
Chapter VIII

Morasses and the Cardinal Transfer Theorem

By now it should be quite clear how it is that V = L is of use when it is necessary
to carry out intricate constructions by recursion. The uniform structure of L, and
in particular the Condensation Lemma, enables us to take care of many "future"
possibilities in a relatively small number of steps. For instance, in the construction
of a Souslin tree, we need to take care of a collection of ω2 potential uncountable
antichains in ωx steps. As we shall see in this chapter, the uniformity of L enables
us to do much more than this. In certain circumstances it is possible to construct
structures of cardinality ω2 in ω1 steps. The idea is to use a sort of two-staged
condensation principle, simultaneously approximating the final structure of size
ω2 by means of structures of size ωx, and approximating each of these approxima-
tions by countable structures. In order to make this work, what is necessary is to
investigate the way in which the two parts of such an approximation procedure
must (and can) fit together. The essential combinatorial structure of L which is
required is called a "morass". There is no need to stop there. We can go on to
develop three-stage "morasses" which enable us to get up to ω3 using only count-
able structures, and so on. In fact the subject of morasses is a vast area on its own,
and would require an entire book of its own for a complete coverage. What we
shall do in this chapter is look at the very simplest kind of morass, the one that
gets us up to ω 2, in full detail, and then give little more than a glance at what
comes after. In order both to motivate and illustrate the definition and use of a
morass we take the problem which itself led to the development of morass theory,
the Cardinal Transfer Problem of Model Theory.

1. Cardinal Transfer Theorems

Cardinals Transfer Theorems are generalised Lόwenheim-Skolem Theorems. In
its simplest form, the Lδwenheim-Skolem Theorem says that if si is a model of
a countable, first-order language, K, then there is a countable K-structure & such
that SS = si. (More generally, given any infinite cardinal /c, there is a X-structure
M of cardinality K such that 08 = si. Here and throughout it will be assumed that
all structures considered are infinite, and that all first-order theories involved
admit infinite models. This will exclude trivial special cases.) Now suppose that
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the language K contains a distinguished unary predicate symbol U. If /c, λ are
cardinals (both infinite) we shall say that a K-structure si has type (K, λ) Ίiisi has
the form

si = (A, IIs*,... >

where | A \ = K and | U^ \ = λ. The idea of a cardinal transfer theorem is to obtain
a Lόwenheim-Skolem Theorem which preserves the relationship between the
cardinality of the domain and that of the distinguished subset. The simplest case
is the so-called "Gap-1 Cardinal Transfer Property", which says that every K-
structure of type (κ+,κ) (for some infinite K) is elementarily equivalent to a K-
structure of type (ωx, ω). As we shall see presently, this result is provable in ZFC.
Assuming GCH, we may replace (ω1? ω) by any type (λ + , λ) where λ is regular.
Assuming V = L we may drop the requirement that λ be regular here. (These
results are considered in the Exercises.) The "Gap-2 Property" says (in the sim-
plest case) that every K-structure of type (κ+ +, K) is elementarily equivalent to one
of type (ω2, ω). More generally there is a "Gap-π Property" for every positive
integer n. There are also more general types of Cardinal Transfer Property, which
we shall not consider here. The reader may consult Chang-Keisler (1973) for
further details (including applications) of Cardinals Transfer Theorems.

As mentioned above, the Gap-1 Property is (in its simplest form) provable in
ZFC. The Gap-2 Property, and indeed the Gap-rc Property for any n ^ 2, is
provable in ZFC + (V = L). Our aim here is to use the simple version of the
Gaρ-2 Property to motivate and illustrate the notion of a morass. In order to do
this it is convenient to begin with a brief account of the proof of the Gap-1
Theorem. (In particular we shall need all of the model theoretic notions developed
for the Gap-1 Theorem in order to prove the Gap-2 Theorem.)

We fix, once and for all, a countable, first-order language, K, with a distin-
guished unary predicate symbol, U. We shall show that if si is a X-structure of
type (τc + , K) for some infinite cardinal K, there is a K-structure (% of type (ωί9 ω)
such that $ = s0. We recall some basic notions of model theory. For further
details the reader should consult, for example, Chang-Keisler (1973).

K' will denote an arbitrary, countable expansion of K. A particular example
of an expansion of K is obtained by adjoining to K an individual constant x for
each x in a given set X. This expansion will be denoted by Kx. In this case, X may
be uncountable: this is the only case where uncountable languages may be consid-
ered. If J4 is any X-structure, then <Λ/, (a)aeA} is a X^-structure. (We adopt the
usual convention that A is the domain of J/, B the domain of J ,̂ etc.)

The first-order theory of a structure si is denoted by Th (si). Thus if si is a
K-structure,

Th(si) = {φ I φ is a sentence of K such that si N φ} .

Let T be a Xx-theory. An element-type of T is a set Σ (x) of K^-formulas with
free variable at most x, such that for some model si of T and some element a of
si, si N Σ (a). (The notation is self-explanatory.) In this case we say that a realises
Σ(x) in si.
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Let K be an infinite cardinal. A structure si is said to be κ;-saturated iff for every
set B c A such that \B\<κ, every element-type of Th((si, (b)bGB}) is realised in
the structure (si, (fc)beβ>. A structure Λ/ is said to be saturated iff it is |^/|-
saturated. The following theorem is standard.

1.1 Theorem, (i) Let si, $ be saturated K'-structures of cardinality K, si = 38.
Then si ^@.

Moreover, if A c A, B' c B, \A'\ = \B'\ < K, and h: A'<-+B' are such that

then there is an isomorphism h: si = 38 such that K\ A = h.
(ii) Assume GCH. Let K be an uncountable regular cardinal. Then any K'-theory

has a saturated model of cardinality K. D

A structure si is said to be homogeneous iff, whenever B c A, \ B \ < \ A |, and
h: B -+ A is such that

there is an automorphism ft: si ^ si such that h\ B = h.
It is immediate from 1.1 (i) that any saturated structure is homogeneous. By

virtue of 1.1 (ii), this provides an existence proof for uncountable homogeneous
structures of regular cardinality, assuming GCH. As far as countable homoge-
neous structures are concerned, the existence is provable in ZFC alone.

1.2 Theorem. Let T be a K'-theory. Then T has a countable, homogeneous
model. D

We shall make use of countable, homogeneous structures in our proof of the
Gap-1 Theorem. The following result will also be required.

1.3 Theorem. Ifsi0 < stx< ... < sin< ... (n < ω)is an elementary chain of count-
able, homogeneous structures, then si — \J sinis a countable, homogeneous struc-
ture. D

A structure si is said to be special if there is an elementary chain

such that:

(i) si = U <l
n<co

(ii) | A 0 | < 1 ^ 1 < . . . < | 4 J < . . . < | Λ | ;
(iii) sin+ι is |4J-saturated for every n.

The following result tells us all we need to know about special structures.

1.4 Theorem, (i) Every K'-theory has a special model (of some cardinality).
(ii) If si, 0β are special structures of the same cardinality such that si = 38, then

si ^38. D
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The key step in the proof of the Gap-1 Theorem is the following lemma.

1.5 Lemma. Let si = (A, U, ...}bea K-structure of type (κ+, κ)for some K. Then
there are countable, homogeneous K-structures £8, <β such that:

(i) Λ = <B,7,. . .>,tf = <C,7,. . .>(i.e. U"= E/*);

(ii) ^ = ^ = sJ;

(iii) & < <β and 0& + <g\

(iv) @^<€.

Proof. Let s/0 <̂ si be such that U c Ao and \A0 \ = K. Pick ae A — Ao, and let
J2/Ί -< si be such that AOKJ {a} c ^ and I^J = TC. Let ft: A0<r+Aί, and form the
structure

By 1.4 (i), let ^ * be a special structure such that ^ * = J / * , say

Let ^ o be the restriction of ^ to domain D o . Since ^ * = ja/*, it is easily seen that
^ o "< ^ i Since ®* is special, it is straightforward to check that both ^ 0 and Q)γ

are special. But k: Dλ <^D0. Hence by 1.4(ii),®0 = ^ i Note also that (7^° = t/^1.
Let /: ®! ^ ^ 0 and consider the structure

By 1.2, let ^ * * = ^ * * be countable homogeneous, say

Let ^o be the restriction of (S1 to domain C o . It is routine to check that ^0, %lγ are
both countable, homogeneous structures, that # 0 = ^ i Ξ ^ ^ ^ ° = ^ S
^ 0 -< «Ί, ^o + ^ i ? and that g: <€γ ^ ίf0. Thus 01 = % and <g = <βγ satisfy the
lemma. D

The above lemma shows that it is quite possible to have structures J / , M such
that si -< 0H and si ^M. The following lemma also involves this situation.

1.6 Lemma. Let &Q -< ̂ Ί -< ... <̂ Stn •< ... (n < ω) be an elementary chain ofίso-
morphic, countable, homogeneous models. Then &ω = (J J*π is countable and ho-
mogeneous and J*ω ^ ^ n / o r all n < ω. n<ω

Proof. By 1.3 we know that J*ω is countable and homogeneous. We prove that
Stω = &0. The idea is to construct enumerations (fc°| n < ω), (b% \ n < ω) of Bo,
Bω, respectively, so that

which at once implies that ft: ^ 0 = ^ ω ? where we define ft(ft°) = fo^ for all n < ω.
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Suppose that fog,..., b°, feg,..., b™ are defined and satisfy

(i) <aoX,...9b
o

Hy = <aω9bΐ9...,bΐy.

(The definition of b%, b% is a degenerate case of this definition, so we omit it.) Let

fo°+ ί e Bo. We show that there is an element b™+ r of Bω such that

(\\\ / όA h° h° h° \ — / OA hω hω hω \
(UJ \ ^ 0 ? #0> •• J Dn> Dn+l? = \ ^ O J #0 J 5 Dn -> Dn+1/

Since 08 0 -< J*ω, we have

<ao,boo,...,bϊy = <aω,bo

θ9...,bϊy,

so by (i),

Thus as ^ ω is homogeneous and b£+ x e Bω there is a b™+1 e Bω such that

/ ήύ Uθ Lθ Lθ \ / / 0 LCD LCΰ L£O \

Λ J O θ 9 . . . , D n , D n + 1 ) = \y&ω, D θ 9 . . . , D n , D n + 1 ) .

Since J^o "< ̂ ω » this a t o n c e yields (ii).

To complete the proof that 3tω ^ ^ 0 we show that if we are given b%,..., b%,

bo 5 . 5 ̂  as in (i) and £^ + ί e 5 ω is given, we can find an element b®+1 of 5 0 to

satisfy (ii). (The required enumerations (bn\n < ω), (b% \ n < ω) can then be defined

by recursion using a "back and forth" procedure to ensure that all elements of

Bo, Bω are included in these sequences.) Well, we can pick an integer m < ω such

that fcJJ,..., K, bω

n+! G Bm. Since ®m<@^ we have

(iii) < ^ w , 6 ? , . . . , 6?, *C + 1 > = < ^ ω , 6 ? , . . . , foM

ω, foM

ω

+1>.

Since J* w ^ ^ 0 there are elements bθ9...9bn,bn+1 oϊBo such that

(iv) <^m,^,...,^,ft-+ 1> = <^o,foo,...,foM,fon+1>.

