VIII. k-pic and Not Adding Reals

80. Introduction

In the first section we show that we can iterate Ny-complete forcing, and Ri-
complete forcing which satisfy the No-c.c. in a strong sense.

In the second section we deal with a strong version of the Rq-c.c. called Na-
pic. It is useful for proving that for CS iteration of length wy of proper forcing
notions, the limit still satisfies the Na-c.c. This in turn will be used in order to
get universes with 2%t > 280 = Ry,

In the third section we deal again with the axioms; starting with a model
of ZFC (not assuming the existence of large cardinals) we phrase the axioms
we can get. There are four cases according to whether 2% is X; or Ry, and 2%
is Ry or larger [our knowledge on the case 280 > Rj is slim].

In the fourth section we return to the problem of when a CS iteration of
proper forcing preserves “not adding reals”. We weaken “each Q; (a P;-name)
is D-complete for some D a (A, 1, k)-system”, by replacing “each D, is an N;-
complete filter” or even just “each D, is a filter” by “each D, is a family of
sets, the intersection of e.g. any two is nonempty”. So we can deduce ZFC+CH
¥ @gl. We also try to formulate the property preserved by iteration weaker

than this completeness. See references in the relevant sections.
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§1. Mixed Iteration — Ra-c.c., N3-Complete

1.1 Lemma. Suppose P, (a < ap) are forcing notions in V and V £ CH and
Qo are such that:

1) Qq is a Py-name of a forcing in V7,

2) Py={f:1{28:26 < aand 28 € Dom(f)}| < Rp and [{26+1:28+1 <
and 26 +1 € Dom(f)}| <Ny and @ I-p, “f(i) € Q;” for all i € Dom(f)},

3) Q2p+1 is Rp-complete (ie. in VP if ¢ € Q2p+1(t < 0 < wp) are
increasing, then (3¢5 € Q2p+1) Nic5 i < 95),

4) for a = 23, in VP there is an hq : Qo — w1, such that: ha(p) = ha(q) =
(p, ¢ has a least upper bound p A gq),

5) Q2p is Ry-complete,

6) VE CH.

7) The order on P, is as usual: Py F “p < ¢” iff for every # € Dom(p) we
have ¢ € Dom(p) and q[8 IFp, “p(B) < q(8)”

Then: P,, is R;-complete and does not collapse Nj.

1.1A Remark.
1) Condition 4) was introduced by Baumgartner for getting a weak MA for a

N;-complete forcing.

2) For simplicity, we assume that § € Qg is minimal, hog(#) = 0, and adopt
the convention: if f € P, and f(8) is not defined otherwise, then f(8) = 0.

3) Of course the decision to use odd and even ordinals for the two different
cases is arbitrary, since any other iteration along two disjoint sets of ordinals

for the two different cases can be translated into such an iteration.
4) For a better theorem — see Chapter XIV.

5) We can replace 8; by & if & is regular, k = k<" (so “countable” is replaced

by “of cardinality < x”.)



§1. Mixed Iteration—Na-c.c., Na-Complete 405

Proof. Let A be large enough, N < (H()A),€), Py, € N, ||N|| = Ry, and every
countable subset of N belongs to N. Let p € P,, NN, and (Z, : & < w;) be a
list of all maximal antichains of P,, which belong to N (so (Zo : @ <w1) ¢ N
but for each a* < wy we have that (Z, : @ < a*) € N, by the choice of N).
It is trivial that P, is N;-complete. It then suffices to prove the existence of
a p* € Py, p < p* such that p* is (N, P,,)-generic, so proving that P,, is
“somewhat proper”.

By CH, we can let {(af,Af,('ygyn :B € A n <w)) € < w} be a list
of all triples of the form (o, A,(ys, : 8 € A,n < w)) such that a < wy,
AC{28:28€ 09NN}, |Al <Ry and yg, < wi.

We now inductively define conditions p¢ € N N P,, (for £ < w;) which are
increasing, with py = p, such that:

A) Dom(pe) N {26 : 28 < ag} C Dom(p)
B) 24 € Dom(p¢) = pe(26) = p(25)
C) if there are p™ € Py, N N (for n < w) such that
(i) pe <p* <p' <p?...,
(ii)28 € AS = (p"*1126) Ikp,, “bap(p™(28)) = Y55,."> and

(iii) for some q € Z,¢ we have g < p°

then there are such p°, p!... such that:

(26 +1 € Upc, Dom(p™)] = Apcylbpapy, “ifp°(20+1) <p'(26+1) <
... < p*(26 + 1)(in @2p+1) then p*(28 + 1) < pe+1(26 +1)"].

We let pf = p™ and ¢¢ =gq.

There is no problem in the definition; we can assume w.l.o.g. that
IFPapia “p?(QIB +1) < pg+l(2ﬁ +1)”

for every n, as we can replace p} by r™ where r"(23) = Pg(2p8) and r"(26+1) =
p‘é (28 + 1) for the maximal £ < n such that (pf*(26 + 1) : m < ¢) is increasing

(this is of course a Pgi-name).
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Now we define p* : if 268 € Dom(p), p*(268) = p(28), and if 28 + 1 €
U¢<w, Dom(pe) then p*(28 + 1) is (a Pyp41-name of) an upper bound (in
Q2p+1) of {pe(28 + 1) : € < wi} if it exists, and p(26 + 1) otherwise. So
P =po < p* € P, Soif (26+1) € NNap then p*[(26+1) Ikp,,,, “p*(28+1)
is an upper bound of {p¢(28+1): ¢ <w; (and 28 +1 € Dom(p¢))}”.

Now we prove that for each o < wy, T, N N is pre-dense above p*. Clearly,
there are p? and g, € P,, such that p* <p%, ¢, <p?, q, € Z,.

Let Ag = Dom(p?) N {28 : 28 < ap} N N. Now, by the R;-completeness of
P,,, there is a p! € Py,, p° < p?, such that for every 23 € Ay,

(02 128) I p,, “B2p(p2(28)) = Y2p,0”

for some 725,0. We continue to define p?*! > p? such that

(P2t 120) Ik pyy “hop(P2(26)) = Y28,

for every 20 € A, def Dom(p}) N {26 : 26 < ap} N N. We now define
AY (Un<w An), Y28 = 0 for 26 € A\ Ay. So, for some § we have a¢ = a,
A8 = A, (yapn: 28 € An <w) = (fygﬁyn 126 € A,n < w). As these objects
are countable subsets of N, by the choice of N, they belong to N.

As N < (H(M),€), for this £ there are g,p™ as mentioned in clause (C)
above, p° > ¢ € I,. Again, without loss of generality, p" € P,, N N and
g € Iy NN, s0 g (pf : n < w), as in (C), are well defined. Now by the

properties of hyg, we can prove, by induction on v < ayg, that

(%) for every ¢ < 7, and r € P, such that p?[¢ < r and pgl¢ <rforn <w,
there is an 7* € Py such that p}|y <r*, p¢ly <r*forn <w, and r*[( =,
and Dom(r*) N [¢,7) € U<, Dom(p}) UU, ., Dom(p}).

For ~ a limit there are no problems: use the induction hypothesis and
the “bound” on the domain of 7*. For v = 28 + 2, w.lo.g. ( = 26+ 1 (by
the induction hypothesis for “y! = 28+ 1”). By clause (C) and the induction
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hypothesis we know:
(268 +1) g ISP (268 +1) > p*(28+1) > per1(26+1) > Pt (206 + 1),

so by the Rj-completeness of Q2p+1, r exists. Lastly, for v = 28 + 1, the
Dom(pg) and also to |, ., Dom(p})
hence 28 € N N ag. Again w.l.o.g. ( = 283, and by the hypothesis on r and

nontrivial case is that 24 belongs to (J,, ., <w

p",pi(n <w):
71(26) IFp,, “h2s(Pg (28)) = h2s(p¥(26))”,

r1(260) Ik, “PE(26) < pEH(20)7,
r1(28) Ik pys “P(28) < PIT1(2B)”.

