
XL Changing Cofinalities;
Equi-Consistency Results

§0. Introduction

We formulate a condition which is (strongly) preserved by revised countable

support iteration, implies HI is not collapsed, no real is added and is satisfied

e.g. by Namba forcing, and any Ki-complete forcing. So we can iterate forcing

notions collapsing ^2 but preserving HI up to some large cardinal.

Our aim is to improve the results of chapter of X to equi-consistency

results. If you want to add reals, look at Chapter XV. To prove the preservation

we use partition theorems and Δ-system theorems on tagged trees (3.5, 3.5A,

3.7 (and 4.3A)). Some of them are from Rubin and Shelah [RuSh:117], see

detailed history there on pages 47, 48 and more on mathematics see [RuSh:117],

[Sh:136] 2.4, 2.5 (pages 111 - 113).

§1. The Theorems

1.1 Discussion. In this chapter we list the demands that we would like our

condition to satisfy, and show how, having a condition satisfying these demands

we can prove our theorems. Then, in the following sections we will formulate

the condition and prove it satisfies all our demands. Lastly we shall prove some

more complicated theorems applying the condition.
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The Demands. We will have a condition for forcing notions such that:

(i) If P satisfies the condition then forcing with P does not collapse KI and,

moreover, (when CH holds) it does not add reals.

(ii) If P = RlimQ, where Q is an RCS iteration of forcing notions such that

each of them satisfies the condition then P satisfies it as well.

(RCS iteration was defined in X §1. In 1.9 we will recall its basic properties).

Really we do not get (ii) but a slightly different version (ii) , which is as

good for our purpose:

(ii)' Assume V satisfies: if Q — (P%,Qi '• i < δ) is an RCS iteration, Qu+i is

Levy collapse of 2'p2i+1l+l ll to KI (by countable conditions), each Q^i sat-

isfies the condition. Then P$, the revised limit of ζj, satisfies the condition

(see also 6.2A).

(iii) If Q = (Pi,Qi : i < K) is an RCS iteration as in (ii)', K is a strongly

inaccessible cardinal and \Pi\ < K for i < K then Pκ, the revised limit of

Q, satisfies the ft-c.c.

(iv) The condition is satisfied by the following forcing notions:

a. Namba forcing. (See 4.1, it adds a cofinal countable subset to α;2

without collapsing ω\.) We denote this forcing notion by Nm.

b. Any Ni-closed forcing notion.

c. P[5], where 5 is a stationary subset of ω^ such that α G 5 => cf (α) =

ω, and P[S] = {/ : / is an increasing and continuous function from

a + 1 into 5, for some a < ωι}. Note that P[S] shoots a closed copy

of ω\ into S hence collapses fc^

Remark. The condition on P is, by the terminology we shall use, essentially

the {λ < |P| : λ regular > Kι}-condition; more exactly, the definition of such

a notion is in 6.7, where (ii); is proved. Now (iv)α holds by 4.4, (iv)^ by 4.5,

(iv)c holds by 4.6, (i) by 3.2 and (iii) automatically follows from 6.3A(1) as in

X 5.3, see 1.13.
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Remark. The preservation theorem in this chapter is in a sense orthogonal to the

one of Chapter X, since here we are not interested in semiproperness of forcing

notions (e.g. Namba forcing may fail to be semiproper, but it always satisfies

the condition in this chapter). In chapter XV we will present a generalization

of the S-condition which also generalizes semiproperness.

Assume we have a condition satisfying all of these demands and let us get

to the proofs of our theorems.

1.2 Theorem. If "ZFC + G.C.H. -f there is a measurable cardinal" is consis-

tent then so is "ZFC -f G.C.H. 4- there is a normal precipitous filter D on ω^

such that Si G £>".

Remark.

(1) S 0

2 is{α<ω 2 :cf(α) = N0}.

(2) By [JMMP] the converse of this theorem is also true, so we have an

equiconsistency result.

(3) In fact if "ZFC + there is a measurable cardinal" is consistent then so

is "ZFC -f G.C.H. + there is a measurable cardinal", so we can delete

"G.C.H." from the hypothesis of our theorem.

Proof. We start with a model of ZFC -f G.C.H. with a measurable cardinal K.

We iterate, by the RCS iteration, forcing with Nm K many times. More exactly

let Q = (Pi,Qi : i < K) be an RCS iteration, Qu is Nm (see (iv)α above),

<22ΐ+ι = Levy(Nι,2lp2ί+1'). Let V denote our ground model, and P denote

RlimQ We can prove by induction \P^\ < κ; moreover if λ < K is strongly

inaccessible then i < X =>• |P;| < λ, and P\ has power λ.

By 1.1 (ii)', P satisfies the condition (remembering (iv)a-h(iv)b) hence by

l.l(i), forcing by P does not collapse NI nor add reals and so Vp t= CH. On

the other hand clearly \Pi\ > i, hence Qn+i collapses \i\ to NI, hence all λ,

HI < λ < K are collapsed by P. By l.l(iii) (or X 5.3(1)) P satisfies the K-chain

condition hence K, is not collapsed. So clearly ̂  — Nj', H^ = K and Vp

satisfies G.C.H.
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Let F be a normal ^-complete ultrafilter over K (in V), then by (iii) and

X.6.5 (see references there), F generates a normal precipitous filter on K in Vp.

Let A be {λ < K : X is inaccessible} (in V) then A € F so we are done with

the proof once we show that λ G A implies λ has cofinality ω in V[P\. As Nm

satisfies our condition (by demand (iv)a ) and λ is inaccessible in V we know

that the iteration up to stage λ satisfies the λ-c.c. (by demand (iii), or by using

X5.3(l) provided that we restrict A to Mahlo cardinals). Hence after forcing

with P\ we have λ = ^2 and at the next step in the iteration Nm shoots a

cofinal ω-sequence into λ, a sequence that exemplifies cf(λ) = N0 in Vp', see

4.1A. Dι.2

1.3 Theorem. If "ZFC + G.C.H. + there is a Mahlo cardinal" is consistent

then so is "ZFC -f G.C.H. 4- for every stationary S C S$ there is a closed copy

of ωi included in it".

Remark. Earlier Van-Liere has shown the converse and is a variant of a problem

of Friedman, see on this X 7.0.

For the clarity of the exposition we prove here a weaker theorem and

postpone the proof of the theorem as stated above to Sect. 7 of this chapter.

1.4 Theorem. If "ZFC + G.C.H. + there is a weakly compact cardinal" is

consistent then so is "ZFC + G.C.H. -h for every stationary S C S$ there is a

closed copy of ω\ included in it".

Proof. The proof is very much like the proof of Theorem 7.3 of X; the only

difference is that now we do not have to demand that there will be measurable

cardinals below the weakly compact cardinal. We give here only an outline

of the proof. Let /ς be weakly compact, w.l.o.g. V = L, so by Jensen's work

there is (Aa : a < K, a inaccessible), Aa = (Aa,e : e < nα), a diamond

sequence satisfying: Aa,e C H(a), and for every finite sequence A of subsets of

H(κ), and Π} sentence φ such that (H(κ), G, A) N= ψ there is some inaccessible

λ such that A\H(\) = Aχ (i.e. nλ = lg(A) and Λλ,e = A. Π H(λ)) and
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(ίf(λ), G,^4λ) f= V7- Now we define an RCS iteration Q = (Pi,Qi : i < K). Let

Qa = P[§a] (as it was defined in 1.1 (iv)c) whenever Aa — (Pa,Pa,Sa), a

strongly inaccessible and pa G Pα and pa\[-pa

 uSa is a stationary subset of SQ

(= {δ < X : cf(δ) — HO})", and in all other cases we force with the usual Levy

Hi-closed conditions for collapsing 2'P°!!~I~IQ:L

In the model we get after the forcing K — H2 and every stationary subset of

50 includes a closed copy of ω\. (For checking the details note that our forcing

notion, and any initial segment of it, satisfies our condition thus no reals are

added, HI is not collapsed and in any λ-stage for inaccessible λ, the initial

segment of the forcing satisfies the λ-c.c. so at that stage λ = ω%, when we use

P[S\] we are forcing with P[S] for 5 which is a stationary subset of SQ). DI.S

1.4A Remark. If K is only a Mahlo cardinal then this proof suffices if we just

want "for every 5 C 5 ,̂ 5 or 50 \ 5 contains a closed copy of ω\ " or even if

we want "if h is a pressing-down function on SQ, then for some α, h~l({a})

contains a closed copy of ω\". See more in 7.2.

1.5 Theorem. If "ZFC + G.C.H. -f there is an inaccessible cardinal" is

consistent then so is "ZFC 4- G.C.H. + there is no subset of HI such that

all α -sequences of ^2 are constructible from it".

Remark.

(1) This theorem answers a question of Uri Abraham who has also proved its

converse.

(2) Again we can omit G.C.H. from the hypothesis.

Proof. Let K be inaccessible and let Q — (Pi,Qi : i < K) be an RCS iteration,

Q2i = (Nm)yP2ί, Q2i+ι = Levy(H2,2lp 2*l+l*l). In the resulting model K = H2

and as the forcing satisfies the tt-c.c. any subset of HI is a member of a model

obtained by some proper initial segment of our iteration, but the ω-sequence

added to ω^ by the next Nm forcing does not belong to this model so it is not

constructible from this subset of HI. DI.S
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1.6 Theorem. If the existence of a Mahlo cardinal is consistent with ZFC

then so is "G.C.H. + for every subset A of N2 there is some ordinal δ such that

= NO but δ is a regular cardinal in L[A Π ί]".

Remark. Again this is an answer to a question of Uri Abraham and again he

has shown that the converse of the theorem is true as well by using the square

on λ.

Proof. Let K be Mahlo (in a model V of ZFC + G.C.H.), w.l.o.g. V = L and

iterate as in the proof of 1.5. Let A be a subset of N2 in the resulting model.

As the forcing notion satisfies the ft-c.c., we can find a closed and unbounded

C C N2 such that for δ e C we have A Π 5 G V[P$] where P$ is the Λlirn of

ί'th initial segment of our iteration. As K is Mahlo, {λ < K, : X is inaccessible}

is stationary in it so there is some inaccessible λ in C. Such λ exemplifies our

claim. P\ satisfies the λ-c.c., so in V[Pχ] we have λ = K2 hence Nm at the

λ-step of the iteration adds a cofinal ω sequence into λ, so in V[PΛ], which is

our model, cf(λ) - N0 But L[A] C V[Pχ] as λ G C (and Pδ «? P = PΛ). Dι.6

One more answer to a question from Uri Abraham's dissertation is to get V

such that if A C α>2 and K2 — N2 then L[-A] has > K2 reals. We had noted that

for the statement to hold in V, it is enough to have: L[{δ < Krf : cfv S = NO}]

has at least H^ reals; more explicitly, it is enough to produce a model in which

there are K2 distinct reals r, such that for some λ G CarL we have r(£) = 0 iff

cf((λ+^)L) = HO (i.e., the cofinality is in V, \+i is computed in L). Then the

answer below was obtained by Shai Ben-David using the same method as of

1.5, 1.6:

1.7 Theorem. [Ben David] The consistency of "ZFC + there exists an inacces-

sible cardinal" is equivalent with the consistency with ZFC of the statement:

"There is no cardinal preserving extension of the universe in which there is a

set A C N2 such that L[A] satisfies C.H. and
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However, this proof relies on a preliminary version of this chapter in

which forcing notions adding reals were permitted, which unfortunately seems

doubtful and was abandoned. The framework given in 1.1, is not enough since

in (iv) no forcing notions adding reals appear, but we can use XV §3 instead

(i.e. for unboundedly many i, Qi is Cohen forcing)

Remark. In fact there is no class of V which is a model of ZFC, having the

same NI and ^2 and satisfying C.H.

1.8 Remark. The partition theorems presented later can be slightly general-

ized to monotone families (instead of ideals) as done in the first version of this

book. But this is irrelevant to our main purpose.

We now recall the main properties of RCS iterations. Whenever it is

convenient, we will assume that all partial orders under consideration are

complete Boolean algebras i.e. are (B \ {0}, >).

1.9 Definition. We say that a sequence (Pa,Qβ,\β : a < δ,β < δ) is an RCS

iteration of length δ (δ not necessarily limit ordinal), if:

(1) For all /?, 1/3 is a dense embedding from Pβ * Qβ into Pβ+\, or into

the complete Boolean algebra generated by P/3+ι [We usually do not

mention Ίβ and identify Pβ * Qβ with Pβ+ι}

(2) For all α < β < δ, Pα <£ Pβ. [We assume that for all p <Ξ Pβ, the

projection of p to Pa exists, and we write it as p\a. We write Pa,β

for the quotient forcing Pβ/Pa or Pβ/Ga in VPa or t^[Gα], and let

p H-> p\[a,β) be the obvious map in VPa.}

(3) Whenever α < δ is a limit ordinal, then Pa = R\im(Pβ : β < a).

Also, if we write Q — (Pa,Qa : α < 5), we automatically define PS =

RlimQ (if δ is a limit) or P§ = PS-I * Qδ-ι (if 5 is a successor), respectively.

We say that (Pa : α < 5} is an RCS iteration iff (Pa,Qa '• OL < δ) is one,
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We will not define here what Rlim Q actually is. A possible definition is in

chapter X. Here we will only collect some properties of RCS iterations which

we will use. First, we need a definition:

1.10 Definition. If g is a P^-name we say that g is prompt, if Ih "g < J", and

for all ordinals ξ < 5, all conditions q e P$:

whenever q Ih "g = ξ", then already q\(ξ + 1) Ih "g = ξ".

(where gf(ί + l) = q)

Note that

1.10 A Observation. 1) For a P^-name g we have:

g is prompt iff Ih "g < <P , and for all ξ < δ and all p £ P$:

if p Ih "g < ξ" , then pK£ + 1) Ih "g < Γ -

Also the inverse implication holds, of course.

2) If S is a set of prompt P^-names, then also Sup(5) is a prompt P^-name and

min(S') is a prompt P$-name.

Proof. Easy.

1.11 Definition. If g is a prompt P^-name, then

(a) Pa d= {pePδ: (Vg > p) [if q Ih "g = ξ", then q\(ξ + 1) lhPδ «p G G5"]}

(b) for an atomic Q-condition p, pfg is naturally defined: for G& C Pδ generic

over V, (p\a)[Gδ] is p[G«] if ζp[Gδ] < g[Gδ] and 0 otherwise

(c) for p G Ptf, let pίg = {r\g : r e p}
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It may be more illustrative to consider the following dense subset:

1.11 A Remark.

(a) For any prompt P^-name a we have PQ, <£> P$. Moreover, if \\-Pδ "gi <

g2",thenPg ι «Pg2.

(b) If ά is the canonical name of α, then Pa = P?.

1.12 Properties of RCS iterations. Let Q = (Pα,Qα : α < δ) be an RCS

iteration with RCS limit Pδ. Then

(0) Assume α(*) < 5, g is a prompt P^^-name of an ordinal > α(*), X is

an antichain of Pα(*)+ι such that p G I => p Ihp5 "g = α(*)" and for each

p G T, /3p is a prompt P^-name of an ordinal > α(*). T/ien for some prompt

Ptf-name 7 we have lhpδ " if p G J Π Gp5 then 7 = /3p and if J Π Gpδ = 0

then 7 = g" .

