (¢) fails there is 7/, such that

re U (ql[B,@)) < 7' € Pa, and 7' IFp, “€ey1 is defined”, so there are r”,

&s,1 such that 7/ < 7 € P, and 7" I+ “6pyy = £5,," so as “6;,, is a Q-

named ordinal” we know that £7,; < o and 7[5, ”‘ps* “6oy1 =&y, Let

Bes1 def max{Be, €7, 1}, and Te41 def "1 Be+1. So we have carried the induction.

Apply the induction hypothesis to Q8. p[Bn, n; it is applicable as 3, <
a, and P, = “plfBn < qIfBn < 72”. So thereare m < w, {1 < ... < &m < Bn
and 7* such that Pg, =7, <7*” and p < r* (in Pg,) above {§1, .., &m}. Now
let 7 % 7 U (q1[Bn,@)), clearly ¢ <7 and p < r above {&1,...,&m,Bn}-

2) Should be clear. U8

2.8A Claim. Let Q be a k — Spy-iteration (of length a).
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(1) If B < o and ¢ is a Pg-name of a Q-named |8, @)-ordinal then for some

Q-named [8, a)-ordinal £
”_Q “g — §”

(2) The same holds if we replace “ordinal” by “atomic condition”.
(3) If B is a @-named ordinal, and for each 8 < a, (g is a Q@-named [3, a)-

ordinal then for some Q-named ordinal ¢

”

- “if B[G] = B then £[G] = (5[C]

(4) Similarly for atomic conditions.

Proof. Easy. U284

2.8B Discussion. Why do we use iteration of kind Sp, when Sp; may seem
simpler? Think that we want say x, k¥ to play the roles of Rg, R; in Ch.X.
Suppose (P;,Q; : i < k*) is an k* — Sp;-iteration which is nice enough such
that |J P; is a dense subset of P,+. Suppose further that for i < k™, we have
{p:} zé';; such that: IFp;, “p; € Q;, and for every ¢ such that g € Q;, @9,- <ogq
there is r such that ¢ <o r € Q; and r is incompatible with p; (in Qi)”. These
are reasonable assumptions for the iterations we have in mind.

Let u = {i < k% : {p;} € Gp,}, so this is a P,-name of a subset of x+.
As 'U+ P; is a dense subset of x* clearly IFp , “u is an unbounded subset
of /;iﬁ But for each p € P+ and a@ < k* w.lo.g. we have some n and
§1<...<& <" suchthat i€ k™ \ {&,...,&} = plilk “Dg, <o pI{i}".

Now there is ¢ € P+, such that p < q (i.e. for every i ;ve have q[i IFp,
“pl{i} <o ¢I{i}") and for every i € a\ {&,...,&} we have IFp, “q(), p;
are incompatible in @;”. So ¢ IF “una C {£1,...,£,}". As @ was an arbitrary
ordinal < k%, necessarily I- p_, “uhasorder type < w”, but as indicated earlier
I-p, “sup(y) = &*”. Together IFp_, “cf(k) = Ry”, certainly contrary to our

desires.
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So the use of our choice is e = 2. Where is this used? In the proof see end

of the proof of 2.13 (hence also in 2.14, 2.15).

2.9 Claim. Let Q = (P, Qi i < @) be an k-Spy-iteration, P, = Spy — Lim,Q

(as usual).

(1) If B,y are Q-named [}, £g(Q))-ordinals, then Max{f3,7} (defined naturally)
is a Q-named [j, £g(Q))-ordinal.

(2) If @ = By + 1, in Definition 2.7, part (D), in defining the set of elements of
P, we can restrict ourselves to 3 = fy. Also in such a case, P, = Pg, * Qs
(essentially). More exactly, {p|\J{q} : p € Pg,, ¢ a Pg,-name of a member
of Qp,} is a dense subset of P,, and the order p1 U{g1} < p2U{gz} iff
[p1 < p2 (in Pg,) and p, IFp,, “g1 < g2 in ng”] is equivalent to that
of P,, in fact is the restriction of <P to this set, so we get the same
completion to a Boolean Algebra.

(3) |Pa] £ (Xica 2lP:h)lal for limit o (where of course |P| = |{p/ ~: p € P}|
po = p1 iff po Ik “p1_p € Gp” for £ =0,1).

(4) If IFp, “|Q¢| < u”, u a cardinal, then |P;y;| < 2Pl 4y,

(5) Iflkp, “d(Q;i) < u” then d(P;y1) < d(F;) + p, where d(P) is the density of
P.

(6) For o limit d(P,) < 2¥i<ad(Fi),

(M IfP= Q then P is essentially complete, i.e. for every maximal antichain
To UZy of P with Zy N Z; = 0, for some q € P, for every p € o U1y, q is
compatible with p iff p € Z,.

Proof. Check. Ua.o

2.10 Claim. Suppose (& is regular and):

(a) Q = (Pi,Q: : i < a) is a k — Spy-iteration (and of course Py = Sp, —
Lim,(Q)

(b) Ikp, “(Q4, <o) is f-complete” for i < o

(c) <k

Then
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(1) (P,, <o) is 6-complete, in fact: if 6 < 6, (p; : i < §) is <¢-increasing then
it has an <p-upper bound (in fact, as in 2.7(G))

(2) for 8 < a, P,/Pp is 6-complete.

(3) In fact we can get <o —lub if this holds for each Q;.

Remark. We deal with Prt and not Pr; (here and later) just for simplicity

presentation, as it does not matter much by 2.4.

Proof: Straightforward.
(1) So assume § < @ and p; € P, for i < and [i < j <0 = p; <o p;|. Now it
is enough to find p € Py such that

1<d=>p;<op

IFg “Dom(p) = U Dom(p;)”

1<4

I-p, “pI{¢} is a singleton or §”.

Let p; = {gi, 1y < 7vi} where v; < k and for each ¢ < (:i,gz is Q-named
atomic condition, say IFg “gfy € ch ” | where gfy is a Q-named ordinal which is
Cqi- Now for each § < a let <j be a Pg-name of a well ordering of Qg. For
each i(x) < &,v(x) < ; let ri((’;))

Let ¢ < a, G¢ C P generic over V and gfy((’;)) [G¢] = ¢, now work in V[G¢],

be the following Q-named atomic condition:

let we = {i < ¢ : for some v we have (}[G¢] = (}, and for each i € w¢ let

uf = {y <7 : ¢4[G¢] = (}, clearly not empty; moreover for some S; € ug we

have
(V€ € uf)(Fy € uf)(g5,[Ge] <o ¢4IG¢] & gilGe] < ¢4 [Ge))

and let v¢ = {y € u¢ : ¢5.[G] <o ¢1[G¢]}, clearly also v{ is not empty.
(As p; is <p-increasing, w¢ is an end segment of § and i(x) € w¢.) We define
r3[Gel € Q¢[Gel-

Case 1: For some i € w¢ we have:

(V9) [i < 5 € we = pil{C}HG(] = p; 1{CHGC]) -
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By the definition there is 7 € Q; such that vy € vf = ¢4 [Ge] <o

We let [fy((**)) be the <¢[G¢] - first such r.
Case 2: Not case 1.
Let wy = {1 € w¢ : for no j € wg N do we have (p;[{¢})[G¢] = (p:[{¢})[Gc]}-
Note. w; has no last member and moreover is unbounded in 6; let j(i) =
min(wg \ (¢ + 1)) for i € w.

For each i € wg, by 2.2(9) we know there is 3; € vg ) such that

(i
[y € v§ = Qc[G¢l F “¢1[G¢] <o i [Gc]).

