Chapter VIII
Morasses and the Cardinal Transfer Theorem

By now it should be quite clear how it is that V' = L is of use when it is necessary
to carry out intricate constructions by recursion. The uniform structure of L, and
in particular the Condensation Lemma, enables us to take care of many “future”
possibilities in a relatively small number of steps. For instance, in the construction
of a Souslin tree, we need to take care of a collection of w, potential uncountable
antichains in w, steps. As we shall see in this chapter, the uniformity of L enables
us to do much more than this. In certain circumstances it is possible to construct
structures of cardinality w, in w, steps. The idea is to use a sort of two-staged
condensation principle, simultaneously approximating the final structure of size
, by means of structures of size w, , and approximating each of these approxima-
tions by countable structures. In order to make this work, what is necessary is to
investigate the way in which the two parts of such an approximation procedure
must (and can) fit together. The essential combinatorial structure of L which is
required is called a “morass”. There is no need to stop there. We can go on to
develop three-stage “morasses” which enable us to get up to w; using only count-
able structures, and so on. In fact the subject of morasses is a vast area on its own,
and would require an entire book of its own for a complete coverage. What we
shall do in this chapter is look at the very simplest kind of morass, the one that
gets us up to w,, in full detail, and then give little more than a glance at what
comes after. In order both to motivate and illustrate the definition and use of a
morass we take the problem which itself led to the development of morass theory,
the Cardinal Transfer Problem of Model Theory.

1. Cardinal Transfer Theorems

Cardinals Transfer Theorems are generalised Lowenheim-Skolem Theorems. In
its simplest form, the Lowenheim-Skolem Theorem says that if o/ is a model of
a countable, first-order language, K, then there is a countable K-structure 4% such
that # = /. (More generally, given any infinite cardinal «, there is a K-structure
% of cardinality x such that # = /. Here and throughout it will be assumed that
all structures considered are infinite, and that all first-order theories involved
admit infinite models. This will exclude trivial special cases.) Now suppose that
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the language K contains a distinguished unary predicate symbol U. If k, A are
cardinals (both infinite) we shall say that a K-structure o7 has type (k, 1) iff .« has
the form

od = (A, U2 .S

where |4| = k and |U“| = A. The idea of a cardinal transfer theorem is to obtain
a Lowenheim-Skolem Theorem which preserves the relationship between the
cardinality of the domain and that of the distinguished subset. The simplest case
is the so-called “Gap-1 Cardinal Transfer Property”, which says that every K-
structure of type (x*, k) (for some infinite k) is elementarily equivalent to a K-
structure of type (@, , w). As we shall see presently, this result is provable in ZFC.
Assuming GCH, we may replace (w,, w) by any type (A", 1) where A is regular.
Assuming V = L we may drop the requirement that A be regular here. (These
results are considered in the Exercises.) The “Gap-2 Property” says (in the sim-
plest case) that every K-structure of type (k™ ¥, k) is elementarily equivalent to one
of type (w,, w). More generally there is a “Gap-n Property” for every positive
integer n. There are also more general types of Cardinal Transfer Property, which
we shall not consider here. The reader may consult Chang-Keisler (1973) for
further details (including applications) of Cardinals Transfer Theorems.

As mentioned above, the Gap-1 Property is (in its simplest form) provable in
ZFC. The Gap-2 Property, and indeed the Gap-n Property for any n > 2, is
provable in ZFC + (V = L). Our aim here is to use the simple version of the
Gap-2 Property to motivate and illustrate the notion of a morass. In order to do
this it is convenient to begin with a brief account of the proof of the Gap-1
Theorem. (In particular we shall need all of the model theoretic notions developed
for the Gap-1 Theorem in order to prove the Gap-2 Theorem.)

We fix, once and for all, a countable, first-order language, K, with a distin-
guished unary predicate symbol, U. We shall show that if o/ is a K-structure of
type (x*, x) for some infinite cardinal k, there is a K-structure 4 of type (w,, )
such that # = /. We recall some basic notions of model theory. For further
details the reader should consult, for example, Chang-Keisler (1973).

K’ will denote an arbitrary, countable expansion of K. A particular example
of an expansion of K is obtained by adjoining to K an individual constant x for
each x in a given set X. This expansion will be denoted by K. In this case, X may
be uncountable: this is the only case where uncountable languages may be consid-
ered. If o is any K-structure, then (<, (@), 4 is a K 4-structure. (We adopt the
usual convention that A4 is the domain of ./, B the domain of 4, etc.)

The first-order theory of a structure 7 is denoted by Th (/). Thus if o7 is a
K-structure,

Th(</) = {¢ | ¢ is a sentence of K such that o/ F ¢} .

Let T be a Ky-theory. An element-type of T is a set X (x) of K y-formulas with
free variable at most x, such that for some model .« of T and some element a of
o, o F Z (a). (The notation is self-explanatory.) In this case we say that a realises
Y(x)in .
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Let x be an infinite cardinal. A structure .« is said to be k-saturated iff for every
set B = A such that |B| < k, every element-type of Th({Z, (b),.p>) is realised in
the structure (&, (b)y.py. A structure 7 is said to be saturated iff it is |.o/|-
saturated. The following theorem is standard.

1.1 Theorem. (i) Let </, B be saturated K'-structures of cardinality k, of = A.
Then of =~ 2.
Moreover,if A < A, B = B, |A| =|B'| <k, and h: A < B’ are such that

<‘Q¢’ (a)aeA’> = <g, (ha)aeA’> s

then there is an isomorphism h: of ~ B such that h | A' = h.
(i) Assume GCH. Let k be an uncountable regular cardinal. Then any K'-theory
has a saturated model of cardinality k. [

A structure of is said to be homogeneous iff, whenever B < A4, |B| < |A4|, and
h: B — A is such that

<M9 (b)beB> = <‘2{9 (hb)bEB> ’

there is an automorphism A: &/ >~ o/ such that A | B = h.

It is immediate from 1.1(i) that any saturated structure is homogeneous. By
virtue of 1.1 (ii), this provides an existence proof for uncountable homogeneous
structures of regular cardinality, assuming GCH. As far as countable homoge-
neous structures are concerned, the existence is provable in ZFC alone.

1.2 Theorem. Let T be a K'-theory. Then T has a countable, homogeneous
model. [

We shall make use of countable, homogeneous structures in our proof of the
Gap-1 Theorem. The following result will also be required.

1.3 Theorem. If o/, < o4, < ... < o4, < ... (n < w)is an elementary chain of count-
able, homogeneous structures, then of = | | «, is a countable, homogeneous struc-
ture. O n<e

A structure «/ is said to be special if there is an elementary chain
Ao<L A< ... <L Ay <L ... < A

such that:
(i) o = () Ay

n<w
(i) [Aol <Ayl <... <4, <...<|A];
(iii) o, is |A,|-saturated for every n.

The following result tells us all we need to know about special structures.

1.4 Theorem. (i) Every K'-theory has a special model (of some cardinality).
(i) If o, B are special structures of the same cardinality such that </ = 9, then
o =% 0O
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The key step in the proof of the Gap-1 Theorem is the following lemma.

1.5 Lemma. Let o/ = {A, U, ... ) be a K-structure of type (x*, k) for some x. Then
there are countable, homogeneous K-structures %, € such that:

() B=<(B,V,..5%€=<CV,..) (e U?=U®;

() B=€¢= oA,
(i) <€ and B + €,
(ivy #=¢%.

Proof. Let &/, < o/ be such that U < Ay and |4y| = k. Pick ae A — A, and let
o/ < o be such that Ayu {a} = A, and |A,| = k. Let h: Ay — A,, and form the
structure

"d* = <'-Q{1’ AO’ h> .
By 1.4(i), let 2* be a special structure such that 2* = o/*, say
9*= <@1’D09k>'

Let 9, be the restriction of &, to domain D,,. Since 2* = /¥, it is easily seen that
D0< 9,. Since P* is special, it is straightforward to check that both 9, and 2,
are special. But k: D, <> D,. Hence by 1.4 (ii), 2, = 2,. Note also that U?° = U?:,
Let f: 9, =~ 9, and consider the structure

D** = <91, DO’f>°
By 1.2, let €** = 2** be countable homogeneous, say
E** = (%1, Co, 9>

Let %, be the restriction of €, to domain C,. It is routine to check that %,, ¢, are
both countable, homogeneous structures, that %, =%, = o, U¥ =U*,
Co< %, 6, + €,, and that g: €, =~ %,. Thus # = ¥, and ¥ = ¥, satisfy the
lemma. [

The above lemma shows that it is quite possible to have structures .7, % such
that o/ < % and o/ =~ #. The following lemma also involves this situation.

1.6 Lemma. Let B,< #,< ... <%,< ... (n < w) be an elementary chain of iso-
morphic, countable, homogeneous models. Then B, = | | A, is countable and ho-
mogeneous and B, = B, for all n < w. n<o

Proof. By 1.3 we know that 4, is countable and homogeneous. We prove that
B, >~ B,. The idea is to construct enumerations (b?|n < w), (b®|n < w) of By,
B,,, respectively, so that

<*@05 (bg)n<w> = <gw5 (bnw)n<w>a

which at once implies that h: #, =~ 4,,, where we define h(b2) = b2 for all n < w.
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Suppose that b3, ..., b2, b8, ..., b® are defined and satisfy
(1) <'@09b8’,bg>z<gw’b%”,b?>

(The definition of b9, b is a degenerate case of this definition, so we omit it.) Let
b8, , € B,. We show that there is an element b®, , of B,, such that

(ll) <g05b89~"’b3ab2+1> = <gwa (E)D""’b‘ri)’bnw+1 .
Since #,< %4,,, we have
<%0,b8,...,b2>5 <gw,b8a”~’b2>a

so by (i),
(B, by, ..., 00> =By, bg, ..., bY).

Thus as 4,, is homogeneous and b?, , € B, there is a b?, ; € B,, such that
<%w’b83---’b3,bg+l> = <gwa ga---9b?>bﬁ)+l .

Since %4,< 4,,, this at once yields (ii).
To complete the proof that 8, >~ %, we show that if we are given b3, ..., b2,
®,...,b% as in (i) and b?, , € B, is given, we can find an element b2, , of B, to
satisfy (ii). (The required enumerations (b2 | n < w), (b? |n < w) can then be defined
by recursion using a “back and forth” procedure to ensure that all elements of
By, B, are included in these sequences.) Well, we can pick an integer m < w such
that b§, ..., b7, b2, € B,,. Since 4,,< A,,, we have

(iii) kB> b3y s b2, b2y 1> =L By, b, ..., 00, bY ).

Since 4,, =~ %, there are elements by, ..., b,, b, of By such that

(iv) (B> b8, ..., b2, b2 1> =< Bosbgs - s byybyiy).

By (i), (iii) and (iv),
{Bo,bg,..., b,y ={ By, b3,...,b2>"

So as b, € By and 4, is homogeneous, there is an element b2, ; of B such that
{Borbos s by byy1y =< By, bY,...,02, b2, >

Combining this with (iii) and (iv) we get (ii), as required. This completes the proof
that 4, =~ %,, and with it the proof of the lemma. O
We are now able to prove the Gap-1 Theorem.

1.7 Theorem. Let o/ = {A, U, ... ) be a K-structure of type (x*, k). Then there is
a K-structure & of type (w,, w) such that # = .
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Proof. By 1.5 there are countable, homogeneous structures %,, %, such that
Bo=B,=A, Bo<B,, UP=U* B, + B,, Bo= B,. The idea of the proof
is to define, by recursion, a strictly increasing elementary chain

Bo< B, <..<B,<.. (V<)

of countable, homogeneous structures such that for all v < w,, %, = %, and
U# = U%, so that # = (] 4, is as required by the theorem.

Bo, B, are already defined. Suppose we have defined 4,. Since #, = 4, we
may let 4, ., be related to %, as 4, is related to %,. This leaves us with the case
where 0 < w, is a limit ordinal and 4,, v < §, are all defined. In this case we let
Bs=\) #,. By 1.6, B, is as required. The proof is complete. [

v<d

The above proof depended upon the countability of the structures 4, in a
significant way. Consequently, there seems to be no possibility of extending the
chain (4,|v < w,) to an w,-chain and thereby produce a model of type (w,, w).
In fact it is easily seen that it is not possible to increase the size of a “gap” in a
Cardinal Transfer Theorem. But when it comes to trying to prove the Gap-2
Cardinal Transfer Theorem we have some extra initial information: we start with
a structure of type (x* ", x). How can we make use of this fact to obtain an
elementarily equivalent structure of type (w,, @)? Ideally we would like to utilise
the methods developed in order to prove the Gap-1 Theorem. Thus, the idea is to
construct the desired (w,, w)-model as a limit of some system of countable approx-
imations to it, in the sense that each of the structures 4,, v < w,, of 1.7 is an
approximation to the sought-after (w,, w)-model #. But if we are to obtain a
model of type (w,, w) as a limit of countable models, there is no point in trying
to use an elementary chain of structures. Rather we require some kind of elemen-
tary directed system of models. We commence by considering a “naive” approach
to this problem.