(1) Whenever (gn : n < α;} is a sequence of prompt P^-names, satisfying

I^P6 "Qίn < 9Vι+ι" f°r a^ n? an(l "~P5 "^ω = supngn", then P^ω is the

inverse limit of (PgKn : n < α;). So in particular: whenever (pn : n < ω) is a

sequence of conditions in P^, and pn G Panι and pn+ι Γ^n — Pn f°r all n,

then there is p G Pttu, such that for all n, p\an — Pn Moreover if p0 G P 0̂

and pn+ι is a Pgτι-name of a member of Pgn+1 such that pn+ι \Qίn = Pn

then there is p as above.

(2) Let α(*) < (5 be non-limit, Gα(s|t) C Pα(*) generic over V, and (α^ : ζ < β)

an increasing continuous sequence of ordinals in V[Gα(*)], αo = «(*),

α/3 = 5, each αζ+i a successor ordinal.

In V[GaM], we define P^ - Pαc/Gα(*), Q;

c - Paζ+1/Gaζ (where Gαζ

is the Po^-name of the generic subset of P^, which essentially means a

generic subset of Paζ over V extending Gα(*) (Qς is still a P^-name)

Q' = (Pζ,Qζ - C < β)- Then in V[Ga(*)], Q' is an RCS iteration with

limit P'β.
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(3) If δ is limit, then for all p G P$,

ll-p, "P ^GδifiVa<δ [p\a G Gδ]
n

(4) If δ is a limit, then for all p G PS we have a countable set {Cfc(p) ' k < ω}

of prompt names with Ih "ζk(p) < ί" for all fc such that letting ζ* =

suP{C^(p) •' A; < ω}, we have ζ* is an almost prompt P^-name and p G Pζ*.

(5) If J is a strongly inaccessible cardinal and for every a < δ we have |Pα| < δ

then PS is the direct limit of Q that is (J Pα is a dense sunset of Pδ.
a<δ

1.13 More properties of RCS iterations. As corollaries of (4) and (5)

above we get:

(1) Let Q be an RCS iteration as above, and assume

Ihp, «cf(ί) > No"

Then

(a) Uα<<5 -̂ α *s (essentially) a dense subset of Pδ that is for every p G P«5

for some ς G U Pα we have g Ih "p G Qpδ" (so P^ is the direct limit
a<δ

of (Pa : α < ί))

(b) No new α -sequences of ordinals are added in stage 5, i.e., whenever

p G P<5, r a P^-name and p lhpδ "r : α; —>• Ord", tfeen there is an α < <5,

a Pα-name r* and a condition </ > p such that <? Ih "r = r*".

(2) // {Pα, Qα : « < K) is an RCS iteration, AC a strongly inaccessible cardinal,

Pκ does not collapse NI, and for all α < K we have |Pα| < «, ίΛen PΛ

satisfies the tt-chain condition.

Proo/. (la) Let p G P$, C* as in 1.12(4), and let q > p decide the value of C*,

say q \\-pδ "C* = ξ". Then q\(ξ + 1) G Pξ+i is essentially stronger than p.

(Ib) Not hard.

(2) Easy, since we take direct limits on the stationary set S" — {δ < X :

cf(ί) - Ki}, by
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§2. The Condition

In this section we get to the heart of this chapter, the definition of our condition

for forcing notions. We need some preliminary definitions.

2.1 Definition. A tagged tree (or an ideal tagged tree) is a pair (Γ, I) such

that:

(A) T is a tree i.e., a nonempty set of finite sequences of ordinals such that if

η G T then any initial segment of η belongs to T; here with no maximal

nodes if not said otherwise. T is partially ordered by initial segments, i.e.,

77 < v iff 77 is an initial segment of v.

(B) I is a function with domain including T such that for every η G T : 1(77)

( = 1^) is an ideal of subsets of some set called the domain of 1^, and

Sucτ(r?) = {y : v is an immediate successor of η in Γ} C Dom(lr7).

(C) For every η G T we have Sucτ(^) ^ 0 and above each η G Γ there is some

v G T such that Sucτ(^) $. \v.

2.1 A Convention. For any tagged tree (T, I) we can define |t,

|t — {{α : 77" (α) G A} : A G 1^}; we sometimes, in an abuse of notation, do

not distinguish between I and |t; e.g. if |t is constantly /*, we write /* instead

of I. Sometimes we also write Sucτ(η) for {a : η~ (a) e T}.

2.2 Definition, η will be called a splitting point of (T, I) if Sucτ(η) $ \η (just

like v in (3) above). Let sp(Γ, I) be the set of splitting points of (Γ, I).

We call (T, I) normal if η G Γ \ sp(T, I) => |Sucτ(τ?)| = 1 (we may forget

to demand this).

2.3 Definition. We now define orders between tagged trees:

(a) (T2,I2) < (Tι,lι) if TI C T2 and whenever η G TI is a splitting point

of TI then SucTl(ry) φ \z(η) and li^JfSucT^) = l2(^)ΓSucTl(^) (where

I\A = {B : B C A and B G /}) and Όom(I\A) = A.
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(b) (Γ2,I2) <* (ϊι,lι) iff (Γ2,I2) < (ϊι,lι) and every η £ TI which is a

splitting point of T2 is a splitting point of TI as well.

2.3A Notation. We omit li and denote a tagged tree by TI whenever \η —

{A C Sucτ(η) : \A\ < |Sucτ(r?)| if |Sucτ(r7)| > N0, and A = 0 if |SucΓ(η)| < N0}

for every η £ T.

2.4 Definition.

(1) For a set I of ideals, a tagged tree (T, I) is an I-tree if for every η £ T, 1^ £ I

(up to an isomorphism) or |Sucτ(r/)| = 1.

(2) For a set S of regular cardinals, T is called an 5-tree if for some I, (T, I)

is an Is-tagged tree where Is = {{A C X : \A\ < X} : X e S}

2.5 Definition.

(1) For a tree T, limT is the set of all ω-sequences of ordinals, such that every

finite initial segment of them is a member of T. The set lim T is also called

the set of "branches" of T.

(2) A subset J of a tree T is a front if r?, v £ J implies none of them is an

initial segment of the other, and every η £ limT has an initial segment

which is a member of J.

2.6 Main Definition. Let S be a set of regular cardinals; we say that a forcing

notion P satisfies the S'-condition if there is a function F with values of the

"right" forms, so that for every 5-tree T:

if f is a function / : Γ —> P satisfying

(a) v < η implies f ( v ) <p f ( η ) and

(b) there are fronts Jn(n < ω) (of T) such that \Jn<ωJn = sp(T,/),

every member of Jn+ι has a proper initial segment belonging to Jn

and η £ Jn implies

(Sucτ(τ7), {/(*/) : v £ Sucτ(r/))) - F(η,w[η], (/(i/) : v < 17))
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(w[η] is defined below) and Sucτ(^) = {η* (&) : a < X} for some

λ G S (for simplicity).

then for every Γ^ Γ <* T1" there is some p G P such that p \\-P "3η G limTf

such that Vfc < ω we have f ( η \ k ) G GP" where Gp is the P-name of the generic

subset of P; note that in general η is not from V, i.e. it may be a branch which

forcing by P adds.

2.6A Explanation. First for the notation: w[η] — {k < tg(rj) : η\k G

U«ω4}
Now for the meaning: One can regard the situation as a kind of a game. There

are two players. In ω many steps they define a tree T and an increasing function

/ : T — > P. In the n'th move, player I defines an initial segment Tn of the tree

T (so Tn will be the set of nodes up to some member of the front Jn) and a

function /n : Tn — > P which is increasing such that ra < n => fm C fn (see

below). Player II end-extends the tree Tn to a tree T'n by adding successors

to each leaf (=node without successor) in Tn and extends fn to a function

f'n on T'n. Then player I plays Γn+ι (an end extension of T'n with no infinite

branches), and a function /n+ι Q /£), etc. Finally, T = \JnTn, f = \Jnfn

Player II wins a play if for all T f: if T <* Γ f, then there is p G P such that

p Ihp "(3r? G limT^ίV/ς < ω)f(η\k) G GP". P satisfies the 5-condition if there

is a winning strategy F which at each point η depends only on what happened

so far on the nodes below η.

However F, the "winning strategy" of player II, has only partial memory.

Remark. It does not matter if we require \Jn Jn = sp(T, /) or \Jn Jn C sp(Γ, /),

or equivalently whether we allow player I to play any end extension Tn of T!rι_l

or only end extensions with no new splitting points.

Remark. (1) If P is a dense subset of Q, then P has the I-condition (see 2.7

below) iff Q has it.

(2) If P <£ Q, and Q has the I-condition, then also P has the I-condition.
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The proof of (2) uses the fact that if: / : T — > P, then the existence of a

branch in {η G T : f ( η ) G Gp} is absolute between the universes Vp and VQ .

2.6B Convention.

(1) In Definition 2.6, the value F gives to Sucτ(η) is w.l.o.g. {η Λ (α) : α < λ}

for some λ, and we do not strictly distinguish between λ and Sucτ(η).

(2) The domain of F consists of triples of the form (77, it;, /), where η is a finite

sequence of ordinals, w C Dom(?7), and / is an increasing function from

{η\k : k < ig(η)} into P. The value F(η,w,f) has two components: The

first is of the form {η~ (i) i G ^4} for some set A of ordinals (by (1),

without loss of generality A = \A\) and the second component is a family

of elements of P above /(?/), indexed by the first component.

When we define such a function F, we usually call the first component

"Sucτ(^/)" (here "T" is just a label, not an actual variable), and we write the

second component as f\Sucτ(η) or (/(^) : v G Sucτ(?7)} (i.e. we use the same

variable "/" that appears in the input of F) .

2.7 Definition. For a set I of ideals we define similarly when does a forcing

notion P satisfies the I-condition (the only difference is dealing with I-trees

instead of ^-trees), so now

{Sucτ(ry), !„, {/(i/) : v G Sucτ(τ7))) - F(η,w[n], f\{v : v < η})

and Sucτ(η) = Dom(lT7). We allow ourselves to omit Sucτ(^) when it is well

understood. (We can let the function depend on \v(y < 77) too).

2.7A Remark. If / is restriction closed (i.e. I el, A C Dom(/), A φ I then

I\A G I at least for some B C A, B $. /+ and J G I we have I\B = J) then we

can weaken the demand to

S\ιcτ(η) C Dom(l,), Sucr(τ?) φ /,)•
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§3. The Preservation Properties
Guaranteed by the 5-Condition

3.1 Definition.

(1) An ideal / is λ-complete if any union of less than λ members of / is still a

member of /.

(2) A tagged tree (T, I) is λ-complete if for each η e T the ideal 1̂  is λ-

complete.

(3) A family I of ideals is λ-complete if each / € I is λ-complete.

3.2 Theorem. (CH) If P is a forcing notion satisfying the I-condition for an

^-complete I then forcing with P does not add reals.

As an immediate conclusion we get:

3.3 Theorem. (CH) If P is a forcing notion satisfying the 5-condition for a

set S of regular cardinals greater than NI then forcing with P does not add

reals.

The main tool for the proof of the theorem is the combinatorial Lemma 3.5

from [RuSh:117], for which we need a preliminary definition. More on such

theorems and history see Rubin and Shelah [RuSh ll?].

3.4 Definition. We define a topology on HmT (for any tree T) by defining

for each η G T the set T[η] = {y : η<y or v<_η} and letting {limT^j : η G T}

generate the family of open subsets of limT (so each such set lim(T[77]) is also

closed and is called basic open, and an open subset is an arbitrary union of

basic open sets). The family of Borel sets is the σ-algebra generated by the

open sets.

3.5 Lemma. 1) If (Γ, I) is a λ+-complete tree and H is a function from limT

to λ such that for every a < X the set H~l({a}) is a Borel subset of limT (in

the topology that was defined in Definition 3.4) then there is a tagged subtree

(Tt, I), (T, I) <* (Tf, I) (see 2.3(b)) such that H is constant on li
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2) In part (1) we can let H be multivalued, i.e. assume lim(Γ) is \J Ha, each
α<λ

Ha is a Borel subset of lim(T). If (T, I) is λ+-complete then there is (T^, I) such

that (T, I) <* (Γt,I) and for some a we have lim(Γt) C Ha.

Proof. 1) First note that ifTi C T is such that: () G TI; for every η G TI if η is a

splitting point of (T, I) then Suc^ (η) = Sucτ(η) and if η is not a splitting point

of T then |SucTl(r7)| = 1, then (T, I) <* (Tι,l|Tι), so w.l.o.g. we can assume

that in T every point is either a splitting point or it has only one immediate

extension.

For each a < \ let us define a game Dα: in the first move player I chooses

the node r/o in the tree such that t>g(ηo) = 0, player II responds by choosing

a proper subset A0 of Sucτ(ηo) such that AQ G 1 ,̂ in the n-th move player I

chooses an immediate extension of ηn-ι,ηn such that ηn φ An-ι or ηn-ι is not

a splitting point of (T, I), and player II responds by choosing An G 1 .̂

Player I wins if for the infinite branch η defined by 770, τ/ι, ?72? we have

H(η) = α. By the assumption of the lemma this is a Borel game so by Martin's

Theorem, [Mr75] one of the players has a winning strategy. We claim that

there is some α < λ for which player I has a winning strategy in the game Dα.

Assume otherwise, i.e., for every α < λ player II has a winning strategy Fa.

We construct an infinite branch inductively: let 770 = (), 770 G T. At stage n

let An be (Jα<λ Fα(r/0, r/i, . , r/n-i); now if τ?n_ι is a splitting point (of (T, I))

then \ηn_1 is λ+-complete and each Fa(ηQ,... ,ηn-ι) is a member of it, hence

An G \ηn_ιy so clearly Sucτ(τ7n_ι) g An.

If 77n_ι is not a splitting point it has only one immediate successor and let

it by ηn, otherwise since Suc(^n_ι) φ Iηn_^ An G 7^^, we have (Suc(τ7n_ι) \

An) 7^ 0 so we choose ηn G (Sucτ(τ?n-ι) \ An). Let η = Un<u; ̂  ̂ e the infinite

branch that we define by our construction and let α(*) = #(77). Now in the

game Dα(#) if player I will choose ηn at stage n (for all n) and player II will

play by Fα(*), player I will win although player II has used his winning strategy

•Pα(*)> contradiction.

So there must be α(*) such that player I has a winning strategy #α(*) f°Γ

Da(*) and let Γt be the subtree of T defined by {η : (η |Ό, . . . , η \(n - 1)) are the
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first n moves of player I in a play in which he plays according to Ha^}. Now

for η G T1" Π sp(Γ), let A = Sucτt(r/). Then A £ Iη, otherwise player II could

have played it as An. So Γ <* T+, and T* is as required.