Hence by 2.2(9) we know (q{,fi) [G¢] i € wg) is a <o-increasing sequence

in Q¢[G¢], hence it has a <o-upper bound; so let ri((i)) be the <7[G]-least <o-

upper bound of such a sequence in Q¢[G¢]. Because of the “such” the choice

depend on ¢, G¢ but not on i(x), y(*). Now

def i(* .
pE {2l vilx) < 8 and y(x) < i}
is as required.
2), 3) Similar proof and will not be used (or use the associativity law, see

2.21(3) (which could be proved before 2.10)). O2.10

2.11 Definition. Let Q = (P;,Q; : i < a) be an x — Spy-iteration

(1) Wesayyisa (Q, ¢ )—E*-name (again we usually omit E*) if y is a Py-name,
(isa Q@ — E*-named [0, @)-ordinal, and: if 3 < o ,Gp, C P, is generic
over V and for some 7 € Gp, N Pg, kg “¢ = 37, then y[Gp,] € V[Gp,]
is well defined and depends only on G'p, N Py so we write y[Gp, N Pgl; and
if Gp, C P, is generic over V, ([Gp,] not well defined then y[Gp,] is not
well defined.
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(2) If p € Py, Gp, C P, generic over V, (or just in Gen"(Q)), then p[Gp,] is
a function, Dom(p[Gp.]) = {¢4[Gr.] : ¢ € P} and (p[Gp,])(¢) = {g[GP,] :

g € pand (4[Gp,| =€}

2.12 Claim. Suppose
(a) Q=(P,Qi:i<a)is ak— Spy-iteration
(1) Assume that g is an atomic Q-named condition and {isa Q-named ordinal
and ¢[{ is defined naturally (ie. if G € Gen(Q), and & = ¢[G] and
¢ = (g[G] then ¢ < & = (q[Q)[G] = ¢[G], and ¢ > & = (q]€)[G] not
defined). Then ¢[¢ is an atomic Q-condition with C(grey = min{(q,§} (see
2.9(1)). Similarly for ¢[[§, @). we can let P def {p € Py : pl§ = p} and it
has the natural properties. —
(2) Assume in addition
(b) p€ Po, (isa Q-named [0, a)-ordinals
(c) risa (Q,g)-named member of Py /P
(d) k a successor (or just not a limit cardinal)
Then: there is ¢ € P, such that:
(*) if £ < a, G¢ C P generic over V, and ([G¢] = £ then (pl€)[Ge] =
(q1€)[Ge] and (q[[§, @))[Ge] =r[[€, a)[Ge]
In fact ¢ = (p[¢) U [rl[¢,@)] will do where pl¢ = {p'I¢ : p' € p},
rl[¢,a) = {r'1[¢, @) : 1" € 7}
(3) If in (2) in addition
(¢)) risa (Q,g)-name of a member of Py /P above p[[(, @)
then we can add p < g (but now ¢ = p U (r[[¢, @)).
(4) If in (2) in addition
(c)F risa (Q,g)-named of a member of P, /P purely above p[[(, a)
then we can add p <o ¢ (and now ¢ = pU (r[[¢, @)).

Proof. Straightforward (think particularly on the case ¢[G] € E* N E(Q)).
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2.13 Claim. Suppose
(a) Q= (P, Qi 11 < a) is a k — Spy-iteration
(b) each Q; satisfies ({2,6,},N0) — Pry
(c) each Q; satisfies 2.1(1)(v) for 6 € {2,6,}
(d) & is successor
Then
1) P, satisfies 2.1(1)(v) for 6 € {2,6,}
2) for B < a, P,/Pg satisfies 2.1(1)(v) for 8 € {2,6,}

Proof. 1) Let p € P, and T be a P,-name of an ordinal < 6, 6 € {2,0,}. We
define a @-named [0, @)-ordinal Giforr e Pg, r Ik “¢ = p" iff
(a) there are g,y such that 7 U (p[[8,a)) <o q € P, and ¢q|8 =r[8 (=) and
v <6 and ql- “if 8 =2, then 7 = and: if # > 2 then 7 < "
(b) for no #' < B and ', r|B’ <1’ € Py does (r', §') satisfies (a).
Note that: if 3 is a limit cardinal we can get (by 2.8) a contradiction to
clause (b).
However we would like to apply 2.12(2) and for this we need to prove that
¢ is a @-named ordinal, i.e. a @ — E*-named ordinal. So (by 2.5C) let B < A,
B € E* N E(Q), and it suffice to find v < 8 such that IF5 “¢ ¢ [7,6)”. But

plB € Ps = |J Py, so for some v < 3, p|f € P, and this vy is as required
v<B
because we are using Sp, (and not Sp;), that is; because if p[3 < q € Pg then

(qIB) UplB,7) = a1B <o q-
Let ¢* be a (Q,()-named member of P, as in clause (a). Let po &f p

and p; = po U (g*[[g,a)), now po <o p1 € P, by 2.12(4). We now define
p2 =p1 U {fg : ¢ € p1} where 4 is defined as follows
(*) if 8 < o, Gp, C Py generic over V and (¢[Gp,] = B and in V[Gp,] there
is r such that
(i) QslGr,] E “PH{B} <o {r} € Qs[Gr)"
(ii) for some r; € Pgyq we have: r1[3 € Gp, and r {8} = r and: m

forces (IFp,,,) { =B +1 or r; forces ¢ # B+ 1 and in the former case
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if & = 2 the condition r1 U (p1[[8 + 1, &) forces a value to 7, if 6 # 2
forces a bound to 7

then rq[Gp] is the <j[Gp]-first such a member otherwise it is Og,.

Let us choose now 8 < a minimal such that
® there are 7y € Pg and v < 0 such that py[8 < r; and r1 U (p2[[8, @)) I+

“@9=2,T<yorB#2, T#".

There is such 3 as for some 8 < o and r we have pp[8 < r € Pg, and
Tk ¢ = B” and see the choice of ¢ and p;, pe; actually we can use 8 = a.
If 8 = 0 we are done. If § is limit without loss of generality, by 2.8 for some
n<wand & <... <& <G we have: pa[f <ry above {£1,...,&}.

By the choice of r; there are ¢ € P, and vy < 6 such that: ¢[8 = r; and
r1 U (p2l[B,a)) <o gand g Fp, “¢ =2, 7 =vor @ # 2, 7 <7”, just use
q = r1 U (p2l[B,)). Hence B’ = &, + 1, 7’ = r1[(§, + 1) satisfy: ' € P 44,
p2lB <1, qlB' =ql(én+1) =r1l(§n +1) =7, and qlkp, 6 =2, 7 =7yor
0 #2, 7 <" and " U (p|[f,a)) <o r' U(ql[f,a)). So by the definition of
¢ we have r’ I “¢ < 3 and of course 3’ < (3. So we get a contradiction to
the choice of 3. Lastly assume 3 = j + 1, and let Gp; C P; be generic over V
such that 71 [j € Gp,. If for some g € p; we have gg[Gpj] = j (so we could use
Tq € p1) the contradiction is gotten similarly using the definition of p, (note
that for 6 # 2 we use the result for # = 2!). In the remaining case we can
decrease 3 by the definition of <} (as we use Sp, rather than Sp,!).

2) Same proof (or 2.21(2)). O2.13

Now 2.10 + 2.13 suffice to show that no bounded subset of x is added by the
Kk — Spy- iteration (if say each @; has ({6 : Ro < 6 = cf(0) < k} U{2},7) — Pr}
for v < k. But we may like to deal with iterations which e.g. add reals. The

next claim does better.

2.14 Claim. Assume
(a) @ = (P;,Qi:i < ) is a k — Spy-iteration



708 XIV. Iterated Forcing with Uncountable Support

(b) each Q; satisfies the ({6}, R;) — P, and 6 = cf(8) > R

(c) & is a successor cardinal.

Then
(1) P, satisfies ({6},R;) — Prf
(2) also for 8 < o, P,/Pg satisfies ({6},R;) — Pry.