By (i), (iii) and (iv),

So as bn+ ί e Bo and ^ 0 is homogeneous, there is an element b^+1 of Bo such that

(&0,b0, ...,bn,bn+1y = (0So,bo,..., ft°,fej+1>.

Combining this with (iii) and (iv) we get (ii), as required. This completes the proof

that <%ω ^ JΌ> and with it the proof of the lemma. D

We are now able to prove the Gap-1 Theorem.

1.7 Theorem. Let stf = <A, U,... > be a K-structure of type (/c + , κ\ Then there is

a K-structure £& of type ( ω l 5 ω) such that & = srf.
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Proof. By 1.5 there are countable, homogeneous structures @Q93tι such that
^o = 0βγ = s/9 80<&l9 U®° = Um\ @0 + 3tx, ^o = ̂ i The idea of the proof
is to define, by recursion, a strictly increasing elementary chain

of countable, homogeneous structures such that for all v < ω 1 ? J*v ^ <%0 and
U®v = Ua°, so that M = (J J\, is as required by the theorem.

V<COl

^o, J*! are already defined. Suppose we have defined ^ v . Since ^ v ^ J^o, we
may let J* v + x be related to ,^v as ̂  is related to Jf0. This leaves us with the case
where δ < ωx is a limit ordinal and ^ v , v < δ, are all defined. In this case we let
<jjδ = (J J*v. By 1.6, J ^ is as required. The proof is complete. D

v<δ

The above proof depended upon the countability of the structures J*v in a
significant way. Consequently, there seems to be no possibility of extending the
chain (^ v | v < ωx) to an ω2-chain and thereby produce a model of type (ω2, ω).
In fact it is easily seen that it is not possible to increase the size of a "gap" in a
Cardinal Transfer Theorem. But when it comes to trying to prove the Gap-2
Cardinal Transfer Theorem we have some extra initial information: we start with
a structure of type (κ++,κ). How can we make use of this fact to obtain an
elementarily equivalent structure of type (ω2, ω)? Ideally we would like to utilise
the methods developed in order to prove the Gap-1 Theorem. Thus, the idea is to
construct the desired (ω2, ω)-model as a limit of some system of countable approx-
imations to it, in the sense that each of the structures 0&V9 v < ωί9 of 1.7 is an
approximation to the sought-after (ω1?ω)-model 38. But if we are to obtain a
model of type (ω2, ω) as a limit of countable models, there is no point in trying
to use an elementary chain of structures. Rather we require some kind of elemen-
tary directed system of models. We commence by considering a "naive" approach
to this problem.

We wish to construct a model $ of type (ω2, ω). We may regard this model
as a union of a chain

ao<0ii<...<av<...<a (v<ω2)

of structures of type (ωl9co)9 all having the same distinguished subset, U. Each of
these (ωί9 ω)-structures J*v can itself be represented as the union of a chain

of countable structures, all with the same U. Thus the structure $ is a sort of limit
of the system of countable structures J*vτ, v < co2, τ < ω x . The question is, can we
construct such a system from below in order to determine the limit structure ̂ ?
It turns out that if we assume V = L, this can be done, though it is by no means
an easy matter, and relies heavily upon the Fine Structure Theory. The central
point is the construction of a framework upon which a suitable directed elemen-
tary system can be built. This framework is known as a morass. In the next section
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we shall give a precise definition of a morass and show how such a structure can
be built in L. In a sense, when we write down the axioms for a morass we are
simply stating some properties of the Fine Structure Theory of a certain hierarchy
of structures of the form <Jρ, A}. It is thus not altogether surprising to discover
that the structure so defined is somewhat "richer" than is required to prove the
Gap-2 Theorem. In order to prove this (and many other applications of morasses)
a simpler structure suffices. This "simplified morass" will be described in section 4.
In section 3 we shall give a proof of the Gap-2 Theorem using the "standard"
morass constructed in L. Section 4 contains an alternative proof of the Gap-2
Theorem using the simplified morass structure. The reason for this duplication is
that the proof in section 3, using the standard morass, illustrates just how the Fine
Structure Theory enables this theorem to be proved (which is, of course, the main
aim of this book), whereas the (simpler) proof in section 4 serves as a prototype
for other applications of morasses. Thus the reader who symply wants to learn
how to use a morass may go straight on to section 4 from this point. (Though some
acquaintance with section 2 is necessary if the reader wishes to find out just where
the simplified morass comes from.)

2. Gap-1 Morasses

We can obtain a structure of cardinality κ+ as a limit of a κ + -chain of structures
of cardinality K. In order to determine a structure of cardinality κ+ + as a limit of
κ+ many structures each of cardinality K, a chain of structures will not work, and
we must define instead some sort of directed system of structures. The underlying
set-theoretic problem then is to establish some sort of framework upon which
such a system can be built, corresponding to the well-ordered set κ+ used as the
domain of κ+-chains. Such a framework (or indexing system) is called a morass.
or more precisely a (τc+, l)-morass. For definiteness, we shall present our develop-
ment for the case K = ω. The general case is entirely similar. So what we shall
describe is a (ω l 5 l)-morass. (We shall then say a few words about (K, π)-morasses
for n > 1.)

In order to formulate the notion of a morass, let us fix some sort of schematic
representation of what we require. We want to determine, by means of countable
structures, all the structures of cardinality ωx which lie in an increasing ω2-chain
determining a structure of cardinality ω 2 . Let si denote the structure of cardinal-
ity ω2 we are aiming at, and let s#v9 ωx < v < ω2 be the increasing chain of length
ω2, where \siy\ = ω1 for each v. We can represent this as in Fig. 1.

ω x ω x + 1 v v + 1 ω2

Fig. 1
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For each v, ωx < v < ω 2, we have a chain of models with limit s/v. Each
member of this chain will be a countable structure. We shall index each such by
a countable ordinal τ, so s/y will be the limit of the structures j / v τ for certain τ.
We shall not use all countable ordinals τ here, just a certain collection associated
with v. It will turn out to be both natural and convenient to specify the ordinals
τ associated with v by defining a well-founded relation —5 on ω 2 so that {τ | τ —3 v}
is the set of ordinals for which stfvτ is defined, with {τ | τ —3 v} being totally ordered
by -3 and τ —5 τ —a v implying that, in some sense j / v τ "extends" ja/vf. However, just
being able to determine the structures jtfy piecemeal will not be enough. We need
to determine the sequence (stfx \ ωγ < v < ω2). In order to do this, we do not simply
approximate the models s/V9 but rather the initial segments (sίy | ωί < v ^ v) of
our final chain.

Dropping our reference to the models s/v, srfxτ now, let us concentrate on the
indexing system upon which we shall define the model system: this will be our
"morass". We have seen that we need to be able to obtain each interval [ω l 5 v],
ωx < v < ω 2, as a limit of intervals [α, τ], α < τ < ω l 5 in order that we shall never
have to consider uncountable models j / v τ during the course of our eventual
construction. Just what the ordinals α, τ here are will clearly be unimportant: what
counts is how these intervals fit together to form the indexing system. Hence we
may assume that all of the small approximating intervals are disjoint: i.e. if [α, τ],
[α', τ'] are part of our morass, and if α < α', then τ < α'. (This is not a misprint!)
In point of fact, when we come to give the formal definition of a morass, we shall
not use the entire interval [α, τ] but rather a certain closed subset of it. This does
not effect the combinatorial properties of the morass at all, but will make matters
a little simpler when we come to construct a morass in L.

If [ά, τ], [α, τ] are intervals in the morass with τ —$ τ, there will be an embedding
π f τ of [α, τ] into [α, τ]. And if ωγ < τ < ω 2, [ωl9 τ] will be a direct limit of all the
intervals [ά, τ] in the morass with τ —3 τ, under the π-embeddings. All of this is
indicated in Fig. 2, where we adopt the usual convention that the relationship
τ —$ τ is indicated by a line drawn from τ downwards to τ. In connection with
Fig. 2, notice that we draw each of the morass intervals [α, τ] horizontally, to
emphasise how they all fit together. In reality, by the disjointness of the intervals,
the whole thing could be drawn as a single straight line, and indeed that is what
it really is. But it is clearer to draw each morass interval horizontally as shown,
so we shall continue to do so.

The problem is how do we set this up so that it works? In particular, the ωx

many countable intervals must all fit together neatly so that the limits on the top
level do indeed give us the chain of intervals <[ω l5 v]| ωx < v < ω2>. In order to
arrange this, we shall have to make matters somewhat more complicated than we
have indicated so far. One aspect of this is that some morass intervals will be initial
parts of other morass intervals, so that the disjointness of intervals that we spoke
of a few moments ago will not be true for all pairs of intervals (though it will be
the case that the only two possibilities are disjointness or initial segments).

We shall say that an ordinal α is adequate iff it is either admissible or else is
a limit of admissible ordinals. The adequate ordinals thus form a proper class of
ordinals which is closed and unbounded in every uncountable cardinal. More-
over, each adequate ordinal has strong closure properties under definability.
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Let £f be a set of ordered pairs (α, v) of adequate ordinals such that
α < v < ω 2 , α ^ ω 1 ? and whenever (α, v), (α', v') e £f, then

α < α -> v < α .

Define:

S1

s = S°uS1;
for

αv = the unique ordial α e S ° such that (α, v) e Sf, for v e S1.

Intuitively, Sω i is the ω2-chain we are trying to determine, whilst each
Sα, α < ω 1 ? is a countable approximation to Sω i . Fig. 3 illustrates the notation.

ω2} Sω^

Fig. 3
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Let —5 be a tree ordering on S1 such that

v —3 τ -> αv < α τ.

Let (πvτ I v —* τ) be a commutative system of maps

π v τ : ( v + l )-*(τ + 1).

Let

We say that M is an (ωί, l)-morαss (morass, from now on) iff the following axioms
(M 0) through (M 7) are satisfied.

(M 0) (a) Sα is closed in sup (Sα) for all α e S°, and if α < ω x , then sup (Sa) e Sa;

(b) ω x = max(S°) = sup(S° n ω x) and ω 2 = sup(Sω i).

(Ml) Ifv-^τ, then

π v τ t αv = id \ αv, π v τ (αv) = ατ, π v τ (v) = τ

and π v τ maps Sav n (v + 1) into Sατ n (τ + 1) in an order-preserving fashion so that:

(i) if γ is the first member of Sαv, then πvτ(y) is the first member of Sατ;

(ii) if y immediately succeeds β in Sαv n (v + 1), then πvτ(y) immediately suc-

ceeds π v τ (β)in SΛτ;

(iii) if y is a limit point in Sαv n (v + 1), then πvτ(y) is a limit point in Saτ.

Thus what (M 1) says is that the maps π v τ embed each morass "interval"
Socv Π (v + 1) into the morass "interval" Saτ n (τ + 1) in a structure preserving
fashion.

(M 2) If τ —$ τ and v e Sα_ n τ, and we set v = π f τ (v), then

v —ί v and πv-v Γ v = π f τ f v.

What (M 2) says is that the morass embeddings π v v fit together nicely as we
move right along each row Sa. Figure 4 provides the picture.

(M 3) {αv| v -* τ} is closed in ατ for every τ e S1.