2) Same proof replacing H~l({a}) by Ha so H(η) = a by η G Ha. DS.S

3.5A Corollary. If (Γ, I) is a λ+-complete tree, and g is a function from Γ into

λ, and λH° = λ, then there is a tagged subtree (T1",/), (Γ,/) <* (T^I) such

that g\T^ depends only on the length of its argument, i.e. for some function

0t : w -> λ, for all η G Γt, g(η) = gi(tg(η)). D3.5Λ

Proof of Theorem 3.2. Let r be a name of a real in V[P] and PQ e P and

we will find a condition p G P forcing r to be equal to a real from V and

po < P. Let /, (Γ, I) be such that Rang(l) C I, / : T -> P and be defined as

follows: we define by induction on fc, for a sequence η of ordinals of length /c,

the truth value of η G T, /(rj), and then 1^. We let (} G T, /((}) = p0 For η G T

of even length 2/c, we use F from the definition of the I-condition, to define

Sucτ(r?),!»,, f\Sucτ(η). For η G Γ of length 2fc + 1, we let Suc^ίT) = {rf (0)},

and we define /(τy Λ (0)) such that it will be an extension of the value of / on

its predecessor and such that f(η) forces a value for r(fc) (the fc'th place of the

real that r names).

We continue by defining H : limΓ —» Rv (as we assume C.H. clearly

|RV | = H1 ? so it is just like a function from Γ to α i) by letting H(η)(k) =

the value forced by f(η\(2k + 1)) for r(fe). By Lemma 3.5 there is (T^ I),

(Γ, I) <* (Tt, I) on which H is constant, now let p be the forcing condition

that by Definition 2.6 forces "3/7 G HmΓ1^ such that V k [ f ( η \ k ) G GP]". This p

forces r to equal the constant value of H on T* which is a member of V, and

p l h M p o € G p M . Π3.2

3.6 Theorem. If P is a forcing notion satisfying the 5-condition for a set of

regular cardinals 5 and NI φ S then forcing by P does not collapse HI.
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Remark. 1) Note that this is stronger than 3.3, as we do not assume C.H. and

that we allow K0 G S. The proof is quite similar to the proof of Theorem 3.2

but here we use a somewhat different combinatorial lemma. Note also that we

shall not use this theorem;

2) We can generalize 3.2 and 3.6 to I-condition when I is ^2-complete, striaght-

forwardly, see 3.8.

3.7 Lemma. Let (T, I) be such that for some regular uncountable λ, for every

η G T either 1̂  is λ+-complete or |Sucτ(^)| < λ, then for every H : T —> λ

satisfying {77 G lim T : H(η) < a] is a Borel subset of lim T for any successor

α < λ, there is α < λ and (T', I), (T, I) <* (T', I) such that for all η e T' we

have H(ή) < α, and for all η in T", if |Sucτ(r?)| < λ, then Sucτ>(η) = Sucτ(η)

Proof of the lemma. We define for each successor α < λ a game ό)α very much

like the way we did it for proving Lemma 3.5, the only difference being that if

|Sucτ(τ?n)| < λ player II chooses An such that \Sucτ(ηn) \ An\ = 1 (otherwise

player II chooses An G \ηn just like in 3.3); player I wins if for every n < ω

H(ηn) < a. Here again the game Dα is determined for every α (here simply

because if player II wins a play he does so at some finite stage). Again we claim

that there should be at least one α for which player I has a winning strategy.

Assume the contrary and let Fa be player's II winning strategy for each α < λ.

We construct a subtree T* deciding by induction on the height of the members

of T which of them are the members of T*. For η that is already in T*, if

|Sucτ(?7)| < λ we include all the members of Sucτ(η) in T*; otherwise 1^ is

λ+-complete so Sucτ(r?) \ \Ja<\ Fa(η\Q,η\l,... ,η) is not empty, so we pick

one extension of η from this set and the rest of Sucτ(η) will not be in T*. Now

T* is a tree of height ω branching to less than λ successors at each point, so as

λ is regular uncountable |Γ*| < λ and there is some α* < λ such that η G Γ*

implies H(η) < α*. Regarding the game DQ*, there is a play of it in which

player I chooses all along the way members of Γ* and player II plays according

to Fα*, of course player I wins this game contradicting the assumption that

Fα* is a winning strategy for player II.
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We define T" just like we did in the proof of Lemma 3.5, collecting all the

initial segments of plays of player I in the game ό)Q* when he plays according

to his winning strategy Ha*. Da.γ

Proof of Theorem 3.6. Just like in the proof of 3.2, having a name τ of a function

in V[P] mapping ω into ω\ we take an S-tree T, define a function h : T —> P

using the F in odd stages and in even stages forcing more and more values for

r. Using 3.7 with λ = NI, we get a condition p G P forcing the function that τ

names to be bounded below ωi, so we are done. Ds.e

Similarly we can prove:

3.8 Theorem. If P satisfies the I-condition, and λ is regular uncountable and

(V/ € I) [| \JI\ < λ or / is λ+-complete] then lhP "cf(λ) > N0" If (V/ e I) [/ is

λ+-complete] and λ = λH° then P adds no new ω-sequence from λ.

3.8 Warning. The statement "in VP,Q satisfies the 5-condition" may be

interpreted as "in VP,Q satisfies the I-condition" in two ways:

(a) I - {{A e Vp : A C \,VP \= \A\ < X} : X G 5}

(b) I - {{A G V : A C λ, V N \A\ < λ} : λ G 5}

Note that / € I is identified with the ideal it generates.

However the two interpretations are equivalent if P satisfies the λ-chain

condition (or is λ+-complete) for each λ G 5 (and even weaker conditions) [and

this will be the case in all our applications.]

§4. Forcing Notions Satisfying the 5-Condition

4.1 Definition. Namba forcing Nm is the set {T : T is a tagged {N2}-tree,

such that for every η G T, for some z/, η < v G T and |Sucτ(^)| = ^2} with the

order T < T' iff T D T' (see 2.4); so smaller trees carry more information and

we identify T and (Γ,I^), I™ is the ideal of bounded subsets of α;2. We will
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write h or hNm for the generic branch added by Nm, i.e. lh"ή : ω —> ω%n, and

for every p in the generic filter, tτ(p) = trunk(p) C /ι", where the trunk of T

is η G T of maximal length such that v € T & ^g(^) < ^g(r?) =Φ i/ < η. We can

restrict ourselves to normal members: T such that η G T => |Suc^(?7)| £ {1, ^2}-

For / an ideal of ω^ Nm(/) is defined similarly (not used in this chapter).

4.1 A Claim. Nm changes the cofinality of H2 to N0 (/^vm exemplifies this).

Remark. In X 4.4 (4) the variant of Namba forcing Nm' is the set of all trees of

height ω such that each tree has a node, the trunk such that below its level the

tree-order is linear and above it each point has ^2 many immediate successors,

the order is inversed inclusion. Namba introduces Nm in [Nm]. Both forcing

notions add a cofinal ω-sequence to ω2 (Nm by 4.1A, Nm' by X 4.7(2)) without

collapsing KI, and (if CH holds) neither of them adds reals (Nm by 4.4, Nm'

by 4.7(1), (3)), but they are not the same.

4.2 Claim. (Magidor and Shelah). Assume CH. If h[h'\ is a Namba sequence

[Namba'-sequence] then in V[h] we cannot find a Namba'-sequence over F, nor

can we in V[h'\ find a Namba-sequence over V.

Proof. Trivially we can in Nm and Nm' restrict ourselves to conditions which

are trees consisting of strictly increasing finite sequences of ordinals. First we

look in V[ft'], let h' be the Nm'-name of the Namba' sequence, and let / be a

Nm'-name of an increasing function from ω to ω^ Let T° G Nm' and suppose

Γ° \\-Nm. "Sup Rang(/) - ω^". Now it is easy to find Γ1 in Nm', Γ1 > Γ°, such

that for each m, n < ω the truth values of "f(n) = Λ'(m)", and "/(n) < Λ'(m)"

are determined by Γ1 (i.e., forced), (possible by X 4.7(1), as forcing by Nm'

does not add reals.)

Let A = {k < ω : for some m, T1 forces that for every i < k we

have f ( i ) < h'(rn) < /(&)}, so A is an infinite subset of <j, in V, and let

A = {ki : ί < α;}, &o < kι < &2 < ... and there are (πi£ : i < ω) such that

πii < mt+ι < ω and T1 Ih "f(i) < Λ'(ra/) < /(*/) for i < k£ and ί < ω". Now
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(*) T1 IhNm' " f°r every F G V, an increasing function from ω<2 to α;2, there

is 4 < ω such that for every ί > 4 + 3, /(**) > F(/(fc^_2))".

Why? This is because for every F G V (as above, without loss of generality

strictly increasing) and T2 > Γ1 (in Nm') if IQ is the length of the trunk of T2

then for some T3 > Γ2;

(**) T3 lhNm, " if I > 4> + 3 then f(kι) > F(/(fo_2))"

Why? Simply choose Γ3 - {η G Γ2 : if £g(τj) > £ + 1 > 4 then τj(£) >

F(η(l - 1))}, clearly Γ3 G Nn^T3 > Γ2 and Γ3 satisfies (**).

So (*) holds, but it exemplifies / is not a Nm-sequence, i.e., T1 Il-Nm/ "/

is not a Namba-sequence". [Why? Because ll~Nm " for some function F G V

from α;2 to ω2 for arbitrarily large I < ω we have Λ(fc^) < F(/ι(/^_2))"

as if T G Nm and for simplicity each η G T is strictly increasing we let

F : ω<2 —> ω2 be such that F(α) = min{5 : if η G T Π ω>δ then for some

i/, η <3 z/ G Γ Π ω>5}, and let Γ' - {η G Γ: if t < £g(τ?) and τ?|t G sp(Γ) and

\{m < i : r^trn G sp(Γ)}| G U{[*iOi,fciOi+5) : * < ^} then r/(£) < F(r/(£- 1))},

and T' forces the failure.] So we have proved one half of 4.2.

Now let us prove the second assertion in the claim, i.e., let / be a Nm-name

of an increasing function from ω to u;2, and we shall prove that it is forced, not

to be generic for Nm' so assume ll~Nm " U f(n) — ωϊ" - Clearly this is enough.
m<ω ~

Let Γ G Nm, then we can find Γ° > Γ, T° G Nm (normal) such that for

every splitting point η of Γ0 and v = ηΛ (a) G Γ°:

1) for some nv, Γ^ \\-Nrn "nv = Min{£ : f ( ί ) > MaxRang(z/)},

2) for some 7,, Tft II- "/(n.) = 7,"

3) if pv is the trunk of Γ^ then (Vβ)[py ~ (β) e T° -+ β > 7^].

If nv is not defined let nv = ω (this occurs if v $_ sp(T).

Now by 3.5A there is T1, Γ° <* T1 (in Nm) and m>(£ < ω) such that

nη = nlg(η) for every 77 G Γ1. Let {̂  : i < ω} be a list of {£ < ω : n^+ι ^ cj},

such that ^ < ^+ι, so 77 G T1, ίg(ry) = ̂  implies 77 is a splitting point of T1.

Note that if η G T1, ίί+1 G Dom(r7), then Γ^ Ih uη(ίi) < f(nέi) < r/(£i+1)".

Let Γ2 = {77 G Γ1 : if I2i < tg(η), then η(l2i) = Min{α : (τy^2i) Λ (α) <E Γ1},

F(α) - Min{7 : (Vfc < α;) (Vι/ G T2 Π ω>a)(3p G fc7)(ι/> G Γ2)}. So F is
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nondecreasing and Ίfη] Ih "/(n/ai) < 77(^+1) < F(η(ί2i-ι)) <

for i G (0,ω).

Let 4 d= {ni2i :0<i<ω}.

Then Γ2 G Nm,T2 > Γ1, and F G V is a function from ω2toω2,AeV

an infinite subset of ω and

Γ2 Ih^ "for every n G A,/(n) < F(f(n - 1))".

This shows that (Γ2 forces) / is not a Nm'-sequence. U4.2

4.3 Claim.

(1) Nm', Nm do not satisfy the 2H°-chain condition.

(2) It is consistent with ZFC that 2*° = NI, 2Nl arbitrarily large and Nm, Nm'

satisfies the fr^-c.c.

4.3A Remark. The proof of (2) is inspired by the proof of Baumgartner of the

consistency of: ZFC + 2^° arbitrarily large + "there is no set of KS subsets of KI

with pairwise countable intersection" . Thinking a minute the close connection

between the problems should be apparent. The other ingredient is the Δ-system

theorem on trees from Rubin and Shelah (again see [RuSh:117]).

Note that Nm, Nm7 necessarily colapse ^3 (see [Sh:g, VII 4.9]) so 4.3(2) is best

possible.

Proof. (I) For every real η (i.e. η G ω2), let Tη = {v : v a finite sequence of

ordinals < ω2, and n < tg(v) => z'(n) + 77(71) is an even ordinal}.

Clearly Tη G Nm and Tη G Nm', and the Γ^'s are pairwise incompatible

(in Nm and in Nm') and there are 2N° such T^'s.

(2) Let V satisfy G.C.H. K > K2 and P = {/ : / a countable function

from K to {0, 1}} ordered by inclusion. Suppose in VP,Q is Nm or Nm', and

it does not satisfy the N^chain condition. So there is PQ G P and P-names

Ti(i < K4) such that p0 lhP "each Ti belongs to Q (for i < N4) and they are

pairwise incompatible in Q, Q is Nm or Nm'". Without loss of generality pQ Ih "

if Q = Nm', then every T< has trunk {)".
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For each i we can now find a tree of conditions pl

η deciding higher and

higher splitting points of TV Specifically, we will define A1 C ω>(ω>2), pl

η, v^ for

77 G A1 such that

(a) ()eA\p\}>Po

(b) pi, Ihp "η G TV' (and pj, G P of course).

(c) pl

η Ihp "i/J is a splitting point of Ti,ry^ι/*, and: if p < ι/* is a splitting

point of Ti then for some ί < lg(η) we have p = ̂ i '̂

(d) 77 G -A*, p G -A*, r; < p implies i/^ < i/*

(e) i/* Λ (α) € A* iff for some q G P,p^ < q and ς lhP "i/* Λ (α) G Γ^" .

(f) iΐρ = vl

η~ (α) G Ai then p^ < pj,, and pl

p lhP "p € ΪY' [this actually follows

from (b) and (d) and η < z/*].

(g) if Q is Nm' then for every i and r/ G A1, ̂  = 77.

This is easily done, and let T? = {η\t : I < £g(η),η € A*}, and let pfa G T?)

be pj,,^ G -Aj, where 77 < i/, and (Vp)[r/ < p <3 i^ — > p ^ -A*]. By the Δ-

system theorem on trees from [RuSh:117, Th.4.12, p. 76] there is T/ satisfying

Tf <* T;1, and ς* (r/ G ϊ?) such that:

(α) p^ < 4 hence p0 < g* (and ς* G P).