Proof of 2.14. Before proving, (in 2.14E) we define and prove in 2.14A - 2.14D,
retaining our 6, k, kK — Sp,-iteration @, and a = £g(Q). We can assume that
2.14 holds for any case with o/ < « instead of «

2.14A Definition.

(1) Ty ={(»¢1):pEPyand (isa Q-named [0, a)-ordinal and 7 is a P,-
name of an ordinal < 6 such that: if p € G, C P,, G, generic over V and
¢[Ga] = ¢ then for some r € Go N P; and € < 6 we have 7 IFp, “7 <e”}

(2) Ty = {(p,¢,1) € T'1: Ik “C is a non limit ordinal”, and for every § < a
we have: if there are r and q such that Pg E “p[B < r”, r € Pg, IFp, ‘g€
Qp & pM{B} <0g” andrU{g}lrqg “C=B+1"orrU{g}lFg “C#B+1
then we can use ¢ = p[{S}}

(3) For y = (p,¢,7) let us define a Py-name wy: for Go C Py generic over V

wy[Ga] = {B < a : for some 7 € G, N P and g € p we have
B lkg “CelGrs] = 87 and
pIB <7 and =(3r' € Paia1)(r < (r'16)

& r'18I-p, “pI{B} <o r'I{B}”
&r'lg “Cisnot =p4+1")}

2.14B Subclaim.
(1) If £ € {1,2} and (p,{,7) € Ty and p < p1 € P then (p1,¢,7) € e
(2) Ifp € P, and 7 is a P,-name of an ordinal <  then for some (p', {’,7’) € I'1

13

we have p <o p’ and p’ Ikp, “7' =1"
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(8) If (p,¢,7) € I'1 then for some (',¢',7") € T2 we have p <o P/, IFp, “¢' < ¢

and 7/ > 77.

Proof. 1) Read the definitions.
2), 3) Like the proof of 2.13. O2.14B

2.14C Subclaim. If y = (p, ¢, 7) € Tz then the (Pa-name of a) set w, satisfies:
(a) IFp, “Bewy =<
(b) if Go C P, is generic over V and 8 € wy[G,] then some 7 € Go N Pp
forces this; in fact if r IFp, “8 € w,” then r[BIFp, “B € w,”.

(c) Ikp, “w,y is a finite subset of o”

Proof. For clauses (a), (b) read 2.14A(3), so let us prove clause (c).

If not, for some Gp, C P, generic over V, and w,[Gp,] is infinite, and let

Co < (1-... be the first w members. Let & & Un<w $ny 50 VI[GER,] | “cf(6) =

Ro”.

Let § and ((» : n < w) be the corresponding P,-names, so there are
r € Gp, and B and § < o such that r Ikp, “¢ = B and § = 4 (and wy is
infinite)”. Now as (,[Ga] € wy, by Definition 2.14A(3) (the clause p[3 < r) we
have p[¢n[Ga] € Ga; and as this hold for every n we have p[d € Gq, so as we
can increase r w.l.o.g. p{d < r. Hence by 2.8 without loss of generality for some
n<w,and & < ...,< &, < a, we have p[d < r above {£1,...,&,} so letting &
be: g if B < 6, 0if B > 6 and letting & = sup[d N {&o, &1, - - -, &n}] We know that
£ <dandrlFp, “w,N(& 0) # 0" hence for some € and ry, we haver < r; € P,
and € € (£,0) and ry IFp, “e € w,”. But by the definition of wy, i.e. by 2.14C(b)

we have: ri[e IFp, “c € wy”

and clearly 1 IFp, “p[{e} <o r[{e}” hence by
the definition of wy we have (r1fe) U (r[{e}) ¥p,,, “¢ is not = € +1” hence
(asCisa Q-named ordinal) there is r such that (rie) U (r1{e}) <rp € P.yy
and r2 kg “¢ =€ +17. But € +1 # B by the choice of §y and ¢ and ¢, and

T lkp, “C = B” so T2, r should be incompatible in P. But

ri(e+1) < (rife) U (ri{e}) <rg € Peyr.
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[Why? As r < ry, and choice of ry (twice).]

Hence by 2.7 clause (F) we know r, 7, are compatible, contradiction. s 140

2.14D Subclaim. If y = (p,g,z') € I'y then we can find pt, ¢n, 7o for n < w

such that: -

(a) p<op* € Py

(b) (", ¢ny7n) €T

(c) if Go C Py is generic over V, then (,[G,] is the n-th member of w, (G|
if there is one, if so then for some r € ng [G.) We have p* [¢n[Ga) <7 and

rU (P H{¢n[Gal}) Fp, “ if ([GP.] = (nlGa] +1 then 7[Ga] < Tn[Ga]”.

Proof. Straight using 2.10 (for § = X;) to have a <¢-upper bound, and taking

care of n work as in 2.14B(2) i.e. as in 2.13. O2.14D

2.14E Completion of the proof of 2.14. We concentrate on part (1) (the
proof of part (2) being similar or use 2.21(3), and it is not used). By 2.7, clause
(E) we know that (i) - (iv) of Definition 2.1(1) holds, and by 2.10(1) not only
clause (vi) of Definition 2.1(1) and the extra demand from Definition 2.1(2)
hold, so the problem is to verify clause (v) in Definition 2.1(1), i.e. the pure
decidability. So let p € P, and 7T is a Py-name and p IF “7 < 8”, we have to find
q, j such that p <g g € P, and j < § and g lFp, “7 < 5”. So we can replace p,
Tbhyp, 7" if p <o p' and p’' I “7 < 1/ < 6. By subclaim 2.14B(2)+(3) w.l.o.g.
for some ¢ the triple (p, ¢, 7) belongs to I'z. We choose by induction on n < w,
Pn, Pt and ((¢n, Ty, Jin, Ty) : N € "w) such that:
(@) po=p, 7y =1, ¢ = ¢ =Jog
(b) (PnsCn»Tn) €'z for each n <w, n € "w
(¢) pn <o P <o Pn+1
(d) for each n and 7 € "w we have:

@) {n- ey + b <w}list we, ¢,y U{0}

(i) jo~xy is a @-named [0, a)-ordinal
-name of an ordinal < 6

P ’ . .
(iii) 75~ky is @ Py, -y
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(iv) if Go C P, is generic over V, and 8 = j,[G,], and pf [(8 + 1) € G4

and 3 = (4[Ga] then I;)“(k) [Ga] 2 1[Gl

() (P Jn" k) Ty (ry) € T

(€) Prt1 kP, “Co~(ky < Jn(ky» and (p-(xy is non limit and 7~ (ky > I;“(k)” for

n<w,n€™w,and k < w.

The case n = 0 is straight. Having arrived to stage n, i.e. p, and Cns Tn
for n € "2w are defined and as required, list ("w) as (7, : £ < w) and choose
by induction on ¢ < w, p;,‘;z, Jne (ks T,luA(k) for k¥ < w such that P;‘{,o = Dn,
pr s <o P}y and pl,,, satisfies the requirements of p;i for n = e which is
possible by Subclaim 2.14D. Then let p} = {J, p,f,e (it is a <¢-upper bound
of {p;t,,_, : £ < w}; by 2.10 + assumption (b) of 2.14 it exists, but why it still
satisfies the demands? By Subclaim 2.14B(1)). Now the choice of pn11, {5~ (x>
Tn~ (k) for n € "w, k < w is by Subclaim 2.14B(3) again using 2.10(1).

Again there is p*, a <g-upper bound of {p,, : n < w}, it satisfies p <o P, <o
pt € P, and letting v = sup{r, : j, = 0} < 6 we can prove p* IF “r, <~y
when 7, is defined”. For this we prove by induction on j < a that p[j I-p, “if
n € “”w and Jn < Jjthen 1, <%” (similarly to the proof of 2.13). As 7 = 7

we are done. U214
Remark. Actually the tree we use is of finite splitting.