(M 3) tells us that as we move up along a branch {v | v —3 τ} of the morass tree,
all limit points exist on this branch, or more precisely, the limit points are on the
morass "levels" they "ought" to be.

(M 4) If τ is not maximal in Sατ, then the set {αv | v —9 τ} is unbounded in ατ.

(M 4) tells us that any point which is not at the extreme right hand end of its
morass level is a limit point in the morass tree -*. This has the rather surprising
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ωλ φ

0

(M2) asserts that v ^ v and π f v \ v = πϊτ \ v.

Fig. 4

consequence that if α is a successor point in S°, then Sα has only one member. Thus
the approximations Sα, α G S°, to Sωi do not "get better" monotonically as α
increases: only at limit stages is there any chance of some progress in this sense.

(M 5) If {αv| v —* τ} is unbounded in ατ, then

τ= Uπ v t "v .

Used in conjunction, (M 3), (M 4), and (M 5) tell us that if τ is not the maximal
point in its level, then the entire structure up to τ, in particular the morass interval
Sαr n τ, is the limit of the lower structure. For by these three axioms, together with
(M 0), we see that if τ is not the maximal point of Sατ, then

By (M 0), this applies in particular to any point τ e Sω i. Thus the entire top level
of the morass is determined by the structure below.
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(M 6) If v is a limit point of Sα_ and v -* v, and if we set λ = sup (πv-v " v), then v -s λ
and π ^ ϊ v = πVv \ v.

Loosely speaking, (M 6) says that although π v v need not map v cofinally into
v, all of the morass maps π ^ are nevertheless cofinal maps in some sense. Figure
5 illustrates the situation.

(M 7) If v is a limit point of Sα_, v —3 v, v = sup (πv-v "v), and if

α e f] {oiη\~

then

(Notice that by (M 2), if τ e Sα_ n v, then τ -5 πv-v (τ).)

(M 7) says, more or less, that a level "intermediate" between two levels cannot
peter out at some limit point. See Fig. 6.

Fig. 6

That defines the notion of a morass. We should point out that it is known that
such a structure cannot be constructed in ZFC. But if we assume V = L, as we do
from now on, then we can construct a morass, though it will take some time to do
so. We start with a simple model-theoretic notion.

If v is a limit ordinal and I ς J v, we write

and say that X is a Q-submodel of J v , iff, for all Σ0-formulas φ(v0, t^) of

β) iff \=Jv

Clearly, if X <QJV then X <ι Jv, since by lim(v) we can bind any existential
quantifier by some Jβ for β < v. Conversely, if X <x Jy is such that X n v is cofinal
in v, then X ~<QJV. Hence the notion of a Q-submodel lies between the notions of
a Σ1 -submodel and a cofinal Σt -submodel. We shall use the notion of a Q-
submodel, or rather the associated notion of a g-embedding, when we define the
morass tree relation —5.
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As a first step to the construction of a morass, we define

£f £f = {(α, v ) | α < v < ω 2 Λ ω < α ^ ω 1 Λ V I S adequate

Λ Njv "α is regular and is the largest cardinal"} .

Notice that if (α, v) e Sf9 then α is admissible, hence adequate.
Define S°, S1, S, Sα, αv now as before. Notice that Sαv n v is uniformly Σ*ίv ({αv})

for v e S 1 . Notice also that Sα is always closed in sup (Sa) and that sup (Sa) e Sa for
α < cΰj.

If v G S1 now, then clearly v φ α ) l 5 s o w e may define

/?(v) j8(v) = the least /? ̂  v such that v is singular over Jβ;

n(v) n(v) = the least n ̂  1 such that v is ΣM-singular over Jβ{y);

Notice that as v is Σπ_ t -regular over Jβ(v), we have ρ (v) ^ v, and that if ρ (v) > v,
then, since ρ(v) =ζ β(v\ NJp(v) "v is regular". Notice also that if v e Sα, then \=Jβ{v) "α
is regular". For if β(v) = v, this is true because v e Sa, whilst if j8(v) > v it follows
from the two facts t=J/J(v) "v is regular" and NJv "α is regular". Also, if τ e Sanv,
where v e iSα, then as α is the largest cardinal in J v , τ cannot be a cardinal in J v, so

We turn now to the definition of the tree relation —3 and the maps π v τ , v
The idea is as follows. To each v e S1 we shall associate a certain parameter
p (v) G J ρ ( v ) , so that, in particular, every element of J ρ ( v ) is Σt-definable from param-
eters in αv u {/?(v)} in the structure < J ρ ( v ) , A{v)}. We shall then set v ^ τ iff αv < ατ

and there is an embedding

σ:<Jβiv)9A(v)><i<Jβix),A(τ)y

such that

(σ \Jv):Jv<QJτ, σ fαv = id fαv, σ(p(v)) = p(τ).

The definability property of/? (v) just mentioned will ensure that σ is unique here,
and we shall set

π v τ = (σ Γ v) u {(τ, v)} .

Let us remark right away that the requirement that (σ f J v): Jv<QJτ in the above
definition is a minor technical matter connected with morass axiom (M 1), and
otherwise plays no role in our development. So the reader can for the most part
ignore this point.

The definition of the parameter p (v) depends upon the nature of v. There are
two cases to consider. We partition S1 into two sets thus:

P p = {VGS
ΐ\n(v)= 1 ΛSUCC(JS(V))};

R R = S1-P.

y(v) In case v e P, let y(v) denote that ordinal γ such that β(v) = γ + 1.
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Notice that if v e P, then ρ(v) = β(v) = y(v)+l,A(v) = 0, and (since v < β(v)
and v is adequate) v < y (v). Whilst if v e R, then lim (ρ (v)).

Let veS1 now, and set α - α v , j8 = j8(v), π = n(v), ρ = ρ(v), A = A(v), and if α> β, n, ρ,
v e P, y = y (v). 7

2.1 Lemma, ρjj < α.

Proo/. Since α is the largest cardinal in Jv, the definition of β, n ensures that there
is a Σn(Jβ) m a p / ^ v x α such that / " α is cofinal in v. Since either β = v or else \=Jβ

"v is regular", / φ J^. But if ρjί > v, then by amenability, f = fn (v x v) e Jρn c J^.
Hence ρ̂  ̂  v. It follows that there is a ΣΠ(J^) map^f such that g"v = Jβ. Let
(Aξ\ ξ < α) be a partition of α into α sets of cardinality α in J v, and let/* be the
< j-least map from Aξ onto f(ξ) for each ξ e dom (/). Since α is the largest cardinal
in Jv, we have fξ e Jv for all ξ. Let

Then k is a ΣΛ (J^) function such that fc"α = v. Hence g ° fe is a Σπ (J^) function such
that gf o k"oi = Jβ. Thus ρj < α. D

. V G F .

2.2 Lemma. Γ/zere is aqe Jy such that every x e Jy is Jy-definable from parameters
in J α u {q}.

Proof. By 2.1 there is & p e Jβ such that every x e Jβ is Σx-definable in J^ from
parameters in Jα u {̂ }. Since Jβ = rud (Jy), there is a rudimentary function / and
an element qe Jγ such that p =f(Jγ, q). We show that q is as in the lemma.

Let XE Jy. For some Σ o formula φ of if and some z e Jα, x is the unique x in
J^ such that

(3yeJβ)[¥Jβφ(yJj,x)].

Pick y e Jβ so that

For some rudimentary function g and some u e J 7 , w e have y = g(Jy, u). So

(*) ^ Ψ (9(Jy>
 ul zJ(Jy9 q)\ x).

Since ^,/are rudimentary, hence simple, the formula φ(g(y, u), z,f(y9 q)9 x) is Σ o

in variables y, u, z, q, x. So by VI. 1.18 there is an S£-formula ψ such that (*) is
equivalent to

(**) tJγψ(x,ύ,z,q).

It follows at once that x is the unique element of Jy such that NJy 3 u φ (x, ύ, I, q),
and the lemma is proved. D
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q(v) Let q(v) be the <j-least qeJγ such that every x e Jγ is Jγ-definable from
parameters in α u {q}. (Since α is adequate, α is closed under GόdeΓs Pairing
Function, so by VI.3.17, there is a Σ {α map from α onto Jα. But γ ^ v > α, so this
map is an element of Jy. Hence q(v) exists by virtue of 2.2.)

Set

p{v)

That defines p{v) in Case 1. We check that p(v) has the property we mentioned
earlier, that every element of J ρ ( v ) is Σ x definable from parameters in αv u {p{v)}
in <Jρ(v),,4(v)>. In this case, what this says is that every element of Jβ is Σί

definable from parameters in α u {p(v)} in Jβ.
Let xeJβ. Then for some rudimentary function / and some u e J y ,

x =f(Jγ, u). Since Jβ is rud closed, / \ Jβ is Σ ^ . So x is Σ1 definable from γ and u
in Jβ. Since γ = (p{v))ί, we are done if we can show that u is Σi definable from
parameters in α u {/? (v)} in J^. Well, by choice of q (v) there is an ^f-formula φ and
elements z eoc such that

u = the unique u e Jy such that NJy φ (M, Z, f̂ (v)).

But this defines u in a Σ ^ fashion from y, z, q(v). Hence as γ = (^(v))! and
<?(v) = (^(v))o? we see that w is Σ x definable from z,/?(v) in Jβ9 and we are done.

Case 2. v e R.

q(v) Let g(v) be the <j-least qeJρ such that every xeJρ is Σx-definable from
parameters in α u {q} in < Jρ, ^4>. Since ρ^ A = ρn

β, this is possible by virtue of 2.1.
(An argument as in Case 1 allows us to write α in place of Jα in this definition.) Set

(v),αv), ifv = β .

That defines p (v) in Case 2.
Note that as g(v) = (p(v))o> it follows from the definition of g(v) that every

element of J ρ ( v ) is Σ x definable from parameters in αv u {p(v)} in < J ρ ( v ) , A(v)} in
this case also.

Having now defined the parameters p (v), v e S1, we establish a series of lemmas
which will enable us to construct a morass in the manner outlined earlier.

2.3 Lemma. The sequences ((Jeiη)9A(η), Jη9 p(η))\η e SΛvn v> is uniformly
ΣJf({oiv})forallveSι.

Proof. Since v is adequate, this follows easily from the fact that if η e Sαv n v, then
β (η) < v, mentioned earlier. D

2.4 Lemma. Let v, τ e S1. Suppose that
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is such that σ(p(v)) = p(τ). Then σ is uniquely determined by σ \ ocv. Moreover:

(i) veP^τeP;

(ii) σ(αv) = ατ;

(iii) v < ρ(v)<->τ < ρ(τ);

(iv) v <ρ(v)->σ(v) = τ;

(v) ifveP, then σ(γ(v)) = y(τ);

(vi) σ(q(v)) = q(τ).

Proof. The uniqueness of σ follows from the definability property of p (v). The
remaining assertions of the lemma all follow from the definitions of p (v) and
p(τ). D

2.5 Lemma. Let v e S1, ρ < ρ(v), A c J_. Lei

be such that p (v) e ran (σ). Then there is a (necessarily unique) v e S1 such that
ρ = ρ (v), A = A (v). Moreover, σ (p (v)) = p (v).