We wish to construct a model £ of type (w,, w). We may regard this model
as a union of a chain

Bo<B<...<B,<...<8B (v<wm,)

of structures of type (w,, w), all having the same distinguished subset, U. Each of
these (w,, w)-structures 4, can itself be represented as the union of a chain

Bro< By <...<Bpo<...<B, (1<)

of countable structures, all with the same U. Thus the structure 4 is a sort of limit
of the system of countable structures 4,,, v < w,,* < w,. The question is, can we
construct such a system from below in order to determine the limit structure %?
It turns out that if we assume V = L, this can be done, though it is by no means
an easy matter, and relies heavily upon the Fine Structure Theory. The central
point is the construction of a framework upon which a suitable directed elemen-
tary system can be built. This framework is known as a morass. In the next section
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we shall give a precise definition of a morass and show how such a structure can
be built in L. In a sense, when we write down the axioms for a morass we are
simply stating some properties of the Fine Structure Theory of a certain hierarchy
of structures of the form <{J,, 4). It is thus not altogether surprising to discover
that the structure so defined is somewhat “richer” than is required to prove the
Gap-2 Theorem. In order to prove this (and many other applications of morasses)
a simpler structure suffices. This “simplified morass” will be described in section 4.
In section 3 we shall give a proof of the Gap-2 Theorem using the “standard”
morass constructed in L. Section 4 contains an alternative proof of the Gap-2
Theorem using the simplified morass structure. The reason for this duplication is
that the proof in section 3, using the standard morass, illustrates just how the Fine
Structure Theory enables this theorem to be proved (which is, of course, the main
aim of this book), whereas the (simpler) proof in section 4 serves as a prototype
for other applications of morasses. Thus the reader who symply wants to learn
how to use a morass may go straight on to section 4 from this point. (Though some
acquaintance with section 2 is necessary if the reader wishes to find out just where
the simplified morass comes from.)

2. Gap-1 Morasses

We can obtain a structure of cardinality x* as a limit of a k *-chain of structures
of cardinality x. In order to determine a structure of cardinality x* * as a limit of
x " many structures each of cardinality «, a chain of structures will not work, and
we must define instead some sort of directed system of structures. The underlying
set-theoretic problem then is to establish some sort of framework upon which
such a system can be built, corresponding to the well-ordered set k * used as the
domain of x*-chains. Such a framework (or indexing system) is called a morass.
or more precisely a (x*, 1)-morass. For definiteness, we shall present our develop-
ment for the case k = w. The general case is entirely similar. So what we shall
describe is a (w,, 1)-morass. (We shall then say a few words about (x, n)-morasses
forn> 1.

In order to formulate the notion of a morass, let us fix some sort of schematic
representation of what we require. We want to determine, by means of countable
structures, all the structures of cardinality w, which lie in an increasing w,-chain
determining a structure of cardinality w,. Let ./ denote the structure of cardinal-
ity w, we are aiming at, and let o/, w; < v < w, be the increasing chain of length
w,, where | «/,| = w,; for each v. We can represent this as in Fig. 1.
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For each v, w; < v < w,, we have a chain of models with limit .«,. Each
member of this chain will be a countable structure. We shall index each such by
a countable ordinal 1, so .7, will be the limit of the structures .«7,, for certain 7.
We shall not use all countable ordinals t here, just a certain collection associated
with v. It will turn out to be both natural and convenient to specify the ordinals
7 associated with v by defining a well-founded relation — on w, so that {r |t — v}
is the set of ordinals for which ./, is defined, with {z |7 = v} being totally ordered
by = and 73 t =3 vimplying that, in some sense .7, “extends” .Z,;. However, just
being able to determine the structures </, piecemeal will not be enough. We need
to determine the sequence (<,| w; < v < w,). In order to do this, we do not simply
approximate the models .7, but rather the initial segments (24 |w, < v < v) of
our final chain.

Dropping our reference to the models «7,, <7,, now, let us concentrate on the
indexing system upon which we shall define the model system: this will be our
“morass”. We have seen that we need to be able to obtain each interval [w,, v],
w; < v < w,,as alimit of intervals [o, 7], « < 7 < @, in order that we shall never
have to consider uncountable models &/, during the course of our eventual
construction. Just what the ordinals o, = here are will clearly be unimportant: what
counts is how these intervals fit together to form the indexing system. Hence we
may assume that all of the small approximating intervals are disjoint: i.e. if [o, 7],
[e, 7' ] are part of our morass, and if « < o, then T < o. (This is not a misprint!)
In point of fact, when we come to give the formal definition of a morass, we shall
not use the entire interval [o, t] but rather a certain closed subset of it. This does
not effect the combinatorial properties of the morass at all, but will make matters
a little simpler when we come to construct a morass in L.

If [&, 7], [, T] are intervals in the morass with 7 — 7, there will be an embedding
;. of [&, 7]into [a, 7]. And if w; < T < w,, [w;, T] will be a direct limit of all the
intervals [&, 7] in the morass with T =31, under the n-embeddings. All of this is
indicated in Fig. 2, where we adopt the usual convention that the relationship
737 is indicated by a line drawn from 7 downwards to 7. In connection with
Fig. 2, notice that we draw each of the morass intervals [e, 7] horizontally, to
emphasise how they all fit together. In reality, by the disjointness of the intervals,
the whole thing could be drawn as a single straight line, and indeed that is what
it really is. But it is clearer to draw each morass interval horizontally as shown,
so we shall continue to do so.

The problem is how do we set this up so that it works? In particular, the w,
many countable intervals must all fit together neatly so that the limits on the top
level do indeed give us the chain of intervals {[w;, v]|w; < v < @,). In order to
arrange this, we shall have to make matters somewhat more complicated than we
have indicated so far. One aspect of this is that some morass intervals will be initial
parts of other morass intervals, so that the disjointness of intervals that we spoke
of a few moments ago will not be true for all pairs of intervals (though it will be
the case that the only two possibilities are disjointness or initial segments).

We shall say that an ordinal o is adequate iff it is either admissible or else is
a limit of admissible ordinals. The adequate ordinals thus form a proper class of
ordinals which is closed and unbounded in every uncountable cardinal. More-
over, each adequate ordinal has strong closure properties under definability.
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s 1%

Fig. 2

Let & be a set of ordered pairs («, v) of adequate ordinals such that
o <v<w,, o< w;,and whenever (o, v), (&, V') € &, then
a<o ->v<a.
Define:

S°={aew,+ 1|3Iv[(e,v) € L]};

S' = {vew,|Iaf(x, v) e };

S=S5°uUSt;

S,={veS|(a,v) e}, for aeS

o, = the unique ordial o € S° such that («, v) € &, for v € S!.

Intuitively, S,, is the w,-chain we are trying to determine, whilst each
Sz & < w;, is a countable approximation to S,,. Fig. 3 illustrates the notation.

]

® v, }5,,

Fig. 3
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Let — be a tree ordering on S* such that
VT oo, < o.
Let (n,.|v —=7) be a commutative system of maps

T (V+ 1) >(t + 1).
Let
ﬂ = <S’ y’ __3 s (TEV‘F)V——BT> M
We say that ./ is an (w,, 1)-morass (morass, from now on) iff the following axioms
(M 0) through (M 7) are satisfied.
(MO0) (a) S,is closed in sup(S,) for all « € S°, and if « < w,, then sup(S,) € S,;

(b) w, = max(S° = sup(S° N w,) and w, = sup(S,,).
M1) If v—=r1, then
T, o, =1id [a,, 7w .(¢)=a, =n,.,V)=T1
and m,, maps S, N (v + 1)into S, N (r + 1)in an order-preserving fashion so that:

(i) if y is the first member of S, , then m,.(y) is the first member of S,,;

(i) if y immediately succeeds f in S,, N (v + 1), then 7, (y) immediately suc-
ceeds 7, (f) in S, ;

(ii1) if y is a limit point in S, N (v + 1), then 7. () is a limit point in S, .

Thus what (M 1) says is that the maps n,, embed each morass “interval”
S,, N (v + 1) into the morass “interval” S, N (r + 1) in a structure preserving
fashion.

(M2) If T 37 and ve S,. n 7, and we set v = 7 (¥), then
v3v and m, [Vv=m, V.
What (M 2) says is that the morass embeddings =, fit together nicely as we
move right along each row S,. Figure 4 provides the picture.

(M 3) {a,|v—31} is closed in o, for every 7 € S*.

(M 3) tells us that as we move up along a branch {v|v =3t} of the morass tree,
all limit points exist on this branch, or more precisely, the limit points are on the
morass “levels” they “ought” to be.

(M 4) If  is not maximal in S, , then the set {o,|v — 7} is unbounded in a..

(M 4) tells us that any point which is not at the extreme right hand end of its
morass level is a limit point in the morass tree —3. This has the rather surprising
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— 0,

e
(M 2) asserts that v—3v and n;, [V = 7z, | V.
Fig. 4

consequence that if o is a successor point in S°, then S, has only one member. Thus
the approximations S,, a € S°, to S, do not “get better” monotonically as o
increases: only at limit stages is there any chance of some progress in this sense.

(M 5) If {a,| v =37} is unbounded in «,, then

1= Jm,"v.
V3T
Used in conjunction, (M 3), (M 4), and (M 5) tell us that if 7 is not the maximal
point in its level, then the entire structure up to 7, in particular the morass interval
S, N 7, is the limit of the lower structure. For by these three axioms, together with
(M 0), we see that if 7 is not the maximal point of S, , then

S NT = 75, " (S, N 7).

73T

By (M 0), this applies in particular to any point 7 € S,,,. Thus the entire top level
of the morass is determined by the structure below:

Fig. 5
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(M 6) If vis a limit point of S,  and v —3 v, and if we set A = sup(n;, "¥), then v = A
and ng; [v=m;, [ V.

Loosely speaking, (M 6) says that although =;, need not map v cofinally into
v, all of the morass maps m;, are nevertheless cofinal maps in some sense. Figure
S illustrates the situation.

(M 7) If vis a limit point of S,,, v 3v, v = sup (n;, "V), and if

ae ﬂ {%|f:3'7i7fv'v (f)}’
TESy; NV

then

BreS)i3t3V).

(Notice that by (M 2),if Te S,.n ¥, then T 37;, (1).)

(M 7) says, more or less, that a level “intermediate” between two levels cannot
peter out at some limit point. See Fig. 6.

ﬂﬁv(f) v
ay } Sz,
T
¢ 7
az } S,
T Vv ’

Fig. 6

That defines the notion of a morass. We should point out that it is known that
such a structure cannot be constructed in ZFC. But if we assume V =L, as we do
from now on, then we can construct a morass, though it will take some time to do
so. We start with a simple model-theoretic notion.

If v is a limit ordinal and X = J,, we write

X <,J,,
and say that X is a Q-submodel of J,, iff, for all Zy-formulas ¢ (v, v,) of Zx,

FEx(Vae) 3B >0) (B, Jp) iff Fr (V)3 B > )9 (B, Jp).

Clearly, if X <,J, then X <, J,, since by lim(v) we can bind any existential
quantifier by some J; for f < v. Conversely, if X <, J, is such that X n v is cofinal
in v, then X <, J,. Hence the notion of a Q-submodel lies between the notions of
a X,-submodel and a cofinal X,-submodel. We shall use the notion of a Q-
submodel, or rather the associated notion of a Q-embedding, when we define the
morass tree relation —3.
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As a first step to the construction of a morass, we define

S ={v|ae<v<w, Aw<a<w; Avisadequate
A Ej, “o is regular and is the largest cardinal”} .

Notice that if (o, v) € &, then « is admissible, hence adequate.

Define $°, S*, S, S,, «, now as before. Notice that S, N v is uniformly T ({«,})
for v e S*. Notice also that S, is always closed in sup (S,) and that sup(S,) € S, for
o< ;.

If v e S* now, then clearly v + w,, so we may define

B(v) = the least f§ > v such that v is singular over Jy;

n(v) = the least n > 1 such that v is Z,-singular over Jp,);
nv)y—1.

Q(V) = Q/i(v) s
AW) = A1,

Notice that as v is X, ;-regular over Jy,), we have ¢ (v) > v, and that if ¢ (v) > v,
then, since ¢ (v) < B(v), k., “v is regular”. Notice also that if v € S,, then F Toey O
is regular”. For if §(v) = v, this is true because v € S,, whilst if §(v) > v it follows
from the two facts F;, | “v is regular” and F; “a is regular”. Also, if T € S,nv,
where v € §,, then as o is the largest cardinal in J,, T cannot be a cardinal in J,, so
e(m) < P(r) <v<ea() <BW).

We turn now to the definition of the tree relation —3 and the maps =#,,, v 3 1.
The idea is as follows. To each v e S' we shall associate a certain parameter
P (v) € J, ), so that, in particular, every element of J,,, is Z-definable from param-
etersin a, U {p (v)} in the structure {J,,, A (v)). We shall then set v 3 tiff o, < o,
and there is an embedding

g <Je(v)’ A(V)> <1 <Jo(r)’ A(T)>
such that
(O-rJv):Jv<QJn arav=idr‘xv9 O'(P(V))=P(T)

The definability property of p (v) just mentioned will ensure that ¢ is unique here,
and we shall set

e = (0 V)L {(T,v)}.

Let us remark right away that the requirement that (¢ [ J,): J,<y J, in the above
definition is a minor technical matter connected with morass axiom (M 1), and
otherwise plays no role in our development. So the reader can for the most part
ignore this point.

The definition of the parameter p (v) depends upon the nature of v. There are
two cases to consider. We partition S* into two sets thus:

P={veS' n() =1 Asucc(B(V)};
R=S'—-P.

In case v € P, let y(v) denote that ordinal y such that f(v) =y + 1.
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Notice that if v e P, then ¢ (v) = f(v) = y(v) + 1, A(v) = 0, and (since v < B(v)
and v is adequate) v < y(v). Whilst if v € R, then lim (¢ (v)).

Let ve S' now, and set & = a,,, B = B(v), n =n(v), 0 = 0(v), A = A(v), and if & B, n, 0, A
veP,y=1y(). y

2.1 Lemma. ¢j < o.

Proof. Since « is the largest cardinal in J,, the definition of 8, n ensures that there
isa X, (Jg) map f < v x a such that f”« is cofinal in v. Since either § = v orelse k,,
“v is regular”, f¢ J;. But if ¢§ > v, then by amenability, f=fn(vxv)e Jp = J;.
Hence gj < v. It follows that there is a X,(J;) map g such that g"v = J;. Let
(Ag| € < o) be a partition of o into « sets of cardinality « in J,, and let f; be the
< s-least map from A4, onto f (&) for each ¢ € dom (f). Since « is the largest cardinal
in J,, we have f; e J, for all £. Let

k=J{f:|edom(f)}.
Then kis a X, (Js) function such that k"« = v. Hence g ° k is a Z,,(J;) function such
that g o k"o = J;. Thus g < . [J
Case 1. veP.