So r forces that pg(23),p%(26) have a least upper bound pg(28) A pi(28);

and as p;(28) < p"+1(2,3), and p?(28) < p*!(28) (i.e. r forces this), also
PE(28) AP (26) < ppt(28) Api+(26), hence by the Ri-completeness of Qag,

there is a ¢(20) such that 7[(28) IFp,, “ A, ., (P (28) Ap2(28)) < r*(26)” and

@ ikp,, “r*(26) € Q25”, so we are done.

Taking ¢ = 0,7 = ap in (*), we see that the set {p?, p? :n < w} has an upper

bound which necessarily is a common upper bound to g, ¢«, so as Z, is an

antichain, g. = g¢ € N, so Z, N N is pre-dense above p*, and we finish. [; ;

1.2 Remark. The reason for including this is as follows. It was a consequence
of the work on proper forcing that we can iterate R;-complete and ¥;-c.c.
forcings together. So it was natural to ask the parallel for Ro-complete and
N;-complete with the Rg-c.c. But we do not know how to iterate the second
kind alone (and in general this is impossible since R, will collapse). So it is
reasonable to replace Ra-c.c. by something stronger (here — clause (4) of the
lemma). (Remember p?(28) is § when 28 ¢ Dom(p}), and hop(P) = 0). Of
course, much better would be to find one condition unifying the two conditions

- see Chapter XIV.
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However as the interaction has no applications now, we shall not discuss
it further (there are other tries at Ry-c.c., see [Sh 80]).
Note also that the analogous lemma for X;-complete, X;-c.c. forcing holds,

but now it has no application.

1.3 Claim. If Oy, holds, then in 1.1 we can change the iteration to the usual

(< Ng)-support iteration and the conclusion still holds.

Proof. We let N = UE <w, Nes Ne¢ < N where N¢ are countable, increasing and

continuous. By Oy, there are for { < w;, 2-place functions f¢ from
Ye def {{a,B) : B, € N¢, , B ordinals}

into wy, such that for every 2-place f : ¢, Ye — w1 theset {¢: fIY = f¢} is
stationary. Repeat the proof of 1.1 but in the definition of the p¢’s, we replace
A), B), C) by:
A) if £ < ¢ <w; and 28 € N¢ N ayg, then pe(28) = pe(28)
B) pe <pc € NN Py, for § < ¢ <wy
C) If¢ < wy, and there are ¢ and p*(i < w) such that:
(i) ¢<p°, q€Z,,and p; <p°
(ii) for i < j < w,p* < p?, moreover I-p “p*(y) < pi(y)” for each
v € Dom(p')
(i) PL™'1(28) IFpyy “hop(p(26)) = fe(i,28)” for 26 € Ne Na,
then there are g, pg(z < w) satisfying (i), (ii), (iii), such that:
for i < w and v € Dom(pg) \ {28 : B € N¢ and 28 < o}, we have
IFp, “Pt(7) < pe+1(7)”

In the end we define p*, Dom(p*) = ap N N, p*(7) is pe(y) for any even v, and
for any ¢ such that v € Ng, and it is any upper bound of {p¢(y) : £ < w;} for
v odd. Urs

1.4 Remark. See more in [Sh:186], [Sh:587].
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§2. Chain Conditions Revisited

We here deal again with problems like those of §1 from VII, but allowing the

continuum to increase somewhat. Here, x is a fixed cardinal.

2.1 Definition. P satisfies the k-p.i.c. (k-properness isomorphism condition)

provided the following holds, for A large enough:

Supposei < j < K,k € N; < (H(N), €, <)), (<x is a well ordering of H()))
and k € N; < (H()), €,<n), ||Ns|| = ||Nj|| = Ro, P € N;N Nj,i € N;,j € Ny,
Nink Cj,NiNi= N;Nj,p€ PN Ny h an isomorphism from N; onto N;,
h[(N; N Nj)= the identity and h(i) = j.

Then there is a q € P, such that:

(a) p, h(p) < g, and for every maximal antichain Z C P, Z € N; we have that
ZNN; is pre-dense above g, and similarly for Z € N; (but clause (b) below
implies that this follows from the rest of (a))

(b) for every r € N;N P and ¢! such that ¢ < q' € P thereisaq”’,q' < ¢’ € P
such that [r < ¢” iff h(r) < ¢"]; equivalently;

(a’+Db’) letting G be the P-name of the generic set
qlFp “(Vr € N;N P)(r € G iff h(r) € G)”,

glp PG,

and q is (IV;, P) — generic.

2.2 Claim.
1) If Definition 2.1 holds for P, H()), <y, then it holds for any A\; > 2* and
well ordering <3 of H();) (in fact, we can omit the well ordering).
2) If Definition 2.1 holds for P, H(A), <y then it holds for some A3, <; such
that A\; < (u + |P|)*, where p is the number of maximal antichains of P
(w.lo.g. P € H(|P|*")).

Proof. Similar to the proof in III §1,2. U2
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2.3 Lemma. Suppose (Vi < k)uR® < k where & is regular and P satisfies the

k-p.i.c. Then P satisfies the x-chain condition.

Proof. Let p; € P for i < k be given. Let (H(\), €, <)) be as in Definition 2.1.
Find, for ¢ < k, models N; such that i,p; € N; < (H(\), €,<)), ||N;i]| = Ro.
Define f() def Sup(N; N i), so cf(3) > R = f(i) <.

By Fodor’s Lemma, for some 7 the set {i : f(i) =7} is stationary. As (Vu < k)
pXo < k and « is regular, for some A C v, S = {i: N;Ni = A} is stationary.
Similarly, we can assume that for some B, i # j € S = N; N N; = B (see
the proof of V1.5A). Also C = {0 < k : (Vi < §)(N; Nk C &)} is closed
unbounded, so S; = SNC is stationary. Now there are x models (N;, p;, %, a)acB
where p;,i,a (a € B) are individual constants and xk > 2%, and the number
of isomorphism types of such models is 2%°, so for some i < j there is an
isomorphism h : N; — N; (onto), h(p;) = p;, h[B = the identity. Now apply
Definition 2.1 for N;, N;, h, p;. Os3

2.4 Lemma. Suppose Q = (Pi,gj t 1 < ag,j < o) is an iteration with
countable support. Suppose further
(*) Qq satisfies the x-pic (for each a < ap) and & is regular.
Then 1) If ag < K, Py, satisfies the x-p.i.c.
2) If ag < K, P,, satisfies the k-chain condition, provided that

(Vi < R)(™° < K).

Proof. 1)Let (H(X), €,<1), h,4,j be as required for Definition 2.1. Let G4 be

the Pg-name of the generic subset of Pg. Without loss of generality @ € N;NN;

(because Py, € N; N N;), hence ag € N; N Nj; as ap < k, Ny Nag = Nj N,

(read Definition 2.1) and the proof is now similar to the proof of properness.
We prove by induction on £ < o that:

(*x) for every¢ < &, ¢ € N;Nag, £ € N;Nag and p € N;NP,, or even just a Pe-
name p of such a condition, g¢ € P, g¢ > pl(, g¢ > h(p)[¢, such that g¢ is
(Ni, P¢)-generic and (N;, P)-generic and g¢ IFp, “(Vr € N;OF;) [r € G¢ iff
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h(r) € G¢]”, there is a g¢ € P¢ such that g¢I¢ = q¢, g¢ > pl¢, g¢ > h(p)1¢;

¢ is (NV;, P¢)-generic and (N;, P¢)-generic and g¢ IFp, “(Vr € N; N Fy)

[r € Ge iff h(r) € Ge]”.