Proof. To commence, notice that < J^, A} is amenable. For if v e P, then ^(v) = 0,
so A = 0 and amenability is trivial, and if v e R, then lim (ρ (v)), so lim (ρ), and for
each η < ρ, we have

K:JP(V), AW 3 x ίx = A (v) π Jσ ( l f )],

so

h _ q γ Γγ _ J Λ / 1
ι/j— j ^ \ _J A- I Λ — ^1. I 1 J γ,\ .

Set oc = aγ, β = β(v), n = n(v), ρ = ρ(v), A = A(v), p = p(v), q = q(v), and, if α, β9 n, ρ, ̂ ,
v e P j = y(v). p9q9γ

Case i. v e P.

Thus β = ρ = y + l, Ά = A = Φ, and v is regular over Jy. Since ̂  G ran (σ), we
have q, y,v,oce ran(σ). Let q = σ~1(q), y = σ~1(γ)9 α = σ" 1 ^), v = σ~*(v). Let q, % α, v
σ = σ \ Jy. Clearly, σ: Jy-^ Jy and q e ran(σ). σ

Claim A. veS 1 and ô  = ^

Since σ: Jρ<xJρ and σ(v) = v, we have (σ \ Jv): J^<JV. Hence v is adequate.
Moreover, since σ (ά) = α,

Nj_ "α is regular and is the largest cardinal".

Thus veSjj. Claim A is proved.

Claim B. σ" v is cofinal in v.

For each m < ω, set

χm = {x e J \ x is Σ m + i-definable from parameters in α u {q} in Jγ} .
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Then Xm<m Jy, and there is a Jy-defϊnable map from α onto Xm. Since α is the
largest cardinal in J v and α c Xm -<1 J y 5 Xw n v is transitive, so set vm — Xm n v.
Since v is regular over Jγ and there is a Jy-defϊnable map from α onto vm, we must
have vm < v. But by choice of q,

U Xm=Jy
m<ω

Thus sup m < ω v m = v. But for each m, vm is Jy-definable from q, so {vm\m < ω}
c ran (σ). This proves Claim B.

For later use, we point out that the sequence (vm| m < ω) is clearly ΣJ

i

Ύ+ί ({/?}).

Claim C. v is regular over Jy

We know that v is regular over J y . But σ: Jy<Jγ and

v = y->v = 7,

v < γ -> σ (v) = v,

so Claim C is immediate.

Claim D. q is the <j-least element of Jy such that every x e Jy is Jy-definable from
parameters in α u {q}.

Let xe Jr Then σ (x) e Jy, so for some 3e (x,σ (x) is Jy-definable from q, S. Set
s = (3), and let φ be a formula of i f such that:

(i) y

(ii) NJy Vz Vy[φ(y, z,

(iii)

Let ί be the < 7-least element of J y such that \=Jγ φ (σ (x), ί°, <?). Then t is Jy-defϊnable
from σ (x), q. But σ (x), f̂ G ran (σ) -< Jγ. Hence ί e ran (σ). By choice of ί, ί ^ 75, so
ί e Jα. Thus ί = (I) for some f e α. By (i) above,

Applying σ " 1 and setting T= σ~ι(i) = (ζ), we get,

But f e α. Thus x is Jy-defϊnable from parameters in α u {q}.
Now suppose that q' <3q also has the property that every element of Jy is

Jy-definable from parameters in α u {<f}. Then in particular there are ξeδί such
that q is Jy-defϊnable from <f, q'. Applying σ and setting q' = σ ((J'), ̂  = σ (ζ), we see
that qr <j q and that q is Jy-defmable from f, qr. Hence every element of J y is
Jy-definable from parameters in α u {g'}, contrary to the choice of q. That com-
pletes the proof of Claim D.

Claim E. v is Σi-singular over J y + 1 .
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Using Claims A, C, D we may define (vm\m < ώ) from Jf, α, q, v exactly as we
defined (vOT| m < ώ) from J y, α, q, v in the proof of Claim B. Then (vm| m < ω) is a
Σ1(Jy+ί) sequence which is cofinal in v, proving Claim E.

Claim F. β(v) = γ + 1, n(v) = 1, v e P, ρ(v) = γ + l,γ(v) = y.

By Claims C and E.

Claim G. g(v) - q9 σ(p(v)) =p(v).

By Claims F and D, q (v) = q. Thus by Claims A and F,p(v) = (q, γ, v, α). Hence
σ (P (v)) = Z7 (v) Claim G is proved.

That completes the proof of the lemma in Case 1.

Case 2. v e R.

Set q = σ~ι(q), α = σ - 1 (α) . Set v = σ - 1 (v) if v < ρ and set v = ρ if v = ρ. q, α,
By VI.5.6 there is a unique β ̂  ρ such that ρ = ρ^"1, A = Ay1, and an β

embedding σ: Jβ<nJβ, σ ̂  σ. σ

Claim H. v e S1 and αv- = a.

If v = ρ, then v = ρ and σ: J^-<1JV. And if v < ρ, then σ(v) = v, so
(σ \ Jv): Jv- -< J v . In either case, v is adequate. Since we always have (σ \ Jv): Jv- -<! J v

and σ(α) = α, α is regular inside J^ and is the largest cardinal inside Jv-. Hence
v e Sd. Claim H is proved.

Claim I. v is Σπ_ x-regular over Jβ.

Suppose not. Then, since α is the largest cardinal in J^, we can find a ΣM_ x( Jβ)
m a p / such that / " α is cofinal in v. There are now two cases to consider.

Suppose first that v < ρ. Thus v < ρ and σ(v) = v. If fe Jβ, then by applying
σ: Jp-<nJβ,we see that σ (/) maps a subset of α cofinally into v, contrary to v being
regular inside Jβ. Hence / φ Jβ. But by using GόdeΓs pairing function we can code
/ as a Σn-iiJp) subset of v. Thus 0>(v)nΣn-ί(Jp) $ Jβ. Thus ρ£~1 < v. But
QY ι = ρ > v, so we have a contradiction. That proves the claim in the first case.

Now suppose that v = ρ. Thus v = ρ. In Jv-, let (Aξ\ ξ < α) be a partition of α
into α many sets of cardinality α. For each ξ e dom (/), let kξ e J^ be the < j-least
map from Aξ onto f(ξ). (Since ά is the largest cardinal in J^, kξ is well-defined here.)
Set

k={J{kξ\ξedom(f)}.

Clearly, k is a Σ π _ ! (J^) function such that fc/r α = v. But v = ρ = ρ^~1 and α < v,
so this contradicts the definition of the Σ^-i-projectum. Claim I is proved.

Claim J. q is the < 7-least element of J^ such that every element of J^ is
Σi-definable from parameters in α u {q} in < Jξ, A}.

Let xeJρ. Then σ(x) e JQ so for some Sea, σ(x) is Σx-definable from q,δin
< Jρ, A}. Set s = (3). Let φ be a Σ0-formula of JSf such that:

(i) l=<jpM>V

(ii) N < J p M > V

( i i i ) ( V y E Je)[y = σ ( x ) ^ \=<Jp, A>3uφ(u, y , s°, q)].
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Let < * be the lexicographic ordering on L x L induced by < j . Clearly, < * is Σ1

definable, and <*n(Jρx Jρ) is uniformly Σ{p for all limit ρ > 0. Let (ί, u0) be the
< *-least pair such that

Then (ί, u0) is Σi-definable from σ(x\ q in <Jρ, A}. Hence ί, u0 e ran(σ). Since
K j 5 , ί ε J α . Thus t = (<f) for some ξ e α. By (i) above,

Applying σ" 1 , we obtain

(V y e Jρ) [j> = x <-> N<Jp_, A > 3 wφ (w, j?, f, | ) ] ,

where Γ= σ~ 1(t) — (ζ), f e α. Hence x is Σi-definable from parameters in α u {̂ }
in < Jρ, J^>. The rest of the proof of Claim J is entirely similar to the argument used
in proving the minimality of q in Claim D (for Case 1). So Claim J is established.

Claim K. v is ΣM-singular over Jp.

By Claim J,

So there is a Σi(< Jρ, A}) map from a subset of α onto (in particular) v. Since
ρ = ρ^"1, A = Ayx, this map is Σn(Jp). Claim K is proved.

Claim L. β = j8(v), n = n(v), v e i^, ρ = ρ(v), 1 =

Directly from Claims I and K. (For v e R, notice that as σ: J$<ι Jβ, li
follows from lim (/?).)

Claim M. q — q (v) and σ (p (v)) = p (v).

By Claims L and J, q = g (v). If v < ρ now, then v < ρ and we have /? (v)
= ( ί (V)J v, αv), so σ(/?(v)) = /?(v) by Claim H and the equality σ(v) = v. If v = ρ,
then v = ρ and p (v) = (q (v), α^), so again σ (p (v)) = p (v).

That completes the proof of the lemma. D

v, α 2.6 Lemma. Lβί v e Sa9 v e Sα, α < α, and suppose that v zs α //miί /?omί o/S^. Lei

σ σ: <Jρ(v-)5 Λ ( v ) > < 1 < J ρ ( v ) , ̂ (v)>

fee swc/z ί/iαί σ (/? (v)) = p (v).
vr Let V = sup(σ"v). Then V e Sa and there is an embedding

such that σ\J^^ σ', (σ' \ J^): J V - < Q Jv^, and σ'(p(v)) =p{y').
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Proof. Case 1. v e P.

Let (vm\m < ω) be the sequence defined in Claim B of 2.5. This sequence is
Σ {p(v)({/?(v)}) and is cofinal in v. Hence {vm\m < ω} c ran(σ), and so v' = v. There
is nothing to prove in this case.

Case 2. v e R.

Set β = β(v), n = (v), ρ = ρ(v), A = A(v), q = q(v), p = p(v\ ρ = ρ(v), A = β, n9 ρ. A, q,
A(v),q = q(v),p=p(v). p, ρ, A, q,p

Now, S« n v is Σί*({ά}) and Sa n v is Σ"{v({α}) by the same definition. And by
2.4, σ(δί) = θί. Hence as Sdnv is cofinal in v and v' = sup(σ"v), applying
(σ \ Jv): Jv- -<! J v gives v' = sup (iSα n v'). But Sa is closed in sup (5α) and v ' < v e S β .
Hence v 'eS α .

Set ^ = sup(σr/ρ), A = AnJη. Since ran(σ) c J^, p9 α E J^. By Σ0-absolute- f/, iϊ
ness,

But σ is cofinal in η. Hence

Set

Let

π: <J y 55)^<I,lnx). π, y, B

Thus

C/αim ^ . ran (σ) c X.

Let x E ran (σ). Then x e Jρ, so x is Σ x -definable from parameters in α u {q} in
< Jρ, v4>. Let x = σ~ι (x). An argument as used in the proof of Claim J in 2.5 shows
that x is Σί-definable from parameters in α u {q} in <Jρ, A}. Hence for some z E ω,
zeJά,

Applying σ: < Jρ-, 1> -<t < J^, i > , and setting z = σ(z),

x = hηiχ(i,(z,q)).

Hence xe X, which proves Claim A.

Claim B. X n v = v'.

Let ξ e X nv. Then for some z e J a and some ί e ω,

ξ = hηtλ(i,(z,q)).
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Since lim (η), there is a τ < η such that

ζ = hAnjt(U(z,q)).