(/?) if ry is a splitting point of T/, then 77 Λ (o), r/ Λ (β) G i;1 & α ^ /3 implies

<α) ) Π Dθm(4 ^ (β) ) = Dθlϊl(4) aild ̂  ̂  4 Λ (α) > ̂  ~ 4 ^ («

(7) if η is not a splitting point of T/, (77 G T/) then for the unique α such that

rf (α) G Tl, we have ς^ . (α> = g* .

Now by the usual Δ-system theorem there are i < j < R* such that

T/ = Tj and for every η G T/, ςj, ̂  are compatible. Let



§4. Forcing Notions Satisfying the ^-Condition 555

Clearly T is a P-name of a subset of ω>(ωz), closed under initial segments,

T C Ti, TJ, so it suffices to prove

q* Ih "Ti <* T & T, <* T & Γ G 9"

which is easy. U4.3

4.4 Lemma. Nm satisfies the 5-condition for any 5 such that ^2 G 5.

Proof. To show our claim holds we have to describe F and then show that F

does its work. At a point η where we use F, F has to determine Sucτ(?7), and

/(r/) for any immediate successor ηf of η (see 2.6B for the notation). At such

a point f ( η ) is already known and is a condition in Nm. Let vη be a point

of minimal height in f ( η ) such that v^ has ^2 many immediate successors (in

/(r?)). Let Sucτ(ry) be {r/Λ (α) : ̂  Λ (α) G /(r?)} and for each r?Λ (α) in Sucτ(r/)

let /(τ/Λ (Q:)) be the subtree of f ( ή ) consisting of members of f ( η ) which are

comparable with ι/η

 Λ (α) (in the tree order of /(??)). When we want to check

that our F does the work; we are given an 5-tree T, fronts Jn and a function

/ : T — > Nm as above in 2.6 and we are given a subtree T', Γ <* T". We have

to find a condition r G Nm so that r Ih "there exists an infinite η such that for

every n < ω,η\n G T' and f(η\n) G G". We produce r by passing from T1 to

a subtree T11 > T' such that every point in T" either belongs to some front Jn

(and thus fits the demands of F and in particular has ^2 many successors) and

is a splitting point, or it has exactly one immediate successor. Now r is the tree

of all the initial segments of trunks of f ( η ) for some η G T" n (\Jn<ω Jn)\ that

is:

r = {p : 3η G ( (J Jn) Π Γ" such that /?<^}

where vη is from the definition of f ( η ) according to F. By the construction, if

f?ι, τ?2 are <l-incomparable, then so are J^, i/^, hence by the definition of Nm,

r is a member of Nm. As any p G Nm forces that "3η G lim(p) such that for all

n the subtree defined by η\n belongs to G", it is not hard to see that r is as

required. Q4.4
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4.4A Claim. If /* is an N2-complete ideal on ω2 to which every singleton

belongs and /* G I then Nm satisfies the I-condition.

Proof. Same, and really follows (see more generally in XV §4). EU.4Λ

4.5 Lemma. Any ωi-closed forcing notion satisfies any 5-condition.

Proof. This is trivial with no "real" demands on F, when we are in the relevant

situation with an S-tree Γ', Γ <* T' and / : Γ -» P we just pick r G P such

that r > Un<ω f(1Ί\n} f°Γ some Ή £ limT", such r exists by the completeness of

P and it forces that any smaller condition is a member of GP, so we are done.

Π4.5

4.5A Remark. The same is true for strategically Ki-closed forcing notions

(games of length ω -f 1 suffice).

4.6 Lemma. Let W be a stationary subset of S$ — {α < ω% : cf (α) = ω} and

let P[W] = {h : h is an increasing and continuous function from a + 1 into W

for some α < ωi} ordered by inclusion, Λen P[W] satisfies the 5-condition for

any 5 such that N2 £ S.

Proof. We define the F and then show why it works. Each F(η) will determine

Sucτ(η) to be (ry Λ (α) : α < u^} and f ( η ~ (a)) a condition above /(r/) such

that Max(Rang(/(τ7Λ(α}))) > α (note that by the definition of P[W] each

function h which belongs to P[W] attains its maximum: max(Rang(/ι)) =

/ι(max(Dom(/ι))). Let us denote Max(Rang(/(r/))) by aη. For proving that F

works, assume T is an 5-tree, Jn fronts, / : Γ —> P[W] meets our requirements

for F (see 2.6) and Γ <* T'. Let CΊ be a closed unbounded subset of α;2

such that if ί G CΊ and η e T' and ry G ω>5 then α^ < 5. Let C2 be a

closed unbounded subset of ω<2 such that for δ G 62,77 G T' Π (Un<α> ̂ )

satisfying η e ω>δ and α < 5 there is always some β such that a < β < δ

and 77Λ {/?) € T1'. Now for some η G Γ; we pick 5 G CΊ Π (72 Π W such that

α^ < δ and construct an <d-increasing sequence (ηn : n < ω} in T7 such that

linin^^α^ = δ (this is possible as cf (δ) = ω using the definitions of CΊ and
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C2). Let r = Un<ωf(ηn) U {(Supn<ωDom(/(r;n)), ί )}, clearly r e P[W] and

forces each f(ηn) to belong to the generic G so we are done. U4.6

4. 6 A Lemma. Let W — (Wi : ί < ωι) be a sequence of stationary subsets of

50 = {α < ω2 : cf (α) = ω} and let the forcing notion P[W] be defined by

P[W] = {/ :/ is an increasing and continuous function from

a -f 1 into WQ for some α; < ω\ , and /ι satisfies

Mi < a : h(ϊ) G WJ

(ordered by inclusion), then P[W] satisfies the 5-condition for any S such that

Proof. We define the F as in the previous lemma: Each F(η) will determine

Sucτ(?7) to be {η~ (a) : a < ω^} and f(η~(a)} a condition above /(r/) such

that Max(Rang(/(/7 Λ (α))) > α. Let us write aη for Max(Dom/(τ7)) and 5̂  for

Max(Rang(/(r?))).

Now assume T is an 5-tree, and / : T -> P[W] obeys F, and let Γ <* T' .

By Lemma 3.5 with λ = NI (not λ - 2*°) we can find a subtree T", T' <* T"

and an α < ω\ such that whenever 770 < 771 . . . are elements of T", then

ω α^ = α. Now as in the proof of 4.6 let 5 G Wtt be such that

(Vry G <ω£ Π Γ;/)(Vi < δ)(3j < δ)[aη <δ,η~ (j) G T" and i < aη- {j} < δ}.

Again we can construct a sequence r/o < η\ < . . . in Γ;/ such that

HmSupRang(r7n) = 5.

Let r = \Jn<ω f(ηn) U {(α, δ)}, then r G P[W] and r forces each f(ηn) to

belong to the generic G. Π4.6A

4.7 Lemma. Suppose

(a) P satisfies the I0-condition.
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(b) For every 70 G IQ there is I\ G Ii such that \JAeIl A C (J^e/o ̂  anc*

Then P satisfies the Ii -condition.

Proof. Trivial. Π4.7

§5. Finite Composition

5.1 Theorem. Let QQ satisfies the I0-condition and let Qι be a Qo-name of

a forcing notion such that the weakest condition of QQ forces it to satisfy the

Ii-condition. Let

(a) μ be the first regular cardinal strictly greater than the cardinality of the

domain of each member of I0

(b) λ be such that λ = \<μ > \QQ\

(c) assume Ihg0 "Ii is λ+-complete"

(d) let I be I0 U lι

Then P = QQ * Q\ satisfies the I-condition.

Remark. Note that EI G V (we will not gain much by letting Ii G VQo.)

Proof. Once again we have to define the function F and then prove it does

its work. We will need a combinatorial lemma and its proof will conclude

the proof of the theorem. For f ( η ) G P we denote by /°(τ?) its Qo-part and

by fl(η) the Qi-part (it is a Qo-name of a condition in Qi), let F° be the

function exemplifying Qo satisfies the Io-condition and -F1 be the Qo-name of

the function exemplifying Q\ satisfies the Ii-condition.

We divide the definition of the F to even and odd stages. In even stages i.e.,

when \w\ is even, we will refer to the QQ part of P and use F°. More precisely, let

(B, lη, (TV, : v G B)) = F^(η, (f°(η\t) : ί < ίg(η))) where wl = {i G w : \ίΓ(w\

even}. Now let Sucτ(η) = B and for ι/ G B, fl(v) = fl(η), /°(ι/) = rv. In

odd stages we essentially do the same for the Qi-part but we need a little
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modification; Fl is just a Qo-name of a function and we may not even know

the domain of the ideal 1̂  it give (= the Sucτ(^)), so first we extend f°(η)

to a condition q'Q satisfying f°(ή) < q'Q G Qo and forcing a specific value for

\η (hence for Sucτ(η)) as defined by F1, and then proceed like in the Q0 part

(of course we change each f°(η) there to fl(ή) and so on) and we let the QQ

part /°(τ/) for each η' € Sucτ(η) be the q'Q we have picked (the Qι part will

be defined by Fl(η, (fl(η\ί : ί < ίg(η)))) (if we want to allow F to have just

Sucτ(η) ^ 0 mod 1^, act as in the proof 6.2).

Before we can show that this definition works we need a definition and a

combinatorial lemma.

5.2 Definition. For a subset A of T we define by induction on the length

of η, resτ(τ?,A) for each η e T. Let resτ({),A) = {). Assume resτ(τ7,A)

is already defined and we define τesτ(ηΛ(θί),A) for all members r/ Λ (α) of

Sucτ(^). If η G A then resτO?Λ(α), A) = resτ(r/, A) Λ (α) and if η £ A then

resτ(rf (α),,4) = τesτ(η,A)~(0). Thus res(T,A) d= {τesτ(η,A) : η € T} is

a tree obtained by projecting, i.e., gluing together all members of Sucτ (?7)

whenever η φ A.

5.3 Lemma. Let λ, μ be uncountable cardinals satisfying λ<μ = λ and let (T, I)

be a tree in which for each η G T either |Sucτ(τy)| < μ or 1(77) is λ+-complete.

Then for every function H : T -> λ there exist T', (T, I) <* (T', I) such that

(letting A = {η G T : |Sucτ(τ?)| < μ}) for η,η' G T': resτ(ry, A) = resτ(r/,A)

implies: H(η) = H(η') and η € A iff η' G A, and if η € T' Π A, then

Sucτ(τ7) = Sucτv(?7). (Note that the lemma is also true for λ = μ = NO).

5.4 Continuation of the proof 0/5.1. Using the lemma let us prove the theorem.

So we are given (Γ, I),/, Jn for n < ω as in 2.6 for our F, and consider

/° : T —> Qo as a function to λ, (remember |Q0| < λ).

We let A = {η : \Sucτ(η)\ < μ}) By the lemma for every (T', I) satisfying

(Γ,l) <* (Γ',l) there is a subtree T",(T',I) <* (T",l) such that for every

77, η' £ T" we have: f°(η) = /0(^0) an(^ η £ AiSη' £ A whenever resτ(?7, A) =



560 XL Changing Cofinalities; Equi-Consistency Results

resτ(ηf, A). Let T* = {resT(r/, A) : η G T"}, it is an I0-tree (since the "even"

fronts of the original tree now become splitting points) and /° induces a

function /° from it to Q0 i.e., v = ΐesτ(η,A) implies fQ(v) = f°(η) (by the

conclusion of 5.3, /° is well defined).

By the definition of F for even w\'s and the assumption that F° exemplify the

Io-condition we can find an r0 G Qo and a Qo-name η of a member of limT*

such that r0 Ihg0 "for every k < ω we have f°(η\k) G GO" where GO is the ζ)0-

name for the generic subset of Qo" Let T+ d= {p G T" : res(p, A) = res(r/, A)};

this is a Qo-uame of an Iχ-tree and by the definition of F in the odd stages (i.e.

Fw when \w\ is odd) there are a Qo-name Γi °f a member of Q\ and a Qo * Qi-

name v of an u -branch of T+ such that TO Ihg0 [r*ι H-QJ " v G limT~l~ is such

that fl(v\k) G GI for every k < ω"] where Qι is the name of the generic set

for Qι and v is forced to be a name in Qi of a member of limT+. The condition

in P = Qo * Qi which witnesses that the I-condition holds is of course (r0,rι),

since (r0,ri> lh "" £ limT, and for all fc G α;, /°(z/tfc) = /0(res(ί/ΓA:), A) G G0,

a n d / ( ι / t f e ) € G . D5.ι

We now pay our debt and prove Lemma 5.3; the proof is in the spirit of the

proofs of the previous combinatorial Lemmas 3.3 and 3.5.

5.5. Proof of Lemma 5.3 Without loss of generality η~(a) G T => a <

|Sucτ(^)| We will prove the lemma by induction on μ. We start with a successor

μ, in such cases there is a cardinal K such that μ = κ+ and for each η G T we

have resτ(η,A) G ω>K. Let {(ha,ga) : α < λ} be a list of all the pairs (h,g)

such that g is a function from ω> K to {0,1} and h is in a function from ω>κ

to λ (by the assumption λ<μ = λ, hence there are at most λ many such pairs).

For each α < λ we define a game Dα just like in the proof of 3.7, except that

now player I wins if for the η G limT that they constructed along the play

we have: η\k G A iff ga(τesτ(η\k, A)) = 0 and H(η\k) = ha(τesτ(η\k,A)) for

every k < ω.

If for every α < λ player II had a winning strategy we could build a subtree

T* by induction on the height of η G T taking into T* all members of Sucτ(η)
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when η G A, and otherwise picking as the only member of SUCT* (η) an element

of Sucτ(η) that is not in any of the Aa's that are defined for player II at that

stage by his winning strategy for Da (this is possible as we assume that η φ A

implies Iη is λ+-complete).

The map η ι-» res(?7, A) is 1-1 on T*, so there is a pair (hao,gao) in our

list such that for each η G T* we have H(η) = hao(ΐesτ(η, A)) and gaoM — 0

iff η G A. Now we define a play in the game 3ao: player I plays choosing only

members of T* while II plays according to his winning strategy for 3ao , but in

such a play, player I surely wins and we get the desired contradiction.

So there exists some β < X for which player II has no winning strategy

in dp, but the game is determined hence player I has a winning strategy for

dβ . Now let T1 be the tree of all sequences η that can appear in a play where

player I used this strategy. T1 satisfies the requirements (similar to 3.5). This

finishes the case where μ is a successor.

If μ is singular, then λ < \<μ+ = Xμ < (\<»)c{» = λcf^ < X<» = λ, so we can

without loss of generality replace μ by μ+ . If μ is a regular limit cardinal (or

just NO < cf(μ) < μ), then we first use Lemma 3.7 to find T', (Γ, I) <* (T', I),

and μ' < μ such that for every η e T': 1^ is λ+ complete or |Sucτ(r/)| < μ',

and then use the induction hypothesis on μ' . Ds.3

5.6 Corollary to 5.3. Assume that 1 = λo < μo < λi < μi < . . . are

cardinals satisfying λ££j = λfc+i for all k. Let (T,I) be a tagged tree, and

assume T — (Jk A^ where for all η G Ak'

\η\ < μk and Iη is λ^" - complete.