2.2 Lemma. There is a q € J, such that every x € J, is J -definable from parameters
inJ,u{q}.

Proof. By 2.1 there is a p € J; such that every x € J; is Z,-definable in J; from
parameters in J, U {p}. Since J; = rud (J,), there is a rudimentary function f and
an element g € J, such that p = f(J,, ). We show that g is as in the lemma.

Let x € J,. For some X, formula ¢ of # and some Z € J,, x is the unique x in
Jj such that

Ay eJplF, (5 p %)
Pick y € Jg so that
ki @ (5, 2,5, %).
For some rudimentary function g and some u € J,, we have y = g(J,, u). So
(*) Er, @ (9 (s w), £ 1 (I, 905 %).
Since g, f are rudimentary, hence simple, the formula ¢ (g (y, u), Z, f(y, q), x) is X,

in variables y, u, Z, g, x. So by VL.1.18 there is an #-formula y such that (x) is
equivalent to

(k%) ELY (52 4).

It follows at once that x is the unique element of J, such that F;, Juy (X, 4, Z,4),
and the lemma is proved. O
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Let q(v) be the <;-least q € J, such that every x € J, is J,-definable from
parameters in o U {q}. (Since o is adequate, a is closed under Gddel’s Pairing
Function, so by V1.3.17, there is a £{* map from o onto J,. But y > v > «, so this
map is an element of J,. Hence g(v) exists by virtue of 2.2.)

Set

P =(qO),y0),v,0a,).

That defines p(v) in Case 1. We check that p(v) has the property we mentioned
earlier, that every element of J,,, is X, definable from parameters in a, U {p(v)}
in {J,), A(v)>. In this case, what this says is that every element of J; is X,
definable from parameters in o U {p(v)} in J,.

Let xeJ;. Then for some rudimentary function f and some uelJ,
x = f(J,, u). Since J; is rud closed, f 1 J; is Z{. So x is Z, definable from y and u
in Jj. Since y = (p(v));, we are done if we can show that u is X, definable from
parametersin o U {p(v)} in J;. Well, by choice of g (v) there is an #-formula ¢ and
elements Z € « such that

u = the unique u € J, such that &, ¢ (i, % q(v)).

But this defines u in a XJs fashion from y, Z, q(v). Hence as y = (p(v)); and
q(v) = (p(v))o, we see that u is X, definable from Z, p(v) in J;, and we are done.

Case 2. ve R.

Let g(v) be the <,-least g € J, such that every x € J, is Z,-definable from
parameters in « U {q} in {J,, A). Since g, 4 = @}, this is possible by virtue of 2.1.
(An argument as in Case 1 allows us to write o in place of J, in this definition.) Set

o) = {(q OLn o). v <e,
(q (V), O(\,), lf vV=2.
That defines p (v) in Case 2.

Note that as g(v) = (p(v))o, it follows from the definition of g(v) that every
element of J,,, is £, definable from parameters in a, U {p(v)} in {J,,, 4(v)) in
this case also.

Having now defined the parameters p (v),v € S*, we establish a series of lemmas
which will enable us to construct a morass in the manner outlined earlier.

2.3 Lemma. The sequences {(J,u, A(m), J,, p)|n€S, nv) is uniformly
S ({a,}) for all ve St.

Proof. Since v is adequate, this follows easily from the fact that if n € S, N v, then
B(n) < v, mentioned earlier. [

2.4 Lemma. Let v, T € S*. Suppose that
g <Jq(v)’ AW)) <1<y, A(T))
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is such that o(p(v)) = p (). Then ¢ is uniquely determined by o | a,. Moreover:
(i) vePeorteP;
(ii) o (o) = o
(iii) v < o(v) 1 < o(7);
vy v<o® ->o(v)=r1;
(V) if ve P, then o (y(v)) = 7 (v);
(vi) a(g(v)) = q(7).

Proof. The uniqueness of ¢ follows from the definability property of p(v). The
remaining assertions of the lemma all follow from the definitions of p(v) and
p(). O

2.5 Lemma. Let ve S', g < g(v), A < J,. Let
g <J§5Z> <1 <Jo(v),A(v)> o
be such that p(v) e ran(o). Then there is a (necessarily unique) v € S such that
0 =0(V), A = A(¥). Moreover, a(p(V)) = p(v).
Proof. To commence, notice that {J,, A) is amenable. For if v € P, then A (v) = §,
so A = () and amenability is trivial, and if v € R, then lim (¢ (v)), so lim (@), and for
each n < g, we have
Fltpon amy 3x[x = AW) 0 Jo )]s
o)
'=<15,Z>3x[x = Z(-\J"].
Seta=a,, =BV, n=n(),0=00),A=A4A0),p=pO), q=q(), and, if &, B, n, 0, 4,
veP,y=1y(v). D, q,y
Case 1. ve P.

Thusp=¢=7y+ 1,4 =A=0,and vis regular over J,. Since p € ran (o), we
have q,y,v,aeran(o). Let §=0"'(q), 7=0"'(y), a =0 (), V=0"1(v). Let 4,7, &% Vv
6 = o [ J;. Clearly, 6: J;< J, and q € ran (). o

Claim A. ve S and o; = g,
Since 0: J;<, J, and ¢ (¥) = v, we have (¢ [ J;): J;<J,. Hence v is adequate.
Moreover, since ¢ (&) = a,

F,. “@ is regular and is the largest cardinal”.

Thus v € S;. Claim A is proved.
Claim B. ¢"V is cofinal in v.

For each m < w, set

X, = {x € J,|x is Z,,-definable from parameters in o U {q} in J,}.
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Then X, <, J,, and there is a J,-definable map from « onto X,,. Since « is the
largest cardinal in J, and o < X,, <, J,, X,, NV is transitive, so set v, = X,,Nv.
Since v is regular over J, and there is a J,-definable map from « onto v,,, we must
have v,, < v. But by choice of ¢,

U Xn=1J,.

m<w

Thus sup, <, vVm = v. But for each m, v, is J,-definable from g, so {v,|m < w}
< ran(¢). This proves Claim B.
For later use, we point out that the sequence (v,,|m < w) s clearly "+ * ({ p}).

Claim C. v is regular over J;,

We know that v is regular over J,. But ¢: J;< J, and

<

|
<
Il

Vs

-
- )=V,

<!
A
~2
Qu
<|

(

so Claim C is immediate.

Claim D. q is the < -least element of J; such that every x € J; is J;-definable from
parameters in & U {q}.

Let x € J;. Then o (x) € J,, so for some dea, d(x)is J,-definable from g, J. Set
s = (9), and let ¢ bea formula of % such that:

0 kL VzIyVy [y =yeooely,z49l;
(i) k,VzVyle(y29->3E =)
(i) VyeJ)ly=6(x)F, 05 4]
Let t be the < ;-least element of J, such that F; ¢ (¢ (x), £, ). Then t is J,-definable

from & (x), g. But 6(x), g € ran (a) < J,. Hence t € ran (). By choice of ¢, t < s, so
te J,. Thus t = (&) for some & € a. By (i) above,

(Vyed)y=d(x) =k, 005 )

Applying 6! and setting = ¢~ !(t) = (0), we get,

(Vye']'?)[y = XH’:J;(P(JZ i é)

But { € & Thus x is J;-definable from parameters in « U {g} .

Now suppose that g’ <;q also has the property that every element of J; is
Jy-definable from parameters in & U {g'}. Then in partlcular there are £ € & such
that g is J;-definable from & q. Applying ¢ and settlng q =3d(q),&=6(),wesee
that q' <;q and that g is J,-definable from & q'. Hence every element of J, is
J,-definable from parameters in & U {q'}, contrary to the choice of g. That com-
pletes the proof of Claim D.

Claim E. v is Z,-singular over J;
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Using Claims 4, C, D we may define (v,,|m < ) from J,, &, g, v exactly as we
defined (v,,| m < w) from J,, a, g, v in the proof of Claim B. Then (v,,|m < w) is a
21(J;41) sequence which is cofinal in ¥, proving Claim E.

ClaimF. =7+ 1L,nM=1veP,o(M=7+1,y0) =%
By Claims C and E.
Claim G. q(V) = g, o (p(V)) = p(v).
By Claims F and D, g (V) = 4. Thus by Claims A and F, p(v) = (g, 7, v, &). Hence
o (p(¥) = p(v). Claim G is proved.
That completes the proof of the lemma in Case 1.
Case 2. veR.

Setg=0"1g),a=0 (). Setv=0"(v)if v<gandset v=gif v = g.
By VL5.6 there is a unique f > ¢ such that ¢ = ¢j™!, A= 43", and an
embedding 6: Jz<,J4, 0 S 6.

Claim H. ve S! and o; = &.

If v=y9, then v=¢ and o:J;<;J,. And if v<yp, then o(¥) =v, so
(o [ J;): J;< J,.In either case, v is adequate. Since we always have (g [ J;): J; <1 J,
and o (&) = o, & is regular inside J; and is the largest cardinal inside J;. Hence
v € S;. Claim H is proved.

Claim I. v is X, _ ,-regular over Jj.

Suppose not. Then, since & is the largest cardinal in J;, we can find a £, _ (Jp)
map f such that & is cofinal in v. There are now two cases to consider.

Suppose first that v < ¢. Thus v < ¢ and ¢ (V) = v. If f€ Jg, then by applying
¢: Jz<,Jg, we see that ¢ (f) maps a subset of « cofinally into v, contrary to v being
regular inside J;. Hence f¢ Jz. But by using Godel’s pairing function we can code
f as a Z, ((Jp subset of v. Thus () N X, ;(Jp & Jz. Thus ¢f ' <. But
05 ! = g > v, so we have a contradiction. That proves the claim in the first case.

Now suppose that v = ¢. Thus v = ¢. In J;, let (4,| ¢ < @) be a partition of &
into @ many sets of cardinality &. For each ¢ € dom(f), let k, € J; be the <-least
map from A4, onto f(£). (Since & is the largest cardinal in J;, k, is well-defined here.)
Set

k= (k| € e dom (f)}.

Clearly, k is a X, (J) function such that k"¢ = v. But v = ¢ = ¢} ' and @ < v,
so this contradicts the definition of the £,_ ;-projectum. Claim I is proved.

Claim J. q is the < ,-least element of J; such that every element of J; is

% ,-definable from parameters in & U {g} in {J;, 4).
Let x € J;. Thgn o(x) € J, so for some 5 ea, o(x) is Z,-definable from ¢, § in
{Jp, A). Set s = (0). Let ¢ be a Zy-formula of £ such that:
@) FepoayVz3AyVy [y =yeoIuew,y,z 4)];
(i) ke V2 VyBuew,y,z4->3E0E =)
(i) (VyeJ)ly=0(x)Fy, 4 FueW 3,5 4]

Q=

N

<
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Let <* be the lexicographic ordering on L x L induced by <. Clearly, <*is X,
definable, and <*n (J, x J,) is uniformly 7 for all limit ¢ > 0. Let (¢, u,) be the
< *-least pair such that

|=<J‘,, 4> ¢ (i, 0 (x) t, q).

Then (t, uy) is El-deﬁnalgle from o*(_)g), q in {J,, A). Hence t, u, € ran (o). Since
t <ys,teJ,. Thus t = () for some ¢ € a. By (i) above,

Vyed)ly=0(x)Fy, »ue,y, £, 9]
Applying ¢~ 1, we obtain
(Vy € Jé) [y =X < F(J,;, A> 3 qu(u, j}a i qg)]’

where t = ¢~ 1(t) = ({), { e & Hence x is Z,-definable from parameters in o U {7}
in {J;, A). The rest of the proof of Claim J is entirely similar to the argument used
in proving the minimality of § in Claim D (for Case 1). So Claim J is established.

Claim K. v is Z,-singular over Jj.
By Claim J,

Jy=ha(Jzx{q}).
So there is a X,({J;, A>) map from a subset of & onto (in particular) v. Since
0=0p !, A= Ay, this map is Z,(Jp. Claim K is proved.
ClaimL. B=B(@),n=n(),7eR, g =0(¥), 4 =A®).

Directly from Claims I and K. (For v € R, notice that as 6: Jz<, J;, lim ()
follows from lim (8).)

Claim M. g = q() and o (p(v)) = p(v).

By Claims L and J, § = q(¥). If v < ¢ now, then v < g and we have p(v)
=(g(¥), v, &;), s0 a(p(v)) = p(v) by Claim H and the equality o(¥) = v. If v = g,
then v = ¢ and p(v) = (¢ (¥), &;), so again a (p(¥)) = p(v).

That completes the proof of the lemma. [

2.6 Lemma. Let Ve S;, v € S,, & < a, and suppose that v is a limit point of S;. Let

0. <‘Ig(\7)’ A (‘7)> <1 <Je(v)9 A(V)>

be such that  (p(v)) = p ().
Let v' = sup(¢”v). Then v' € S, and there is an embedding

a': <Jg(vp AW) <, <Ja(v')’ A

such that o | J; = o', (o' [ J}): J;<oJ,, and ¢’ (p(¥) = p(v).
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Proof. Case 1. v e P.

Let (v,,|m < ) be the sequence defined in Claim B of 2.5. This sequence is
Z{*({p(v)}) and is cofinal in v. Hence {v,,|m < w} < ran (o), and so v' = v. There
is nothing to prove in this case.

Case 2. ve R.
Set =), n=(), ¢e=0(), A=A4(), g=q0), p=p(), d=00) A= Bno4q
A(ﬁ),q=q(\7),ﬁ=p(\7) p,0, A, 4, p

Now, S; N7 is Z{°({&}) and S, N v is 7*({«}) by the same definition. And by
2.4, o(d&) =a. Hence as S;nv is cofinal in vV and v =sup(c”V), applying
(o [ Jy): J;<, J, gives v/ = sup (S, v'). But S, is closed in sup (S,) and v < v € S,.
Hence v' € §,.