Note that (x*x) with p an element implies the apparently more general
version with p being p, a P¢-name of a member of N N Py, such that g¢ I-p, “
for some p € N; N Py, p[Gp,] = p, and p[¢ < g and h(p)[¢{ < ¢”. (Used in the
inductive proof for ¢ limit.)

For £ a successor, we first, by the induction hypothesis, define g¢_; as
required (necessarily £ —1 € N; N N;); then notice that, by the induction
hypothesis, if we force with P;_; and get a generic G¢_1 C P¢—1 and g¢_; is
in this generic set, then A is still an isomorphism etc, so we can use the K-p.i.c.
on Qg—l[Gg—l]-

For cf(€) = No, we work as in the proof of properness (III 3.2), using the
induction hypothesis. Noticing that g¢ IFp, “(Vr € P¢) (r € G¢ iff h(r) € G¢)”
makes no problem in the limit, we do not have to take special care. For cf
(&) > Ny the proof is similar but easier.

2) Trivial by 1) and 2.3 and the proof of III 4.1. Ooa

2.5 Lemma. If P is proper and « > |P| then P satisfies the s-p.i.c.

Proof. We start with 1, j, N;, N;, (H(X),€,<)), p and & as in 2.1. Remember
that P € N; N N;. In (H()), €,<)) there is a <)-first one-to-one function g
from |P| onto P, so g € N; N N;. Also as |P| € N; N Nj, by the assumption
on N;, Nj, £ from Definition 2.1, |P| < i,j and hence N; N |P| = N; N |P|.
Hence (using the function g), N; N P = N; N P and so h is the identity on
P N N;. Now it may well be that there is an Z € N;, a pre-dense subset
of P, which does not belong to Nj;. But if ¢ is (N;, P)-generic then for any
Z € N; a pre-dense subset of P, h(Z) € N; is a pre-dense subset of P and
INN; =In(PNN;)=h(Z)N(PNN;), hence ZNN; = h(Z) N N; is pre-dense
above q. So ¢ is (N;, P)-generic too and we can use the properness of P to

define q as required (with clause (b) of Definition 2.1 being trivial). Oes
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2.6 Definition. The k-p.i.c* is defined similarly to k-p.i.c, but we add one
assumption:

for any a € N; there is a sequence (a, : a < k) in N; N N; such that a; = a
(this implies the corresponding condition on N;); equivalently N; is the Skolem

hull of (N; N N;) U{i}, and N; is the Skolem Hull of (N; N N;) U{j}-

2.7 Lemma.

1) The k-p.i.c. implies the k-p.i.c*.
2) Lemmas 2.2-2.5 hold for k-p.i.c*, (and we call them 2.2%,. .. respectively).

3) P satisfies the k-p.i.c* if P satisfies the conditions from [Sh:80] which are:
a) P is Ny-complete.
b) for any p; € P (i < k) there are pI € P,p; < p:f and pressing down
functions F, : k \ {0} — &, (ie., Fn(a) < @) for n < w, such that: if
i < jand A\, Fn(i) = Fn(j), then pz,p} have a least upper bound in
P, called pz A pT..

2.7A Remark. So 2.7(2), (3), 2.4%, 2.4* give an alternative proof of [Sh:80],
for the case agp < k. In fact, 2.4* holds for o not necessarily < , when each

Q; is Nj-complete, and this gives an alternative axiom for [Sh:80].

Proof. 1) Trivial.

2) The least trivial part is 2.3. Here the extra assumption is the least
obvious. So, by induction, we define N¥(k < w). For k = 0 we choose N?
such that: {p; i} € N2 < (H()\),€,<1),||N?|| = Ro. Suppose NF (for each
i) has been defined and let {aﬁe : e < w} enumerate the members of NF.
We choose N1 such that Nf € N¥*! < (H()), €, <)), |[NFF|| = R, and
((ak,:j<k):e<w)eNFL

Now let N; = (Jy.,, NF and proceed as in 2.3.

3) Let N;, Nj, h be as in the definition of k-p.i.c*, p € N;. Let (Z, : n < w)
be a list of all maximal antichains of P which belong to N;. For every a € N;

let seq, € N; N N; be a sequence of length & such that a = seq, (i). We define,
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by induction, conditions py,:

Po =D,

if pay, is defined, choose pop 1 > pon, such that popy1 € PNN;, pony1 > (some
n € In),

if pon+1 is defined, consider seq,, ,, = (ran : @ < k). We can assume w.l.o.g.
(Va < K) o € P. So there are (F, : n < w), (rl , : @ < ) as mentioned in
2.7(3)(b). As (ra,n : @ < k) € N;NN; and <), is a well ordering, we can assume
that (Fr : m < w), (rl,, : @ < K) € N; N N;. Let panyz = r;‘m (remember
Doant1 = Tin < r;'n) Notice that h(r;n) = 7jn, and by the choice of N;, N;
we have A\, Fin(i) = Fn(j). So rZ," = Pant2 and r;’n = h(pan+2) have a least

upper bound gon42 def DP2n+2 A A(D2n+2). In the end:
P2<ps<ps<...

h(p2) < h(ps) < h(ps) < ...

Now gan+2 < Gan+4, as they are least upper bounds. So by N;-completeness

there is a ¢, /\,, ¢ > qn. Now q is as required. Oz

2.8 Lemma. 1) All forcings used in VII §3 (= applications of Axiom II) satisfy
the Ro-p.i.c*, (but of course Levy(Ry, < k) if & > Ry)

2) Moreover for each application we can find a forcing notion doing all the
assigments of this kind present in the current universe and satisfies the Ra-p.i.c*,
and in fact all are (< w)-proper and D-complete for a simple Ro-completeness

system D.
Proof. We elaborate two of them leaving rest to the reader.

application F: Let T = ((T%, f*) : a < a*) be a sequence of pairs (T, f*), T an
Aronszajn Ni-tree, f* : T' — w satisfies the antecendent of ® in VII 3.8 (in the
main case: listing all of such pairs). We define a forcing notion Pr. A member
p of Py has the form p = (i,w,3, C, B), where:

(i) w C o* is countable,
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(ii) i < w1, C = (Cq : a € w), C, the characteristic function of a closed subset
of i + 1 to which ¢ belongs

(iif) g = (9o : @ € W), go a function from T2, = (T*)<i to w such that (ga, Cs)
is as in VII 3.11.

Notation: For finite u C o™ we letting 7" be the disjoint union of {7 : & € u}

(i.e. make them disjoint).

(iv) B is a countable family, for each member I for some finite u = u(I) C w,
(9™, N Ca{I}) € Pgu 1)

acu

application C': Use product with countable support. O,

2.8A Remark. We do not investigate the connection between x-p.i.c, and
k-e.c.c. However, k-e.c.c. was introduced to deal with the case in which we
iterate forcings which are D-complete for some . We introduce the s-p.i.c. to
deal with the case in which we want to get V E “Ry = 2% < 281”7 S0 we use
an iteration of length wy where each iterand does not add reals. On the other
hand, k-p.i.c.* seems to replace k-p.i.c. totally.

Note that the property of being s-p.i.c. essentially (but seemingly not

formally) implies properness.

2.9 Claim. If ap < k,(Pa,Qa : @ < ap) is a CS iteration, ap < k, each
Q. satisfies the k-p.i.c* and (Vi < k)u®° < k; then, in VP we have (Vi <

kK)o < K and 2% < k.

Proof. Trivial.