Let fk :Γ-+ λfc, for fe < ω.

Then there is a tree Γ* such that (Γ, I) <* (Γ*, I) and for all fc and all η, v

inT*:

(*) if res(τ7, (J AJ = res(ι/, \J AJ, thenfk(η) = Λ(^)
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Proof. As λo = 1 clearly TO = Γ will satisfy the condition for k = 0. We apply

Lemma 5.3 to T0 (with λ = λi, μ = μo, / = /i, A = ^40) to get a subtree

TI satisfying the condition also for k = 1. We continue by induction. In the

/c-th step, we apply Lemma 5.3 to T/- with λ = λfc+i, μ = μ&, / =

Finally, let T* = ΓVZV Clearly Γ* satisfies (*). Note that () G Γ*, and if

77 G T* Π Afc, then by the conclusion of lemma 5.3,

so Sucτ*(τ7) = SucTfc(r?). Hence Γ* is a tree and (T0, 1) <* (T*, I). D5>6

§6. Preservation of the E-Condition by Iteration

6.1 Definition. We say that Q = (Pi,Qi : i < α) is suitable for (Ii> j , λ^ j , μi}J :

(i, j) G VF*) provided that the following hold:

(0) W* C {{z, j) : i < j < α,i is not strongly inaccessible } and {{i 4- 1, j) :

i + 1 < j < \Jβ<a β + 1} £ ̂ * (we can use some variants, but there is no need)

(1) Q is a RCS iteration.

(2) Pij = Pj/Pi satisfies the ^-condition for ( i , j ) G W*.

(3) for every / G lij the set \J I is a uncountable cardinal, / is λ^-complete,

\ij < \JI < μiji μij regular, and \Pi\ < λ^j, and λ^ > ^2 (note that

\i,j is from V and not VPί , and i < \ij < μij).

(4) if i(0) < i(l) < i(2) < α, <i(0),t(l)> G W*, <i(l),i(2)) G W* then

(5) for every / G Ii(2),i(3) and ϊ(0) < i(l) < i(2) < i(3),/ is λΐQx

6.2 Lemma. If Q = (P n, Qn '• n < ω) is suitable for (I^ , Xij.μij : i < j < ω),

and I = Un<ω ^n,n+ι ^en ^ω = RlimQ satisfies the I-condition.

Proof. Let I» - Iί)i+ι, λ» - λM+ι, μ^ = μM+ι, note that Pί>ί+1 = Q i? so Q^

satisfies the Ii-condition, \P^\ < \i,μi < \i+ι = λi+ι<μί < μi+i
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For each i < ω, let Fi be a P^-name of a function witnessing that Qi

satisfies the E^-condition. We will act as in the proof of Theorem 5.1, but now

we have count ably many F^s rather than two. We can a priori partition the

tasks, so let ω = \Ji<ω Bi, the Bi pairwise disjoint, each Bi infinite.

Now we shall define the function F which exemplifies uPω satisfies the

I-condition" . So we have to define F(η,w,f\{v : v < 77}), (see Definition 2.6).

Let i be the unique i < ω such that \w\ G Ai, let w* — {ί G w : \ίΓ\w\ G AI},

and let (B, /, (τv : v G JB)> - Ffaw*, (f(η\ί)(i) : i < ίg(η))), (so lhPi "JB =

Dom(/)")

We choose qη G P$, such that (f(ή)\ϊ) < qη and for some λ^, qη Ihp. "\B\ =

B — Xη" and qη Ihp. "/ is 1̂  which belongs to I, in fact to I* = I^+i (by

the natural isomorphism /η)", (see 2.6B). Let pη = f ( η ) \(i -f l,α;). We choose

Sucτ(η) = {η"(a) : a < \Jlη}, and define: F(η,w,(f(v\t) : ί < ίg(η)}) =

(λrp \η, (ΐv UpηUqη : v G Suc(η))), [really we should replace rv by the function

{(i,Γι/)}> and \ by {η~ (i) : i < λη} but we shall ignore such problems].

We now have to prove that Pω, I, and F satisfy Definition 2.6. So let (Γ, I),

Jk(k < ω) and / : Γ -> P be as in Definition 2.6 and (T, I) <* (Γ°, I) and we

have to find a p G P, such that p Ih "3r/ G lirnΓ0 such that (Vfc < ω)f(η\k) G

GPW".

First define Λ : Γ° -* Pfc by / fe(ry) - f(η)\k. Let Afc - {ry G Γ° :

1^ G Ifc}. By 5.6 we can find a tree Γ*, (Γ°, I) <* (Γ*, I), such that whenever

77, v G Γ* and res(?y, U^ ̂ ) = res(ι/, (J^jt ^i), then ^(77) = fk(v). Let Tfc* =

res(T*, Ui<fc+1 A,). Define /* : T,* -, Q* by fliresfa, U<<fc+ι ̂ )) - Λ(τ?)(*).

By induction on i = 0,1,2... we can now define Pj+i-names j]i and

conditions p(ι) € <5» such that (p(0), . . . ,p(i)) lhpi+1 "T/J e limT/ and (W <

ω) /ί*(5iΓθ € G i " and for all i < j,

= res(|?i-r/, (J

Finally we can find a Pω-name η such that for all £ \\-pω "for all large enough i

η\l = ηi\P\ It is now clear that \\-Pω "ry G limΓ*, and W f ( η \ ί ) G GPJ . D6.2
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6.2A Remark. Note that here as well in the next theorem we need that the

lij's are well separated (compare 6.1(4), (5)) i.e. some have small underlying

sets, others have large completeness coefficients (e.g. in the previous theorem

we required that ideals 1$ are on sets C μ^, and ideals in Ii+ι had to be \i+ι-

complete, λί+ι > μ^.To satisfy these requirements we will in applications only

work with iterations in which in every odd step some large enough cardinal is

collapsed, see l.l(ii)'.

6.3 Lemma.

(1) If Q = (Pa,Qa : a < ωι) is suitable for {Iα,/3,λα)/3,μα>/3 : a < β < ωι,a

non-limit), and I = U{^«,/3 ' OL < β < ω\ and a non-limit} then P = Pωι —

limQ satisfies the I-condition.

(2) We can replace ω\ by any δ such that K0 < cfv<5 < Min{λttιjg : (α, β) e W*}.

Proof. 1) We will first prove this assuming CH (which is enough for all appli-

cations in this chapter), and then indicate how we can get rid of this extra

assumption. The proof consists of two parts: In part A we define the function

F, and in part B we show that it satisfies the requirements from definition 2.6.

Part A: To each p G P we have associated a countable set {ζk(p) : k < ω} of

prompt names, such that letting C*(p) = sup{£fc(p) : k < ω}, we have p e Pζ*

(see 1.12(4)). Let \Ji<ω Bi be the set of odd natural numbers > 2, the Bi infinite

pairwise disjoint, be such that (W G Bi)(i + 1 < f).

Let F^β be Pα-name of a function exemplifying "Pa,β satisfies the !«,/?-

condition."

Let us explain our strategy; we cannot deal with all pairs (α,/3) along a

branch as the branch is countable, and α, β range over an uncountable set. So

along each branch η we try to determine the Q-named ordinals, ζ m ( f ( η \ f y ) , so

we get a potential bound α* to larger and larger parts of each f(η\l) and we

shall use the functions .FQ*jα* , where α* = (Jαn

We shall define now the function F which exemplifies "P satisfies the I-

condition," so we have to define F ( η , w , ( f ( η \ £ ) : ί < ίg(ry)». If \w\ £ U»B<



§6. Preservation of the I-Condition by Iteration 565

define it as any ( I , ( f ( η ~ ( ξ ) ) : ξ G B)) such that /(r?Λ{£)) forces a value to

Now let \w\ G |Jiβί

Naturally we shall use one of the Fα j jg, but we have to determine which one.

By the way we are defining F, we can assume that for k < ig(η), f(η\(k + 1))

determines (i.e. forces a value to) ζm(f(η\£)) for I, m < fc, so we can define the

following:

Let αo(τ ) = 0, and for 0 < ft < £g(τ?) let

4- k : £,m < k}

Note that for any finite or infinite sequence v\ if η < v, k < £g(τ?), then

<*k(n) = αfcM

Let i be such that \w\ G B^. Then i + 1 < \w < £g(η), so

(*) OL = oti(η) β = αi+ι(r/)

are well defined.

Let w* = {k G tϋ : \w Π fc| G Bi}, and let

<BJ, (r, : v € JB» - Fttϊ/3 (τy,ιι;;, (/(7/Wf[α,/3) : € G ̂  U

(recall α and /? should have subscripts η and iu, which we suppress for notational

simplicity) .

Now choose qη > f(η)\a such that qη € Pa and such that qη \\-po

"J is isomorphic to I,,, 1̂  G Iα>^", and let F(η,w,(f(ι/\e) : I < ί g ( η ) ) ) =

(IryX^UΓi/ - v = η~(a) and α < Dom(lr7)}}.

Port 5. Now we have to prove that P,I and F satisfy Definition 2.6. So let

(Γ, I), Jfc (k < ω) and / be as in Definition 2.6 for the F chosen above, and

(T, I) <* (T^, I) and we have to find the required p. To each branch η of T^

we have associated a sequence (0^(77) : k < ω) of countable ordinals. Since we

assume CH we also have ft^° = NI, so by Lemma 3. 5 A we can find T" such
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that (Tt, I) <* (T", I), and for some fixed sequence (a*(k) : k < ω) we have

α*(fc) - ak(η) for all η G lim(T").

Now we continue as in the proof of 6.2. We let At — {η : Iη G Iα*C£),α*0£+i)}

and /€(r/) - f ( η ) \a*(ί). By 5.6 we can find a tree Γ*, (T", I) <* (Γ*, I) such

that for all 77, ι / inT*:

If res(r?,LUfc^) = res(ι/,U,<fc^), then /(r/)fα*(fc) - /(ι/)Γα*(fe).

We let Tfc* be {resτ*faU*<fc^) ^ e ^*> and /£ : T]£ -> Pα*( fc),α*(fc+i) is

defined by

ft(τ<»r.(η, \J At)) = p iff /fo)Γ[α*(fc),α*(fc + 1)) = p
^<fc

Now note that ( Jn : n G BQ) is a system of fronts as in 2.6, and at each

η G Jn, if n G B0, then the function F(η, {k : η\k G (Jm ^m}, {/M ' v < η))

used the function Fα. ( 0 ) lα*(i)(r/,{fc : η\k G IJmeBo J^>' </Mt[a*(0)» «*(!))))

(but Fa*(0),a*(i) is Fα*(o),α*(i) as α*(°) = 0)> so we can find pi G Pα*(i)> sucn

that for some Pα*(i)-name 770

and

Continuing by induction, we define pn G Pα*(n+i) satisfying pnfα*(m +

1) — Pm for m < n, such that for some Pα*(n_j_1)-name ηn

Pn ^Pα*(»+i) "5n e limΓ* and 7*^^) e ^pα*(rι+1) for every I < ω and

θΐm<n,<ω,ηrn = resτ*

So p = \Jn<ωpn € Pα*, where α* = Un

α*(n)' ancl t*1616 is a Pα*-

name η such that p lhpβ«, "η G limΓ* C limΓ", and for every n,m < ω,

resτ*(??ίn,U€<n^) = rymfm" (this determines 77 uniquely as T* C T"). So

p lhpa, "for every m,ί < ω, f(η\t)\a*(m) G QPa^ hence, by the definition of

RCS, as α* is limit: p lhPβ. "for every £ < ω, f(η\t)\a* G GPQ Φ".

We have here a problem: A priori, f(η\l) is not necessarily in Pα*, (only

in Pωι) so f(η\ί)\a* G G^p^* seems to be weaker than the required "f(η\f) G
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<?PWI". However, we have f(η\(m + ί+l)\ [7 \\~PΊ

 ίίζm(f(η\^)) = 7" for

some 7, so 7 < αm+^+2(^) = α*(ra 4- £ + 2) < a*

Since also p H-pβ# "f(η\(m + ί + 2)) fy G Gpβ# ", we conclude that

for every £,m < ω.

So p essentially forces Wf(η\t) G Pα* Hence clearly p lhpωι "f(η\t) G
/nr )5
&Pωι

If we do not have CH, we modify the proof as follows: let g : ω — > ω be such that

g(m) < m and (Vra)(3°°ra)[0(m) = n]. Next, for each α < ωι let (pf : £ < ω)

list all finite sequences of the form ((ik,βk) '• k < fc*}, A> = 0, /?& < /?&+! < α,

*fc <ύ+ι <α; such that if p^ < p% then ̂  < ^2 Let p^ - ((ik(a,£),βk(a,i)) :

k < fc*(α,^)), second, we write the odd natural numbers > 2 as a doubly

indexed union Ui m Sΐ>m of infinite disjoint sets (instead of Ui^) Then,

instead of (*), we define p[tu,?7] as p" when |tϋ| € B^i where oti(η) was

defined in Part A and so define i = iw, I = £w. Next, we define by induction on

\w\ when (^,77) is nice: it is nice when k * ( a i ( η ) , f ) = 0 or for k < fc*(α^(?7),£)

wehaveik(ai(η),l) G w, and p[w Π ik(α,i),η\ik(α,£)} = p"i(η] \(k -f 1).

Now if (w,η) is not nice we do nothing, if it is nice, we let k = k[w,η] be

the k = g(k*(αi(η),ί)). We let

α = α[w,η] = βik(αi(η)t£)(oti(η),ΐ)

β = β[w,η] = βik+lιw,η](αi(η),e)

tϋ* = iϋ*[iϋ,r/] = {i : (α[w Γιi,η\i],β[w Γιi,η\i\) = (α,/3) and for some m < fc*,

i — *m(αΐ(^))^)} Then we define the function F as before.

In part B, when we check that this construction works, we can only find

a tree T" with the property that for some α*, for all branches η in T",

\imk-+ωαk(η) = α* (using 3.5). Let (α*(fc) : k < ω) be a sequence of ordinals

converging to α*. Now we can shrink T", so as to use only ^a*(n),a:*(n+i)

(n < ω), i.e. let us define by induction on n (stipulating J'_ι = {{)} J'n =
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{Π V £ Un<u, J™> and letting w = [t < ig(η) : η\t G \Jm<ω Jm} for some

fe* and z0 < . . . ΐ f c * _ ι from tu, l\i<k*it G J^ and p[ty,r/] = ((^,α*(£) : £ <

fc*}Λ {(^g?7,Q:*(A:*))} (it is a system of fronts, i.e., every branch of T" meets each

Jn infinitely often) and let Γ°, (T"', I) < (T°, I) be such that:

if ry G Γ°,ry G Un

 Jn then (Vα)(ry Λ (α> G T" ^ rf (a) G T°)

if η G T°,r7 £ Un Jn then (3!α)(τf (α) G T°).

Now we continue as before.

(2) Left to the reader (essentially the same proof). Dβ.a

6.3A Corollary. (1) For P = RlimQ as in the previous lemma, \Ja<ω Pa is

(essentially) a dense subset of P i.e. for every p G Pωι there are q and α such

that pfα < ςr G Pα, ς Ih "p G GPωι" (in fact r G p ^> q Ih "C(r) < α").