2.15 Conclusion. Assume

(a) @ =(P;,Q;:i<a)is ak — Sp, — E*-iteration

(b) each Q; satisfies (S, < k) — Prf and (Rp € S=2€ S)
(c) & successor

Then

(1) P, satisfies (S, < k) — Pry

(2) for B < a, P,/ Pj satisfies (S, < k) — Prf

Remark. 1) Note: if x is not a cardinal we can replace it by |k|*; but during

the iteration |x|* may increase.
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2) We can replace Pri by Pr; with minor changes but because of 2.6 the gain
is doubtful.

Proof. By 2.10, 2.14 (and 2.7 of course). Os.15

2.16 Discussion. Suppose « is an ordinal and Q = (P, Q; : i < a) is a

Kk — Spo-iteration (so P, = Sp, — Lim,(Q)). We may wonder whether:
(a) If o is strong inaccessible and density(P;) < « for i < a then density(Py) =
a.
(b) If o is a Mahlo and Vi < «f|P;| < ¢, then P, satisfies the a-c.c.
As unlike X §1 we use antichains of U P; (rather than antichains which
are maximal in P whenever A\ P; < P)Ktﬁis is not clear. Note that in 2.17

<a
below, we can weaken the Pr; demand to IFp_ “6 remains regular”.

2.17 Lemma. Suppose Q = (P;, Qi 1 i < a) is a k-Sp, — E*-iteration, k > Ro
a successor cardinal, S C {2} U{u: No < p, p regular }, o € S =2 € S, and
each Q; (in VF), has (S, < k) — Pr{ (see 2.1(4)). Then:

(1) f k <€ S andcf(a) =0 then
(2) If « is strongly inaccessible > min(S \ k), a > |P;| + & for i < a (or just

ica Pi is dense in P,.

P; satisfies the a-c.c.) and a € E* then P, satisfies the a-chain condition
(in a strong sense).

(3) If each Q; satisfies (RCar \ k, k) — Pr and has power < x, then P, has
a dense subset (even a <o-dense subset) of power (2/1+X)<* and satisfies
(x<F)*-c.c.

(3) If a is strongly inaccessible and E* N a is a stationary subset of o and
[i < a = |P| < aor at least [i < a = P, satisfies the \;-c.c. for some

Ai < a] then P, satisfies the a-chain condition (a strong version indeed).

Proof- 1) Left to the reader.

2) Choose 6 € S\ k. Let (p; : j < a) be a sequence of elements of P, now as
a € E* we have p; € U, ., Pi- Let A = {j < a: cf(j) = 6}, this is a stationary
set. For j € A choose r; € UK]. P;, r; > p;1j (why such r; exist? by part (1)),
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say rj € Py(jy, i(j) < j. Let C = {i: j limit, Vi < j3y < j[p; € P,]}. This is a
club subset of a.

By Fodor’s lemma we can find B C C N A stationary such that for all
J1,J2 € B we have i(j1) = i(j2) and rj, = r;, = r or at least rj,, r;, are
compatible in (U, ;(;,) Pi and let rj,, 75, <7 € U;iy(5) Bi-

(Remember that |P;| < a or at least P; satisfies the a-c.c. for i < )

But for any such j; < jg the condition 7 U pj, [[j1, j2) U pj, [[J2, ) is a
common upper bound for pj,, pj,.

(3) Like III 4.1 use only names which are hereditarily < k (see below).

(4) Like part (2) using 2.7(E) (so 2.5(1)(b)) instead using part (1). Oz 17

We may wonder about k — Sp,-iterations which essentially do not change

cofinality.

2.18 Definition. We define for an Sp,-iteration @, and cardinal u (i regular),
what is a Q-name hereditarily < y, and in particular a @-named [j, a)-ordinal
hereditarily < u and a Q-named [4, @)-atomic condition hereditarily < u, and
which conditions of Sp,-Lim,Q are hereditarily < p (formally they are not
special cases of the corresponding notions without the “hereditarily < u”). For
simplicity we are assuming that the set of members of Q; is in V. This is done
by induction on a = £g(Q).
First case. a =0
trivial
Second case. o > 0
(A) A Q-named [j, @)-ordinal ¢ hereditarily < p is a Q-named [j, a)-ordinal
which can be represented as follows: there is ((p;,&;) : 1 < i*),4* < u, each
&; an ordinal in [j, ), p; € P, is a member of P, hereditarily < u and for
any G € Gen"(Q),¢[G] is ¢ iff for some i we have
(a) pi € G,Gi=¢
(b) if p; € G then {; < ¢ V (¢ = (&i < j)
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(B) A @Q-named [j, )-atomic condition q hereditarily < 4, is a Q-named [j, a)-
atomic condition which can be represented as follows: there is ((p;, (;, q;) :
i< i*),1* < p,( € [4,a),p; € Pe,,q; €V, and for any G € Genr(Q),g[G]
is q iff for some i:

(a) pi € G,q =g, and p; IFp,, “q € Q¢,”
(b) ifpjeGthen ; <V (Gi=¢ &i<y)

(C) A member p of P, = Sp, — Lim,(Q) is hereditarily < y if each member of
7 is a Q-named atomic condition hereditarily < p.

(D) A Q-name of a member of V hereditarily < u is defined as in clause
(B), similarly for member z € VP~ such that y € transitive closure of

c&yd¢V=ly<p

2.19 Claim. Suppose (P;,Q; : i < ) is an k— Sp,-iteration, P, = Sp,-Lim,.Q,
K a successor cardinal, each Q; (in V) satisfies (RCarVPi \ k, k) — Prf. Then
(1) {p € P4 : p hereditarily < k} is a dense subset of P,, even a <o-dense
subset
(2) P, preserve “cf(6) > k”
(3) for every p € P, and T a Py-name of an ordinal there are p*,p <o p* € P,,
and A € V, a set of < k ordinals such that g I, “T € A”.

Proof. Should be clear. U219

2.20 Remark. We can also get a similar theorem for forcing notions (Q, <, <o)
as in 2.1 where instead of <g is k-directed complete (see 2.4(d)) we demand

that (vi) (“strategical completeness” of <p).

2.21 Claim. (1) Suppose F is a function and e = {1,2}, then for every ordinal
o there is Sp,-iteration Q = (P;,Q; : i < a'), such that:

(a) for every i,Q; = F(QT1),

(b) of < a,

(c) either a! = a or F(Q) is not an (Rlim@)-name of a forcing notion.
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(2) Suppose Q is an k—Sp,-iteration of length a and 8 < a, Gg C Py is generic
over V, then in V[Gg|, Q/Gs = (Pi/Gp,Qi : B < i < a) is an Sp,-iteration
and Sp, — Lim(Q) = Ps * (Sp, — LimQ/Gp) (essentially).

(3) If Q is an k — Sp,-iteration, p € Sp, — Lim(Q), P/ = {g € P, : ¢ >
pli},Q; = {p € Qi : p > pl{i}} then Q = (P/,Q! : i < £gQ) is (essentially) an

Sp, iteration (and Sp,Lim(Q’) is P égQ)‘

Proof. Should be clear. Uz.12

83. Axioms

We can get from the lemma of preservation of forcing with (S,v) — Pr{ by
k — Spo iteration (and on the A-c.c. for then) forcing axioms. We list below

some variations.

3.1 Notation. 1) Reasonable choices for S are
(A) S% =RUCar<, = {u: p a regular cardinal, Rg < p < &}
(B) S2 = {2} URCar<, = {2} U {u : p a regular cardinal, Xg < u < k}
(C) If we write “< £” instead < k (and S%, instead S%) the meaning
should be clear.

2) [Convention] E* is the class of strongly inaccessible cardinal > «.

3.2 Fact. Suppose the forcing notion P satisfies (S,v) — Pr;

(1) If 2 € S then P does not add any bounded subset of ~.