83. The Axioms Revisited

3.1 Thesis. Proper forcing is efficient for getting models in which 2% < R,
and important things it gets are such universes of set theory which in addition
satisfy conditions of the form “for every A C w;...”. The reason is that we,

at present, can iterate only wo times without collapsing Rz (of course, if we are
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interested in c.c.c. forcing, we can increase this to 2%°). So we have a division

to four main cases we can reasonably handle:
I) 2% = 2% = Ny,

IT) 2% = Ry, 28 = Ry,

III) 2%0 = Ry < 2%,

IV) 2% = Ry R, < 2%,

3.2 Discussion. We have dealt in VII §2 with I), IT), and have the appropriate
axioms. Also in previous works we dealt with mainly I), II); sometimes we get
more for free: e.g. in Laver [L1] (consistency of Borel conjecture), the value of
281 was immaterial.

For getting such models with some extra properties we iterate wy times. At
some stages we increase 2%, or add “a few” reals (and preserve CH meanwhile
(see 2.9) if Ry in the end is a given inaccessible k, “few” can be interpreted as
< k) (according to the case — for I, III each time we add a few reals, for III, IV
we start by adding many A C w;). In other stages (for I and II) we consider
A C w; and force “for” “it” some B. If we want III or IV, we consider all 4 C w;
of a certain kind and simultaneously add for each such A an appropriate B.
Sometimes we want the forcing to preserve something (e.g. “w-boundedness,
or a Ramsey ultrafilter etc.) but we shall not deal with those things here, for
the number of axioms arising is not bounded.

For other possibilities of 280, 2% the situation is not clear. On some con-
sistency results see Abraham and Shelah [AbSh:114]. We get there results with
2% > N, but the results are on A C w;. Resolving the problematic cases, first
of all 2% > R3 seems to me a major problem; we shall discuss this later.
Note: in case IV for example, we are restricted by our iterations being of length
wa.

Generally, for getting the consistency of stronger axioms we have to assume
the consistency of ZFC+ some large cardinal. Here we concentrate on assuming

the consistency of ZFC only.
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3.3 Notation. ¢, 9 are first order sentences (in the language with =, € and
one predicate P).

M is a model with universe w; and language of cardinality < o, M =
(IM|,...,Ri...)icio<w- Let N denote an expansion of M, again with < Rg

relations and ¢ a first order sentence in N’s language.

3.4 Lemma. If ZFC is consistent, then so are ZFC + each one of the following
axiom schema (separately):
1) 2% =28 = No4
Aziom Schema. Iy: For each (1, ), for every M with universe C H(X;)
such that (H(X1),€,M) & 1, there is an expansion N of M such that
N FE ¢, provided that

(*)1,: the following is provable from ZFC + G.C.H.: if (H(X1), €, M) E 1 then
for some proper forcing notion P satisfying the Ro-p.i.c.*, |P| < Rg, IFp “there
is an expansion N of M, N satisfying ¢ and 2%° = X;”.
2) 2% =R; 4 2% =Ny (+ G.C.H. if you want) +
Aziom Schema. I11y: For each (¢, ¢), for every M with universe C H(X;)
such that (H(X;),€,M) F 1, there is an expansion N of M such that
N E ¢, provided that

(*) 1, the following is provable from ZFC + G.C.H.: if (H(X;), €, M) E ¢ then
for some (< wj)-proper P, D-complete for some simple Rp-completeness system
D, satisfying the Ro-p.i.c.*, |P| < R and IFp “ there is an expansion N of M
satisfying ¢”. We can use here H(X;) instead of H(R;).
3) 280 = R; + 281 = any cardinality of cofinality > Rp+
Aziom Schema. IVy: For each (v, ), for every M with universe C H(X;)
such that (H(Xy),€, M) E 9, there is an expansion N of M such that
N E ¢, provided that

(%) 1v, the following is provable in ZFC + CH: there is a (< w1 )-proper forcing

notion P, D-complete for some simple Ro-completeness system D, satisfying the
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No-p.i.c.*, |P| < 2%, such that I-p “for every M € V, if (H(X;)V,€, M) F 1,
then there is (in V¥) an expansion N of M satisfying ¢”.
4) 2% =R, < 2% = anything of cofinality > No+
Aziom Schema. I11y: For each (v, ¢), for every M with universe C H(X;)
such that (H(X;), €, M) E v, there is an expansion N of M satisfying ¢,
provided that

(*)r11,: the following is provable from ZFC + CH: there is a proper forcing P
satisfying the No-p.i.c*., |P| < 2%t such that:

IFp “CH and for every M € V with universe C H(N;),
if (H(R1)”, €, M) F 9, then

there is (in V) an expansion N of M satisfying ¢”.

Proof. Straightforward by now, when we use the relevant theorems on forcing.
Us.4

3.4A Remarks on 3.4(3).
A) Notice that we use CH instead of G.C.H, and we here put first 3P and

then VM. We can also assume that P is an iteration with countable support

satisfying the above conditions.
B) If 2™ is such that (Vu < 2%1) [uRe < 2], we can replace H(X;), by H(2%1).

Of course, as we use “larger” cardinals k to be collapsed to g, we can get

stronger axioms:

3.5 Lemma. If “ZFC + 3 an inaccessible cardinal” is consistent, then so are
“ZFC + each of the following” (separately).
1) 2% =28 =Ny +
Aziom Schema. I,: like Ip, but we replace (in (x);, the demand) “...P,

satisfying the Rg-p.i.c.*”, by “... P, |P| < first strongly inaccessible”.
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2) G.CH. +
Aziom Schema. I1,: like I}, but we replace “..., P satisfies the Ro-p.i.c.*,
|P| < Ro” by “...,|P| < first strongly inaccessible”.

3) 2%0 = R; 4 2™ = first inaccessible +

Aziom Schema IIl,. Like III, but we replace “... P, P satisfies the Ro-p.i.c.*,
|P| < 2% by ... P, |P| < first inaccessible”.
4) 2Ro =R, = 2™ = first inaccessible +
Aziom Schema IV,. like IV, but we replace ..., P satisfying the N,-
p.i.c.*” by “...P,|P| < first inaccessible”.

3.5A Remark. 1) Our use here of I, is not the same as in VII §2, but we can
take their union as I,.

2) We can replace in this section “D simple Rg-completeness system” by
D € V¥ is a 2-completeness system (see §4).

3) We can replace in 3.5 “|P| < ¥” by “P F k-p.i.c.*”.

Proof. Again easy.

Remark. We can of course try more axioms, but those mentioned above seem

to suffice.

8§4. More on Forcing Not Adding w-Sequences
and on the Diagonal Argument

4.1 Discussion. We have proved in VII §3, application D, that CH 4 <I>§‘1’
whereas in Devlin and Shelah [DvSh:65] (or see somewhat more [Appendix
§1]) it is shown that CH — ®} . But Axiom II does not prove the consistency
of “not @ﬁl” with CH. More generally, we can ask whether we can make the
condition on the Q4 (in V 7.1, 7.2) weaker.

We saw no point in trying to weaken the assumption “a-proper for every

a < w;” to e.g. w-proper, as it seemed to us that every natural example of forc-
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ing will satisfy it (truly, sometimes we want to destroy some stationary subsets
of w; and under reasonable conditions we can succeed, for example, the proof
the consistency of “the closed unbounded filter on w; is precipitous” (see Jech,
Magidor, Mitchell and Prikry [JMMP)), but we can amalgamate such a proof
with our constructions). The hard part seems to be the D-completeness, where
D € V or D is simple, again, do not seem to be a serious obstacle to anything;
but the requirement that any finitely many possibilities are compatible (i.e.
D(n,pp)y generates a filter) seemed to be an obstacle - e.g. to the natural forc-
ing for making <I>f;1 false. Remember, Dy, ) was a family of subsets of P(N)
with the finite intersection property. We shall try to replace this requirement
by the requirement that the intersection of any two is nonempty. As an appli-
cation we get consistency with CH of variants of <I>§1 (we hope there will be
more). Note that we replace here Dy, py by another equivalent formulation.
Note another drawback, which at present is only aesthetical, the ID-
completeness is not preserved; i.e. we have not stated a natural condition,
preserved by CS iterations, that implying that no w-sequence of ordinals is
added. Note that we do not use the full generality of Definition 4.2. We treat
it in 4.14—4.22. A minor difference with Chapter V is that we use countable
subsets of some A instead of H(A), but this is just a matter of presentation.