Since η = sup(σ"ρ), we can pick τ here so that τ = σ(τ) for some τ < ρ. Set

θ=sup[vnh*ΛnJτ(JΛx{q})]9

Now, A n Jτ = A n Jη n Jτ = A n Jτ, so hTiχnJτ e Jρ by amenability. Since α < v
and v is regular inside Jρ, it follows that θ < v. Similarly, 9" < v. But clearly,
σ{U) = θ. Hence

<*<0 = σ(0)<sup(σ"v) = v\

Thus X n v c v'.
Now let ξ e v'. For some δ < v, £ e (5 = σ (3). Since J < v, there is an fe J^

f: όc-^+δ. Since (σ \ Jv-): J,<OJV,J= σ(f)eJv, and /: α - ^ i But by Claim
A, / e X. S o a s α c i J = / " α c x . Hence ξ e X. This shows that v' c X n v.
Claim B is proved.

We have

ran(σ)<! <•/„,!>,

ran (σ) c X.

Thus

So, if we set σ' = π ~ 1 ° σ, we have

By Claim B, π " 1 fvr = id fv\ so σf\v = σ\v. Hence σ\J^^σf. Moreover,
(σ ί J^): Λ ^ o Λ ' cofinally, so (σ' ί J^): JV^QJV'. So in order to complete the proof
of the lemma it remains to show that γ = ρ(v'), B = A(v'), and π " 1 ^ ) = p{V).

By Σ0-absoluteness,

j?r So by VI.5.6 there is a unique β' such that y = ρjr S B = ^ 2 r l

? and a mapping
π, ^ ' j ^ ' π 3 π such that π: Jβ'^^-^Jβ. Set g' = π~1(q\p/ = π~1(p). Notice that if v < ρ,

then v < ρ and p = (q, v, α), p = {q, v, α), so /?' = ( '̂, π " x (v), π " x (α)). But by Claim
B, π - 1 (v) = V. And since π " 1 Γ vr = id \ v\ π~1(α) = α. Thus /?' = (̂ f', v', α), and
V < y. Again, if v = ρ, then v = ρ and/7 = (q, oc),p = (q, α), sop' = (q\ α), and (using
Claim B) V = y. Hence in order to show that π~1(p) = p{V\ it suffices to show
that π~1(q) = q(V\ i.e. that q' = q{V).
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Claim C. V is Σn^1 regular over Jβ..

This is proved exactly as in Claim I in the proof of 2.5, so we do not give any
details here.

Claim D. V is Σn singular over Jβ,.

By Claim B,

So as π: < J y, B} <x (Jη9 A} and V c X = ran(π), we have

So t h e r e i s a Σ 1 « J y , JB» map from α onto v'. Buty = Qn

β~
ι,B = An

β~
ι,so this map

is Σn(Jβ>). Claim D is proved.

Claim E. β' = β(v')9 n = n{V\ V e R, y = ρ(v'), B = A{V).

By Claims C and D. (For V e R, notice that as π: Jβ><n- γ Jβ9 lim(jβ') follows
fromlim(β).)

Claim F. q' = q(vf).

By definition,

So, applying π~\

Hence every member of Jγ is Σi-definable from parametes in α u {q'} in < J y, B}.
An argument as in the proof of Claim D od 2.5 now completes the proof of
Claim F.

The lemma is proved. D

We are now in a position to commence the construction of our morass.
For v, τ e S1, set v —3 τ iff αv < ατ and there is an embedding

σ: <J β ( v ) , A(v)> -<! <J ρ ( τ ), A(φ

such that

(i) σ\ccv = id \ αv;

(ii) σ(p{v))=p(τ);

(iii) (σ\Jv):Jv<QJτ.

Clearly, —3 is a partial ordering on S1. And since v —3 τ implies αv < ατ, —3 is
well-founded. We show that —3 is a tree. It suffices to show that if τ e Sa and α < α,
there is at most one v —3 τ with αv = ά. Let v —3 τ, αv = α. Then there is an embed-
ding

σ: < J ρ ( v ) , 4(v)> -<! < J ρ ( τ ), .4(τ)>
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as above. Now, J ρ ( v ) = h*iv)tA{v) (Jα- x {p (v)}), so by applying σ and using properties
(i) and (ii) above,

ran(σ) = Λ*(t)> A(τ) (Jd x {p(τ)}).

Thus ran (ρ) is entirely determined by τ and α. Since σ " 1 is a collapsing map, it
follows that ρ (v) is completely determined by τ and α. But if v t , v2 e Sδ and vx < v2,
then ρ(Vi) < v2 ^ ρ(v2). Hence v e Sδ is unique here. Thus —3 is a tree on S 1. (It
should be noted that the morass levels Sa are not the levels of this tree.)

By 2.4, if v —3 τ, the map σ testifying this fact is unique, so it may be denoted by
σvτ σv τ. Clearly, the system of embeddings (σ v τ | v -3 τ) is commutative. Set

π v τ π v τ = (σvτ \ v) u {(τ, v)} .

Then (π v τ | v —3 τ) is a commutative system of maps

π v τ : (v + l )->(τ + 1).

We show that the structure

so defined is a morass.

(M 0) This is immediate. (To show that sup (S° n ω x) = ω x only requires a simple
application of the Condensation Lemma. All other parts of (M 0) really are imme-
diate.)

(M 1) If v —5 τ, then Sαv n v is Σ{v({αv}) and Saτ n τ is Σ {τ({ατ}) by the same defini-
tion. But (σvτ ϊ J v): J v -<Q Jτ and σvτ(αv) = ατ, so the assertions of (M 1) are immedi-
ate. (It is precisely in order to obtain (M 1) that we introduced the notion of a
g-embedding. And we only need this notion in order to prove (ii) and (iii) of (M 1)
in the particular case γ = v.)

(M 2) Let τ e S5, τ e Sα, τ —$ τ, v e S,χ n τ, v = π f τ (v). We must show that v —5 v and
πv-v Γ v = π-ττ \ v.

Let σ = στ-τ \ Jτ. Thus σ: Jτ--<x Jτ9 σ(α) = α, σ(v) = v. By 2.3,

<Jρiv),A(v), JV9 (p(v))> .

Hence v —3 v and πv-v \ v = (σ t Λ) t v = σ \ v = σττ ί v = πττ t v

(M 3) Let τ e Sα. Let α < α be a limit ordinal such that the set {αv | v —3 τ Λ αv < α}
is unbounded in α. We must show that there is a v—* τ such that α = αv.

For each ^ —3 τ, let X^ = ran (σ^). Thus (X^ | ^ —3 τ) is an increasing sequence
of Σ ! submodels of < Jρ (τ), A (τ) >. Set
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Let

By 2.5 there is a unique v e S1 such that ρ = ρ (v), A = A (v), σ (/? (v)) = /> (τ). Since
α = sup {αj η —3 τ Λ α̂  < α}, it is easily seen that we must have v e Sd. And since
Xη n Jτ -<Q J τ for all 77 -^ τ, we have X nJτ -<Q J τ. It follows that v —3 τ and σvτ = σ.

(M 4) Let τ e Sα, and suppose that τ is not maximal in Sa. We must show that the
set {αv| v —3 τ} is unbounded in α (i.e. that τ is a limit point in —3).

Pick λ G Sα, A > τ, λ admissible. Let θ < α be given. Let X be the smallest Σ x

elementary submodel of (Jρiτ), A(τ)} which contains p(τ) and θ and is such that
I n α i s transitive. Now, <Jρ ( τ ), 4(τ)> is an element of J λ , and λ is admissible, so
I e J A . But α is regular inside Jλ. Hence α = X n α e α. Let

Using 2.5 we see that there is a unique v e S^ such that ρ = ρ (v), Λ. = A (v), v —5 τ,
and σ = σvτ. Since θ < α = αv, we are done.

(M 5) Let τ e Sα, and suppose that {αv| v —* τ} is unbounded in α. We must show

thatτ= U K/H

In fact we show that Jτ = (J [σvτ'7v]. Since 3 is trivial, we only have to worry
v—?τ

about c . Let xeJτ. Then for some J e α , x is Σx-definable from /?(τ), δ in
< J ρ ( τ ), A(τ)>. Pick v —3τ such that δeav. Then, since 3,p(τ) e r a n ^ J ^ < J ρ ( τ ),

>, we have

x e ran (σvτ) nJτ = σ v τ"J v,

as required.

(M 6) Let v be a limit point of <Sα_, v —B V, v' = sup (πvv

 r/v). We must show that
v —B v' and πw \ v = πv-v |" v.

But this is immediate by 2.6.

(M 7) Let v be a limit point of S&9 veS α ,v"Hv,v = sup [πv-v "v]. Let α < 0 < α be
such that for each τ e S^nv, Sθ contains an η e S1 such that τ —B fy —B π^v (τ). We
must show that S0 contains an η such that v —3 77 —3 v.

For each τ e Ŝ  n v, set τ = π^v (τ) and let 77 (τ) denote the unique η e Sθ such η (τ)
that τ—^ f/ —B τ. Note that the function η is monotone increasing. Set η = η
sup {η (τ) I τ 6 S5 n v}. Since Sθ is closed, ?7 G SΘ. We show that V H ^ V . Since —B
is a tree and v —3 v, it suffices to show that η —3 v. This will take some time.

By the verification of (M 2), if τ,τ' e Sάnv, τ < τ', we have:

στ,η(τ) \ Λ ~ στ',η(τ') \ Λ >?(τ),τ ί Λ ( τ ) »/(τ),τ ί η(τ)

Hence we can define functions σ0, σx by

σ 0 = U K-,(τ) t Λ l τ e Sα-n v}, σί=\J {σm% \ Jm\τ e Sα-n v}. σ0,
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Clearly,

But σ 0, σγ are cofinal. Hence

2.7 Lemma, ran (σ^v )nJv^ ran

Proof. If τεSdnv and x e J^ then (ii ° ffoM = ^ v ° ^ ^ W = σfrW> s o

σ i ° σ o ί Λ = σττ Γ Λ = σvv t Λ (using the verification of (M 2)). But Sd n v is cofinal
in v. Hence σ1 ° σ0 — σVv \ Jv. Thus we have

ran (σ^) nJv= σ^ "Jv- = σι ° σ0 % c ran (σx).

Since σ x | 0 = id f 0 and (by confinality) σx: Jη<QJv, we obtain 17-5 v (and
hence the verification of (M 7)) as an immediate consequence of the next lemma.

2.8 Lemma. There is a σ ^ σ1 such that

andσ(p{η))=p(v).

σ, β, n, ρ, Proof. Set σ = σ 1 ? β = β(v), n = n(v), ρ = ρ(v), A = A(v), q = q(y\p =p(v), and
A<a*p,y if V G P , 7 = y(v)."

Case ί. v G P.

Thus ρ = β = 7 + 1 and A = 0. Set

M M = {x G J y I x is ./^-definable from parameters in ran (σ) u {q}).

Thus M <Jy.

Claim A. M nJv = ran (σ).