(2) For Q = (Pi, Qi : i < δ) as in the previous lemma (so δ — ω\ or just

cf(ί) = α i), ί/α is a P^-name of an ω-sequence of ordinals (P^ = RlimQ, of

course) p G PS then for some ί < 5, q G Pj, and /3 a P^-name of an α -sequence

of ordinals, Pδ \= "p < ςf", and q lhP, "α - /j".

Proof: By 1.13 (or directly from the proof of 6.3). ΠΘ.SA

6.4 Lemma. Suppose Q — (Pa,Qa : a < K) is suitable for (Iα,^,λαj)g,μα)/3 :

( i , j ) G W*, ), /ς is strongly inaccessible |P^| + λίj<7 + μ^j -f | U/| < K for every

{α,/3> G VF*, / G Iα,/3 and let I = LU./jW Γ/ιen P« = Rlim(Q) satisfies the

I-condition.

Proof. This is quite easy, because Pκ = \Ja<KPa- So let Faβ be a Pα-name

of a witness to "Pα,0 = Pβ/Pa satisfies the Iαj/3-condition", for α < /? < K,

α non-limit, and let α; = Uα<α; ̂ iϊ ^^e ̂ 's are infinite, pairwise disjoint and

n G -Ai+i => n > 1 + i (so /9(fc) is an ordinal < /ς, not just a name). Now we

shall define the function F, so we should define

F(η,w, (f(η\f) ' I < ί g ( η ) ) ) (See Definition 2.6). Let i be such that \w G A i }

w* = {I G w : |ιt; Π ί\ G A.} and let β(0) = 0, /?(!) - 1 and for k > 1,

fc < £g(r/), let /3(fc) - Min{7 -f Jk : ί < k =» /(r/fί) G P7}. Now we shall
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use JF>(<)ι/9(<+1), so let FW),W+i)(r?,ΐ/Λ ( f ( η \ f ) \ \ β ( ί ) , β ( i 4- 1) :l < lg(η))) be

{/, (rv : ^ £ U/»» and choose q% G P^) such that ςβ lhP/3(1) "/ = 1^", and

Pβ(i) H-'7fa)r/J(0 < <• Now we can define F(η,w,(f(η\l) : £ < £g(η))) =

{!„, </(ι/) : ι/ e 5ucτ(r?))} and 5ucτ(r?) - {rf (α) : α < UU> and /M =

#JJ UTV Note that β(k) depends on η\k, so we should have written β(η\k), see

below.

Now suppose we are given (T, I), Jn, / as in Definition 2.6. (for P = Rlim Q

and I = |Jΐ< Hi j) and (^ 0 ^* (^"j 0 and we have to find p as required. Let for

every η G T, /?(r/) be 0 if ^g(rj) = 0, 1 if ig(η) = 1 and Mm{^+lg(η} : f(η) G P7

otherwise; so v < η => /3(^) < /9(?y) and /?(/?) is never a limit ordinal. So by a

repeated use of Lemma 5.3 we can get T*, (T^, I) <* (T*, I) such that:

(*) for every η G Γ* and 77 < ^ G Γ*, res(ι/ι, ^4^) = res (1/2? ^77) then

(fvι\ι\β(ri)} I < tgiΊ) = (Pv*\t(β(η)} t < tg"*) where Aη = {i/ G Γ :

M| <μβ,β(η)}

By induction on n we will now define prompt names /3n of ordinals,

conditions pn G P/^ and P^^ -names ηn and ί/n such that pn forces the following

(1) 7M G TVg^n) = n

(2) 5 n<ι/ n Glim(res(T*,Λ 7 n ))

(3) Vp G T*VJ < ω: if i/nί* - res(p,^J, then /(p)^n G G n and

For n = 0 there is nothing to do: (770 = (}, βo = 0).

In stage n + 1 we will work in V[Gpβn], where Gpβ^ is a generic filter on Pβn

containing pn, more formally, we have βn < K and Gpβn C Pβn generic over

V such that ^pκ,/GPβn "βn - βn

n. We let r/n+ι - vn\n + 1, /?n+1 - /?(r?n+ι).

Since we have used ^(T^/^T^+I) we can find a condition pn,n+ι in P0n,pn+l

and a P^^^-name ι/n+1 such that

Now we can return to V and translate everything back to Pβn -names, and get

a condition pn+ι from pn and pn,n+ι
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Since we are using RCS iteration see (1.12)(1), letting β* = supn/3n, we can

after ω many steps find a condition p G P$* which is stronger than every pn,

and a P0*-name υ of a branch in T*, defined by v = \Jn ηn. This is as required.

Π6.4

6.5 Lemma. Suppose Q = (Pa,Qa : a < K) is suitable for {Iα>/3,λα,/3>μα,/3 :

(a,β) G W*), K is strongly inaccessible, \\JI\ + λa,β + μa,β < K for any

(α,/3) G W*, and / G Iα,0, Qκ is a Pκ-name of a forcing notion satisfying the

lU-condition and let I0 = Uα,/3 !<*,/?, I = Io U IΛ. Let

A* = {α < K : for every i < α, Ihp. "cf (α) > K0" and for every / G IQ,

^ 1= " 7 ^ α =^ I is |^l+-complete" and

> cfα ^> / is |cfα+|-complete}

and assume:

(a) for every / G IΛ: either / is /^-complete or / is /^-complete and normal

and K \ A* G /.

(b) for some /* G Iκ and \JI* — K and all singletons are in /*.

Then Pκ * Qκ satisfies the I-condition.

Remark: In Gitik Shelah [GiSh:191], (α) + (b) were weakened to: each / G I is

^-complete (or see XV §3).

Proof. Let Faj witness "Pαj/3 = Pβ/Pa satisfies the I^-condition" and Fκ

(a P^-name) witness "Qκ satisfies the I^-condition" and Uij,fc,m<ω ^t ,j,fc,m —

{3n 4- 2 : n < α;}, the A^j^m^ infinite pairwise disjoint and n G A^j^m =>

i,j,k,m <n.

Now we shall define the function F, so we should define (1^, {/(^) : ^ G

Sucτ(r7))} - F(η,w, (f(η\ί) : ί < tg(η))) (see Definition 2.6). If p G PΛ * Qk

we will write p\κ for the P^-component of p and p(κ) for the Q^-component.

Case i. \w\ is divisible by 3.
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We let \η = /* and for v G Sucτ(η) we have f(v) > f(η) be such that:

if i < ίg(η), η(ί) G A*, then for some α < η(e)J(ι/)\η(£) G Pa (possible

by 6.3(2)). We denote the minimal such α by a^i. Thus, α^ < v(ΐ) and

Case ii. \w\ + 2 is divisible by 3. We act as in the proof of 5.1, i.e., we use

our winning strategy for the game on Qκ: let w* = {ί G w : \wΓ\l\+2 is divisible

by 3}, and we let {/, (rv : v G JB» = Fκ(η,w\ (f(η\t)(κ) ' i < *gfa)».

Choose qη € PΛ, qη > f(η)\κ, qη lhpκ "/ = \η" for some 1^, and let

F(η,w, (f(η\t) : t < ίg(η))) = (\η,(qη,r») : v = η~ (a}, a < |J \η))

Case in. \w\ 4- 1 is divisible by 3.

So for a unique quadruple (i, jf, fc,m), |ιy| belongs to ^j,A;,m, (hence

i, j,A;,m < |ιy| < ^g(^)) and let iί;* = {ί G w : |tι; Π^| G AiJ)A:?m}.

Now we shall use Fu(η,w*, ( f ( η \ £ ) \ [ ξ , ζ ) : t < ίg(η))) were ξ < ζ < K

are chosen as follows

if η(i) < η(j),η(i) G A*,η(j) G A*,z < fe,^ < k,k < m, |ty Π fe| and

I it; Π m| are divisible by 3, (so θiη\k,i,&ηim,i are well defined) then let ξ =

Otη\k,i + Λ + 1, C = αr/rm,z + m + 1

ί f η ( i ) < η(j),η(i) G A*, η ( j ) e A*,i < kj < fc, k = m, |iϋ Π fe| - 1 is

divisible by 3 and τ/(z) < α^j^ then let ξ = 77(1), C = «»/tA:,i 4- fc 4- 1

^/^(i) > ^O')* ̂ W ^ ̂ *' i < k <m, \wΠk\ and |iϋ Π m| are divisible by 3

ίften let ξ = aη\k,i + fc + 1, C = α^^.i + m + 1

if η(i) > ^O')?7/^) ^ ^*' « < A; = m, |iί; Π A:| is divisible by 3 £/ιen let

z/none of the above occurs ί/ien let ^ — 0, ζ = 1.

So let (T, I), Jn, / be as in Definition 2.6 and (T, I)* <* (T', I), w.l.o.g. Un<α, Jn

is the set of splitting points of (T, I), (shrink T considering T'), and for nota-

tional simplicity we assume Jn = {η G T : ^g(ry) = n}. So for η we have used

ω = {ί:ί< ίg(η)}. Let σ, ̂  η(ίg(η) - 1).

We have to find p as required there.
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Assume for simplicity CH. So by Lemma 3.5A, we can find T1, (T^, I) <*

(Γ1,!) such that

(a) For some BQ C ω x ω, for every η G limT1, η(ϊ) < η(j) iff ( i , j ) G BQ

(b) For 77 G T1 : ^g(τy) G jBi z/f 1^ is tt+-complete; also ίg(r/) G B\ implies and

£g(η) + 2 is divisible by 3

(c) If £g(τ7) G B2

 d= {n < ω : n + 2 is divisible by 3, n φ BI} then κ\A* elη

and lη is a normal ideal on K

(d) If ίg(η) G £3 = {n : n + 1 is divisible by 3 } then (J 1̂  has cardinality

< AC.

Let A** = {a G A* : α is strong limit and for every ( i , j ) G W* , / G Ii)<7 , if

i<j<a then | |J/| 4- λί>:7 4- μitj 4- |P^| < α}

Clearly if / G ί.κ is not κ+ -complete then K, \ A** G / (since / is normal)

(e) if (ig(ή) — 1) G B± = {n : n divisible by 3} and σ^^+i) G A** then

(being normal) f(τ])\o'η^rn^ is (equivalent to) a member of (Jί^-y : 7 <

say to some member of Parι>rn, where aη,m < η(m) (see case (i)).

We can conclude (by (c) and (e) above) that without loss of generality

(f) If η G TVg(τ?) - 1 G 52 then ση G A**. Also η(ί) < K =» ry(£) < ση, and

[| U I t j t m l < « => I U l i y f r n l < ^] for every i < ίg(η) - 1, m < £g(τy); and if

77" (α) G T1, 1̂  is tt^-complete then a > K.

For 77 G T1 if ig(η) - 1 G 52 let

A^ = [v G T1 : z/<77 or.η<v and | U lη|v < ση}

At = {z/ G Γ1 : z/<77 or. 77 < z/ and | (J 1^^ < cf^ίσ^)}

By a repeated use of 5.3 (starting at () and going up in T1) we can find

T2, (Γ1,!) <* (Γ2,l) such that

(g) If 77 G T2,£g(η) - 1 G J32, ^g(r/) < m < cj, m divisible by 3 and for ί = 1, 2,

^ G T2, ^g(^) = m 4- 1, res(^ι,Ar/) = res(z/2,A,) then α^,^^)-! =

α^2,fa(r?)-ι (notice that α ί/)Zg(r7)_ι < ση < «, so /^-completeness suffices).

(h) If 77 G T2,£g(r?) - 1 G J52, ^g(τ?) <m<ω,m divisible by 3, then there is

7r/,m < Vη SUch that if Z/ G Γ2, ίg(l/) = 771 + 1 then Otv^(η)-\ < 7r/,m

Note
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(i) If η G T2,£g(η) - 1 G £2, then ση has cofinality > K0 hence 7^ = U{7r/,m :

77i > lg(η), m divisible by 3} is < ση.

Now if η G T2,£g(τ7) G £2 then the function α >— > 7^- ̂  is a regressive

function on a subset of K which do not belong to 1^. Hence for some 7, {y : z/ =

r/ Λ (α),7ι/ = 7} is not in l^

So without loss of generality

(j) If η G Γ2, ̂ g(τ/) G £2 then for some 7^ < K:

So w.l.o.g.

(k) If 77 G ΓVg(τ?) G B2, η < v G T2 then (I^ < 7ry or !„ is σI/r(/g(t?)+ι)|
+-

complete.

So w.l.o.g.

(1) If ?? G T2,eg(η) e B 2, and for £ = 1,2 ι/< e Γ2, η < vtt res(ι^,Λ,) =

res(ι/2, ^4η) then p^ Γ7»7 = P»2 \Ίη and | U 1̂  | < jη <ί=> | |J 1̂  | < 7, = >̂ 1̂  =

l,2,]

Let £Q — 0 an(3 {^m : 1 < 7τι < α;} be an enumeration in increasing

order of {I < ω : i - 1 G £2} For any η G T2,tg(η) = lm we define ^ as

Sup{7iχ : 77 < v, 7j, defined and ^g(^) < d+ι} Remembering that if l&(y) φ B<2

then I U 1^1 < /ς or \v is Ac+-complete it is clear that w.l.o.g.

(m) If 77 G T2, lg(η) = £m then βη < κ; and 77 < v G Γ2, lg(v) = £m+ι implies

βη<σ». Let, forr?GΓ 2 ,£g(r?)=C,

A; d= {i/ G Γ2 : i/ < 77 or 77 < i/, | |J !„( < 7^}.

For every 77 G T2,lg(η) = lm we define Γ2 =f {res(z/,A;) : i/ <

77 or 77 <] i/} and we define fη and \η (functions with domain C T2) by:

Λy(p) = f(")\βη and 1^ = IT? if ^7 < z/ G Γ2, p = res(z/, A*), is except that

\η

p is defined only if | |J \η\ < jη.
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Now look at ^Λ>/() and p\ctQ (w.l.o.g. p\ctQ = p\κ). As in case (iii) of

the definition of F we work hard enough (repeating previous proofs) there is a

P/3()-name η^ and QQ G Pβ(} such that :

#{) "~P/3 "/oί^oϊ O € Qβo for every f as our strategy will often have

usedFβ < ) ι / 3 < >.

Now comes a crucial observation: if Gβ(} C Pβ(} is generic (over V) η G

T2,ίg(η) = t>ι and res(τ7, AO) < η()[Gβ<}], v = η~ < α >G T2 then we can (as

in 5.1 and above) find qυ G Pβvί and Pβv -name j]v such that: qv is compatible

with every member of Gβ() and

9ι/ H~/30 "/i/ί^i/Γ^) ^ ^^ for every -ί, and for every ry G T2, [res(τy,Λ*) <

r\v ^ res(r/(),A^) < T/ ( )]". Note that ςr0 Ih "{α : q^ {a} G GP,} ̂  0 mod 1^".