For another point of view and more results see [Sh:177] or better yet XVIII

1, §2 .

4.2 Definition. 1) Let A be a cardinal. D is called a (A, 1,k)-system (or
completeness system) if:
(i) D is a function (where D(z) may be written as D,),
(ii) Dig,<» z,p) is well defined iff a € Sy, (X), <* is a partial order of a, z C axa
and p € q,
(iii) D(q,<q¢,py is a family of subsets of P(a), the intersection of any ¢ of them

is nonempty when 7 < 1 + k.

2) We say that D is a k-completeness system if for some X it is (A, 1,k)-

completeness system.
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4.3 Definition. A forcing notion P is called (D,D)-complete, where D is a
filter over Sy,(\) and D a (), 1,k)-system, if A > 2/PI| P is isomorphic to
P* = (P*,<*), P* C )\, and for every p € P* and Z, = {p : i < iq < A}
pre-dense subsets of P* (for a < A), for some z C A x A, the family of all
a € Sy, () that satisfy the following, is in D:

(x) the following contains, as a subset, a member of D, <+ 14, ztaxa, p):

{G Ca:1)forevery a € a, for some i € aNiy, pf € G
2) (3q € P*)(Vr € G)(r <* q)
3) pe G}

If D = Doy, (N) (see V §2) we may omit it and write D instead of (D, D). If
D = Dcyx,(A) + S, where S C Scy,(A) is stationary, then we may write S
instead of D.

4.3A Remark.

1) In Definitions 4.2, 4.3 we can replace A by any set of this cardinality or by
any larger cardinality.

2) We omit D in 4.5 below from laziness only.

3) In 4.4 and 4.3 of [Sh:b] we use @ € S§ () for some fixed a, but we use only
the case o = 1 in Theorem 4.5; to help the reader we delay this generality
to a later part of this section.

4) If D}\O is a fine normal filter on Scy, (Ao), and A; > Ag, we let D}\l be the

fine normal filter on Scy, (A1) generated by
{{a € S<N1()\1) taN)g € X} : X e Dgo} .

5) If S C Scw,(A) is stationary we may write S instead of Dy, (A) + S.

6) Instead of Z, for & < A we can use Z,, for a < o*, o* < \.

4.3B Fact. 1) In Definition 4.3, any choice of (P*, <*) gives an equivalent

definition. Also we can increase A in a natural way.
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2) Definitions 4.3 and 4.4 (simplicity) are compatible with the definition of
completeness systems from V 5.2, 5.3, 5.5.
Specifically:
(A) For a forcing notion P, k < R; and a family £ of subsets of Scx, (), the
following are equivalent:
(i) For some A > p, P is (Dcx,(A) + €,D)-complete for some simple
(A, k, 1)-completeness system D in the sense of 4.3, 4.4 below, where

Dy, (A) + € is the fine normal filter on Scy, (A) generated by
{{a€eScx;(N):anpe X}: X e&}.

(ii) P is (&£,D)-complete for some simple k-completeness system in the
sense of V §5.

(B) For a forcing notion P, k < Xy, £ a family of subsets of Scx, (1), and a
subuniverse V; (Vp a transitive sub-class of V' containing all ordinals and
being a model of ZFC) such that S € V;, the following are equivalent:

(i) For some A > p and (A, k, 1)-completeness system D € Vp, the forcing
notion P is (Dcy, (A) + &€, D)-complete in the sense of V §5.
(if) For some A > p and k-complete system D which is almost simple over

Vs, the forcing notion P is (€, D)-complete in the sense of V §5.

Proof. Straightforward. Usasm

4.4 Definition. We call D simple if for some first order formula (v, u),
Dig,<rapy = {G C a:p € G (aUP(a xa),€ la, <*z,p) E ¢¥(G,u)} :

u C a}, (¥ can have a countable sequence of ordinals as a parameter).

4.5 Theorem. If (Py, Qa : @ < ay) is an iteration with countable support and
each Qa is B-proper, for every f < w; and D®-complete for some (Aq,1,2)-
system, D* € V (possibly D*, )\, are actually P,-names D%, ), but it does not

matter), then forcing with P,, does not add any new w-sequences of ordinals.
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Note:
4.6 Claim. Any simple system in VP« (where P, is a forcing notion adding

no new w-sequences) is in V.

Note:
4.6A Remark. Every Q, is “w-bounding because it is D*-complete, which
implies it does not add (to V=) reals and even does not add w-sequences of

ordinals.

Proof of 4.5. We prove some claims and then the theorem becomes obvious

(Claim 4.10 is the heart of the matter).

4.7 Definition. Let A = (4; : i < ), 8 countable, each A; is a countable set
of ordinals, A;(i < B) is (strictly) increasing and continuous. For £ < (,€ €
Ag, ¢ € Ap, A as above, we define when A4 is long for (&,¢), by induction on (:

Case (i). ¢ = €&: Ais long for (£,¢) (under the assumptions above) if 3 > 0.

Case (ii). ¢ a successor, ¢ > ¢ : A is long for (¢,¢) if for some 8! < § we
have that (4; : i < B) is long for (£,¢ —1).

Case (iii). ¢ a limit: A is long for (£, ) if there are 3;(i < w?) (the ordinal
square of w) such that: i < j <w? = B; < B; Bz +w + 1 < B; and for every
i and (£1,¢1) we have: & € Ag,, (1 € Ap,, £ <& < (1 < and i < w?, implies
that (A; : B; +2 < j < Biy1) is long for (&1,¢1).

4.8 Claim.

1) If € < ( € Ag, (A; : i < B) is as in the assumptions of Definition 4.7,
Bo < B1 < B,and (A; : fo < i < By) is long for (£,¢) then (A; : i < B) is
long for (¢, ¢).

2) (A; 11 < ) is long for (¢,¢) iff (AiN(¢+1)\€:1<p) is long for ().
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Proof. 1) By induction on ¢, and there are no problems.
2) Easy. Ugs

4.9 Claim. Let A > wy, f < w; and for i < 3 we have N; < (H()), €), and N;
are countable increasing continuous and (N; : j < i) € N;41 and € < ¢ € Np.
Then we can find an a such that 8 < @ < wy, and a countable N; for 8 < i < a
such that N; < (H(X),€), (N; : j < i) € Ny for i < a, N; are countable

increasing continuous in 7 and (N; N\ : i < a) is long for (¢, ¢).

Proof. Again by induction on (.

4.10 Claim. Suppose Qi, P, ap are as in Theorem 4.5, A is large enough and

for i < B(< w1) Ny < (H()), €,<3) is countable, increasing, continuous and
(N]‘ ]SZ) ENH,l, fSCGNoﬂ(Oz0+1), (H,Qi:i<a0) € Ny.

Suppose further that (N; Nag : i < B) is long for (£,¢), Ge(e = 0,1)
are directed subsets of P N Ng, 7o € P (for e = 0,1), (Vg € G¢)q < e,
GoNNyg=G1NNyand i <B=INGeNN; # D for every pre-dense Z C P
with Z € N; and e = 0, 1. Suppose also p € P N Ny and p[¢ € Gy.