Let xeMnJv. Thus for some r and some Σ r formula φ, and for some
y G ran (σ), x is the unique xeJγ such that NJy φ (x, j?, q). Define X w -<w J y just as in
the proof of Claim B of 2.5, and, as there, set vm = Xm n v. Let πm: Xm ^ J 7 m , and
set πm(q) — qm. Since there is a Jγ-definable map from α onto ym, ym < v. Hence
(ym,qm)eJv. Now, (ym, qm) is clearly Σx-definable from p in Jρ. So as
p G ran(σvv) -<t Jρ, (ym J^ J G ran(σvv). So by 2.7, (ym, O G ran(σ). Pick m ^ r s o
that x, y G JV m. Since π m

 x: J γ m < m J 7 and π m

 x f JV m = id \ JV w, x is the unique x e Jyrn

such that Nj φ (x, y, qm). This provides us with a Σ x definition of x from ym, y, qm

in J v . But y^}7, qm

 E ran(σ)-<x J v . Hence x e ran(σ), which proves Claim A.

Let

σ, 7 σ:Jy^M.

Thus

σ:Jy-<Jy.

q By Claim A, σ c σ. In particular, σ(0) = α. Set <? = σ " 1 ^ ) .
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Claim B. (i) v < y -> η < y A σ(η) = v;

(ϋ) v = y-+η = y.

Suppose v < y. Then, since v e Sa and y = y(v), we have v = [α + ] J y . But
a = σ(θ) e ran(σ) ^ M ~<Jy. Hence v e M . But σ"η is cofinal in v. Hence
η = σ " 1 ^ ) . Thus η < y and σ(η) = v.

Now suppose η Φ γ. Thus 7/ < y, and so σ(η) is defined. Since σ"η is cofinal in
v, σ (η) ̂  v. Thus γ > v. Hence v = γ -> η = γ. Claim B is proved.

Claim C. η is regular over Jr

We know that v is regular over Jy. But σ: Jy--< Jγ and d"γ\ is cofinal in v, so this
claim follows from Claim B.

Claim D. q is the <j-least element of Jy such that every element of Jy is J^-definable
from parameters in θ u {q}.

Argue just as in Claim D of 2.5.

Claim E. η is Σx-singular over Jy+ί.

By Claims C and D we may define (ηm\m < ω) from Jy, θ, q, η exactly as
(vm |m < ω) was defined from J γ , α, q, v in Claim B of 2.5, thereby obtaining a
Σ1 (Jγ+ι) ω-sequence cofinal in η, which proves Claim E.

Claim F. ηeP, y(η) = y, ρ(η) = β{η) = y + 1, q(η) = q9p(η) = % % η, θ).

By Claims C, D, E.

Since σ: Jy~< Jγ, by VI. 1.19 there is a unique extension of σ to an embedding
σ: Jρiη) -<! Jρ. Using Claims B and F, σ (p (η)) = p. That completes the proof in this
case.

Case 2. v e R.

Let h = hρA, and for τ < ρ, set hτ = hτAnJτ. Let δ = δ (v) = the least δ < ρ h, K> δ, δ (v)
such that q e Jδ and aehf (Jα x {/?}), and such that v ehf (Jα x {/?}) in case v < ρ.
Since lim(ρ) and JQ = A* (Jα x {/?}), such a ^ can always be defined.

For δ ^ τ < ρ, let

Then Xτ-<! < Jτ, A n Jτ>. Moreover, by choice of p, (J Xτ = Jρ. Since α is the
<5ίξτ<ρ

largest cardinal inside J v, Xτ n v is transitive, so set vτ = Xτ n v. Let vτ

π τ: <X t, A n Xτ} ^ < J 7 τ, Λ> π τ

Set πτ(/7) = pτ. Notice that πτ \ vτ = id t vτ, and that if v < ρ, then πτ(v) = vτ. ^ τ

C/βf/m G. Let δ ^ τ < ρ. Then < J7τ, Aτ} e Jv.

Since < Jρ, A} is amenable, hτeJQ. Hence Xτ e Jρ, and there is an / e Jρ such

that/: α^Xτ. Set



358 VIII. Morasses and the Cardinal Transfer Theorem

Thus (α, E, B) e Jρ. So if v = ρ, then (α, £, B) e Jy. If v < ρ, then v is a cardinal
inside Jρ, so ^ J p ( α ) c J v , by applying Π.5.5 within JV9 so again (α, £, 2?) e J v . But
v is adequate, so the transitive realisation of the well-founded, extensional struc-
ture <α, E, B} is also in J v . In other words, <J y τ, e, Λτ} e J v , which proves
Claim G.

By Claim G, vτ < v for all τ. Hence (vf | δ ^ τ < ρ) is a cofinal sequence in v.

Claim H. ((yτ, Aτ, vτ, Λ ) | <5 ̂  τ < ρ) is Σ</" *>({/>}).

This is immediate from the definition.

Define

M M = {x e Jρ I x is Indefinable from parameters in

(ran (σ) n Jα) u {/?} in < Jρ, A)} .

Of course, ran(σ) nJa = σ"Jθ = Jβ here, but we have given the definition of M in
the form required for the proof. We have

Claim I. M nJv = ran (σ).

Let xe M nJv. Then for some Σ0-formula φ of <£ and some y e ran (σ) n Jα,
x is the unique x e Jρ such that N<Jps Ay 3uφ(u, x, y9p). Pick τ so that x , y e I T ,
x e JV τ, and for some ue Jτ, N<Jτ AnjτyΨ (w> ^J A /)• Then x is the unique x e J τ such
that £<Jτ,AnJτ> 3 wφ(w, x, $,p). But x, y,/? e Xτ<γ < J τ, 1̂ n Jτ>, so applying πτ and
noting that πτ \ JVτ = id \ JVτ, we see that x is the unique xeJyτ such that
1=̂  t Aτ> 3 wφ (w, x, y,p). This gives us a Σi definition of x from γτ9 Aτ, y,pτ in J v .

We may assume that τ was chosen above so that τ e ran (σ^v). To see this, pick
ξ e σVv"v large enough so that whenever τ is such that vτ ^ ξ, then τ has the
properties used above. Since σv-v"v is cofinal in v, such a ξ can be found. The
smallest τ with vτ ^ £ is now Σx-definable from ξ,p in < Jβ9 A}, by virtue of Claim
H. So as ξ,p e ran(σ^v) -<ί < JQ, A}, we have ί e ran(σvv).

By Claim H, it now follows that γτ, Aτ,pτ e ran(σvv). So by 2.7, yτ,Aτ,pτ

e ran (σ). Hence γτ, Aτ, y, pτ e ran (σ). But ran (σ) -<i J v . Thus x G ran (σ).
Now let xeran(σ). Then x e J v . We show that x e M . Since xeJρ, x is

Σi-definable from parameters in α u {p} in < Jρ, A}. So for some Σ o formula φ of
dSf and some y e Jα, x is the unique xe Jρ such that

^<./p, Ay 3 uφ(u,x, yj).

Let y be the -<j-least such parameter. We show that x e M b y proving that
y E ran (σ). Pick τ < ρ such that x, y e Xτ, x e JVτ, so that for some ue J τ,

Then
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so applying π τ, much as before, we see that x is the unique x e J7τ such that

Moreover, y is the <7-least such parameter. This provides us with a Σ1 definition
of x from yτ, Aτ, y, pτ in J v . As above, we can assume that τ has been chosen so that
γτ9 Aτ,pτ e ran(σ). Hence as x e ran(σ) and ran(σ) -<t J v, the minimality of y gives
y e ran (σ), as required. Claim I is proved.

Let

σ: < J ρ - , , 4 > ^ < M , , 4 n M > . σ, ρ, A

Thus

By Claim I, σ c σ. In particular, σ(0) = α. Set ^ = σ " 1 ^ ) . p
By VI.5.6 there is a jS ̂  ρ such that ρ = ρnfί, A = Anf *, and an extension σ' β

of σ such that σ'\ Jβ -<Λ J^. σ'

C/αim J. f/ is Σ n _ x regular over Jβ.

This follows immediately from the fact that σ'\ Jβ<nJβ and sxxp[σ'"η] = v.

Claim K. η is Σn singular over Jβ.

By definition of M, we have

J-Q=hfA{Jθx{p}).

Hence there is a Σ χ « J^, A}) map from θ onto η. Since ρ = ρ|~γ, Ά = Anfx, this
map is Σn( J )

C/αim L. β = β(η), n = n{η), η E R, ρ = ρ(η), A = A(η).

By Claims J and K.

Hence

But p G ran(σ), so by 2.5, σ(p(η)) = p. The lemma is proved now. D

3. The Gap-2 Cardinal Transfer Theorem

In this section we prove the following theorem.

3.1 Theorem. Assume there is a morass (i.e. an ( ω l 5 \)-morass). Let stf be a K-
structure of type (κ+ + , K) for some uncountable cardinal K. Assume that 2K = κ +.
Then there is a K-structure 31 of type (ω 2 , ω) such that & = si. D
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By virtue of the results of the last section, this implies that the Gap-2 Property
is valid in L. In the exercises we indicate how the result may be extended to cover
any type (λ+ + , λ) in place of (ω 2 , ω).

We fix Jί — <S, Sf9 —3, (π v t) v^ τ> a morass from now on. We are given a K-
structure si of type (κ+ + , K). We may assume that si has the form

where /c = XJ* and < is the usual ordering of κ+ + . If & = si and e e 5, we shall
denote by Pr^ (e) the set of all < -predecessors of e in the sense of &, i.e.

The key model-theoretic fact required for our proof is supplied by the following
lemma.

3.2 Lemma. Assume 2K = κ + . Then there are K-structures 0&, <€ such that:

(i) & = <# = */;

(ii) @<<€ and U® = U*;

(iii) there is an embedding σ: 31 -< # and an element ee B such that:

(a)

(b) σ

(c) B^P^(σ(e)).

Proof. For those familiar with the term, we remark that the proof is by means of
a "Δ-system" argument.

For each α < κ+ + , let s/Λ = (Aa9 κ9 < , . . . > be the smallest slOL<sl such that
K u {α} ̂  Aa. (Since < well-orders si, this definition makes sense.) We can clearly
find a cofinal set X c κ+ + such that Aa Φ ̂ 4̂  whenever α, β e X, α φ β. Since
|^4a| = K: for all α e l , w e may assume that otp(/lα) = θ for all oceX, where 0 is a
fixed ordinal, TC < 0 < κ + . Let (α" | v < 0) be the monotone enumeration of Aa for
each aeX. Since ae Aa, there is a least ordinal ρ < 0 such that (aa

ρ \ a e X) is
cofinal in κ+ +. Since (κ+)κ = κ+, we may assume that (tfί | v < ρ) = (ΛJ | V < ρ) for
all oc, β e X. We may further assume that for all α, β e X, if α < β then ^ > α̂  for
all v < 0. Thus if we set

Y={a«v\v<ρ} (foranyαeX),

Z« = K10 < v < 0} (each α e l ) ,

we have:

,4α= 7 u Z α (aUαeJSQ,

7 n Z α = 0 (allαeX),

Y<Za<Zβ (<ύloc,βeX,a<β).