Hence each qη can play the role of q^ in the next step:

We can continue and define qv^r\v for every v G T2, \j πι<ω ^g(^) = ^m with

the obvious properties:

(1) < fc ,€P 7 i / l

(2) ^tK,7^) = <lv when ίg(ι/) > 0,

(3) <?„ ll-p^ > € limT2"

(4) ^ ll-p^ "if for every £m < fg(z/), res(z/, A*^) < ^r£m and

for every k

then for every A: < ω and ^m < ^g(^),

and f^η^k) G G and

Now we define a PΛ-name of a subtree of T2 : T3 = {i/fn : n < -ί

/) = ^m for some m, qv G GP/c and for i < m q^i. G GPK and res(ι/, -A*

}. Clearly,

ςf() H-pκ'T
3 C T2,Γ3 is closed under initial segments,

Suc^s (77) ^ 0 mod \η for 77 G Γ3 and

if r/ G T3,£g(r/) G BI U 52 then Sucτ3(ry) = Sucτι(η)"
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q() \\-Pκ " for every η G T3, f ( η ) f[0, «) belongs to GΛ".

Now we can use the hypothesis "F^ exemplifies that Qκ satisfies the Iκ-

condition" and case (ii) in the definition of F to finish. DΘ.S

6.6 Lemma. Suppose Q = (Pi, Qj : i < a,j < a) is suitable for (Iί><7 , \ij ,

faj '• i < J< OL , i is non-limit), i(*) < α is non-limit, (?$(*) C P^*) generic

over F, and (iζ : ζ < β) is an increasing continuous sequence of ordinals in

V^Gφ,)], IQ — i(*), i/3 = α, each iζ+\ a successor ordinal .

In V[GiM] we define P{ = Piζ/Gi(*), Q'ζ = Qiζ/[Gi(*}], (still a Pc-name)

Q' = <PC' Q'ζ ζ<β^<β^ then in V[Gi(*)]> Q' is suitable for (liζ^, λ<Cι^,

Mic,<i : C < £ < A C non-limit ).

Remark. Had we allowed I^j, A^j, //ij to be suitable names we would have

obtained here a stronger theorem.

Proof. Straightforward. D,'6.6

6.7 Conclusion. Suppose

(a) Q = (Pi, Qi : i < a) is an RCS iteration.

(b) Q^-satisfies the I^-condition, and 1̂  is K2-complete (in V Pi , but 1̂  € V)

(c) if cf(z) < i V (3.7 < ϊ)\Pj\ > i, then for some A,// we have Uj>»^' ^s

λ+-complete and (V/ G \Jj<:ilj)(\\JI\ < μ) and |Pi| < A = \<^

(d) if cf(i) = i & (Vj < i)|Pj| < i then every / e I* is ^-complete or normal,

and e.g. A* = {a < i : cf(α) 7^ ^1} G /.

Γften RlimQ satisfies the ((Ji<a Hi) -condition; if in addition K is strongly

inaccessible and f\i<κ \Pi\ < K then RlimQ satisfies the tt-c.c.

Proof. We should prove by induction on i < a that for every j < i,

satisfies the \J{1Ί ' j < 7 < i}-condition using 5.1, 6.2, 6.3, 6.4, 6.5 (and 5.6).

Dβ.7
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6.8 Conclusion. We can satisfy the demands of 1.1 by "P satisfies {λ : ^2 <

λ < |P|,λ regular }"-condition.

Concluding Remark. We could have strengthened somewhat the result 6.6, but

with no apparent application by using a larger A*.

§7. Further Independence Results

In this section we complete some independence results.

7.1 Theorem. The following are equiconsistent.

(a) ZFC + there is a Mahlo cardinal.

(b) ZFC + G.C.H.+ Fr+(N2) (where Fr+(N2) means that every stationary

S C S$ — {δ < ^2 ' cf (ί) = NO} contains a closed copy of ωi).

Remark. Our proof will use, in addition to the ideas of the proof of Theorem

1.4 also ideas of the proof of Harrington and Shelah [HrSh:99], but, for making

the iteration work, we build a quite generic object rather than force it (as in

[Sh:82]).

2) In b) we can also contradict G.C.H. (using XV §3 for a) => b)).

Proof. The implication b) => a) was proved by Van Lere, using the well known

fact that if in L there is no Mahlo cardinal, then the square principle holds for

^2- So the point is to prove a) =» b). As any Mahlo cardinal in V is a Mahlo

cardinal in L, we can assume V — L, K a strongly inaccessible Mahlo cardinal.

We shall define a revised countable support iteration Q = (Pi, Qi : i < «),

\Pi\ < Nΐ+i If * is not a strongly inaccessible cardinal Qi is the Levy collapse of

2Hl to NI by countable conditions (in VPi). If i is strongly inaccessible then Qi is

P[Si] (see 4.6), Si is a P^-name of a stationary subset of 5§ = {δ < i : cf(J) = K0

in F} (note \\-pί "i = ^2" by 1.1(3)), where §i will be carefully chosen as
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described below. Note that N^ = N^ κ, K = HJf " (again we use 1.1(3)) so Pκ

collapse no cardinal > AC and in VPκ the GCH holds.

We let PK = RlimQ. In VPκ we define an iterated forcing Q* = (P?, Q* :

i < At"1"}, with support of power NI, such that (in VPκ) for each z, 5* is a

P^-name of a subset of 50 which does not contain a closed copy of α>ι, and:

Q* — {/ G (yp*)p** : / an increasing continuous function from some

a < ω2 into Lϋ2 \ S* and if a is a limit ordinal, Ui<o! /(O Φ §i} (so Φ* makes

S* nonstationary).

We shall prove that (if the SVs were chosen suitably then):

(*) For every a < «+, forcing by P* does not add new u i-sequences (to VPκ)

and P£ contains a dense subset of power < ^2 (everything in VPκ).

This implies that P*+ satisfies the K"1"-chain condition, so by a suitable

bookkeeping every P^+-name of S C 5o which does not contain a closed copy

of ωι is 5* for some i. So easily we can conclude that it is enough to prove (*).

So let α* < ft"*",p G P^*, and r be a P^*-name of a function from ω\ to

ordinals.

For all those things we have P^-names, (but α* is an actual ordinal in V,

as Pκ satisfies the «-c.c.). Now in V we can define an increasing continuous

sequence N*(i < K) of elementary submodels of H(κ+++) of cardinality < K

such that PKί Q and all the names involved belong to Nj$, (N* : i < j) G

-/V*+1, A^*+1 is closed under sequence of length < \Nj .

Now in V, as V = L, 0{λ<«:λ is strongly inaccessible } holds, so we have guessed

(N* : i < λ), r,p,... in some stage λ, (Ui<λ ^*) Π « = Λ(J Π « = λ. Really we

are only guessing subsets of K,, so we can only guess the isomorphism type of N\,

etc., or equivalently, its Mostowski collapse. I.e. let / be a one to one function

from K onto (J N*, let h be a one to one function from κ3 onto «, and hi : K —> K
i<κ

for I < 3 be such that ε = Λ(α,/3,7) <̂ > α = ft0(α) & /? = ήι(/3) & 7 =

Let

A = {Λ(0, α, ̂ ) : /(α) G /(/3) and α, /? < ^} U {h(l, i, α) : /(α) G ̂
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Let (A\ : λ < K inaccessible) be a diamond sequence. Let Nχ be the unique

transitive subset of H(κ) isomorphic to (λ, G Λ ) where Gλ = {(α, β) : a < λ, β <

λ,Λ(0,α,/3) € A\}, if there is one. Let gχ : λ — > Nχ be the isomorphism. Let

for i<X,Nl

χ = Nχ\{gχ(a) : Λ(l,i,α) G Aχ} and xλ = (Qλ,Q*'λ,τλ,pλ,α*'λ)

be such that xλ = #λ(α), α - min{/? : Λ(2,0,/?) G Aλ} (if there are such α).

Now necessarily W = {λ < « : λ inaccessible, and A Π λ = A\, and / maps λ

onto Nχ} is stationary and for λ G W, Nχ is well defined and isomorphic to Nχ

say by #* : Nχ -> AT* and #*(Λ^) = TV* (for i < λ), Qχ = Q\λ, <7*(Q*>λ) - Q*,

S*(lλ) - Γ,0V) = P, <?(α*'Λ) ^ <**.

So now we will explain what we did in stage λ to take care of this situation.

First we will give an overview of how to get the sets S\; In stage λ (an

inaccessible below «, so work in VPa) we use 0, i.e. A\ to obtain a continuous

increasing sequence (N* : i < X) of quite close models (which guesses (the

isomorphic type of α) a sequence (N* : i < K) as above). We also guess an

ordinal α = α*'λ G Nχ (so actually we are only guessing otp(α* Π Nχ)) and

xλ "guess" (0,Q*,Γ,P^λ)5 . . -Let Gλ C Pλ be generic over V, pλ G Gχ. We

now try to construct a sequence (p» : i < λ) of conditions in P ;̂λ

λ Π Nχ[G\]

which will induce an Nχ[Gχ] -generic set. If we succeed, letting p\ = g*(pi) in

V[G\] we have p( G Nχ Π P is increasing and p\ = limi<λ(pi) will decide all

names in N^[GX] (pλ has domain 7Vλ*[Gλ] Πα*, pλ(/?) - U«λPί(^) u ί(λ' λ)»

Moreover, Pλ(β) will be an actual function (at least above p\\β) rather than

just a P£-name, for all β G Dom(pλ) Q N\[G\]- τhis wil1 show that in γP^

the set

D ̂  {p G P*. : V/3 G Dom(p)3/ : pf/? »- Cίp(^) = /"}

is dense, P^* contains a dense subset of cardinality < «(= H2), in VF|e, which

is one of the demands in (*), [which implies that P^* satisfies the κ+-c.c. The

usual Δ-system argument (recalling that P* used Ni-support) then shows that

also P*+ satisfies the «+-c.c.)].

We will try to build these pt in otp(7Vλ[Gλ] Π (α*'λ -I- 1)) many steps, by
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constructing initial parts (pi\Ί : i < λ) for 7 G Nχ Π (α*'λ -f 1), by induction

on 7.

However, it is possible that our construction will get stuck in some stage

7 G Nχ[G\] Π (α*?λ 4-1). In this case we show that we will have constructed a

stationary subset of λ (which guesses 5* Π λ). We will use this set as S\ (and

hence contradict the guess, since no superset of one of the sets S\ can appear

in the second iteration as some 5*). However, since our guess must be correct

on a stationary set of λ's, the construction will be completed stationarily often.

Before we start the construction of the p^'s, we will try to guess its outcome.

In our ground model V = L we have OΛ> so as |P\| = λ, we still have in VFχ

i.e. V[(?A]J that ^2 is λ, and <0>{i<λ:cf(t)=bίι} holds. Note Nf[G\] is well defined:
yyλ

Gχ Π N* is a generic subset of Pκ

 ί . So we can choose for each i < X a sequence

(Qi£ '• ζ < i) and a name Ti such that:

(α) every initial segment of the sequence {(r^, (q^ : ξ < i)) : i < λ) belongs to

(β) Qi,ξ € Nf[Gχ] Π P*, is increasing with ξ.

(7) if (<7ξ : ξ < λ) satisfies (a) -f (β) [i.e., it is increasing with ξ and qς G

(Nλ Π P*«,,A)]» and r G A^λ[Gλ] is a P^-name of an ordinal then {i : (q^ :

ξ < i) = (ς^ : ξ < ί) and r = Ti} is stationary.

Note that 7Vλ[(3λ] is closed under taking i-sequences (in VPx) for i < X so

clause (a) is not necessary.

Now at least for ordinals i such that cf(z) = ω it is not clear whether

(<li,ξ '• ζ < ^} has an upper bound in P^λ

λ, however we can find a(ϊ) G

NX[GX] Π (α*'λ + 1) and <?* G 7V*[GA] Π P^* ,̂ q? > q^\a(i) for ξ < i, and

if α(i) < α*'λ then q* I^P* u(ft,ξ(αW) : ί < 0 nas no upper bound (in

[Just let α(i) G ̂  Π (α*'λ + 1) be maximal such that q^ d= (\Jξ<i qiίζ) \a(i)

belongs to Pα(f); hence q^ Vίp*,χ "(Uξ<i^i,ξ)(αW) ^ Φα'm" hence some r, ς'̂  <

r G P^/^v is as required]. Moreover, we may also assume that q* decides the

value of r< if Ti is a P^-name.
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Now we define by induction on 7 G Nχ [G\] Π (α*)Λ + 1) a set C7, a sequence

(C/3,7 : β < 7, β G NA[£A] n (α*'Λ + 1)> and sequences (p7jί : i G C7) satisfying

the following:

(i) Each C7, and each Cβ}Ί is a closed unbounded subset of λ, Cβ,Ί C

C^ncv

(ii) p7>i G ΛfΛ[Gλ] Π P7'
Λ, and is increasing with i.

(iii) pΊίi \β = pβιί, for β < 7, i G C/3,τ.

(iv) if (p7ιj : j < i), (<^j '• j < i) (from the diamond above) satisfy

(Vj < i)(3C < i)(p7J- < (/ i ίCr7), (V( < i)(3j < ΐ)fe,7Ϊ7 < P7,) and

a(i) > 7 ίften g* <p7 li-

We will define this sequence by induction on 7. For 7 = 0 there is nothing

to do. If 7 is a limit of cofmality < λ, let 7 = Uξ<cf(7) 7£ w^^ C < C < cf (7) =>

7ζ < 7ξ < 7. We let

CΊ = f] Cf

7o7ξ.

For i G C7, we let p7ji = Uξ<cf(7)P7^ (This is a union of a sequence of

at most NI conditions which are end extensions of each other (in the sense

that pΊξίi = P 7 ζ,ΐf7ξ for ζ < ξ < cf(7)), hence this limit exists.) Finally, we let

CβtΊ = ̂ nC7nf|e<cf(7) Cβ^ [where we let Caβ = λ for α > β ] . If cf(7) > λ,

then we can find an increasing unbounded sequence (7^ : ξ < λ) in 7 Π NX[G\]

such that for all ζ < X we have (7^ : ξ < ζ) G ΛΓλ[Gλ]. We let CΊ be a diagonal

intersection:

C7ζ,7J

and for i G C we let p =

7 = f {t<λ:(Vj<t) i€C / 9 ,7 j} .

An easy calculation shows that (ii) will be satisfied.

Successor step: Let 7 = /? + 1. If the set 5^ as computed by (pβ,i '• i G Cβ) (i.e.

the set {ε < λ : for some i G Cβ we have p^ Ih "ε G §*β"}) does not include a

stationary subset of λ, let CΊ C C/? be a club set disjoint from this set. We let
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C/3ι7 = CΊ. For βr < β we let C0/>7 = C/?/,/? Π C7. So for i G C7, we will have

PΊ,ί \β = Pβ,ί, so we only have to define p7)ί(/3). We will do this by induction on

i: If i is (in C7) the successor of j, then we let pΊ^(β) be a condition extending

pΊj(β) such that there is ε G C7 with ht(p7ιj (/?)) < ε <ht(p7jt(/3)) (where

ht(r) = sup(range(r)). This will ensure that in limit steps the supremum of

the conditions constructed so far always exists. For limit i, we first take the

supremum of the conditions constructed so far, and, if possible, increase the

condition again to make it stronger than q*(β).