Then there is a directed G* C Py N Np such that Go N Np € G*, G* not
disjoint to any pre-dense T C P;,Z € No,p € G*, and 7 IFp, “{q[[{,¢) : q €
G*} has an upper bound in P;/P;” for e =0, 1.

Proof. By induction on ¢ (for all £ < ().

Note that the assertion (for £ = 0) implies that forcing by P; does not add
w-sequences of ordinals.
Also note if p < g are in P:NNy, ¢ € GoNNp thenp € GoNNp (as{r € Pz :r > p
or r,p incompatible in P¢} is pre-dense in P; and belongs to Ny); similarly for
Npg instead Ny and/or for G instead of Go. Also, for e = 0,1 and ¢ < 3, we
have Ge " N; € N; 1. Why?

This is easy, as the set T C P, defined below, is pre-dense and belongs to
N 11, hence is not disjoint from G, N N;;+1. So there is an rt € TN N;;1 with



424 VIII. k-pic and Not Adding Reals

rt € GeNNjy1; but by the assumption (Yq)[g € GeNN; — g < ] and rf < 7.
Hence, by the definition of Z° below, we know that r! ¢ Z°, so rf € T (see
below), and necessarily {g € N; NPz : ¢ <r'} = GeN N;. So Ge N N; € Ni41

as it is defined from parameters (N;, P¢,r') in it. Here is the definition of Z:
7=1° UII, where

7° = {qg € P : there are no r € P;,r > q and G C N; N P¢ such that
(Vo' € G) p’ <rand
(VT € Ny) [J pre-dense in P; —» J NG # 0]}
T' = {q € P; : there is a G C Np N P such that (Vp' € G) p’ < gand
(VT € No)|J pre-dense in Pe — J NG # 0]}

Case (i): { =&.
Trivial. Just let G* = Gy N Np.

Case (ii): ¢ a successor ordinal > £ .
So by Definition 4.7, for some v < 8, (N; N A : i < +) is long for (£,¢ —1). For
e = 0,1, we can find r? € G N Ny41 such that r¢ is above every member of
G N Ny (see the proof above). Hence, by the induction hypothesis, there is a
G* C No N P_y such that:

(a) for every pre-dense T C P;_1,T € Ny, the intersection G* N Z is not

empty,
(b) r¢ IFp, “G* has an upper bound in P;_;/P;”,
() GeNNg=G*N P

Now without loss of generality G* is definable (in (H(\),€,<3})) from the
parameters Q, (N; : i <), r&,7¢,(, €, hence
(d) G* € Nyta.

Now we want to define G** C P; N Ny as in the conclusion of the claim. G*
determines D‘~! € V, as ¢ € Ny (i.e. some member of G* forces (IFp,_,) D¢~?
to be some D$1). Let G* C G£-1 C P:_1 where G£—1 is generic (over V).
Clearly, some members of G£_1 force No N A¢—1 (A¢—1 is from the definition
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of D¢~1) to be in the appropriate closed unbounded subset of Sy, (A¢=1), so
we “know” D = D¢~! and it belongs to N7+1[G£_1] (and to V; why not to
N;7 we need G*; “know” means independently of the particular choice of
G£_1)- In VP let (QF, <¢) = (Q¢, <), QF € A,z € A x X code a list
(Ja = (P : 1 < ia) : @ < a*) of the pre-dense subsets of Q-1 <{-1) from
Definition 4.3 and z is as in Definition 4.3. They may be P;_i-names, but
without loss of generality (Jo = (p; 1i <) ta<af), (QF,<i) b
and g belong to NO[GZ—J]' (Why? By III 2.13.] And we can compute z[(No N
A¢-1), (QF, <Z_1)[(No N A¢—1) so that N7+1[G£_1] < (H(A),€,<3). Finally,
let y = (No N A¢—1, <¢_1[(No N A¢=1), 21((No N A¢—1) X (No N X¢—1)), B(p)).
There is a set A € Dy such that (in V[G’g_l]) for any G € A, we have that
GC NyN Qz_l[Gf_l] is not disjoint to any pre-dense Z C QZ_ 1 Which belongs
to No[Gg_l] and G has an upper bound in Qz_l[Gé_l]. Note that G£_1 C Py
is an arbitrary generic set which includes G*, so there is a P;_;—name 7 such
that IFp,_, “if there is an A as above then 7 names it ”. Again without loss of
generality 7 € N1+1[G£_1].

Now I* = {q € P_1 : q forces T to be some specific A € D,} is pre-dense
in P;_; and belongs to N,41 C Ng. So, by the assumptions on G., there are
r* for e = 0,1, such that r} € Pr_y N Ng, r5]€ € Ge, (Vg € G*)(q <p,_, T2)
and r} IFp,_, “7 = A.”, where A, € Dy, Ac € Ng. By the hypothesis on D<-1,
AgN Ay # 0 so as Ag, A1 € Nj there is a G® € Ag N A; N Np.

Then

G** ={q:q € NoN P and ¢[(¢ — 1) € G* and for some r € G®,
rikp_, “h(g(¢—1)) =77},

is as required (it is well defined as though h is a P;_;-name, it belongs to Ny
hence h[Ny can be computed from G*).

Case (iit). ¢ a limit.
So there are B;(i < w?) such that i < j <w? — B; < B, Bz +w+1 < B and
for any (£1,(1) in Ng, if € <& < ¢ < (then (N;N¢: B +2 <5 < fBiga) is
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long for (£1,¢1) and (B; : i < w?) is increasing continuous (we can assume this
by 4.8(1)).

Let 8* = B2 and w.l.o.g. we can assume (B; : i < w?) € Ng-41 (as there is
such a sequence in Ng- 41, because it exists in V). Similarly i < w? = (8, : j <
1) € Ng,+1. Choose ¢, € NoN ¢ such that £ = (o < (1 <...¢n < pt1.-- < (¢
and [y € No&vy<(¢=V,7 <Gl

Now we define by induction on n < w, kn = k(n) < w, G} (for n €
(k()2), rx, 7Nn such that:

1) r} is a member of P, N Ng«441 with domain (N Ng«1y,, 75 < 70,75 < 11
(see below for formal problems or let r§ = @ (so Dom(rg) = @) but then
we use 7 U, to force anything),

2) 1% 11¢n = 75, (or you can say that r;, is a P;-name of such a condition
with 7, 71 deciding the value but see (8) or the beginning of the proof
below)

3) ifn+2<m<w,r}is (Ngeym, P, )-generic,

4) if T C P, is a maximal antichain, Z € Npg-,; then for some finite
J C I N Ngey1, J is pre-dense above 7, (note that, as described in
the beginning of the proof of 4.10, this implies that the function giving
J (from ) belongs to Ng«4n42),

5) ko =1, G((’e) = G N Ng-,

6) G C P, N Ng-,G? € Ng-yy for n € ¥™2,

7) if m <n and 7 € ¥M2, then G7}, \ =GiN P,

8) 7 is a P¢,-name which belongs to Ng- 1,

i IF S, € K2,
Tra1 F “Oniilhn =10,

|- “Gy is included in the generic subset of F¢,”,

9) if j < B*, but for no k < k(n) is Buk +1 < j < Buk+1) then for every
pre-dense 7 Q'Pcn, Ze Nj,andne k(n)2 we have N;NINGH # 0,
10) n,v € ¥™2, nik = vIk, k < k(n) implies GF N Ng_, 41 = GZNNp,, 41 and
we denote both by Gy,
11) (Vg € Ng- N P;,) [(3¢t € Gp) (g < ¢f) — g € GF] for p € k)2,
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There is no problem for n = 0 (how do we define r5? we can assume that
Q- is closed under disjunction. Let ¢ € NgN (¢ + 1) be maximal such that
(Vr € Ngpy N P)(r < 19 = r < 11), by the definition of CS iteration it is
well defined. As before we can find 7, € Ng«4,+1 which is below 7, and (Vr €
Notw NP)(r <71l =71 <1e), role =7ile, € < { = ryle Ikp, “ry(e),r1(€) are
incompatible in Q.” and define r§ as follows: Dom(rg) = Dom(rg) U Dom(ry),

and
ro(v) =ro(7) if v <,

)
ro(7) =ro(7) Vri(e) if y =€,
ro(7)

ry(v) =rg(y) otherwise.)