(i.e. {^α| α G X} forms a Δ-system.)
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Now there are at most κκ = κ+ non-isomorphic K-structures of cardinality K.
So we can find α, β e X, oc < /?, such that <stfa ^ stfβ. It is clear that the only possible
isomorphism σ: j / α = s#β is the unique order-isomorphism of Aa onto Aβ (as sets
of ordinals). Thus if we take

a = s/a9

 c€ = sd, e = aa

ρ,

then &, <€, σ, e are clearly as required for the lemma. D

By means of an argument almost identical to that used in 1.5, we can use 3.2
in order to prove the following sharper result.

3.3 Lemma. Assume 2K = κ +. Then there are countable homogeneous K-structures

Λ O J . * Ό s u c n t n a t :

(i) # 0 = % = jtf;

(ii) &0<<g0and U®° = 17*°;

(iii) there is an embedding σ 0 : ^ 0 ^ ^o and an element e0 e Bo such that:

(a) L

(b) σ

(c) B

(iv) <0o,

Proof. Since the proof is virtually the same as in 1.5 we give only a brief sketch.
Commence with J*, <S, σ, e as in 3.2. By replacing # by its skolem hull around
Bκjσ"B if necessary, we may assume that \C\ = |B | . Let h: C<^>B. Let

<*', Λ', σ\ e\ σ'(e'\ h'} = <<*, * , σ, e, σ ( 4 Λ>

be special. Then, in particular, <#', σ'(e')> and <J^', e'} are special structures of
the same cardinality, so let

Let

be countable and homogeneous. Then &0,%,σ0, e0 are as required by the lem-
ma. D

We are now ready to commence our construction of an (ω 2 , ω)-model St = stf.
We shall obtain $ as a limit of a certain directed, elementary system.

To each τ e S1 we shall attach a X-structure ^ τ = s$ and an element eτ e Bτ.
If v, τ G iS1 and v < τ (as ordinals) we shall have J*v -< ̂ τ . We shall set, for each
τeS1,

U
vt=Sn

it being understood that v, τ, etc. vary over S1 in such situations. The directed
system we construct will be called an Ji-complex. We begin with an axiomatic
description of the system. We fix J^> %> σo> eo a s i n 3.3.
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An Ji-complex (for stf) is a structure

such that:

(C 1) τeS1 ^^τ = j ^ &eτe Bτ;

(C2) t e ^ n c O i - ^ ^ i s countable homogeneous and <J*τ, eτ} ̂  <^ 0 ? eo>;

(C3) v^eS1 &v<τ^@v<@τ& UΛ" = U**;

(C4) T ε S U f l J c p ^ ί β J ;

(C5) the embeddings σττ: JL+ -< J*τ for τ-s τ, form a commutative system;

(C6) τ-3wστ-τ(eτ-) = eτ;

(C7) τ-*τ & v e S ^ n τ & v = πfτ(v) ^ σfτ fβv- = σv-v ϊ#v-;

(C8) T H T & V G S 1 & αv < α f-• σfτ fβv

+ = id \ Bf

(C9) if τ is a limit point of -*, then ^ T = (J σ f τ"^ f.

Given an ^-complex as above, the Gap-2 Theorem follows at once. For if we
set

veS/n

then $8 = si and by (C 3) and (C4), £8 has type (ω2, ω).

The construction of an ^-complex proceeds by recursion on τ e S1. To com-
mence, if τ0 is the least ordinal in S1 we take 08 XQ = 88θ9eXQ = e0. The induction step
in the construction splits into three cases.

Case 1. τ is minimal in —3.

By morass axiom (M 4), since τ is not a limit point in —3, we must have ατ φ ω x .
So J*° is a union of a countable elementary chain of countable homogeneous
structures. Thus, using 1.6 in case this chain is of limit length, &° is countable
homogeneous and 88° = &0. Let e® e B° correspond to e0 e Bo under such an
isomorphism. Then, by the properties of J*o, ^0>

 σo> eo w e c a n ̂ m^ a structure
<^τ, eτ} such that the relationship between <J*τ, eτ> and <J^°, e°} is the same as
that between <^0, σo(eo)> and <^0> ^o) I n particular, we have:

Thus &x9 eτ satisfy (C 1)-(C 4), whilst no new cases of (C 5)-(C 9) arise.

Case 2. τ is a limit point of —5.

Consider the directed elementary system
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Let

<<?, (σv)v^τ>

be its direct limit. We may define an embedding

as follows. Let xeBT°. For some v < τ, x e £ v . Suppose first that v e S α τ . By (M 5)
we have

So we can find a f H ΐ and a v e Sατ n τ such that v = π f τ (v). By (M 4), v is a limit
point of —s, so (C9) tells us that

So we can find a τ—iτ sufficiently high in —3 so that x = σvv(x) for some
x e ΰ v - ς B f . Set; (x) = στ-(x) in this case. On the other hand, if αv < ατ, then if we
pick τ —3 τ so that αf > αv, we have x e Bf, and we can set; (x) = στ-(x). Using (C 5),
(C 7), and (C 8) it is routine to verify that; is well-defined and elementary from J f
into Ή, and that for any ΐ H ΐ , v e S α . n τ , v = π f τ (v), the following diagram com-
mutes:

We may thus choose # specifically so that; = id 15?. Let &τ = <& and set σfτ = σf

for all τ —3 τ. By (C 6) below τ, there is a unique element eτ e Bτ so that σfτ(^τ) = eτ

for all ϊ H ΐ . W e check that (C 1)-(C9) hold for Jfτ, eτ under these definitions. The
only one that is not immediate is (C 2).

Using an obvious notation we have:

Since (σττ f β f ): <J*f, eτ-> ^ <σ fr"^P f, eτ>, the structures <στ-τ

r/^f, βτ>, for τ —3 τ, form
an elementary chain of isomorphic, countable homogeneous structures. Thus by
1.6, <J*τ, eτ> is countable homogeneous and for any M i w e have (βτ, eτ} ^
<στ-/'^τ-, eτ} ^ <^τ- eτ-> ^ < ^ 0 , ^o> This proves (C2).

Before we commence Case 3, we observe the following consequence of the
axioms for an ^-complex:

(C 10) v, τ G S 1 n ω1 & v < τ -> <^ τ , ev> ^ < J^τ, eτ>.
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To see this, we first note that by (C 3),

Also by (C 2),

Thus

<^τ,e v>ΞE<^τ,eτ>.

So as J*t is homogeneous,

which is (C 10).

We shall make use of (C 10) in dealing with Case 3.

Case 3. τ immediately succeeds τ in —3.

Note that by (M4), ατ φ ω 1 ? so τ < ωγ. There are three subcases to consider.

Case 3.1. τ is minimal in Saτ.

Thus τ is minimal in <Sα_ (by (M 1)). Using (C 10) and (possibly) Lemma 1.6,
<Jf, eτ-> = <^o ? ̂ o) Thus there is a countable homogeneous structure Mτ and an
embedding σ: &° -< ̂ τ such that:

^τ° -< Λτ, l/^? = 17Λ% σ f Pr^?(e,) = id ί Pr* ? (e f ), B°τ c Pr^?(σ(βτ-)).

Let σfτ = σ, eτ = σ(βf). It is routine to check (C 1)-(C9) for τ.

Case J.2. τ immediately succeeds η in Sαr.

Thus by (M 1), τ immediately succeeds η in Saτ, where π f τ (ή) = η. Moreover, we
have # t° = Λ,. Let ft = σ^(β f).

By (CIO) and (C2) we have

<Λ + , eτ-> ̂  < ^ f , eτ-> ̂  < ^ 0 , ̂ o>

Thus, applying σ^: ̂  < 8η9

Thus by (C 2),

So as $η is homogeneous,
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Thus by (C 2);

It follows that we can find a countable homogeneous structure @ϊτ and an embed-
ding σ: &°<&τ such that

σ \ Pr*;(fc) = id ί Pr^ ? (ft), B°τ c Pr^(σ(ft)),

Let eτ = σ(b), σϊτ= a°σm.
It is immediate that (C1)-(C6) are preserved by this definition. Also, (C9)

does not apply in this case, and (C 8) follows easily from (C 7) (and the induction
hypothesis). So we need to check (C 7) for τ. It clearly suffices to prove this for the
case v = η only, i.e. we show that

Well, we have

So, applying σm,

But

Thus

i.e.

For future use, we note that for any X-formula φ(% x)\

(**) if y E B°η, x e β f

+, then StΆ V φ (y, σήη(x)) iff ^ τ N φ (p, σfτ(x)).

To see this, apply σ to the left-hand side and note that as eη < ef in (%*, an
application of σήη yields eη < b in <8n, so B® c Vτm°τ(b).

Case 3.3. τ is a limit point in Saτ.

Thus τ is a limit point in SΛτ. There are two subcases to consider.

Case 3.3.1. λ = sup^< Iπ f τ(v) < τ .

In this case, < J*°, eλ} is the union of the elementary chain



366 VIII. Morasses and the Cardinal Transfer Theorem

By (C 10), this is a chain of isomorphic, countable homogeneous structures. So by
1.6,

Thus we can find a countable homogeneous structure @ϊτ and an embedding
σ: 3t*<0tx such that:

° = U"% σ \ Pr®°τ(eλ) = id \ P r * s (eλ), B°τ c P r ^ (σ

Let eτ = σ(eΛ), σϊτ = σ ° στ/l. Much as in Case 3.2, we see that (C 1)-(C 9) continue
to hold, and that (for later use):

if φ (% x) is any K-formula, then

(**) if y e B°λ, x e B+, then Λλ ¥ φ(y, σn(x)) iff ^ τ N φ(y, σϊτ(x)).

The final case is by far the most complicated one, though as will be seen, we
have already "done all of the work" for this case, in the sense that our construction
is a "limit" construction.

Case 3.3.2. s u p v < f π f τ (v) = τ.

For each veSaτn τ, let η (v) be the —3 -least η such that v -—5 η —3 π f τ (v). [Notice
that as π f τ (v) is not maximal in 5ατ, there is no possibility that η = πfτ(v) here.]
Clearly, (α^(ί) | v G 5α_ n τ) is non-decreasing. Also, by morass axiom (M 4), it is in
fact strictly increasing. Set

α = sup { α ^ I v G Sατ_ n τ} .

By (M 3), α e S1, and in fact whenever v e <Sατ n τ, there is a v' e 5α such that
v —̂  v' zd π f τ (v). So by (M 7) and the fact that τ immediately succeeds τ in —3, we
see that α = α t. We shall define ^ τ as a "diagonal limit" of the structures ^ ( v ) , for
veSaΈnτ.

F o r v, y e Sa.τ n τ, v ^ y, let f/ (v, γ) = π%m(v). Thus /̂ (v, y) is the unique η e S^
such that v —3 ̂  —3 π f τ (v). (See Fig. 7.)

Notice that :

(i) v -3 fy (v) -3 fy (v, y) -3 πτ-τ (v);

(ϋ) ^(v), i,(v, y) "B°(v) ^ 5?(v, y)

Also, since π τ τ is cofinal in τ on τ and the sequence ( α ^ | v e Sα_ n τ) is cofinal in
α τ, we have, setting v = π f τ (v):

(iii) @° = U K(v-),vX<v> IV e Sα ι n τ) .