(2) If p is regular, and A;(i < u) are regular, and {u} U{\;:i < u} C S, D
here is a uniform ultrafilter on p,0 = cf([[,., As/D) (\;-as an ordered
set) then P satisfies (S U {6}, 7') — Pr; whenever uy’ <+, (uy' is ordinal

<pu

multiplication). We can do this for all such 6 simultaneously.
(3) If A € S is regular, u < 7 then for every f : u — X from VP, for some
g:p— Afrom V for every a < u, f(a) < g(a).
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Proof. (1) and (3) are clear.

For (2), fix an increasing cofinal (modulo D) sequence (f% : a < 6) in [] A

if = cf( ] Xi/Dp) with X} € S, = pg € S. -

To play t}zl:#game 01 for (SU{6}, v')—Pr; from 2.4(b), player II on the side plays
the 02 game for (S, ) but for move 3 in 01, he uses moves (( : U, 53¢ < (<
() in O3, he also chooses (,’s during the play. If player I chooses a \g € S, 73,
in 01, player II copies I’s move to 0y and plays his answer from there and let
¢s = U,<5 Gy + 1. If player I plays in the S-th move Ag = cf([[,., As,/Ds),

73, player II simulates u moves of Oj:

<)‘ﬁ,j7 f’;\ﬁﬁ(j)v CX:? ] < /"’)

Then player II finds o; such that {j : a? < fa:;(3)} € D and plays this o; and
let’ Cﬂ = Ufy(ﬁ C’Y + /‘L'

It is clear that a; is as required, and as uy’ < v, Oz does not end before O1.
Us.2

3.3 Claim. Suppose MA . holds (i.e., for every P satisfying the X;-c.c. and
dense Z; C P (for i < a < k) there is a directed G C @ such that A\, ., GNZ; #
0). Then the following forcing notions are equivalent to forcing notions having
the (RUCar, k) — Pr;.

(1) Mathias forcing; {(w, A) : w C w finite, A C w infinite} with the order

(wy, A1) < (w2, A2) iff w1 Cwy CwyUA;, Az C Ay

(2) The forcing from VI §6(=[Sh:207}, Sect. 2).

Proof. (1) Let P’ be the set of (w, A, B) satisfying: w C w finite, B C w infinite,
B C A C w, with the order

(w1, A1, B1) < (w2, Az, Bs) iff (w1, A1) < (w2, A2)
and Bg g* Bl(i.e. s B2 \ Bl ﬁnite)
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(w1, A1, B1) <o (wg, A2, By) iff: wy = w,
A=A,
By, C* B;.
Let us check Definition 2.1: (i) — (iv) easy.
Note that {(w, A, A) : (w, A, A) € P'} is dense in P’, and isomorphic to
P.

Proof of (v). Let u > g be a regular cardinal, 7 a P'-name, IFp “T < u. Let
p = (w, A, B) be given. Choose by induction on i < w,n;, B; such that
(a) Bo = B(C 4)
(b) n; = Min(B;)
(¢) Biy1 C B\ {ni}
(d) for every u C {0,1,2,...,n;} (not just C {ng,ni,...,n;}!) one of the
following occurs:
for some o, < p, we have (u, Bit1, Bit1) IFp “T = a0
or for no infinite C' C B;;; and o < p do we have (u,C,C) I+ “7T = o”
There is no problem to do this, now g def (w, A,{n; : i < w}) satisfies:
(e) p<ge€ P andeven p <pq.
(f) glFpr “T € {1 <wand uC{0,1,2,...,n;}}".

[Why? If not, then for some o € p\ {14 <wand u C {0,1,...,n;}}
and r we have ¢ < r € P' and r IFpr “7 = o”. Let 7 = (v,A’,B’) so
B’ C A’, B’ is infinite, B’ C* {n; : i < w} and A’ C A. As v is finite
and by the definition of C* there is ¢ < w such that: v C {0,...,n;} and
B’\{0,...,n;} C {n; : j < w}. So without loss of generality Min(B’) > n,,
and A’ = B’; so by the choice of B;y1, (v, Biy1,Bit1) IF “T = a;4”, but
a # a;y 50 (v, Biy1, Biy1), 7 = (v, A’, B') are incompatible, contradiction]. So
q is as required.

Proof of (vi). Suppose p;(i < 7) is <p-increasing so p; = (w, 4, B;) and
B, C A, and B; is C* decreasing. It is well known that for v < K, MA.,
implies the existence of an infinite B C w such that (Vi < v)B C* B;. Now
(w,A,B) € P' and i < v = p; <o (w, A, B), as required.

(2) Left to the reader (similar to the proof of (1)). Oss
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3.4 Discussion - Proofs. Let k < A, X regular. Each of the following gives
rise naturally to a forcing axiom, stronger as A is demanded to be a larger
cardinal (so if X is supercompact we get parallels to PFA).

If ¢ is a property of forcing notions, let Az4(p, A, 1) be the following
statement: For every forcing notion P of size < p if P satisfies ¢ and Z = (Z; :
i < i* < \) is a sequence of dense subsets of P and ((k;,S;) : j < j* < a)a
sequence of pairs, with §; a P-name of stationary subset of x;, where &; is a
regular uncountable cardinal < A then there is a Z-generic subset G of P such
that (as say i < i* = Z; NG # 0 and) j < j* = §,[G] a stationary subset of
Kj.

Case I. We assume k is successor cardinal and use @ of length A, a k — Sp,-
iteration, IFp, “|Q:| < A”, each Q; having (S%,k)- Prj and ¢ € {0,2} and
(usually) Q {u:n< is strongly inaccessible} -

Now P, = k — Spy-Lim,Q have the (S%, k) — Pr{ by 2.15, so all regular
1 < K remain regular and every A’ € (s, A) is collapsed (in the general case i.e.
if Q “generic” enough). But ) is not collapsed if it is strongly inaccessible (by
2.17(2)). If 2 € S%, no bounded subset of x is added. We can get Az ((Sﬁ, K)—
Pry, )\,)\+). Note: if A is in V, supercompact with Laver diamond, we get
A:z((Sﬁ, < K) —Pry, oo) (see VII).

So (even if we assume E* = ()) the theorems of §2 are strong enough to deal
with such iterations get forcing axioms etc. Of course you may then look for
forcing notions which can serve as iterant, of course k-complete and -complete

#*-c.c. forcing notions can serve. For some more see §4, §5 below.

Case II. Like Case I (but x may be limit > Rg) with (x4 1) — Sp,-iteration each
Qi-having (S£,k + 1) — Prf and every X' € (k, A) is collapsed. Here we can

get Ar ) ((Sﬁ, k+1) —Prf, A )\+>. Here ) is not collapsed (even Py satisfies
the A-c.c.) if it is strongly inaccessible Mahlo (by 2.17(4)). If X is supercompact
with Laver diamond we get Az ((Sf;, k+1) — Pr, A, oo).

The situation is similar to that of case 1: this time better using a non

empty E* e.g. the one of 3.1(2).



§3. Axioms 719

Case III: Like case 1 but Q); satisfies (Sﬁi, ki) — Prf, kip1 >density(P;) and &;
strictly increasing with 4. So in VP, X is still inaccessible (though not strongly

inaccessible).

Here we better do a variant of §2 (i.e. 2.6A -2.21) without «. Let E* be the class
of strongly inaccessible > Ng. In Definition 2.7 there, the restriction of |p| for
p € k — Sp, — LimQ is only: 3 € E* N E(Q) => for some v < 3, pIB € P, (this
change 2.7(D), the above statement replaces (A)(i)). For any Q and 8 < «
(= £g(Q) we define a partial order <o 5 on Pa: p <o ¢ iff p[B8 = qIB and
p <o q. Now 2.10 is changed to
(x) ifi € (B,a) =IFp, (Qs, 53") is -complete then (P,, <¢ g) is f-complete.
In Claim 2.12 we can omit clause 2.12(2)(d).
In Claim 2.12 becomes
(%) for (our kind of) @, and 8 < a = £g(Q), and regular 6 assume i €
B(a) =lFp, “Q; satisfies ({8};X1) — Pr{, and Pg satisfies the 6-c.c. and
p lFp, “T < 6” then for some ¢ and (, we have p <o q € P,, and

glkp, “T<(<O.