Set n =sup(a”g), A=An J,. Since ran (o) = J,, p, x € J,. By Z,-absolute- 7, A
ness,

0: {JZA) <, <J,, ).
But ¢ is cofinal in #. Hence

o: {Jz A <y (J,, A).

Set

X =hy1(J.x{q}).
Let

m: {J,, BY 2 (X, Anx). m,y, B
Thus

Uz <Jy, B> <1<Jn’ ;1'>

Claim A. ran (o) < X.

Let x e ran (o). Then x € J,, so x is X, -definable from parameters in o U {q} in
{J,, A).Let x = ¢~ '(x). An argument as used in the proof of Claim J in 2.5 shows
that X is X, -definable from parameters in & U {7} in {J,, A>. Hence for some i € w,
zeJ,

X = hé,Z(ia (Z_’ q)) .

Applying ¢: (J;, A) <, {J,, A), and setting z = o (2),
X = hr/,l(ia (Za q)) .

Hence x € X, which proves Claim A.

ClaimB. X nv=1V.

Let £ € X nv. Then for some z € J, and some i € w,

¢ =hya(i(z q).
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Since lim (), there is a T < n such that

6 = ht,ifr\],(is (Za Q)) .

Since 5 = sup (¢” @), we can pick t here so that T = ¢(7) for some 7 < ¢. Set

0 =sup[voh¥z.; (J.x{q})],
6 =sup[vn hEins (Jzx{a})].

Now, AnJ,=AnJ,nJ,=AnJ, so h. i, €J, by amenability. Since a <v
and v is regular inside J,, it follows that § < v. Similarly, § < v. But clearly,
¢ (0) = 6. Hence

E<BO=0@) <sup(a”’V)="V".

Thus X nvev.

Now let ¢ €v'. For some 6 < ¥, (£ €6 = (). Since & < 7, there is an fe J;
i &2, 5. Since (0 | J): J;<oJy, f=0(f)eJ, and f: « = §. But by Claim
A feX Soasac X, d=f"ac X. Hence £ € X. This shows that v = X nv.
Claim B is proved.

We have
ran(O') <1<Jtp /’I>7
X<l <Jm fi‘)a
ran(o) < X .
Thus
ran(o) <, (X, An X).

So, if we set ¢’ = n~ ! o g, we have
o't (Jpy A> <, {J,, B

By Claim B, z7 ' [v' =id [V, so ¢ |V =0 V. Hence ¢ | J; < ¢’. Moreover,

(o ['J3): J;<oJy cofinally, so (6" [ J;): J;<g J,. So in order to complete the proof

of the lemma it remains to show that y = ¢(v'), B = A(v), and =~ (p) = p(v).
By X,-absoluteness,

n: {J, BY <o {J,, A).

So by VL5.6 there is a unique §’ such that y = g}~ !, B = A} !, and a mapping
# 2 m such that #: Jp <,_; Js. Set ¢' = n~(q), p’ = =~ '(p). Notice that if v < g,
thenv<gandp = (q,v,®),p = (g, v, &), s0o p' = (¢, =~} (v), =~ (). But by Claim
B, n'(v)=Vv. And since 7! v =1id [V, n~*(«) = a. Thus p'= (¢, v, «), and
v < y.Again,ifv = g,thenv = gand p = (q, @), p = (g, &), so p' = (¢', o), and (using
Claim B) v' = y. Hence in order to show that =~ '(p) = p(v'), it suffices to show
that 77 1(q) = q(v'), i.e. that ¢’ = q(v).
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Claim C. V' is Z,_, regular over Jy..

This is proved exactly as in Claim I in the proof of 2.5, so we do not give any
details here.

Claim D. v" is X, singular over Jj..
By Claim B,

V=vnhtz(J.x{q}).

So as m: (J,, BY <, {J,, Ay and v' < X = ran(n), we have
V=vnhks(J,x{q}).

So thereis a Z,(<{J,, B)) map from « onto v'. But y = ¢}, B = A} ', so this map

is Z,(Jp). Claim D is proved.

ClaimE. B =), n=n(),veR, y=90(), B=A().

By Claims C and D. (For v’ € R, notice that as #: J; <,_;J;, lim (§’) follows
from lim (B).)

Claim F. q' = q(V).
By definition,

X =hyi(Jox{q}).

1

So, applying =™,
Jy = h;k,B(Ja X {q,})

Hence every member of J, is X, -definable from parametes in « U {q'} in {J,, B).
An argument as in the proof of Claim D od 2.5 now completes the proof of
Claim F.

The lemma is proved. [

We are now in a position to commence the construction of our morass.
For v, 7 € S, set v 31 iff a, < «, and there is an embedding

01 {Jgiy> AW <1 {Jp, 4 (1))
such that
(i) oo, =id [a;
(i) o(p(v) = p(v);
(iii) (o [ J,): J, <o ;.
Clearly, —3 is a partial ordering on S'. And since v — t implies «, < a,, =3 is
well-founded. We show that — is a tree. It suffices to show thatif 7 € S, and & < a,

there is at most one v = t with «, = &. Let v =3 7, o, = & Then there is an embed-
ding

o <Je(v)a A(V)> <1 <Jq(r)a A (T)>
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as above. Now, J,,, = h¥,). 4t (Jz X {p(v)}), so by applying ¢ and using properties
(i) and (ii) above,

ran (o) = hiw, 4 (Jz X {p(D}).

Thus ran () is entirely determined by t and &. Since ¢~ ! is a collapsing map, it
follows that ¢ (v) is completely determined by 7 and &. Butif vy, v, € S;and v; < v,,
then ¢ (v,) < v, < ¢(v,). Hence v € S; is unique here. Thus —3 is a tree on S*. (It
should be noted that the morass levels S, are not the levels of this tree.)

By 2.4, if v = 1, the map o testifying this fact is unique, so it may be denoted by
o, Clearly, the system of embeddings (o,.| v = 1) is commutative. Set

Ty = (05 [V) U {(T, )}

Then (n,.|v = 1) is a commutative system of maps
Tye: (v + 1) > (t + 1).

We show that the structure
M =<8, S, 3, (o) o)

so defined is a morass.

(M 0) This is immediate. (To show that sup (S° N @,) = , only requires a simple
application of the Condensation Lemma. All other parts of (M 0) really are imme-
diate.)

(M1) If v, then S, nvis Z{*({o,}) and S, N 7 is Z{*({e,}) by the same defini-
tion. But (o, [ J,): J, <o J; and 7., (2,) = o, so the assertions of (M 1) are immedi-
ate. (It is precisely in order to obtain (M 1) that we introduced the notion of a
Q-embedding. And we only need this notion in order to prove (ii) and (iii) of (M 1)
in the particular case y = v.)

(M2) LetteS;,t€8,, 731, VeES; N T, v = 7. (V). We must show that ¥ =3 v and
nﬁv r\—/ = chr r\_}

Let o = 0;, [ J;. Thus 0: J; <, J;, 6(&) = a, 6(¥) = v. By 2.3,

(@ 1 Jo@): Jows AN Jo {P D < gy, A0, s (P V)

Hence v 3vand n;, [v=(c ) [V =0 V=0 V=m;]V.

(M3) LetteS,.Let & < a be a limit ordinal such that the set {a,|v—=1 A a, < &}
is unbounded in & We must show that there is a v— 7 such that & = «,.

For each n 31, let X, = ran(o,,). Thus (X, |# —3 1) is an increasing sequence
of £, submodels of {J,,, 4(7)). Set

X=U{X,In3tA0a,<a}.
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Then X <; {J,(, A(7)). Let
0:{J, A) =KX, A1) n X).

By 2.5 there is a unique v € S* such that ¢ = g(v), A = A(v), 6 (p(v)) = p(2). Since
& = sup {a,|n 37 A a, < &}, it is easily seen that we must have v € S;. And since
X,nJ.<pJ, for all n = 7, we have X N J, <, J,. It follows that v rand o, = 0.

(M 4) Let 7 € S,, and suppose that 7 is not maximal in S,. We must show that the
set {a,|v —3 7} is unbounded in « (i.e. that 7 is a limit point in —3).

Pick A€ S,, 4 > 7, A admissible. Let § < a be given. Let X be the smallest X,
elementary submodel of {J,,, 4 (tr)) which contains p(7) and 0 and is such that
X N is transitive. Now, {J, ), 4(7) ) is an element of J;, and 4 is admissible, so
X € J,. But a is regular inside J,. Hence & = X na € a. Let

01 {J, A =X, A() " X ).

Using 2.5 we see that there is a unique v € S; such that 9 = o(v), A = A(v), v 31,
and ¢ = g,,. Since 0 < & = «,, we are done.

(M5) Let 1€ S,, and suppose that {a,|v =1} is unbounded in a. We must show
that 7 = (J [rn,."v].

vVt
In fact we show that J, = ) [0,."J,]. Since = is trivial, we only have to worry

vt

about <. Let x € J.. Then for some dea x is Zl-geﬁnable from p(7),  in
{Jy» A(7)). Pick v 37 such that 6 € a,. Then, since 9, p(t) € ran (0,,) <; {J, ),
A (1)), we have

xeran(o,)nJ, =0,"J,,

as required.

(M 6) Let v be a limit point of S,_, v 3v, v = sup (n;, "v). We must show that
v=v and 7y, [V =7y, [ V.
But this is immediate by 2.6.

(M 7) Let v be a limit point of Sz, ve S,, v 3v, v =sup|[rn;,"v]. Let & < 0 < o be
such that for each 7 € S; N v, S, contains an n € S* such that T— n— =, (7). We
must show that S, contains an 5 such that v 39 —=3v.

For each 7€ S; n v, set T = 7y, () and let n(7) denote the unique 5 € S, such
that T—#n—31. Note that the function x is monotone increasing. Set y =
sup {n (7)| T € S; N v}. Since S, is closed, 1 € Sy. We show that v 3 # — v. Since =3
is a tree and v 3 v, it suffices to show that # — v. This will take some time.

By the verification of M 2), if 7,7 € S; n v, T < 7', we have:

O [ o= Oy Je and 0,4, 1y = 0ye0 [ Jy0-
Hence we can define functions o, o; by

0'0 = U {O’f,,’(f) rJfIfES&ﬁ\j}, 0’1 = U {O-VI(T)»T fJ,,(T—)|f€S&ﬂ\7}

n(@)

0o, 01
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Clearly,

0o: ;=<oJyp, 011 J,<oJy.
But ¢, o, are cofinal. Hence

oo: S;=<1Jy, o1 L=<y J,.
2.7 Lemma. ran(o;,)nJ, S ran(o,).

Proof. If TeS;nv and xeJ;, then o, ©0o(X) = 0y, © Oz 45 (X) = G (x), sO
6,000 | J; = 05 | J: = 0y, | J; (using the verification of (M 2)). But S; N v is cofinal

in v. Hence 6, ° 64 = 03, [ J;. Thus we have
ran(o;)NJ,=0;"J;=0,°0,"J; S ran(o,).
Since ¢,|0 =id | 6 and (by confinality) o,: J,<oJ,, we obtain #—v (and
hence the verification of (M 7)) as an immediate consequence of the next lemma.

2.8 Lemma. There is a 6 2 o, such that
6: <']g(n)5 A(”)> <1 <Jo(v)’ A(V)>

and 6(p () = p(v).

Proof.Seto =0, =B, n=n(),0=0(),4=A4(),q=q(),p=p),and
ifveP,y=y(®).

Case 1. ve P.
Thusg=B=y+ 1and 4 = (. Set
M = {x e J,|x is J,-definable from parameters in ran (o) U {q}).

Thus M < J,.
Claim A. M nJ, = ran (o).

Let xe M nJ,. Thus for some r and some X, formula ¢, and for some
y e ran (o), x is the unique x € J, such that F; ¢ (%, , §). Define X,, <, J, just as in
the proof of Claim B of 2.5, and, as there, set v,, = X,,nv. Let n,,: X, = J, ,and
set m,(q) = q,,- Since there is a J,-definable map from « onto y,,, y,, < v. Hence
(Yms dm) €J,. NOW, (Y, qn) is clearly X,-definable from p in J,. So as
peran(o;) <y J,, (V> qm) € ran(oy,). So by 2.7, (Y, 4.) € ran (o). Pick m > r so
thatx, yeJ, .Sincen,':J, <,J,andn,'1J, =id|J, ,xistheuniquexeJ,
such that F 7,9 (X, ¥, 4,»)- This provides us with a X; definition of x from y,,, y, ¢,
in J,. But y,,, y, g, € ran(0) <, J,. Hence x € ran (¢), which proves Claim A.

Let

1R

G:J; =M.
Thus

g Jy-< J,.

g By Claim A, ¢ < 6. In particular, 6 () = a. Set § = 6~ '(g).
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ClaimB. () v<y-n<jy A& =v;
i) v =71 =7.
Suppose v < y. Then, since ve S, and y = y(v), we have v = [a*]’». But
o =o0o(0)eran(c) = M < J,. Hence ve M. But ¢”y is cofinal in v. Hence
n=¢6"1(v). Thusn <7 and 6(n) = v.
Now suppose 1 + 7. Thus n < 7, and so & (1) is defined. Since ¢”# is cofinal in
v, 6(n) = v. Thus y > v. Hence v = y - n = §. Claim B is proved.

Claim C. n is regular over J;.

We know that v is regular over J,. But 6: J;< J, and 6" is cofinal in v, so this
claim follows from Claim B.

Claim D. g is the <,-least element of J; such that every element of J; is J;-definable
from parameters in 6 U {g}.

Argue just as in Claim D of 2.5.
Claim E. n is Z,-singular over J; .

By Claims C and D we may define (,,/m < w) from J;, 6, g, n exactly as
(Vmlm < w) was defined from J,, «, g, v in Claim B of 2.5, thereby obtaining a
21 (J;41) w-sequence cofinal in 5, which proves Claim E.