Finally if S£ as computed by (pβi : i G Cβ) does contain a stationary set, we

will choose this as S\ when defining the first iteration Q. Note that this choice

of S\ does not depend on Nχ,... but only on 7 V λ , . . . so all is O.K. As remarked

above, this will not happen if 0 has guessed correctly. Dγ.i

7.2 Theorem. The following are equi-consistent

(a) ZFC + there is a weakly compact cardinal.

(b) ZFC + G.C.H. + if S", S" C Sg are stationary, then for some δ G 5?, S'nδ,

S/f Π δ are stationary.

(c)ZFC + G.C.H.+ "if Si C Sfi are stationary sets for i < ω\ then there is

an increasing continuous sequence of ordinals < ω^ (a$ : i < ω\) such that

Oίi G Si.

Remark. In (b), (c) we can also contradict G.C.H. (use XV §3 for Con(a) =>

Con(c)).

Proof. The implication Con(a) = >̂ Con(b) was proved by Baumgartner [Ba],

the inverse by [Mg5]. Now Con(c)=^Con(b) is trivial, and so the point is to

prove Con(a)=>Con(c) which is done just like the proof of theorem 1.4, using

the forcing notion P[(Si : i < ω\)] from 4.6A. D7.2

Before we prove the next theorem, we recall the forcing notion for "shooting

a club through S":
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A known forcing is

7.3 Definition. For any set S C ω^ define the forcing notion Club(S') by

Club(5) = {h : for some α < ω^ we have:

Dom(/ι) = a + l,Rang(/ι) C 5, h continuous increasing}

This forcing notion "shoots a club through 5". See on it in [BHK] and more in

[AbSh:146].

For h e Club(5) let

α(/ι) = max Dom(/ι) δ(h) = h(a(h))

7.4 Lemma.

(a) If 5 Π SQ is stationary, then Club(5) does not add new ω-sequences of

ordinals.

(b) If the set

5 d= {δ G Si Π S : 5 Π δ contains a club subset of δ}

is stationary, and CH holds, then Club(S) does not add ωi-sequences of

ordinals to V.

7.4A Remark. Instead CH it suffice to have for some list {αα : a. < ω^} of

subsetes of ω<2 that {δ e Sf : there is a club C of δ such that CCS and

α < δ => C Πα G {dβ : β < a}.

Proof: We leave (a) to the reader as it is easier and we will need only (b).

To prove (b), let p G Club(5), τ a Club(5)-name such that p lh"r is a function

from ω\ to the ordinals". Let N -< (#(N3), e) be a model of size NI which con-

tains all relevant information (i.e., {5,p, r} C TV), is closed under α -sequences

and satisfies N Π ω<2 G 5. We can find such a model because we have CH and

5 is stationary. Let C C δ Π 5 be a club set.
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Now we can find a continuous increasing sequence (Na : a <ω\) satisfying the

following for all a < ω\:

(a) Na G TV, Na -< TV, Na countable.

(b) (Nβ:β<a)€Na+l.

(c) sup(NaΠω2) G C.

(d) {S,p,τ}CTV 0.

W.l.o.g. \Ja<ωι Na

 = ^ ^et Po ~ P» an<^ define a sequence (p$ : i < ωι)

satisfying

(0) Pi e N

(1) pi+i decides the value of τ(ϊ)

(2) Letting a» = min{a : p€ G A^a & a > a(pi)}, we demand a(pi+ι) >

sup(Nai Πω2) and ί(p<+ι) > sup(AΓα. no;2) (see 7.3).

(3) If j < i, then p^ < pi.

Given p^, it is no problem to find Pi+i. If i is a limit, then letting α* =

* i^(ft')) we nave ^* — ̂ «* Π α;2 G 5, so we can let

Pi = Ujxift U {(α*'^*)} Note that ^ G N, because A^ was closed under

ω-sequences.

Finally, \Ji<ωι Pi can be extended to a condition pωι because δ G 5. Now

pωί l^τeV. D7.4

The following solves a problem of Abraham.

7.5 Theorem. The following are equi-consistent

a)ZFC + there is a 2-Mahlo cardinal.

b)ZFC + G.C.H. + {5 < ^2 : δ inaccessible in L} contains a closed unbounded

subset of ω2

Proof. Con(b) ^> Con(a):

Let C be a closed unbounded subset of ω2 consisting of regular cardinals of L.

So each δ G C Π S$ is inaccessible in L, hence each δ G C Π 5^ is Mahlo in L,

hence #% is 2-Mahlo in L, i.e., {λ : λ < Njf, λ Mahlo in L} is stationary.
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Con(a)^Con(b):

So without loss of generality V = L, K is 2-Mahlo.

We define an RCS-iteration Q — (Pi, Qi : i < «), where:

l)if i is not strongly inaccessible, Qi is Levy collapse of 2Hl to HI by countable

conditions.

2) if i is strongly inaccessible but not Mahlo, Qi — Nm'.

3)if i is a strongly inaccessible Mahlo cardinal, Qi — P[Si] where Si = {λ < i : λ

strongly inaccessible }.

It should be easy for the reader to prove that Pκ — RlimQ satisfies the

ft-chain condition, and the S-condition, 5 = {λ : HI < λ < K, λ inaccessible (in

L)}.

Lastly in Vp* let P* =Club({λ < K : X inaccessible in L}). So our forcing is

Pκ * P* € V.

Now P* is not even HI-complete, but still P was constructed so that P* does

not add Hi-sequences by 7.4(b), and Vp**p* is as required. D7<5

7.6 Theorem. Assume ft* is supercompact. Then for some forcing notion P,

in yp, for every regular λ > HI, Fr^(λ) holds (and we can ask also GCH).

Proof. W.l.o.g. V \= GCH. Let K will be the first strongly inaccessible cardinal

ft which is ft+7-supercompact. Let j : ft —> H(κ), j(ά) G fί(|α|+6) be a

Laver diamond under this restriction. Let (P~,Q~ : i < κ,j < K) be an

Easton support iteration. Q~ is j0(j) if j(j) = ( j t ( j ) : ^ < 2} and J0(j)

is a P^-name of a j-directed complete forcing notion, j strong inaccessible,

(V£ < j)(|Pcl < j), and the trivial forcing otherwise. Let Vb = V, V\ = VQK .

Clearly Vι 1= 0{μ<κ:μ is strongly inaccessible }. Let Λ = Levy(λ, < ft*)Vl, so in VR,

for every regular θ > «* we have:

(*)(9 if 5 C {5 < θ : cf(5) = HO} is stationary then for some 5* < λ we have:

cf ((5*) = K, and S Π 5* is a stationary subset of 5*. (see Fact in X 7.4)

In V2 = VR we have *;* = κ+ and define Q, PΛ, Q* - (^,9* : i < *;+),

P*+ as in the proof of 7.1 except that for δ < K strong inaccessible, Q§ is

suggested by jι(5) when j(ί) = (j^(ί) : £ < 2} as above, jι(ί) a (P 1̂ * P5)-
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name of a forcing notion satisfying the 5-condition (in the universe VPδ+l XPδof

course). So we force with R' = R*PK*P*+ (really we can arrange that Pκ G VΊ,

P* is an .R x P^-name). Looking at the proof of 7.1, the only point left is to

prove (*)0 for θ = cf(0) > ft*. If θ > ft*, as the density of PΛ * P* + (e F2) is

ft*, any stationary 5 C {δ < θ : cf(δ) = NO} from VΛ / contains a stationary

subset from V^. We can use V% N (*)0, so we are left with the case 0 — ft*.

If in V2, 5 is a Pκ * P* +̂ name, p e PΛ * P*^, p Ih "50 C {5 < ft+ : cf(ί) =

stationary", let

Sl = {δ < ft+ : cf(<f) - NO and p I/ "5 φ SQ

n}.

For J G Si choose p5 G P« * P*+, P < p5, Pδ ̂  uδ € 5". Let 52 - {δ e S1 :

PδεGPlt*p +},8Qp\\- "S2CSQ

n.

Let E — {a < ft+ : α limit and ί € SΊ Π α = >̂ p$ G P« * P*} is a club of ft+

in V2 It is enough to show that

0 ty =f {5 < ft+ : cf (5) = ft, ί e £7 and p ll-pK*pj "^2 Π 5 (which is a

(PΛ * PJ* )-name) is a stationary subset of 5" } is a stationary subset of ft"1".

[Why? As then instead of guaranting 52 Π δ will continue to be stationary, we

guess such name and related elementary submodel in some α < ft and in Qa

take care of 52 Π δ having a closed subset of order type ω\ .]

Let GR C .R be the generic subset of R.

In Vi we can find δ < ft* such that V\ N "ft < δ < ft*, δ is strongly

inaccessible" and letting Rg = Levy (ft, < δ) <> R, GRS = GR Π R§, in ^[G#J

we have Q, Q*\δ hence Pκ * P^, (pi : i e 5ι Π δ) and SΊ Π δ is stationary

(and of course V[GRS] t= 5 = ft+). Also in Vi[G#6], the forcing notion Pκ * Pό*

satisfies the δ-c.c. (just as in Fι[G/?], Pκ * P* satisfies the ft*-c.c.). So for a

club of i < 5, i G SΊ Π J implies p» Ih "5* d=f { j e Si Π 5 : PJ e GPκ*p*} is

a stationary subset of 5*" (as in Gitik, Shelah [GiSh:310]). Choose such i(*).

If this holds in Vi[G#] too, then we are done so assume towards contradiction

that this fails, so moving back to VQ for some q e P^", r G R and p we have

l hp*β " i * <pεP** P and for some p~ * ^ * p« *
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we have

(<!,£, p) \\-p-*ft*(p #p+\ "E is a club of δ disjoint to 5*".
~ K ~ . \ ^ K ^ ξ ) ~

Let M x (#((«*)++),€) be such that ||M|| = κ+, tf(κ+) C M, x =

{κ,«*,ί,^,9,(r)p),Λ/GΛί,Plt * P;} C M and *M C M.

Let (M1 ,x') be isomorphic say by g to (M, x), M transitive, so g : M — >

M1. We can find 23 -< (#(κ;+6),G) to which x' and M' belong, such that

letting θ = 03 Π K we have: 0 is strongly inaccessible fl+^-supercompact, 2S ~

(#(0+6), G) and j(0) - (jo(0), jι(0)) € #(0++) is such that: J0(0) - g(Rs) and

jι((9) is the g(P~ * β5 * P/ς)-name i.e. (P^ * Q^ * P5)-name of g(P£) * club(5*).

We can finish easily. D7>5

§8. Relativising to a Stationary Set

8.1 Definition. For a set I of ideals and stationary W C ω\ we define when

does a forcing notion P satisfies the (I, W)-condition (compare with 2.6). It

means that there is a function F such that (letting J^ =the bounded subsets

of ωι):

, I), / satisfies the following properties:

(*) (a) (T, O i s a n ί l

(b) f .T^P.

(c) v < η implies P |= /(z/) < f ( η ) .

(d) There are fronts Jn(n < cj) of T such that every member of Jn+ι has a

proper initial segment of Jn and:

(a) If η G Jn then (Suc(τy), I,,, (/(i/) : i/ G Sucr(τ/)» - F(η, w[η], {/(i/) :

// < 77)) (where ιy[ry] = {κ:η\κ £ UnJn}).

(/?) U Jn is the set of splitting points of (Γ, I)

(7) If n is odd, η G Jn then \η = J^f.

(δ) If n is even, 77 G Jn then 1̂  G I.



§8. Relativising to a Stationary Set 587

then

(**) if (T, I) < (Γ*, I), [η G Γ* Π (Un<α; J2n) =* Sucτ*(τ/) £ !„] and for some

limit δ e W for every η 6 limT*, δ = sup{η(k) : η\k € Un<ω ̂ Wi }

then for some ς G P we have ς Ih "(3r?)[τ7 G limΓ*& Λfc<u, /fa I*) ^ (?P]"

8.2 Claim. l)If P satisfies the I-condition, e.g. P is N2-complete ί/ien P satisfies

the (I, ωi) -condition.

2)If Wi C W2 C α i, P satisfies the (I, W2)-condition Λen p satisfies the

(I, Wι)-condition.

3) If W C cj! is stationary, I is a family of K2-complete ideals, and the forcing

notion P satisfies the (I, W)-condition then forcing with P does not collapse

HI and preserves the stationarity of W.

Proof. 1) If F witnesses "P satisfies the I -condition", define F' such that if

(T, I), /, (Jn : n < ω) are as in Definition 8.1, then for n = 2m, η € Jn:

(Sucτ(77), {/(i/) : v G Sucτfa))) - F'((η, w[η], /(i/) : i/ < η)))

= F((η, {I : η\ί G \J J2fc}, (/(i/) : i/ < 77)})
fc<ω)

This finishes the proof.

2) Trivial.

3) Suppose p G P, p Ih "ζ7 is a club of α i". Choose (Γ , I), /, { Jn : n < ω) as

in Definition 8.1 such that:

(i) Jn = {η € T : £g(η) = 2n}

(ii)If η G T, ίg(ή) odd then Sucτ(^) = {η~ (0)} and for some aη

(a) min (α i Π Rang(?7)) < aη < ωι

There is no problem in this. Let Γ0 = {η G T : ifk < ίg(η), k = 4m + 2, £ < fc,

^ = 2n -h 1 then α^^ < τ/(fc))}. Clearly (Γ, I) < (Γ°, I) and the requirement

in (**) of Definition 8.1 holds. By XV 2.6 (no vicious circle! as it does not use

any intermidiate material) there is a club C* of ω\ and for each δ G C*, a tree

TS such that:
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(a)(Γ°, I) < (Tδ, I)

(b)/7 G T5, r? G Un Jϊn^ηt sp(Γ«, I).

(c)r/ G limT«5 =>> 5 = sup(Rang(ry) Π ωι)&δ ^ Rang(?7).

This last statement holds also for branches of T$ in extensions of the universe,

being absolute. Choose δ G VFΠC*, and apply Definition 8.1 to (T$, I) (standing

for Γ1" there), and get q as there. Now q Ih "{/(τ/|^) : £ < ω} C GP, ry G limT"

(for some P-name 77). In particular q Ih "p G Gp" (as p^ = p) so w.l.o.g. p < q.

Also by (ii) (α), (iii) above ςf lhp "sup(Rang(ry) Π α i) = sup {αr?r(2n+i) : n <

α;}". And so q Ih "5 - sup{αr7r(2n+1) : n < ω}". As 9 Ih ilf(rj\(2n + 2)) G GP"

also (see (β) of (ii)) we have q Ih "cy(2n+i) G C" hence q Ih "<5 G C"'.

As (5 G W we finish. D8.2

8.3 Lemma. Let W C ω\, be stationary. All the theorems on preservations of

the I-condition (in §5, §6) for ^-complete I hold for the (I, W)- condition.

Proof. Same proof, sometimes using XV 2.6.