Case VI: Like case I but x is an uncountable inaccessible (possibly weakly)
cardinal.

The problem with applying §2 is rooted in assumption (d) in 2.12(2),
which is needed for the iteration as presented. We should change 2.7 as follows
in 2.7(D) allow i* < k, but demand kg “{{4,[G] : i < i*} has order type < ”.

Of course we should assume each P, has at least ({x}, X1) — Pr}. However,

does this really add compared to Case II?

3.5 Conclusion. Suppose A is strongly inaccessible, limit of measurables,
A > K, k successor. Then for some A-c.c. forcing P not adding bounded subsets
of k,|P| = A, and IFp “2° = A = k*, and for every A C & there is a countable
subset of A not in [L(A)]”.

Proof. Use case I of 3.4. We use k — Spoy-iteration (F;, Q; : i < A), |P;| < . For
i even: let k; be the first measurable > |P;|, (but necessarily < A). Then Q; is
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Prikry forcing on x; and Q;4; is Levy collapse of k" to k. (Compare X 5.5.)
Uss

§4. On Sacks Forcing

We continue 3.3, 3.4. Assume for simplicity A is strongly inaccessible, A > «.
We want to show that we can find an kK —Sp,-iteration which force some Az|...].
A natural way is to use a preliminary forcing notion R.

A natural candidate is: R = {Q : Q € H()\),Q an s — Sp,-iteration of
forcing notions satisfying (S, k) — Pr{}. As an example, we will prove this for

Sacks forcing.

4.1 Lemma. Suppose

(i) R is an N;-complete forcing notion.

(i) Forr € R, Q" = (Pl :i < o), P! is <-increasing in ¢ and if j < o”
has cofinality w;, then every countable subset of w, which belongs to
VPi belongs to VP for some i < j. We write P" for P,

(iii) If r! <72 then Q" < Q" (end extension), so P™* < P2

(iv) If r € R and Q is a Pg,-name of a forcing notion, then for some
rt>r, o™ >a" and P}, = Por x Q' and "_P;ll “if @ does satisfy
the c.c.c. then Q' = Q”

(v) If r¢ for (¢ < 6) is increasing, § < w, then for some r

/\rcgrandar:Uarc.

¢(<é ¢(<$
Let P[Gg| be U{P! : 7 € Gg, 1 < a,}, so it is an R-name of a forcing notion.
Then g (IFpigy) “for any R; dense subsets of Sacks forcing, there is a directed

subset of Sacks forcing not disjoint to any of them”].

Remark. Remember Qgacks = {7 : 7 € “>2 is closed under initial segments
nonempty and (Vn e 7)(Iv)(n<v & v (0) eT & v " (1) e 7)} and 7y < 7o if

T2 g T1.



§4. On Sacks Forcing 721

R*P|[GR]
Proof: Let for £ < wy, Z¢ be R * P[Gg]-name of dense subset of Qg .1, “ for

€ < w1 (QY,ers is Sacks forcing in the universe V). W.Lo.g. the Z¢ are open.

We will find a c.c.c. subset Q" of QSZSJSGR] such that Z¢ N Q' is dense in Q' for

each £ < wy. Then any generic subset of Q' intersects all Z¢’s.

For a subset E of Sacks forcing let var(E) be {(n,7) : 7 € E, n < w}
ordered by (ny, 1) < (ng, 72) iff ng <ng, 7o C 7 and 7 AMZ 2 = 75 (M2 2,
(If D C var(Qsacks) is sufficiently generic, then rp = U{r[n : (n, 7) € d} is
a condition in Qggeks).- We now define by induction on ¢ < wy, 7(¢), and D,
such that (the order as the one on Qgqcks):

(a) 7(¢) € R is increasing, a,(¢)-increasing continuous.

(b) D¢ is a P"¢*1-name of a countable subset of Qgacks-

(c) If 7 € D¢, m € 7 then 7y def {v:n " ver} belongs to D¢. (We use

round parentheses to distinguish it from 7y, see clause (f)).

(d) If 1, 72 € D¢ then {( ), (0)"n:n €}, {(), (1) "n:n € 12} and their

union belongs to De.

(e) Let £ < ¢, then for every 71 € D¢ there is 7, € D¢ such that 7, < 7

and for every 7o € D¢ there is 71 € D¢ such that 7y < 7.
(f) If 7 € D¢ then for some n for every n € "2N 7 we have 7 -4 {ve
7:v dnorn v} belongs to Z¢ (i.e. is forced (IFgr) to belong to it).

w
(g) Suppose ( is limit, then P;EEZF)L)I = P;iiz) *Q¢, Q¢ is [var Ue<c Dg]

(the w-th power, with finite support).

(h) the generic subset of Q; gives a sequence of length w of Sacks con-
ditions; closing the set of those conditions by (c) + (d) + (f) we get
D..

We have to prove that Q. satisfies the Rj-c.c. in VR*Fer©: (to get a
generic subset by (iv)). If ( < w; this follows by countability. Let ¢ = w;.
It suffices to prove that [var Ue<e Dg]n satisfies the Nq-c.c. where n < w.
So let J be a R E;&C()C)-name of a maximal antichain of [var U < Dg]n.

RxPT(®)
We can find a £ < ¢, cf(§) = R such that I def {z:z€ Va,(;) and every



722 XIV. Iterated Forcing with Uncountable Support

n
pE (R*E’;(TC()C))/(R*E;(f()E)) force z to be in J'} is pre-dense in [var Uy <e D7]
(exists by (e) and assumption (i)). Check the rest.

Notice that we have used:
(@) Y C Uecg, Dey €0 <(, Y € VPao) and Y is a pre-dense subset
of Ug<¢, De (it does not matter where but e.g., in VP) thenY is a
pre-dense subset of U5 < Dy; because
(al) every T € D¢, is included in a finite union of members of Y.

(a2) every T € g ¢ De is included in some member of D,.

4.2 Remark. 1) This argument works for many other forcing notions, e.g.,
Laver forcing.

2) The var(Sacks) was introduced by author to show Sacks forcing may
not collapsed Rq (see Baumgartner and Laver [BL]).

3) In later work Velickovic get results for > X; dense sets.

§5. Abraham’s Second Problem —
Iterating Changing Cofinality to w

5.1 Definition. Let S be a subset of {2} U {k : & is regular cardinal}, D a
filter on a cardinal A (or any other set). For any ordinal -y, we define a game
0*(S, v, D). It lasts v moves. In the i-th move player I choose a cardinal ; € S
and function F; from A to k; and then player II chooses a; < k;.

Player II wins a play if for every i < 7,

d({kj, Fj, 05 : j <)) def {¢ < X\: for every j < i we have

[ki=2= F;(¢) = a;] and [k; > 2= Fj({) < ]} #0 mod D.

5.1A Remark.

(1) This is similar to the game of X4.9, but there we also demand d((x;, F}, o :
Jj <7)#0mod D.
(2) If not said otherwise, we assume that A\ {¢} € D for ¢ < A.
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(3) If D is an ultrafilter on A which is k*-complete for each x € S and |y|*-
complete (if y a cardinal /-complete) then player II has a winning strategy
(if 7 is a cardinal, y-completeness suffices).

(4) Of course only F;[d({(k;, Fj,a; : j < i)) matters so player I can choose
only it.