Claim F. ne P,y(m) =7,em) =Bm) =7+ 1,q9(n) =g, p(n) =4, 7,1, 0).
By Claims C, D, E.
Since 6: J,< J,, by VL.1.19 there is a unique extension of ¢ to an embedding

6: Jym <1 J,. Using Claims B and F, ¢ (p (1)) = p. That completes the proofin this
case.

Case 2. ve R.

Let h=h, 4, and for T <o, set h, = h, 4. ;.. Let 6 = J(v) = the least 6 < ¢ h, h,, 3, 5(v)
such that g € J; and o € h¥ (J, x {p}), and such that v e h} (J, x {p}) in case v < g.
Since lim (¢) and J, = h* (J, x {p}), such a é can always be defined.

Ford <1 <yp,let

X, = h¥ (J,x{p}). X,
Then X, <, {J,, 4 nJ.>. Moreover, by choice of p, |) X,=J,. Since « is the
o0st<g
largest cardinal inside J,, X, N v is transitive, so set v, = X nv. Let v,
.. <XnAnXt> = <Jy,’ A1:> Ty Vos At

Set 7.(p) = p,. Notice that =, [ v, = id [ v,, and that if v < g, then n.(v) = v,. D:
Claim G. Let 6 < 7 < . Then {J, , A;) € J,.

Since <J,, A) is amenable, h, € J,. Hence X, € J,, and there is an fe J, such
that f: a > X,. Set

E={¢0ea®IfOefO},
B={lealf(§)ec4}.
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Thus (o, E, B) € J,. So if v = g, then («, E, B)e J,. If v < g, then v is a cardinal
inside J,, so #’(x) < J,, by applying IL.5.5 within J,, so again («, E, B) € J,. But
v is adequate, so the transitive realisation of the well-founded, extensional struc-
ture <o, E, B) is also in J,. In other words, {/J, €, A,) € J,, which proves
Claim G.

By Claim G, v, < v for all 7. Hence (v,|] 6 < t < g) is a cofinal sequence in v.
Claim H. ((y,, A, vy, p2) |6 < T < @) is T P ({p}).

This is immediate from the definition.

Define

M = {x e J,|x is Z,-definable from parameters in
(ran(o) N J) U {p} in {J,, A>}.

Of course, ran (o) N J, = 0"Jy = Jo here, but we have given the definition of M in
the form required for the proof. We have

M, AnM) <,<{J,, 4.

ClaimI. M nJ,=ran (o).

Let x € M n J,. Then for some X,-formula ¢ of ¥ and some y € ran (o) N J,,
x is the unique x € J, such that k., 4 3ue(u X, y, p). Pick 7 so that x, y e X,
xeJ, ,andforsomeu e J, ko 455 @ (i, X, y, p). Then x is the unique x € J; such
thatk; 4s3ueu, X, ¥, p).Butx, y, pe X, <, {J,, AnJ.),so applying . and
noting that =, [J, =id[J,, we see that x is the unique x e J, such that
0=<,W 4> 3u (u, X, ¥, p). This gives us a T, definition of x from y,, 4., y, p, in J,.

We may assume that ¢ was chosen above so that t € ran (o;,). To see this, pick
¢ e 0;"v large enough so that whenever 7 is such that v, > £, then 7 has the
properties used above. Since a;,"7v is cofinal in v, such a £ can be found. The
smallest T with v, > ¢ is now X, -definable from &, p in {J,, A), by virtue of Claim
H. So as ¢, p e ran(o;,) <, {J,, 4), we have t € ran(o;,).

By Claim H, it now follows that vy, 4., p, e ran(o;,). So by 2.7, v., 4., p,
€ ran (o). Hence v,, A., y, p, € ran (¢). But ran (o) <, J,. Thus x € ran (o).

Now let x eran(o). Then x € J,. We show that x e M. Since xe J,, x is
2,-definable from parameters in « U {p} in {J,, A). So for some Z, formula ¢ of
% and some y € J,, x is the unique x € J, such that

'=<J,,. a3ueu, X, y,p).
Let y be the <-least such parameter. We show that x € M by proving that
y e ran (o). Pick 7 < ¢ such that x, y € X,, x € J,_, so that for some ue J,,

Fto anso @ U X, Y, P).
Then

F(.lt, AnJ) 3 u(P (u’ i’ j}’ 13)’
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so applying =, much as before, we see that x is the unique x € J,, such that

e, a0 3ue W, X, 9, ).

Moreover, y is the < ;-least such parameter. This provides us with a Z; definition
of x from y,, 4., y, p.in J,. As above, we can assume that 7 has been chosen so that
Y., A, p; € ran (o). Hence as x € ran (¢) and ran (¢) < J,, the minimality of y gives
y € ran (o), as required. Claim I is proved.

Let

6:{Jy, A= (M, AnM}. 6,0 A

Thus
G (Jy A <4 Ty, A
By Claim I, ¢ = . In particular, 6 (0) = a. Set p = ¢~ *(p).

By V1.5.6 there is a B > g such that ¢ = @5, A = A}~ !, and an extension ¢’
of ¢ such that ¢": Jz <, J;.

SURSSRST

Claim J. nis Z,_, regular over Jg.
This follows immediately from the fact that ¢': J;<,J; and sup [¢’ "n] = v.
Claim K. 7 is Z, singular over Jj.

By definition of M, we have

Jo=h3a(Jox{p}).

Hence there is a X, (< J;, 4)) map from 6 onto #. Since ¢ = ¢} ', 4 = A}~ ', this
map is Z,(Jp).

Claim L. B=B(m),n=n(m),neR,a=om) A= A(n).
By Claims J and K.

Hence
6-: <Jg(n)= A(’7)> < <Jg’ A> .

But p € ran(6), so by 2.5, 6 (p(n)) = p. The lemma is proved now. [

3. The Gap-2 Cardinal Transfer Theorem

In this section we prove the following theorem.

3.1 Theorem. Assume there is a morass (i.e. an (w,, 1)-morass). Let o/ be a K-
structure of type (xk* ™, k) for some uncountable cardinal x. Assume that 2° = k™.
Then there is a K-structure % of type (w,, w) such that # = /. [
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By virtue of the results of the last section, this implies that the Gap-2 Property
is valid in L. In the exercises we indicate how the result may be extended to cover
any type (A**, A) in place of (w,, w).

We fix 4 =<8, &,3,(n,),_.> a morass from now on. We are given a K-
structure .« of type (x* ¥, x). We may assume that .« has the form

o =<kt K, <,...),

where k = U# and < is the usual ordering of k* *. If # = .o/ and e € B, we shall
denote by Pr” (¢) the set of all <-predecessors of e in the sense of 4, i.e.

Pr®(e) = {be B|BEb < e}.

The key model-theoretic fact required for our proof is supplied by the following
lemma.

3.2 Lemma. Assume 2* = k*. Then there are K-structures #, % such that:

(i) B=¢=,
(il) # <% and U® = U¥;
(iii) there is an embedding o: B < € and an element e € B such that:
(a) U® = Pr%(e);
(b) o [ Pr®(e) = id | Pr?(e);
(c) BcPré(a(e).
Proof. For those familiar with the term, we remark that the proof is by means of
a “A-system” argument.

Foreacha < k¥, let o7, = (4,, x, <, ... ) be the smallest .27, < .o such that
kU {a} = A,.(Since < well-orders <, this definition makes sense.) We can clearly
find a cofinal set X < x* ™ such that A, + A; whenever «, f € X, o # . Since
|A,l = k for all « € X, we may assume that otp(4,) = 6 for all « € X, where 0 is a
fixed ordinal, k < 6 < k™. Let (a®| v < 6) be the monotone enumeration of A4, for
each « € X. Since o € 4,, there is a least ordinal ¢ < 6 such that (aj|a € X) is
cofinalin k* *. Since (k*)* = xk *, we may assume that (a®|v < ¢) = (af|v < @) for
all ¢, f € X. We may further assume that for all o, f € X, if « < f§ then af > a2 for
all v < 6. Thus if we set

Y ={al|v<e} (for any a € X),
Z,={a%lo<v<06} (eachaeX),
we have:

A,=YuZ, (allaeX),
YNZ,=0 (all x € X),
Y<Z,<Z; (lafeX, a<p).

(ie. {A,]a e X} forms a A-system.)
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Now there are at most ¥* = k* non-isomorphic K-structures of cardinality «.
Sowe can find o, f € X, < f, such that ./, = o/;. Itis clear that the only possible
isomorphism o: o/, = ./, is the unique order-isomorphism of 4, onto A4, (as sets
of ordinals). Thus if we take

B=o, =S, e=a,

=al,
then 4, €, o, e are clearly as required for the lemma. [

By means of an argument almost identical to that used in 1.5, we can use 3.2
in order to prove the following sharper result.

3.3 Lemma. Assume 2 = x*. Then there are countable homogeneous K-structures
B, €, such that:
Q) Bo=%,=;
(i) Bo< €, and U%° = U*o;
(iil) there is an embedding 6o: By < 6, and an element e, € B, such that:
(@) U% < Pr#o(e,);
(b) go [ Pr?e(eo) = id [ Pr(eo);
(©) Bo = Pr(ao(e0));
(iv) (%o, €0y = {%o,00(e0) -
Proof. Since the proof is virtually the same as in 1.5 we give only a brief sketch.

Commence with %4, €, 0, e as in 3.2. By replacing € by its skolem hull around
B U ¢"B if necessary, we may assume that |C| = |B|. Let h: C<+ B. Let

K€, R, 0, ¢,d(),hy={¥,%8,0,e0d(e),h)

be special. Then, in particular, {%’, ¢’ (¢')> and (%', ') are special structures of
the same cardinality, so let

k':<{€,a'(e)) =<K% e.
Let
by, By, 00, €, 00(€0), koy =€, #B',0',¢,0' (), k">

be countable and homogeneous. Then %, €, 6o, ¢, are as required by the lem-
ma. [

We are now ready to commence our construction of an (w,, w)-model # = .
We shall obtain 4 as a limit of a certain directed, elementary system.
To each 7 € S! we shall attach a K-structure %4, = .« and an element e, € B,.

If v, 7 e S! and v < 7 (as ordinals) we shall have #, < %,. We shall set, for each
te S,
B =\) B B= ) B,

v<t veSat

it being understood that v, 7, etc. vary over S! in such situations. The directed
system we construct will be called an .#-complex. We begin with an axiomatic
description of the system. We fix %, %, 04, € as in 3.3.
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An M -complex (for <) is a structure

D = {(Bdrest; (€)cests (Tea)ese)
such that:
(C)teS'>%B,. = &e,eB,;
(C2) 1eS'nw, > A, is countable homogeneous and (4., e,> = (B, ,);
CH vteS' &v<t1>AB,<AB, & UP =U%;
(C4) 18- B? < Pr¥:(e,);
(C5) the embeddings o;,: #." < &, for T 1, form a commutative system;
(C6) T 37> 0(e;) = ey
ChHh t31&VeES, NT&V=m;(9) >0 | B; =0y | B;;
(C8 t3t&veS' &a,<a.—>o0; B =id | B};
(C9) if 7 is a limit point of 3, then &, = | ) 0.,"%.

Given an .#-complex as above, the Gap-2 Theorem follows at once. For if we
set

% = U@tx’

veSy,

then 4 = o/ and by (C3) and (C4), # has type (w,, w).

The construction of an .#-complex proceeds by recursion on t € S*. To com-
mence, if 7, is the least ordinal in S* we take 4., = %,, ., = €,. The induction step
in the construction splits into three cases.

Case 1. 7 is minimal in —3.

By morass axiom (M 4), since 7 is not a limit point in 3, we must have o, & ;.
So #? is a union of a countable elementary chain of countable homogeneous
structures. Thus, using 1.6 in case this chain is of limit length, 2? is countable
homogeneous and #° =~ #,. Let e € B? correspond to e, € B, under such an
isomorphism. Then, by the properties of %, €y, 64, ¢, We can find a structure
(4., e,> such that the relationship between (4., e,> and (#?, ) is the same as
that between (%,, go(ey)) and (¥, eq». In particular, we have:

B < B UP =U (B,e)=(B,e; BY<Pr¥(,).

Thus 4,, e, satisfy (C 1)—(C4), whilst no new cases of (C 5)—(C9) arise.
Case 2. 7 is a limit point of 3.

Consider the directed elementary system

<%:)v—sta (O-Vv Vv %t>'
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Let
<(g$ (GV)V—BI>

be its direct limit. We may define an embedding
j B <%

as follows. Let x € BY. For some v < 7, x € B,. Suppose first that ve S, . By (M 5)
we have
S, Nt = {J 1" (Se, N 7).

T37T

So we can find a 737 and a v e S, n 7 such that v = . (V). By (M 4), v is a limit
point of 3, so (C9) tells us that

B, = | g;"B;.

Vv

So we can find a 77t sufficiently high in = so that x = g;,(x) for some
X € B; < B.. Set j(x) = g;(x) in this case. On the other hand, if «, < «,, then if we
pick T =37 so that a; > «a,, we have x € B;, and we can set j(x) = g;(x). Using (C 5),
(C7),and (C 8) itis routine to verify that j is well-defined and elementary from %?
into %, and that for any T 31, Ve S,. N 1, v = 73, (V), the following diagram com-
mutes:

J

3

'@0

id a: [ By

gv <“%\7

vy [ By
We may thus choose € specifically so thatj = id | B?. Let #, = € and set 0;, = 0
for all T = 1. By (C 6) below 7, there is a unique element e, € B, so that g;.(e;) = e,
for all 7 = 1. We check that (C 1)—(C9) hold for 4., e, under these definitions. The
only one that is not immediate is (C 2).

Using an obvious notation we have:

<‘@t’ er> = _U <o-fr”gf’ et> .

Since (0; | B;): {%;, e;y = {0 "%, e., the structures {c;,"%:, e, for T 3 1, form
an elementary chain of isomorphic, countable homogeneous structures. Thus by
1.6, (4., e,y is countable homogeneous and for any 7 =t we have (%, e,) =
0;"B:ye.) = HB:e;) =< B,, ey). This proves (C2).