_T1(7) if 7'1 (E + 1) € GP:+1!

So assume we have defined for n and we shall define for n + 1.

First we define, by induction on £ < k(n), for every n € 2, the sets GZ,‘“
(see (10) above), and we have to satisfy (9),(7), and r}, should force Gp*1 is
(bounded by) a condition, if 7 = nn[L.

This makes no problem, using the induction hypothesis on ¢ and (< wy)-

properness.

Second we want to define k(n + 1), Gpt! (for n € k(n+1)9). Let G¢, C P, be
generic, 7, € G¢, and work for a while in V[G¢,].

For each p’ € Ng-[G¢, | N (P,,,/Ge.), thereisa G C Py, /G, P € G,
G has an upper bound, and ifp’ € Nj,j < §* is as in (9) then GNNj; is generic
for (Nj, P,,,/G¢,) [equivalently, if Z C P, ., is pre-dense, I € Nj, then the
set Z N N; NG is not empty|. So there is a function F giving such a G with
Dom(F) = (FP,,,/G¢,.) N Ng-[G¢,]. So, in V, we have a P -name F for it. As
its domain is countable, I-p, “F € V” (the domain is essentially C Ng-).
Also it is clear that, without loss of generality, ' € Ng«11 as (N; : i < 8*) €
Ng«41, 17, € G¢,, and condition (9), (4).

So, by condition (4), there are Fy,...,F, € Ng«41 such that r} I “F €
{F1,...,F,}", Fi... € V (note that so their domain is computed by Gy, --.)-

By renaming, choose k(n + 1), F, (for n € ¥(®+1)2) such that for every
n € ¥™M2 we have {F},...,F,} = {F, : v € ¥®+t12, y|k(n) = n}. Now for any
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n € k12 we can first define Gt N Ny (n+1)+2 50 that it depends on 7lk(n)
and not 7, and then let G, = F,(A(Gp*' N Ng,,.,,+2))-

Third we define 7, ; by V 4.5. U410

Proof of 4.5. Immediate by 4.10. Oas

4.10A Remark.

1) So now everywhere we can use 4.5 instead of V 7.1 and strengthen Axiom
II, 11,, II, etc.

2) We could use shorter sequences, e.g. § = 8* + 2 is o.k. (see implicitly VI
§1, and explicitly XVIII 2.10).

3) By easy manipulations, it does not matter in Theorem 4.3, whether D is
a P,-name of a member of V, or simply a member of V' (i.e. the function

a— D*isin V).

4.11 Conclusion. It is consistent with ZFC + G.C.H. that:

(¥) If k < w and 75 is an w-sequence converging to ¢ for any limit § < wy and
(As : § <wn) is such that A5 C k, |As] < k/2
then there is an h : w; — k such that for every limit § < wy, (h(ns(n)) : n < w)

is eventually constant, and its constant value ¢ As.
4.12 Conclusion. G.CH. % &3 .

4.13 Lemma.
1) The demand on each Q in 4.5 follows from: Q4 is v-proper for every
v < wi, and D,-complete for some simple 2-completeness system D, .
2) We can demand in 4.5 that each Q4 is 7y-proper for every v < wi, and

D,-complete for some almost simple 2-completeness system over V.

Remark. See Definition V 5.5.
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Proof. Straightforward. Og.13

* * *
Finally, we indicate how to rephrase the proof in the form of a condition

which is preserved by iteration.

4.14 Definition. We' call E C S;{;’; (A) stationary if for every x > A
(equivalently, some x > AX°) and for every z € H(x) there is a sequence
N = (N; :i < a) such that

(a) N = (N, : i < o) is an increasing continuous sequence of countable elemen-
tary submodels't of (H(x), €, <%), @ <w; and N[(i+1) € Ny for i < bg(N),
(b) z € Ny,

() (N;NA:i<a)€eE.

4.15 Definition. Let A be a cardinal, E C S;;:OI (M) stationary, and  a cardinal
(may be finite). We call D a (A, E, k)-system if:

(A) D is a function (written D).

(B) Dg,<*z,p) is defined iff @ = (a; : i < @) € E, <* a partial order of a,, =
is a binary relation on a, and p € ao. If D(g <+ 5,p) is well defined then it is a
family of subsets of P(ap).

(C) Ifi <1+« and (@,<},z;,p) € Dom(D) for j < i (note: same @ and
p and possibly distinct S;f,xj) and <} lag =<§ lao, zjla0 = zilao and

Aj [S D(ays:,z]_,m for j < i, then nj<i Aj # 0.

4.16 Definition. A forcing notion P is called (D, D)-complete, where D is a
(fine normal) filter on S<i,(A) and D is a (A, E, k)-system (so E C S;;;’; (A) is
stationary) if :
(A) X > 2IPl P is isomorphic to (P*,<*), P* C ),
(B) for any p € P* and pre-dense subsets Z, of P*, Z, = {p{ : i < iq < A}
(for & < A), for some z C A x A and a nonstationary ¥ C S;;;’; (M), we have:

! Remember S;‘;’; N def {A: A an increasing continuous sequence of count-

able subsets of X of length < w;}.
tt Of course we can omit <* and still get an equivalent formulation.
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(x) Ifa = {(a; : i < a) € E\Y for i < o, then the following set includes a
member of D (g <+ tag,z1a0,p):
{G C ap: 1) for every a € ag for some i € ag, pf € G.
2)(3q € P*)(Vr € G)[r < g

3)pe G},

(C) for every Y € D we have {a € E: ag ¢ Y} is not stationary (as a subset
of SS32(N)-

(D) if Y C S<io(A), Y # @ mod D then {@ € E: ap € Y} is stationary.

4.17 Convention. If D = D<y,(A) + Fy, Fo # @ mod D<x, () then we shall
write Fy instead of D. If D = D<y,(A) we shall write D instead of (D, D). We
do not always distinguish between D, a fine normal filter on S<x,(A) in V, and

the fine normal filter it generates in a generic extension of V.

4.18 Claim. (1) If P is (D,D)-complete, then forcing with P adds no new
w-sequence of ordinals (in particular, no reals).
(2) Suppose P is (D,D)-complete for a (A, E, k)-completeness system D, and
w2 A
Then for some I/, E', D' we have :

(a) B’ C 8232 (u) is stationary and for D'

a (u, E', k)-completeness system P is (D', D’)-complete,
(b) D’ is the normal fine filter on S<y, () generated by

{{a:aﬂ)\ey}:yeD}.

(c) B'={a:(a;NX: i <£g(a)) € E and @ € SS} (1) and ag N X € D}.
(d) D’ is defined naturally.
(3) If V |= 2% < p then (in the first part) D’ has the form D<y,()) + F for
some stationary F' C S<r,(A).