5.2 Definition. For F a winning strategy for player II in 0*(S, v, D), D a
filter on A (we write A = A(D)), we define Q@ = Qr,» = QF,s,+,0, With
Q = (|1Q|, <, <o) as follows.
Part A. Let (T,H) € Q iff
(i) T is a nonempty set of finite sequences of ordinals < A.
(i) n € T = nl¢ € T, and for some (unique) n and n of length n we
have: T N2\ = {n[£: £ < n}, [T N1\ > 2; we call 5 the trunk of
T, n =tr(T) = tr(T, H) (it is unique).
(iii) H is a function, T\ {tr(T)[£: £ < £g(tr(T))} € Dom(H) C “ZA.
(iv) for each n € Dom(H), H(n) is a proper initial segment of a play
of the game 0*(S, v, D) in which player II use his strategy F so
H(n) = ()\f{(n), FiH("), afl(") 2 < HM)Y and {HM < 4,
(v) if tr(T) < n € Dom(H)NT we have {{ < A:n"({) € T} = d(H(n))
(see Definition 5.1).
(vi) convention: if p = (T, H) we may write n € p for n € T..
Part B. (T1, Hy) < (T2, H2) (where both belong to Q) iff T C T} and for each
n € Ty, if tr(T2) < 5 then Hi(n) is an initial segment of Ha (7).
Part C. (Ty, H1) <o (T2, Hz) (where both belong to Q) if (T1, H1) < (T2, Ha)
and tr(Ty) = tr(Ty).

5.2A Remark . (1) So if (T, H) € Qr,» and F,\, D,v, S are as above,
n € T,n > tr(T) then d(H(n)) # @ mod D. (So this forcing is similar to
Namba forcing, but here we have better control of the sets Sucr(n).)

(2) We can of course generalize this to cases where we have different strategies

(and even different \’s and D’s) in different nodes.
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(3) If (T, Hy) € QF for £ = 1,2 Hy[T = H,|T then (T, H,),(T, Hy) are
equivalent (see Chapter II).

5.2B Notation . For p = (T, H) € Q, » and n € T let pl"l = (T!"}| H), where
T = {veT:vdnorndv}. Clearly p < pll € QF, 2.

5.3 Lemma. If Q = QF,s,4,p and D is a uniform filter on A\(D) then

“‘Q “Cf[/\(D)] = N()”.

Proof. Let nq = U{tr(p) : p € Go}-

Clearly if (T}, Hy) € Gq for £ = 1,2 then for some (T, H) € Goq,
(Ty, Hy) < (T, H); hence tr(Ty) < tr(T), hence tr(Ty, Hy) U tr(T3, Hy) is in
“>X. Hence nq is a sequence of ordinals of length < w.

For every p = (T, H) € Q, and n, there is p € TN ™\, hence p < p e @
(see 5.2B), and pl! I “lg(nq) = n” because n I tr(pl"]) and for every q € Q
we have q Ikq “tr(q) < 7Q”. So IFq “ng has length > n” hence IFq “ng has
length w”.

Obviously, IFq “Rang(ng) € A”. Why IFq “sup Rang(ng) = A”? Because

for every (T, H) € Q and a < ), letting 7 def tr(T), clearly d(H(n)) # ® mod D
(see Definition 5.2) but D is uniform, hence there is 8 € d(H(n)), 8 > «, so
n"(8) € T, and (T, H) < (T, H)I"" ) € Q and (T, H)I"" BN g “n(B) <
Q" hence (T, H)ln™ BN |- “supRang(ng) > 87, as a < § we finish. Os.3

5.4 Lemma. If \, S, v, D are as in Definition 5.1, Xy ¢ S, F a winning strategy
of player II in ©*(S,v, D) and cf(y) > Ro, then QF satisfies (S,cf(y)) — Pry
(see Definition 2.1(2)). [So if 2 € S, then forcing by QF add no bounded
subsets of 7].

Proof: In Definition 2.1, parts (i), (ii), (iil), (iv) and part (vi) are clear. So let
us check part (v). Let k € S, 7 be a Q-name, IFq “7 € k" and p = (T, H) € Q.
We define by induction on n, p, = (T, Hy) and (o, : n € T, N ™\) such that:
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(01) Po =P, Pn <0 Pn+1, In N n2)\ = Thy1n m2\

(B) if n € T, N ™A, and there are ¢ € Q and a < k satisfying
(%) pri?] <0g€Q,a<kandglr “fxk=27=0,if K >Rg, T<a”
then pﬁ'}rl, oy, satisfy this.

Let p, be the limit of (p, : n < w), i. e, p, = (T, H,) where T, ef

Mp<w Tn and H,(n) is the limit of the sequences Hy(n) (for n € T, \ {tr(T)[¢ :
¢ < Lg(trT)}). It is well defined as cf(y) > Ry and p, <o p, € Q. We now

prove two facts:

5.4A Fact . Ifp= (T, H) € Qand f: TN "'\ - k and k € S, then there

isp’ =(T", H) € Q and (B, : n € "ANT) with 3, < &, such that:

(a) p<op

(b) T, N™ZA=T'N"2)\

(c) for every n € T'N ™\ we have: k = 2 and f[Sucr(7) is constantly = £,
or k > No and Rang(f[Sucy (1)) C B,.

Note that we may allow f to be a partial function; now if k = 2 then f[Suct ()
is defined on all or undefined on all. If K > g, f[Sucy/(n) may be a partial

function. Similarly in 5.4B.

Proof. For each 7 € T N"™\ we have: H(n) is a proper initial segment of a play
of the game 0*(S,~, D), and it lasts iHM moves. Player I could choose in his

i#(")_th move the cardinal & and the function f, : A — &,

JaQ) = £(1°(Q)) (which s < k) if9°(C) € T
() =0 if otherwise.

So, for some 3,, H(n) " (c, fy, By) is also a proper initial segment of a play of
O*(S, v, D) in which player II uses the strategy F. So there is p’ = (7", H’)
such that H'[(T'\ "A) = HI(T'\ ™X) and H'(n) = H(n)"((k, fy, By)) for
n € TN ™). (If is partial for kK = 2 we should do this twice: for definability and

for value.)

Us.4a
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We can easily show

5.4B Fact . Ifp= (T, H) € Q,m <w,and kK € Sand f : T — k, then for some
p1 = (Ty, Hy) € Q, p <o p1, and for every k < m we have [k = 2 & f[(T1N*N)
is constant] or [k > Ry & f[(T1 N*)) is bounded below k.

Proof. W.lo.g. m > {g(trp). We define by downward induction on n €
[€g(trT), m] the condition ™, p <o r"*1 <o r™ € Q, r™ satisfying the con-
clusion of 5.4B for pl” for every n € p of length n. For n = m this is triv-
ial. For n < m, use Fact 5.4A m — n times, for k € (n,m] for the function

nHL T NN k defined by: fot!(n) is 1y if
W)y eT™ N A= (k=2& f(¥) =7) V (k> Ro & f(v) <7)];

now r8(tP) js as required). Us.4B

Continuation of the proof of 5.4. By repeated application of 5.4B we can define
by induction on n, g, € Q such that go = p,, (see before 5.4A) and ¢, <o gn+1
and gy for n € T, £g(n) < n such that:
(a) BY = ay if this is well-defined, B =-1 otherwise (on a, see () above).
(b) when £ > Ro: £g(n) < n & n"(() € T4+ = Gptl > gre .o
whenever the later is well defined.
(c) when k= 2: £g(n) < n & n"(() € T¥+ = Gpt! = B (so both
are defined or both not defined).
Lastly let g, € Q be such that ¢, <g q, for n < w.