Before we commence Case 3, we observe the following consequence of the
axioms for an .#-complex:

(C10) v,teS'nw, & v<t—>LKB,,e,) (B e.).



364 VIII. Morasses and the Cardinal Transfer Theorem

To see this, we first note that by (C 3),

(B,,e,)<{B.e,.

Also by (C2),
(B, e,) =B, e

Thus
{B., e>=(B,e.).

So as 4, is homogeneous,
(B, e,) =LA, e,

which is (C 10).
We shall make use of (C 10) in dealing with Case 3.

Case 3. t immediately succeeds 7 in 3.
Note that by (M 4), a, + w;, s0 T < w,. There are three subcases to consider.
Case 3.1. t©is minimal in S, .

Thus 7 is minimal in S, (by (M 1)). Using (C 10) and (possibly) Lemma 1.6,
(B, e.> = (B, e,>. Thus there is a countable homogeneous structure %, and an
embedding o: #° < £, such that:

B < B, U™ =U o|Pr*(e)=id | Pr®(e), B®<Pr*(ol(es).
Let 0;, = 0, e, = o(e;). It is routine to check (C 1)—(C9) for .
Case 3.2. v immediately succeeds # in S, .

Thus by (M 1), 7immediately succeeds 77 in S, where 7, () = n. Moreover, we
have # = %,. Let b = g, (e;).
By (C10) and (C2) we have

<~%;, ey =K RB:, e:) =B, €
Thus, applying ¢,,: 8, < 4,
<O-r7r,"'@;;-’ b> = <g03 eO>'
So as aﬁn”%’,—f < B,,
<gm b> = <$0’e0>‘
Thus by (C2),
By b) =By, ep).
So as 4, is homogeneous,

(B, b) =B, e,).
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Thus by (C2),

<'%na b> = <*@09 e0>'

It follows that we can find a countable homogeneous structure 4, and an embed-
ding o: #° < 4, such that

BO< B, U™ =U? o |Pr®(b)=id | Pr* (b), B° < Pr? (o (b)),
(B2, b) =<(B.,0(b)>.

Lete, = o (b), 0;,= 0 °0y,.

It is immediate that (C 1)—(C 6) are preserved by this definition. Also, (C9)
does not apply in this case, and (C 8) follows easily from (C 7) (and the induction
hypothesis). So we need to check (C 7) for z. It clearly suffices to prove this for the
case v = 1 only, i.e. we show that

Oz | 7= O fBﬁ-
Well, we have
B; < Pr®(e;) < P17 (e)).
So, applying o,
0;,"B; = Pr(b).

But

o [ Pr®1(b) = id | Pr#n(b).
Thus

000y "B;=0"B;,
ie.

0z [ By = 05, | B;.
For future use, we note that for any K-formula ¢ (3, X):
(*%) if y € By, % € B, then 4, F ¢ (J, 05, (X)) iff B F @ (P, 0:(%)).

To see this, apply ¢ to the left-hand side and note that as e; <e; in 4, , an
application of ¢, yields e, < b in 4, so BY < Pr#: ().
Case 3.3. tis a limit point in S, .

Thus 7 is a limit point in S, . There are two subcases to consider.

Case 3.3.1. A =sup;_;n;. (V) <7.

In this case, (#?, e,) is the union of the elementary chain

(KB, ,e;|veS, & A<y <1).
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By (C 10), this is a chain of isomorphic, countable homogeneous structures. So by
1.6,

(B, e,y =< B, e;,> =< By, o).

Thus we can find a countable homogeneous structure 4, and an embedding
o: B° < A, such that:

B < B, U = U, 6 | Pr¥(e;) = id | Pr® (e;), B° = Pr¥ (v (e,)),
<'@?’ e}.> = <Br’ G(ei)> .

Lete, = a(e;), 05 = 0 © 0;;. Much as in Case 3.2, we see that (C 1)—(C9) continue
to hold, and that (for later use):

if ¢ (J, X) is any K-formula, then
(=x)  if ye B, X e B/, then B, F ¢(J, 05, (%) iff B.F ¢ (3, 0 (%).

The final case is by far the most complicated one, though as will be seen, we
have already “done all of the work” for this case, in the sense that our construction
is a “limit” construction.

Case 3.3.2. sup; ;7 (V) = 7.

For each v € §,_ N 7, let 5 (V) be the 3-least # such that v 31 = 7., (V). [Notice
that as 7, (V) is not maximal in S, , there is no possibility that n = n;, (V) here.]
Clearly, (o, |V € S,. N 7) is non-decreasing. Also, by morass axiom (M 4), it is in
fact strictly increasing. Set

o = sup {a,; | VE S, N1T}.
By (M3), o€ S', and in fact whenever ve S, N7, there is a v' € S, such that
v —=v' 3 ;. (¥). So by (M 7) and the fact that t immediately succeeds 7 in =3, we
see that o = a,. We shall define £, as a “diagonal limit” of the structures 4, , for
VES,NT.

Forv,7€ S, n1T,v < j,letn(v,7) = m; ,; (V). Thus (v, §) is the unique € S,
such that v—=n =3 7;. (V). (See Fig. 7.)

Notice that:

n(v)>

n(»)

® v=3n)=3n0,7) 31, (V);
(D) 0y, 16.9 By € Brgs.p-

Also, since 7, is cofinal in 7 on 7 and the sequence (a,, |V € S,, N 7) is cofinal in
o, we have, setting v = n;, (¥):

(i) B =) {0, Bw|VES,NT}.
Claim. If v,7€8,.nT,V< 7}, je B,‘,’(v-), X € B, then for any K-formula ¢:

By F @ (3, 05,0 (X)) Ul By F @ (0,6,06.9) (D) 0556 (X))-
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Fig. 7

We postpone the proof of this claim for a moment and complete the definition
of 4..
Let X be an arbitrary, countable, infinite set disjoint from B?, and let

h: (B — B X.
Let B, = B? U X, and define a function ¢: B — B, by

(x) = h(x), if xé&B?
o) = 0;,(x), if xeB;, where veS,_Nn7Tand v =n;(¥).

By (C7) and the induction hypothesis, this clearly defines a function on B. .

We define a K-structure 4, on B, so that o: . < %,. We can do this in a
unique way so that for all K-formulas ¢ and all ve S,_n 17, j € B, X € B, we
have

(iv) B.F (0,6, (V)0(X) iff By5F@(,05,5(X),

where v = n;, (v). By (iii) above, the j’s take care of the whole of B?, and the X’s
take care of X, so all of B, is covered. By the claim there is no conflict between
different choices of v. Hence 4, is uniquely determined. And by means of an
argument as in Case 2 there is an embedding j: #° < 4,. By choosing X suitably
we can clearly ensure that j = id [ B?. Thus #° < %#,. We set 0;, = 0, ¢, = 0, (e;).

Now, by equivalence (iv) above, (4., e, is a sort of limit of the isomorphic (to
(%, ey)) countable homogeneous structures {%,, 05, (€:)), for ve S, N 7. By
means of arguments which are in essence the same as those used to prove 1.3 and
1.6, it is easily seen that 4%, is countable homogeneous and that
(B, ey =By, eyy. (In fact we did not give the proof of 1.3, since this is a
“standard” result of model theory, but the details are easily worked out. The idea
is to construct the desired homogeneity automorphism by means of a “back and
forth” procedure as used in the proof of 1.6. This is similar to, but a little easier
than the argument in 1.6 itself.) Thus (C2) is preserved. The verification of (C 1)
and (C 3)—(C9) is routine.
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There remains the verification of the claim. This is done by induction on
7 € S,, n 7. For 7 the minimal member of S,,, the claim is trivially valid. Suppose
next that § immediately succeeds v in S,,. Then by induction it suffices to prove
the claim for this one pair v, . We have:

i (%), 7 € By,
. +
O 069" Boy < B3>
Op@,nG,7) ° Ton® = Oon@,9) -
So for any ¢, we clearly have
By F @ (3 05,0 (R) T By 5 F 0 (045,56, () 5,95, 5 (%)

Now, 7 () immediately succeeds y in =3 and # () immediately succeeds # (7, 7) in
S. Hence Case 3.2 applies to 7 (). Note that as j € BS(V.), (ii) above gives

An(y)*
> 0
Ty (F) € By -

So by (*) above,

B, 5 F @ (Oy,06,9 (s Oi a9 (X)) U By F @ (0,5, 45,9 (P 05,07 (X)) -

The claim follows from the above two equivalences.
Finally, suppose that j is a limit point in S,.. Let

A = Sup‘; <y TC};’ n(@) (\7) .

Either A = 5(j) or else A < 5 (}). Thus, either by identity or else by (**), respective-
ly, we have, for all j € B}, % € B,

v) gr](ﬂ Fo(), 05 n(7) (X)) iff B,Fo (), 0'7,/1(33)) .

Let a = sup;_;a,. Let i7 be the unique 7 € S, such that y = 7 = A. Then 77 imme-
diately succeeds 7 in 3. For if y 3 # =317, then for ve §,.n 7, we would have
t,m) < o, contrary to 77 € S, and the choice of «. So, recalling the definition of 4 we
see that Case 3.3.2 applies to 7. So by induction, for y € Bf;m, veS,.Nny, Xe B+ ,
we have, by (iv),

93«9) Fo(y, 05, n(5) (X)) iff 93,7 Fo (O'r;(v), (P 057 (X)),
where v = =; ; (V). Applying o;;: #;< %, to the right hand side we obtain:
By F @ (3,055 (X)) iff By F@(0,,,(0), 051(%),

where this time v = 7; 7(7). But y € BY;, s0 0, ,(7) € B} here. Thus by (v) we
obtain

By F @ (3, 05,00 (X)) I By F @ (05, 56,5 (D) 05, (%)) 5

as required.
The claim is proved, and with it the Gap-2 Theorem.



4. Simplified Morasses 369

4. Simplified Morasses

The morass defined in section 2 and used in section 3 provides us with some
insight into the structure of the constructible hierarchy. But as we have seen, it is
not particularly easy to use, requiring the consideration of many separate cases
(five in the proof of the Gap-2 Theorem), one of them (Case 3.3.2) quite compli-
cated. If one’s main interest is simply to use morasses to prove theorems like the
Gap-2 Theorem, this complexity is a nuisance. In this section we show that it is
an avoidable nuisance. We shall describe a “simplified morass” structure. The
existence of a simplified morass is provably (in ZFC) equivalent to the existence
of a full morass in the sense of section 2. (We shall give one half of the proof, the
half of relevance to us here.) And as we shall see, it is considerably easier to prove
the Gap-2 Theorem using a simplified morass.

As with the morass of section 2, the motivation is the approximation of a
structure of cardinality w, by means of a system of =, many countable structures.
(As before, we consider the case of an @, morass for definiteness, but everything
generalises quite easily to and arbitrary uncountable regular cardinal «.)

A simplified morass (morass precisely, a simplified (w,, 1)-morass) consists of
a structure

M = (0,0 < 0y), (Fpl ot < B < 1))

satisfying the following six conditions (which we examine below):
(PO) (@) 0p=1,0,, = w,, Vo <w,;)(0 <0, < w,);

(b) Z; is a set of order-preserving functions f: 6, — 0y;
(P1) |Fpl <wforalla < f < wy;
(P2) ifa < B <y, then #,={foglfeF, & g€ Fyp};

(P3) ifa < wy, then &, ,,, = {id [ 0,, f,}, where f, is such that for some 6 < 6,,
fo16=1id 16 and f,(6) = 0,;

(P4) if « < w, is a limit ordinal, if B, 8, < «, and if f, € #,,, f, € %,,, then
thereisay < o,y > By, B,, and there are f| € %, ,, f; € %,,, g € %, such
that fy=g°fi, o =9g°f;.

(PS) foralla>0,0, =) {f" 051 <o & fe Fp,}.

The idea of the above definition is this. We approximate 0, = @, by means
of the countable ordinals 8,, « < w,.To do this we need to know how the intervals
0, “fit inside” 0,,,. %, consists of a set of order-preserving maps from 6, into 6;.
Each map f in %, gives one way in which 0, “fits inside” 6, as an approximation
to it. (P 1) tells us that there are not too many ways in which this can happen for
any given pair a, § < w,. (P2) is self-explanatory. (P 3) (together with (P 0)(b))
says that at successor steps in the approximation procedure there are just two
ways in which 6, fits inside 6, . ,, both very simple (P 4) tells us that the “approxi-
mation tree” going up to 6, does not have branches which “split” at limit levels.
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A particular consequence of (P 5) is that ,,, is entirely determined by the count-
able parts of the simplified morass.

We shall use the simplified morass to prove the Gap-2 Theorem. We are given
a K-structure o/ = (A4, U,...> of type (k**, k) and wish to construct a K-
structure 4 of type (w,, w) such that # = /. We commence as in section 3. In
particular, let %, €., €0, 0o be as in lemma 3.3. We construct (instead of an
M -complex) sequences

Buloa < wy),  (h]o<oy), (f*IfeFp B <a<wy)
so that:
(Cl) B,= o,

(C2) h,: 6, B, is order-preserving (where B, is ordered by the linear ordering
which is part of 4,);

(C3) f*: By< B, and U® c ran (f*) for f <o < wy, f€ oo
(C4) if « < wy, then {(B,, h,(0)) = (B, e,y for all 6 < 0,;
(C5) (feog)* =1*°g* whenever fe %, g€ Fp,, p<y <o
(C6) hyof =f*ohgfor each fe F,;

(C7) if fe %, and ran (f) = 6 < 0,, then ran (f*) = Pr®=(h,(5)).

Provided we can carry out this construction we shall be done, since then %,,,
is of type (w,, ) as required. (|B,,| = w, by (C2) and |U%a:| = w by (C3).) We
construct the above sequences by recursion on a.