§4. More on Forcing Not Adding w-Sequences and on the Diagonal Argument 431

4.19 Claim. 1) Assume E C S;‘;’; () is stationary and D, E satisfy condition
(C)of 4.16. If Y € D and H is a function from Y to A, then {@ € E : H(ao) ¢
a1} is not stationary.
2) In definition 4.14 the value of x is immaterial and, if x > 2%, we can omit
“xz € No”.
3) Assume Q = (Pe,Q¢ + € < ¢*and ¢ < (*) is a CS iteration of proper
forcings. Assume also that D is a (fine) normal filter on S<y,(\), and for
(<ES (<A Ege ©SSRY(N) is stationary and each quadruple (D, E, P,/ Pe)
satisfies in V¢ conditions (C), (D) of Definition 4.16. Then
EY {@:a € S (N) and there is (e¢ : ¢ € ap N (¢* + 1)) increasing
continuous, 0 < €g, £¢+ < £g(a), for each ¢ € ag N (¢* + 1) we have
(ao) “(ac:e¢ +2 < € < ecy1) € Eep ey, and
a0, Geg(a)-1, Ge+1 belong to {bo :b e Eg}}
is stationary and satisfies clauses (C), (D) of Definition 4.16.
(4) If F C S<yo(A) is stationary and in (3) we add [a € E:&( < ¢* =
Ni<tg(m) @i € F) then we can replace E by E' = {@ € E: \;cpy5 ai € F}-

Proof. Straightforward. Ug.19

4.19A Remark. If A < x, N; < (H(x), €, <}) for i < a is countable, increas-

ing, continuous (in ¢) and (N; : j < 1) € N1 then we can find a limit 8 > o

and N; (for i € (a, f]) such that:

(a) {N;:1i < B)is increasing and continuous, N; < (H(x), €, <}) is countable,
and (N; : j <14) € Niya1.

(b) A € Noy1 and if E € Ng, E C S<x,(]) is stationary then for some i, j, we
have a <1< j< B, E€ N;and (N,NA:i<y<j)eE.

4.20 Theorem. Assume

(a) @ = (Pa,Qa : a < a*)is a CS iteration,

(b) each Q4 is (< wy)-proper (in VF),

(c) kK> 2, > w; acardinal, o* < A\, A = ARe and P,. has a dense subset of

cardinality < A,
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(d) Ais a cardinal, D is a normal filter on S<x,(A) (or D = D<y,(A) + F),

(e) forevery a, IFp, “Qq is (D,D*)-complete”, D* a Py-name of a (g, Ea, K)-
completeness system from V', E, is a P, -name of a member of V which
is a stationary subset of SZ3(}) (in V) satisfying (C), (D) of 4.18.

Then:

(1) P~ is (D, D)-complete for some (A, E, k)-completeness system D € V, for

some stationary E C Sé‘;’; (A), satisfying:

U Rang(a) C {a; : ¥p, “a ¢ E® for some a < a*” and 7 < £g(a)},
GcE

(2) moreover, if o < 8 < a*, then in VF=, Pg/P, is (D, D)-complete for some
(\, E*P k)-completeness system D € V, for some E*B ¢V as above.

4.20A Remark. Why can we assume that A is constant? see 4.18(2).

Proof. This is proved by induction on o*. Fix a one to one function H* from
SSRM(M) onto A and let (DS, E¢) : { < A) list, in V, all pairs (D,E), D a
(A, E, k)-completeness system such that for some a < g < o*,IFp, “(D, E)
is <},-first for which Pg/Py is (D, D)-complete, D is a (A, E, k)-completeness
system and D, E € V”. There is such a list of length A, as a* < X and P,- has
a dense subset cardinality < X (see assumption (a) of 4.20).

By the following subclaim, without loss of generality (D%, E*), for a < a*,
are really (D%, E®) (i.e. members of V' rather than names of such members)
and E*N Ssggo()\) = () and similarly (D*P, E%#), for a < B < a*. (We can
alternatively redefine the iteration, inserting many trivial forcings, i.e. replace
Qi by Q\«ic(¢ < A) which is (D, D¢)-complete (one of them is Q;, the others

are trivial).)

4.21 Subclaim. Under the assumption in 4.20, for each a < «*, for some
(D,F) e V,Dis a (A E, k)-completeness system in V, E € S;‘;’; (A) is station-
ary and IFp, “Qq is (D, D)-complete”.
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Proof. Let

E}, ={a @ € S§*(\),£8(a) > 2 and for some & = ((e§,£5) : ¢ € ap N a)
for every ¢ € ay, eg < E§ < fg(a) and £[¢ € Neg and

(a;:i=0or e <i<e$) e ESY).
By 4.19(3) we can show that E* is of the right kind. 0401

Continuation of the proof of 4.20: By the associativity law for CS iterations of
proper forcing, the following cases suffice. Also, clause (1) of the conclusion is
a special case of clause (2) and if 8 < o* then the statement has already been

proved (by the induction hypothesis).

First Case:a =0, f=0a"=1.
Trivial.

Second Case: a =1, f=a* =3.

Let EY3 = {aae Sg‘NO()\),E = (a; : 1 < 1*) and for some jj, j5 we have :
0<ji <jy<i*js+5<iandal(j;+1) € E!

and (a0) "al(ji +3,j3) € E”}

Third Case: « = 0,8 = o* = 2.

Similar to the second case, but easier.

Fourth Case: a=1,0=a* = w.

E*P = {G: for some (3; : j < w?) increasing and continuous, G = 0, £g(@) =
Bv2 +w +1, and for each n, m < w, {ag,,) " (ay : Bum+n +2 < v < Bumsnt1)
belongs to E™}.

If k > R, (B : j < w) suffices.

Fifth Case: o =1, f = o* = cf(a*) > Ro.

E*P ={ae SE;‘{; (\) : B € ap and for some (B; : j < w?) increasing continuous
Bo = 0,4g(a) _ B2 +w + 1, and we can choose (a(n) : n < w) such that:
a(n) € apN B,a(n) < a(n +1),a(0) = a(= 1) and sup(8 N ag) = Up<, a(n),
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and for each n,m < w we have (ag,,) (@y : Bum+n +2 < v < Bumtn+1)
belongs to Ea(m-a(n+1)y, Ug.20

4.24 Concluding Remarks. 1) There is not much difference between using
(D, D)-completeness and (F,D)-completeness (where F is a stationary subset
of S<x,(A) for some )), as long as we do not mind increasing A (see 4.18).
2) In Theorem 4.20 (< wy)-proper can be weakened by restricting ourselves to
e.g., Ef}-proper for every a, where Ef}, = {(a; : ¢ < @) € 82y (N) 1@ Nw1 €
W} for a stationary subset W C w;; demanding that each Eg is a subset of
Ua<w, E» then also in the definition of “long ” (4.17) we restrict ourselves to
the case A\, N;Nw; € W.
3) We could have replaced E® by Dom(D?), etc.
4) We may note the following generalization. Call E C S;;‘{;(/\) unambiguous
if for no @, b € E is @ a proper initial segment of b. Then for ¢ € S;‘;’; (A), we let
Ce(C) be the unique ¢ < £g(¢) such that ¢[¢ € E (maybe (g(C) is not defined.)
Now in Definition 4.15 we will have also E* C S;;‘{; () stationary such that
E C Dom({g~) and now we call D a (A, E, E*, k)-system and note that only
now (in (B)) D(g,<= x,py is a family of subsets of P(a,. (g)). Now, in Definition

in 4.16, the family is:

{G : 1) for every £ < {(@), o € a. for some i € a. we have p, € G
2) (3¢ € P*)(Vr € G)(r < q) (i.e. G has an upper bound in (P*, <*))
3) pe G}

(This generalization adds some indices to the proofs but no essential changes.
This was the point of the original version of 4.2, 4.3.)

5) We can view (4) as a particular case of, more generally, putting an induction
hypothesis on G N Nj.

6) See more in X §7 and XVIII §1, §2.

4.22 Definition. We say E C S;;‘{; (A) is simple if letting H(Xy,\) be the
closure of A under taking countable subsets, FE is first order definable in
(H(NI, /\)’ €, <*)'
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4.23 Claim. In 4.20 condition (e), instead of “D, E are from V”, it is enough
to demand that they are simple.