Now if k > No (is regular), we claim

qw ”_Q “I S U "<l>”
n<w
Clearly p <¢ g, € Q and |J,, ., 6%+ < K so this suffices. Why does this hold? If
not, then for some ¢’ and 8, ¢, < ¢' € Q, ¢' kg “T=6" and k > 8> |, 2.
Let n = tr(q’), son € T, and oy, is well defined, and > . But asn € [, ., T

and B%EM > BY = ay, and we get a contradiction.
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If k = 2, we note just that for some n € T'%, the number o, is well defined,

hence ﬁf;g(") is defined hence g is defined for £ € [tr(q.), £g(n)]- Os.4

Remark. We can rephrase much of this lemma as a partition theorem on trees

as in [RuSh:117].

5.5 Lemma . Suppose Q = (P;, Qi : i < A) is a k — Sp,-iteration, |P;| < A
for i < A\,v < k, each Q; has (S,v) — Pr{" and & regular and even successor,
S C {2} U {0 : 6 regular uncountable < k} and in V, D is a normal ultrafilter
on A (so A is a measurable cardinal). Then I-p, “player II wins 0*(S,v,D)”.

Proof: Let A = {u < X : (Vi < p)[|P| < u], p strongly inaccessible Mahlo
cardinal > K}.

Let G) C Py be generic over V and for a < A let G, = GN P,.

W.lo.g. player I choose P\-names of functions and cardinals in S. Now
we work in V and describe player II’s strategy there (see proof of XIII 1.9).
For each yu € A the forcing notion Py/P, has (S,7v) — Pry; hence, player II
has a winning strategy F(P\/G,) € V[G,] for the game from 2.1(1)(vi), so
F(P\/G,) is a P,-name, (F(P\/G,) : u) a Py-name. Let us describe a winning
strategy for player II (for the game 0*(S,~, D)).

So in the i-th move player I chooses §; € S and fi A — 0;. Player II
chooses in his i-th move not only ¢; < §; but also 4;, fi, 7i, ((P;‘ 1j<i):pe
A;) such that
(0) ~; is an ordinal < ),

D) j<i=y<m
(2) Aie D, AieV, A C
3) I “fi tA—0i, 8, €8

Ajand A5 =N

7<i J<5

(4) for p € A;, (p;‘ :J <2i+2)is a Py,-name of an initial segment of a play
as in (vi) of 2.1(1) for the forcing Py/G,, Phiv1 Frye, “film) = o if
6; =2, fi(n) <ok if 6; > Ry”, o/ a P,-name.
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In the i-th stage clearly A? def ﬂj<i AjNAisin D, and let = SUP; <Y
so 79 < X and choose v, € (72, A) such that §; is a P,;-name. For every
1€ A, > v, we can define P,-names p;, ph;,,, o such that:

(a) IFp, “(p} @ j < 2i+2)is an initial segment of a part as in (v) of 1.1(1)

for Py/P, in which player II uses his winning strategy F(P\/G,).

(b) Phiyy Fpayp, “filk) = o if § =2, fo(p) < of if §; > Ro”.

Now as ¢f is a P,-name of an ordinal < k < p, it is Pg(,)-name for

some Blu] < p (as P, satisfies the p-c.c. see 2.17(2)). By the normality of the
ultrafilter D, on some A} C A?, B[u] = B; for every p € A}. Let v; = v} + B..

Easily for each i < o, IFp, “{u € A; : ph;,; € Ga} # @ mod D”, so we
finish.

Us.5

5.5A Comment.
We can present it (and the proof of XIII 1.4) slightly differently.
In V let

W, = {(p* we A): AeD,p* = (g :j <),

IFp, “(pf :j <1)is a <o -increasing sequence in Px/P,”}

and let
w=Jw;

We define on W a relation < by:

(P! e Ay) < (P72 p € Ap) iff

A1 D Ay and p € Ay = ™! is an initial segment of 2

Clearly < is a partial order on W, and for p = (ﬁ;‘ 1j < i) let
Bp)={neA:{pf:j<i} CG\},

so clearly
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(a) IFp, “p' < p? implies B(p') 2 B(p?)”
(b) IFp, “B(p) #0 mod D’
(c) For every a < A, p € W; and Py-names § € S and f : A\ — @ there is q,
P <q € W;;; and a P, name 7 of an ordinal < 6 such that:
(x) if = (g" : p € A7), and p € A%, then ¢}, forces
@=2& f(p)=1) V (€ 2R & f(1) <1)

Now we can solve the second Abraham problem. (See also X 5.5.)

5.6 Conclusion . Suppose A is strongly inaccessible {y < A : u measurable } is
stationary, k = cf(k) < A a successor cardinal, st NRUCar C S C {2}U{6:0 <
k regular uncountable}. Then for some forcing notion P we have: |P| = )\, P
satisfies A-c.c. and (S,k) — Pr{" and IFp “A = |s|*" (so IFp, 2/"l = X): and for
every A C ), for some 6 < ), there is a countable set a C §, which is not in

V[A N 6]. We can also get suitable axiom (see 3.5).

Proof. Should be clear (see 3.4 Case I (and 5.4)). Os.6

5.6A Remark . 1) We can also prove (by the same forcing) the consistency
of “there is a normal filter on A to which {6 < A : cf(§) = N} belongs which
is precipitous” if in addition there is a normal ultrafilter on A concentrating on

measurables.

2) We can use (S, < k) — Pr;— forcing notions.

5.7 Discussion. Can we weaken the assumption cf(ry) > Rq in 5.4 to cf(y) > R
and/or allow k = R¢? The answer is yes if {2,x} C S.
As in 5.4A, 5.4B we can assume p = (T, H) satisfies
(x) for i € p, £g(n) > tr(p) and there are ¢ and a < & such that p" < ¢ € Q
and gl “6s =2 & T=aor k>N &7 <a” then plm on, satisfies this.
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Let for n € TP of length > £g(tr(p)):

Pp(n) def {A C X : for some initial segment y of the game continuing

HP?(n), we have d(y) C A}

(where d is from Definition 5.1).

Note that as 2 € S we have

(%) ACA= A€Py(m) V (A\\4) € Py(n)
(x*x) if A€ Ppy(n), AC B € A then B € Py(n).

We define a function rk, : T* = {n : tr(p) < n € T} — Ord U {o0} by
defining by induction on the ordinal ¢ when rk,(n) > ¢, the definition is splited
to cases.

Case A. ¢ limit

rkp(n) 2 ¢ iff (V€ < )[rky(n) 2 €.

Case B. (=1

rky(n) > 1 iff oy, is not well defined (and 7 € T*)

Case C.(=e+1>1

so & > 0; let tkp(n) > ¢ iff: tr(p) I n € TP and the set {8 < A : 1k, (n " (B)) > €}
belongs to Pp(n).

So rk(n) = 0 if ay, is well defined and rk(n) = ¢ > 0 if =(rk(n) > {( +1), ¢
minimal, and rk(n) = oo if tk(n) > ¢ for every ¢ > 1. Now the proof is splited:
Subcase C1. rky(tr(p)) = oo.

Clearly for n € T*, if rky(n) = oo then {8 < X : tky(n" (B)) = oo} € Pp(n).
Hence we can find g such that p < ¢ € @ such that:

tr(p) 9 n e T = rkp(n) = oo

There is 7 such that ¢ < r € Q and r forces a value to T, 50 Qyy(r) is well
defined but tr(p) < tr(r) € T" C T9 hence rky(tr(r)) = oo hence () is not
well defined, contradiction.

Subcase C2. rky(tr(p)) < oco.

So choose n € TY, tr(p) < n € TP such that a,, is not defined and, under those

restrictions, rky(n) is minimal.



§5. Abraham’s Second Problem — Iterating Changing Cofinality to w 731

Let
A={y<X:n"(7) € pand ay,~(,) is not defined}.

We can find ¢, pl"l <o ¢ and d(H%(n)) is included in A or disjoint to it.
In the second case we can easily get “a;, well defined”, contradiction. So
assume d(H%(n)) C A, and neccessarily there is v € d(H?(n)) such that
rk, (V) < rkp(n) by the definition of rank. We get easy contradiction.