%, has been defined already. We set hy(0) = e,. Now suppose that we are at
a successor step, @ + 1. By (P3), %, ,+, = {id [ 8,,f}, where for some ¢ < 6,,

S, 10 =id |6 and f,(0) = 0,. By (C4), K%,, h,(0)) = {HB,, es), so we can find
Byi1,0 such that:

ga<‘@a+1’ Ugaa= U‘%‘Hl’ o-:'%a<ga+la BagPr@a+1(6(ha(5)))’
o [ Prée(h,(8)) = id [ Pr¥(h,(8)), <{Bur 1,0 (ha(0))) = (B hs(9)) -

Set(id [0)*=id |B,, f¥=o0.

Suppose now that h € % ,, 1, p < a. To define h*, choose f€ %, ,+1,9 € Fpas
so that h = fo g (by (P2)) and let h* = f* o g*. Now, g is clearly uniquely deter-
mined by h here, but if ran(h) = 6, then f is not. However, by (C7) we have
ran(g*) < Pr®=(h,(9)), so by choice of g, h* does not depend upon the choice of
f- Hence h* is well-defined in all cases.

Define h, . : 6,41 — B,+ by

) = h, (v), if v<@,,
a1 o(h, V), ifv=f(y) 26,
(Using (P 5), it is easy to see that h,. ; is well-defined on 0, ,.)

We must check that (C 1)—(C 7) are preserved. (C 1) is clear. (C 2) holds because
B, = Pr®«+1 (g (h,(9))). For (C 3), note that since {%,, h,(0))> = {A&,, e, we have
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U®= < Pr®«(h,(d)), and that by choice of g, o [ Pr®=(h,(d)) = id | Pr®=(h,(6)), so
U#«+1 = U% < ran((id | 0,)*) and U%=+! = U%= < ran (f;¥). (C4) is a simple con-
sequence of the fact that 4, , is countable homogeneous (cf. the corresponding
arguments in section 3, in particular the proof of (C10) there). (C5) holds by
definition. (C 6) need only be verified for &, .., i.e. it must be shown that if
fe€Z, 441, then b,y o f = f* o h,. But this is immediate. Finally, (C7) also only
requires verification for &%, ,.,, which is a triviality.
There remains the limit case (i.e. lim («)). Let

y=U'97Ba

p<a

For each fe , let d(f) be that f such that fe %;,. For f,f' e &, set f<*f"iff
d(f) <d(f’)and thereis a g € ;), as sSuch that f = f” o g. Note that, if it exists,
the g here is uniquely determined by f, f’. Hence for f <*f” we may define an
embedding

Typt Bary < Bay
by
— *
Ty =9

where f=f"-g. By (P2) and (P4), <* is a transitive, directed relation on Z.
Clearly,

<($d(f))fe.¢a (nff’)f<*f’>

is a commutative, directed elementary system. Let

<'%a5 (f*)fe.97>

be a direct limit. Using (C 6) we may define h,: 8, — B, by requiring commuta-
tivity of the following diagram for all f < a:

0,—" B,

0y —,— By

(By (P 5), this does define h, on all of §,.)

We must verify (C 1)—(C 7). The only one that is not entirely trivial is (C4). But
if « is a countable limit ordinal, then (&%, <*) has a cofinal subset of order-type
w, s0 (C4) follows from lemma 1.6. That completes the proof of the Gap-2 Theo-
rem using a simplified morass.

We turn now to the question of the existence of a simplified morass. It should
be stressed that the definition of the simplified morass is designed to make appli-
cations easy. The simplified morass structure is not particularly closely related to
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the constructible hierarchy in the way that the “standard” morass is. In fact, in
order to construct a simplified morass, what we shall in fact do is start with a
standard morass and use it to construct the new morass, rather than the fine
structure theory. This construction is not at all intuitive, and is motivated solely
by the aim of obtaining the various properties of a simplified morass.

The general idea is to define the ordinals 6, of the simplified morass as the
order-types of certain well-ordered sets (W,, <,) of finite tuples of elements of the
standard morass, and to obtain the embeddings in %, as compositions of some
specific maps from W, into Wj. In order to make this work we first of all have to
add some extra points to the morass to enable us to “smooth out” the irregu-
larities in the morass structure which manifested themselves in the large number
of cases required to prove the Gap-2 Theorem using the standard morass.

Beyond this very rough outline, the rest is, unfortunately, highly technical, so
you may expect a somewhat rough ride. Best of luck!

We fix a standard morass

M =LS, S, 3, (M)
as in section 2. We shall write
v=3,v iff vimmediately succeeds v in —3;

and (see Fig. 8)

u—v iff there are ¥, j such that v, v, ie S,,n v, and
ﬂ—3*#—3ngv(ﬂ).

ﬂ?v(ﬂ)

a; v

=

Fig. 8

We may (and shall) assume that if & < « and vis minimal in S; and v is minimal
in S,, then v 3 v. (Simply extend — to achieve this. None of the morass axioms are
effected by this.)

For each o € S° N w,, we set v, = max(S,). Let

A= {aeS°nw,|v,is a successor in 3 };
Ao = {ax e A|v, is a successor in S,};
A, ={one A|v, is a limit in S, but n;,_ [ is not cofinal in v,,
where vV =3, v,} .

We now add some more points to the morass. For « € A4, set

S =, +t|teS,Nnv,}.
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Extend the relation = to ' by setting, for v, + 1 € S,
T3y, +1t iff 7371,
and then extending to obtain transitivity.
Let
S=SU{a+1lacdyUA,}.
For « € §, let

S, ifaeS°— A4,

S,USF, ifacd—(doUd,),
S,— {ve}, faedyud,

S;uSy, ifao=a+1,aed,U4;.

5, =

Forve (J §,, let
aec§

o, = the largest a such that ve S,
o = the smallest « such that v e §,.

(Notice that there are at most two « such that ve ,i)
Let (y,|v < w,) be the monotone enumeration of S. For v < w,, let W, be the
set of all finite tuples (o, ..., #,) such that n is odd and:

(@) no € S_y‘,;
(1) 72413 M2
(i) 7o+, €S

Let <, be the Kleene-Brouwer ordering on W,; that is, () <, (&) iff /i is an initial
segment of # or else # precedes i lexicographically. It is easily seen that W, is
well-ordered by <,, so let 6, = otp (W,, <,). In the following we shall identify 8,
with (W,, <,).

Clearly, 0 < 0, < w, for v < wy, and 6, = w,. As a prelude to defining the
sets %, of embeddings we define some special maps.

First of all, let v 3 v, a; = y,, ay = 5. We define #;,: W, - W, by

. > .
Oy M2k+2 > Nkt 1

~ (nw(no), '71,«--,71n), lf Mo SV,
nﬁv((” PERRE} nn))={ - .
0 (vavaVIOa'--snn)a lf 1’]0>V.

Now suppose n —1v. Then there are v,7 such that v—3,v, 7€S, nv and
134137, (). Let n' = n;, (7). For some a, §, we have o, = y,, ay = ;. Let
¢ = o;. Notice that by (M 4), n = max(S,,), v = max(S,,), and (hence) y,, y; € 4.
We define a,,: W, = W, by:

(o (MO M1 -5 M) s if no<n or (no=rn and n, * ),
O+ Ty (D115 ma), i ng=n+1,1>0,

Opy s eees Mn)) = . _ —

n o) =Y 2 o) if (10, 1) = (. ) and n, €35,,

(V,ﬁ), if (nOa“-a ’7n)=('79ﬁ)
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Again, let « € Ay. Then we can find v, ¢ so that v =, v, and v, immediately
succeeds ¢ in S,. Let v =v,, 7,(0) =0, o =7;. Define gd: W; - W;,, and
g3: Ws > Wy, by go = id | W; and

(05 -+ M) if no<gor(n=¢andn <@,

VoV, M2y e es M) if no = 0, n; = 0, and either 7, does not
9 (Mos ---s 1) = exist or else n, + Vv,

Vs M350 M) if no=0m=0mn="yv,

v+on,....n), if no=¢andn, >g.

Finally, let o € 4. Then there are v, A such that v—=3,v, and A = sup n;,"v
< v,. By (M6), V3 A. Let a = y;. Define g5: W — W;,, and g5: W; — W, by
g% =id | W; and

(nOa-“,rln)’ lf ’70</10r(’10=}~and ’11<‘7),

g‘;((’?o,,”ln))= (Vanl’-”ann)’ lf Ho = iand M= ‘7,
(V + ’10a'719--~9’7n)7 lf 'Io> /101' (’102 A'and N1 > ‘7)

The proofs of all parts of the following lemma are routine (and hence omitted).
4.1 Lemma.

(i) 75, Oyys g? are all order-preserving.

(ii) For some a < 6, g5 o =id | a and g5 («) = 0;. (Recall that we identify 0,
with (W, <,).)

(i) V3V 3vom,, =f,, 0 fy.

(iv) nHe-v -0, =0,°0,

(v) If n v, where v =3, v and 1] 3, n, then &t;, = 0, ° iz, .

(vi) Let vV 3,v=v,, a€ AgU A;, o =7;, and let i = sup n;,"(S,, N V). Let
/. —3 A be such that a; = ;. (Thus either v = 4 or else v immediately succeeds
ZinS,,.)Let =3, A’ =3 A. Then #;, = g3 ° &tz and for all n — v we have either
Opy = g5 0 gy 0 0,y O else n = A’ and 6,, = g3 ° &,y

(vii) Let 1€ S,nv,, a€ Ay U Ay, & = 5. Then:

- ~ 8 o~
T—?‘E—PTCfr—goc’ﬂﬁ,
nav-o,, =g4°0,. O

Let # be the set of all the maps n;,, 7,,, g7, and let # be the closure of Z under
finite compositions. For a < f < w4, set

Fp = {fe F|dom(f) = W, and ran(f) = W;}.
The structure
M o= (0|0 < 0), (Fyla < f < 01))

is not yet a simplified morass, but as we show below it already has most of the
properties we require.
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4.2 Lemma. ./, has property (P 1), i.e. |%p| <  for o < f < ;.
Proof. Clear. O
4.3 Lemma. .# o has property (P2),ie.ifa < f <7y < w4, then

Z}!:{foglfeg;ﬂy&gey&ﬁ}-

Proof. (2) By definition.

(<). By induction on y. There are many different cases. As an example we deal
with the case v =, v, v a limit point in S,_, 7;, is cofinal. Then y is a limit ordinal.
We must use the induction hypothesis to show that (where dom (%;,) = W,):

(*) for cofinally many f < y, there are fe %, g € %, such that 7, = fo g.
By 4.1(v) we have

gy = 0y O T for nv.

nv mn

By morass properties (see the argument used in handling Case 3.3.2 in the proof
of the Gap-2 Theorem in section 3) we have:

o, = sup {a,|n—v}.

Thus (*) follows.
For the other cases, use 4.1 (iii), (iv), (vi), (vii)). O

4.4 Lemma. Let a < w,. Then %, ,. . is either a singleton or else consists of a pair
{id 1 0,, f,} such that for some 6 < 0,, f, 10 =1id | d and f,(6) = 0,.

Proof. If y,€ Agu A, then we are done by 4.1(ii). If y, ¢ Agu A, then = y,,,
is a successor in S°, so by morass properties S; = {v} for some v. By our initial
special assumption on the morass tree, we have v 3, v for some v. Thus %, ,. ,
= {7}, and again we are done. [J

4.5 Lemma. .#, has property (P 4).

Proof. Let o < o, be a limit ordinal. We define a certain subset 4, < () %, and
y<a

leave it to the reader to check that it is always possible to find a g € 4, which
verifies (P4). Let y = y,, and if o < wy, let v = v,.
Case 1. ye A, or o = ;.
Set 9, = {fi |t 31,71€8§,, 7 <sup(S,)}.
Case 2. ye A,.
Let v immediately succeed 7 in S, . Set 4, = {#|T 31} .
Case 3. ye(S°nw,) — A.
Set 4, = {®;,| V3 v}.
Case4. ye A —(AyuU A4,).
Set 4, = {o,,In-v}. O



376 VIII. Morasses and the Cardinal Transfer Theorem

4.6 Lemma. o, = | {f"0,la < 0, & fe £, .}
Proof. Obvious. [

Our task now is to modify .#, so that (P 4), (P 5) and (P 0) are satisfied, as well
as (P 1), (P 2) and (P 3). The only part of (P 0) that we do not have so faris 8, = 1.
Lemma 4.4 tells us that we are part way to having (P 3) already. And lemma 4.6
gives us (P 5) for the case o = w,.

By 4.6,

w, = U (U{f"6,1fe %))

y<wi

So we can find a y < w; such that

U{S"0,If€ Zo}l = @,.

Fory <a < wy, let
Se=U{f"0,Ife F}.

Notice that by choice of y,
IS,,| = w,.

4.7 Lemma. Ify < f < a < w4, then
Se=ULS"SpIf € Fpal-

Proof. S, =) (W 0,lhe Z} = {(fo9) O,/ € Fpo g € Fop)
U UL 0,9 Z)Ife F) = U Sylf e Fd. O

Before we state our next lemma, we note that if « < f < w, and 7,7, < 6,,
fi, o€ Fp,and if fi(1)) = f5(1,), then 1, = 7, and f [ 1, = f, [ 7,. (This is easily
proved by induction on B, using 4.4 for the initial step f = a + 1, 4.3 for the
successor step, and 4.5 for the limit step.)

4.8 Lemma. Let y < § < o < w,. The following are equivalent:
(i) Afe F)(f"Sp = S2);
(i) (Vg€ Fp)(f IS5 =g Sp);
(iii) (Vfe Fo) (f" Sp = So).
Proof. (i) — (ii). Choose fe %, such that Sy = S,. Suppose there is a g € F,
such that g(t) # f(t) for some 7 € S;. By (i), 9" S; = S, = f" S}, so we can choose

7' € §3 such that f(1') = g (7). But clearly, 7’ & 7, so this contradicts the obser-
vation made above.

(ii) — (ifi). By 4.7.
(i) — (i). Trivial. O
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We shall call an ordinal « < w; redundant if there are f < a, f'€ %, such that
p>vand f"S; =S,. Let

N ={a < w,|a >y & a is not redundant} .

Clearly, w, € N.
4.9 Lemma. N N w, is a club subset of w;.

Proof. To prove closure, suppose that o« is a limit point of N n w, and that a is
redundant. Choose < « and fe %, such that f >y and f”Sj; = S,. Since o is
a limit point of N n w; we can find a € N n w; such that f < § < a. Choose
g € F5, and h € Fy; such that f= g o h. Since 6 is not redundant, h” Sy < Sj. But
then Sy =(g°h)"Sy = g"S; = §,, contrary to the choice of f and f.

To prove unboundedness, let y < f < w;. We find the least element of
N nw, greater than f. Let o be the least ordinal such that f <« < w; and
(Vf € Z) (f" Sy # S;). Such an ordinal exists, since we clearly have (V fe %,,)
(f"Ss * S,,). By 4.8 we can choose fi, f, € #, such that f; [ S; + f, [ Sp. If a is
a limit ordinal, then by applying 4.5 we can get a counterexample to the min-
imality of . Thusa = 6 + 1 < w, for some é > B.If 6 > B, then by the minimality
of o there is an fe %, such that f"S; =S;. If ge %, and g"S; = S;, then
geofe %, and (g °f)’S; = S,, contradicting the choice of «. Thus (¥ ge %,)
-(g" S5 * S,). Clearly, the same conclusion holds if 6 = f. It follows easily that «
is not redundant, so « € N n @,. Note that we have shown that if y < § < w,,
then the least element of N — f is a successor ordinal § + 1 for some § > f, and
if 6 > B then (Afe F,)(f"Sp = S;). O

Now let (5,|v < w,) be the monotone enumeration of N, and for v < w,, let
0, = otp(S;,). Note that for v < w,,#, < 0,500 < 8, < w,. Also, 5,,, = w, and
|S,,| = w5, so 0, = w,. We identify S; with ¢, from now on. Subject to this
identification, let %, denote %, ,, .

4.10 Lemma. Except for the fact that 6y may not equal 1, the structure
My =0,V < 01), (Frlv <1< 04))
is a simplified morass.

Proof. Most of this is quite straightforward, and is left for the reader to check. To
prove (P 4), use the fact that N is closed. For (P 3), note that for any v < w{, 1,4+
is the least element of N — #,, so by the proof of4.9,#4,,, = § + 1for some d > 7,,
(VfeFo, )" S5 8y, ), and if 6 > n, then 3fe £, ;) (f"S,, = S5), so by 4.8,
Vf,9eZ ) (f IS, =g!I8S,) Clearly, %, . = %; ;. isasin (P 3),and itis now
not hard to show that &/’ ., is too. (P 5) follows easily from 4.7. 0O

Finally, if 8, > 1, we simply add an initial segment to the structure obtained
above and reindex. All that is required is to build up to the existing 6, by a
simplified morass-like structure consisting of 65 levels, starting with {0}. This is
easily achieved. We are done.
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5. Gap-n Morasses

In order to prove the Gap-(n + 1) Cardinal Transfer Theorem, we need a morass
structure which enables us to construct a model of cardinality w,,; using only
countable structures. The morass required to do this is a gap-n morass, or more
precisely a (w,, n)-morass. Assuming ¥V = L, such morasses can be developed, and
thus, assuming V = L the Gap-n Theorem is valid for all n. Unfortunately, for
n > 1, the definition and construction of a gap-n morass is little short of horren-
dous, and would require for a reasonable treatment a volume comparable to the
present one. However, although it is not possible to even give the definition of a
gap-n morass here (for n > 1), it is possible to indicate why one might expect that
such a structure exists, and what it should look like.

The simplest type of system for building models is an elementary chain, which
we may regard as a one-dimensional system. Then come gap-1 morasses (together
with their associated model complexes), which we may think of as two-
dimensional systems. A gap-2 morass would then be a three-dimensional system,
and in general a gap-n morass would be an n + 1-dimensional system. The formal
definition of a gap-n morass would then proceed in the “obvious fashion”. Just as
a gap-1 morass was defined on a set, &, of ordered pairs («, v) of ordinals, with
o < wq, Vv < w,,s0 a gap-2 morass is defined on a set, &, of ordered triples (o, 7, v)
of ordinals such that « < w,, 7 < w,, v < w3, and so on. Indeed, the construction
of such a structure is, in principal the same as in the gap-1 case, using the fine
structure theory. Unfortunately, matters rapidly become very complicated, and so
we must end our rather brief account at this point.

Exercises

1. Morasses and the Kurepa Hypothesis

Prove that the existence of a x -morass implies KH (x *). (Hint. For each v € S+,
let X,={veS'nk™|v3v}, and show that the family # = {X,|veS,+} is a
x*-Kurepa family.)

2. Morasses and the Combinatorial Principle [

Prove that if there is an w,-morass, then [, is valid. (Hint. For each limit point
vofS,,,let C,= {sup(m;"V)| V= v} nv, and investigate the properties of the sets

w1

C,.) Does this generalise to arbitrary successor cardinals k* in place of w,?

3. Cardinal Transfer Theorems

The first result to be proved is that, assuming GCH, if </ is a K-structure of type
(®,, w), then for any uncountable regular cardinal x there is a K-structure % of
type (x*, k) such that = /. The general idea is to proceed much as in 1.7, using
saturated structures of size x instead of countable homogeneous structures. 1.1 (i)
guarantees that all of the structures in the chain are isomorphic. The difficulty lies
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in ensuring that limit stages preserve saturation. This requires the use of a clever
trick. Fix o/ as above now.

A K-structure 4 is said to be U-saturated if it satisfies the definition of satura-
tedness for all element types X (x) which contain the formula U (x).

3 A. Show that if & is a saturated K-structure of cardinality x such that # = .o/,
then there is a saturated K-structure #’ of cardinality x such that # < %', % + %',
U=U* B=%.

3B. Show that if # is a U-saturated K-structure of cardinality x, there is a
saturated K-structure %’ of cardinality x such that # < #' and U® = U%'.

There is no less of generality in assuming that the given model .« has a binary
predicate E with the property that for each finite set H = U, there is an element
ae U? such that H = {x|xE*® a}. Using this assumption, the following key step
of the proof can be established.

3C. Show thatif A < x* and (4,|v < A) is an elementary chain of U-saturated

structures elementarily equivalent to </, each of cardinality x and all having the
same distinguished subset U, then | ) %, is U-saturated.

v<i

3D. Show that there is a K-structure 2 of type (x*, k) such that # = «/.

The second result to be proved is that, assuming V = L, if o7 is a K-structure
of type (w,, w), then for any singular cardinal x there is a K-structure # of type
(x™, k) such that # = /. (What we actually require is [, together with GCH.)

Fix x a singular cardinal from now on, and let u = cf(x). Let G: u — x be an
increasing sequence of regular cardinals such that G(0) =0, G(1) > w, and
sup(G” p) = x. By OJ,, let (S,] & < k™ A lim («)) be such that:

" (i) S, is a closed subset of a;

(i) if cf () > w, then S, is unbounded in o;

(iii) |S,] <

(iv) if ye S,, then S, =y N §,.

Modifying the previously defined notion of “special” a little, let us now agree
to call a K-structure 4 of cardinality x special iff there is an elementary chain
(#,| o < p) of saturated structures such that 4 = U %A, and |B,| = G () for each

o < p. A mapping r: B — p is called a ranking of 93 1ff there is such a chain with

r(x) = the least « such that x € B, , ;

for all x € B. Similarly we define the notions of U-special and U-ranking by
replacing “saturated” by “U-saturated”.

3 E. Show that if o/ is any K-structure, there is a special structure 4 such that
A = /. (We are assuming GCH throughout.)

3F. Show that if .«/, 4 are special structures with rankings r, s, respectively, then
of ~ 2 and there is an isomorphism f: o/ = % such that s(f(x)) = r(x) for all
x € A.
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3G. Let &/ be U-special with U-ranking r, and let & be special with ranking s,
and suppose that o/ = 4. Show that there is an embedding f: &/ < & such that
U? < ran(f) and s(f(x)) = r(x) for all x € A.

3H. Let &/ be a K-structure of type (w,, w). Let # be a U-special structure with
U-rankingr, # = /. Show that there is a special structure %’ with ranking ' such
that B< B, B+ B, U2=U%,andrcr.

Given U-special structures 4, #’ with U-ranking r, r’, respectively, we write:
B.<(B,r) f B<B &rcr & U?=U%;
(B,r)oc,(B,r) Il B<B &rIU%=7rU? & U?=U*
&r(x) <y—-r® <y &) =y-rx)=rx)
(B,r)oc(#,r)  iff G)[B,1)oc,(#,7)].
Fix o/ a given K-structure of type (w,, w) now. As before, assume that .o/ has
a binary predicate E which codes the finite subsets of U by elements of U<. To
obtain a K-structure £ of type («*, k) such that # = o7, the idea is to construct
an elementary chain (4,|v < k™) of U-special structures, all having the same
U-set, and a sequence (r,| v < k *) such that r, is a U-ranking of #,, with Z, = <.
The construction is carried out to preserve the following conditions:
(A) o <ﬁ_>('%aa ra)oc(gﬂa rﬁ);
(B) A€ Sy — (Bys 1)< (B, Tp);
(© if o =S,(G(P)), then xe A4, — 4, ->r,(x) > p.

The only difficulty lies in the limit step in the definition. In case S, is cofinal in o
(for a limit stage «), set:

gaz U«%ﬁ, ra= Urﬂ.

BeSa BeSa

In case S, is not cofinal in «, in which case cf (x) = w, of course, pick a sequence
(o,] n < w) cofinal in & with oy, = sup (S,), let Y be least such that G () > otp(S,),
and pick a monotone sequence (¢,|n < w) of ordinals such that ¢, =0, ¢, >,
and ¢, < u, with

(gai’ rai) m(pi*— 1 (gai+ 12 rai+ l)

for all i < w. Then set

B,= ) ...

i<w
For x € B,, let i(x) be the least i such that x € B,,, and set

ra (X) = max (coi(x)’ rag(x)) .

31. Check that the above definitions can indeed be carried out, and that they
define a sequence ((%,, r,)|o < k™) as stated, to prove the Gap-1 Theorem for
singular .
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Further details of the above results can be found in Chang-Keisler (1973),
Devlin (1973), and Jensen (1972).
Finally we consider the Gap-2 Theorem.

3J. Assume V = L. Show that for any infinite cardinal «, if .« is a K-structure of
type (w,, w) there is a K-structure % of type (x* *, k) such that # = /. (Hint. If
x is regular, the proof is a straightforward modification of the proof given in this
chapter, using the ideas from exercises 3 A through 3 D above. If « is singular, a
mixture of the methods used in the chapter and those of exercises 3 E through 31
is required, but in this case the proof is quite tricky. In particular, the [J,-
sequence used must be obtained from the morass. (More precisely, from the fine
structure construction of the morass.)

4. Morasses and the Combinatorial Principle ,,

4 A. Show that it is possible to define transitive structures M, for each v € S! in
an w,-morass, such that:

(i) vedom(M,), and dom(M,) n On is less than any element of S, and any
element of S° above «,. (So, in particular, M, is countable for all ve S'nw,.)

(i) For v =31, there is an embedding o,,: M, <; M, such that all of the follow-
ing conditions are satisfied:

(iii) (o,.|v—37)is a commutative system.

(V) oy v =1, [v.

v)ift31,VeS, N1, v=my(V), then 6;, = 0o, | M.

(vi) if T € $* is a limit point of 3, then M, = | ) 0, M,.
vV T

(vil) (Z(v)nM,|veS,)is a O,,-sequence.
(vili) (P(v)nZ{(M,)|vEeS,,) is a Of,-sequence.
(Hint. Consider the structures {J,,, 4(v))> used to construct the morass.)
4B. Use 4 A to construct an w,-Souslin tree by means of a morass-like system of
countable trees and embeddings between them.
5. A Coarse Morass

We investigate what kind of morass structure can be constructed using only
elementary properties of L.

Let us call an ordinal v special iff:

(i) either L,FZF~ orelse {t e v|L . FZF~} is unbounded in v;

(i) L, = “there is exactly one uncountable cardinal”.

For example, w, is special. We define
S = {vew,|v is special};
a, =i, for veS!;
S° = {a,|veS'};
S,={veS'a,=a}, for aeS°.
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5A. Prove that S, v is uniformly definable in L, for v e S*.

5B. Prove the following. Let veS,. Then there is an admissible ordinal
B = B(v) > v such that for some element p of L, every member of L; is definable
from parametersin o U {p} in L;. Moreover, if 7 succeeds v in §,, then there is such
af<r.

For each ve S, let B(v) be the least ordinal as above, and let p(v) be the
<-least such parameter.

5C. Prove that v is uniformly definable in L;,.

5D. Letve S,, and set = B(v), p = p(v). Let & < a, and suppose that X is the
smallest X < L; such that X na =& and pe X. Let n7': X = Lj, and set
v=n"'(v),p=n""'(p). Show that e 4, ve S;, B = B (V), p = p(¥).

For v, t e ', define v 3t iff o, < o, and there is an embedding o Lj,) < Lg
such that ¢ [a, =1id [ a, and o (p(v)) = p (7).

SE. Prove that if v 37, the map o above is unique.

Denote the unique map ¢ in the above by a,,. Note that by 5C. above,
o,.(v) = 7. Hence (o,, [ L,): L,< L,. Note also that a,, [ «, = id [ «,, and o,.(x,)
=a,. Letn,, =0, [(v+ 1)

5F. Prove that 3 is a tree ordering on S*.

5G. Verify that the system just constructed satisfies morass axioms (M 0) through
(M 5), and investigate what happens when you try to prove (M 6) and (M 7).

The structure defined above is sometimes referred to as a coarse morass.

6. Morasses and Large Cardinal Axioms

Prove that if V' = L[A4], where A = w, then there is a morass. Deduce that if w,
is not inaccessible in L, then there is a morass in the real world.