Claim. If v, γ e Sa. n τ, v ^ % y E B^, x e ΰ f

+ , then for any K-formula φ :

9> σv,η(v) (X)) iff &η[γ) 1= Φ K(v), »/(v,y) (ίX σy^(y) W )
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Fig. 7

We postpone the proof of this claim for a moment and complete the definition

Let X be an arbitrary, countable, infinite set disjoint from 23°, and let

Let Bτ = B°τ u X, and define a function σ: B^ -> £ τ by

x) if x

σ^(x), if x e B^, where v e S α _ n f and v = πτ τ(v).

By (C7) and the induction hypothesis, this clearly defines a function on B*.
We define a K-structure J^τ on £ τ so that σ: J*f

+ -< J^τ. We can do this in a
unique way so that for all X-formulas φ and all v e Sα_nτ, y e Bη^, x e B*, we
have

(iv) 0tτ V φ(σ iff
%Φ){

where v = π f τ (v). By (iii) above, the j 's take care of the whole of £° , and the ic's
take care of X, so all of Bτ is covered. By the claim there is no conflict between
different choices of v. Hence &τ is uniquely determined. And by means of an
argument as in Case 2 there is an embedding;: ^° -< J*τ. By choosing X suitably
we can clearly ensure that; = id \ B°τ. Thus 3t*<Άτ. We set σfτ = σ, eτ = σfτ (e f).

Now, by equivalence (iv) above, <0Sτ, eτ} is a sort of limit of the isomorphic (to
<JΌ, e o » countable homogeneous structures (β&Ά^

 σv,η(v)(eτ)}> f°Γ ^ e Sατ n τ. By
means of arguments which are in essence the same as those used to prove 1.3 and
1.6, it is easily seen that J*τ is countable homogeneous and that
<^ τ,e τ> ^ <JΌ,e o>. (In fact we did not give the proof of 1.3, since this is a
"standard" result of model theory, but the details are easily worked out. The idea
is to construct the desired homogeneity automorphism by means of a "back and
forth" procedure as used in the proof of 1.6. This is similar to, but a little easier
than the argument in 1.6 itself.) Thus (C2) is preserved. The verification of (C 1)
and (C3)-(C9) is routine.



368 VIII. Morasses and the Cardinal Transfer Theorem

There remains the verification of the claim. This is done by induction on
y e Sa. n τ. For γ the minimal member of Sα_, the claim is trivially valid. Suppose
next that y immediately succeeds v in Sa.. Then by induction it suffices to prove
the claim for this one pair v, γ. We have:

σ
η(v), η(v, y) ! &η(v) "< &Sη(v, y) >

ση(v),η(v,y) ° σv,η(v) = σv,η(v,y)'

So for any φ, we clearly have

&η{v) •= Φ (y> σv, η(v) (X)) iff &η[y, y) 1= Φ K(v), η(v, y) (PI °v, η(v, y) (

Now, η (y) immediately succeeds y in —3 and ^ (7) immediately succeeds 77 (v, ^) in
Saη{y). Hence Case 3.2 applies to η(y). Note that as y e B^, (ii) above gives

ση(v),η(v,y)(y)E Bη(v,γ)'

So by (*) a b o v e ,

(v, y)(ίX σv- ̂ (v- y-} (x)) iff &m N φ ( σ , ^ (̂v- y-} (y), σy- ̂ (y-) (x)).

The claim follows from the above two equivalences.
Finally, suppose that y is a limit point in Sα_. Let

λ = sup v-< y-πM ω(v).

Either A = η (y) or else /I < η (y). Thus, either by identity or else by (**), respective-
ly, we have, for all 3; e B°λ, x e β^,

(v) ^(y-) N φ (3), σy- m (x)) iff ^ Λ N φ (3;, σy- Λ (x)).

Let α = sup v < y α (̂iF). Let ^ be the unique ή e Sa such that y-^ήz^λ. Then // imme-
diately succeeds y in —5. For if 7 —B ^ —B ̂ 7, then for v e <Sα. n τ, we would have
α>/(v) ̂  &ψ contrary toή e Sa and the choice of α. So, recalling the definition of λ we
see that Case 3.3.2 applies to fj. So by induction, for y e J3°(v), v e Sα_ n 7, x G B*,
we have, by (iv),

Φ) v- ,(v-} (x)) iff ^ - N φ (σ^(v-χ v(y), σ^ (x)),

where v = πy-^(v). Applying σ^: $ή<@lλ to the right hand side we obtain:

v η(y) (X)) iff ^λ 1= Φ K(v) v ( ί ) , <*yλ (*)) ,

where this time v = πy χ(v). But y e £°(v), so ση{^v(y) e B°λ here. Thus by (v) we
obtain

*^η{v) h Ψ I/? σ v, η(v) \X)) m ^η{y) p Φ Vσ/7(v), ί/(v, y) I y h °y, η(γ) \X)) ">

as required.
The claim is proved, and with it the Gap-2 Theorem.
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4. Simplified Morasses

The morass defined in section 2 and used in section 3 provides us with some
insight into the structure of the constructible hierarchy. But as we have seen, it is
not particularly easy to use, requiring the consideration of many separate cases
(five in the proof of the Gap-2 Theorem), one of them (Case 3.3.2) quite compli-
cated. If one's main interest is simply to use morasses to prove theorems like the
Gap-2 Theorem, this complexity is a nuisance. In this section we show that it is
an avoidable nuisance. We shall describe a "simplified morass" structure. The
existence of a simplified morass is provably (in ZFC) equivalent to the existence
of a full morass in the sense of section 2. (We shall give one half of the proof, the
half of relevance to us here.) And as we shall see, it is considerably easier to prove
the Gap-2 Theorem using a simplified morass.

As with the morass of section 2, the motivation is the approximation of a
structure of cardinality ω2 by means of a system oϊωί many countable structures.
(As before, we consider the case of an ωx morass for definiteness, but everything
generalises quite easily to and arbitrary uncountable regular cardinal K)

A simplified morass (morass precisely, a simplified (ω1? l)-morass) consists of
a structure

satisfying the following six conditions (which we examine below):

(PO) (a) θ0 = 1, θωi = ω29 (Vα < ωλ)(0 < 0β< ω j ;

(b) SFΛβ is a set of order-preserving functions /: θa->θβ;

(P 1) | j y ^ ω for all α < β < ωt;

(P2) if α < β < y, then J%, - {/° g \fe ̂ βγ & g e J^} ;

(P 3) if α < ωγ, then J ^ α + ί = {id \ 0α,/α}, where fa is such that for some δ < θa,

(P4) if α sζ ω x is a limit ordinal, if βί,β2< α, and if fγ e ^» i α , f2 e J ^ 2 α , then
there is a y < α, γ > βl9 β29 and there are /{ e # β i γ , f2 e J ^ 2 y , g e J^α, such
tint f^gofaf^g oft.

(P5) for all α > 0, θa = [j {f"θβ\β< a & fe *βa}.

The idea of the above definition is this. We approximate 0ωi = ω2 by means
of the countable ordinals 0α, α < ωλ. To do this we need to know how the intervals
θa "fit inside" θωr J ^ consists of a set of order-preserving maps from θa into θβ.
Each map / in J ^ gives one way in which θa "fits inside" θβ as an approximation
to it. (P 1) tells us that there are not too many ways in which this can happen for
any given pair α, β < ω1. (P2) is self-explanatory. (P3) (together with (P0)(b))
says that at successor steps in the approximation procedure there are just two
ways in which θa fits inside θa+1, both very simple (P 4) tells us that the "approxi-
mation tree" going up to θωί does not have branches which "split" at limit levels.
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A particular consequence of (P 5) is that θωι is entirely determined by the count-
able parts of the simplified morass.

We shall use the simplified morass to prove the Gap-2 Theorem. We are given
a K-structure srf = <̂ 4, [/,...> of type (κ++,κ) and wish to construct a K-
structure $ of type (ω2, ω) such that J* = s/. We commence as in section 3. In
particular, let ^0,^0,e0,σ0 be as in lemma 3.3. We construct (instead of an
^-complex) sequences

(ΛJα < ωx)9 (ΛJα ^ ωx)9 (/* \fe&βa,β< α < ωλ)

so that:

(Cl) ^ α = ^ ;

(C2) ftα: θa -> Ba is order-preserving (where Ba is ordered by the linear ordering
which is part of 08 a);

(C3) f*:£β< @a and U®« c ran (/*) for β < α < ω1, fe J^α;

(C4) if α < ωl9 then <J α, ftα(δ)> ̂  <^o^o> for all δ < θa;

(C 5) (/o gf = / • o ̂ *? whenever / e J^yα, ge^βγ,β<y<oc;

(C6) Λβ o/ = /* o ̂  for each / e J ^ ;

(C7) if/e J^α and ran (f)^δ< θa, then ran(/*) c Pr^α(/ϊα(δ)).

Provided we can carry out this construction we shall be done, since then <%ωι

is of type (ω2, ω) as required. (\Bωι\ = ω2 by (C2) and | l/Λωi| = ω by (C 3).) We
construct the above sequences by recursion on α.

^o has been defined already. We set ho(0) = e0. Now suppose that we are at
a successor step, α + 1. By (P3), J^ α + 1 = {id \θa,f}, where for some δ < θa,
fa \ δ = id \δ and /β(δ) > θβ. By (C4), <^α, Λβ(δ)> ^ <^ 0 ? ^oλ so we can find
08a+ί,σ such that:

= id

Suppose now that he ^β,a+1, β < oc.To define ft*, choose fe^a+1,g
so that h =f° g (by (P2)) and let h* = / * ° gf*. Now, gf is clearly uniquely deter-
mined by /i here, but if ran (ft) c δ, then / is not. However, by (C 7) we have
ran(#*) c Pr^α (ftα ((5)), so by choice of σ, ft* does not depend upon the choice of
/. Hence ft* is well-defined in all cases.

Define ftα+1: 0 α + 1 -• £ α + 1 by

ft ίv) = ί
^ + l i V J jσ(ftα(v)), ifv=/β(v)>0β.

(Using (P5), it is easy to see that ftα+1 is well-defined on θa+ί.)
We must check that (C 1)-(C 7) are preserved. (C 1) is clear. (C 2) holds because

Ba c Pr^α + 1 (σ(ftα((5))). For (C 3), note that since <J*α, ftα(<$)> ̂  <J^o, ̂ o>? we have
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U*. c Pr^« (ha (δ))9 and that by choice of σ, σ f Pr^« (fcβ (δ)) = id \ Pr^« (ha(δ))9 so
£/*.+1 = y*. c ran ((id f 0J*) and [/*•+ * = ϊ/*« <= ran {/*). (C 4) is a simple con-
sequence of the fact that &a+ί is countable homogeneous (cf. the corresponding
arguments in section 3, in particular the proof of (C 10) there). (C 5) holds by
definition. (C6) need only be verified for ̂  α + 1 , i.e. it must be shown that if
fe iζ,α+i> Λen ha+ί°f = f*°ha. But this is immediate. Finally, (C7) also only
requires verification for ̂ α + 1 , which is a triviality.

There remains the limit case (i.e. lim (α)). Let

&= U Pβ.
β<<x

For each fe &, let d(f) be that β such that fe J^α. For /,/' e &, set / < */' i f f

d(f) < d(f') and there is a # e ̂ d{f), d(fΊ such that/ = / ' ° gf. Note that, if it exists,
the g here is uniquely determined by /,/'. Hence for / < * / r we may define an
embedding

by

where f = f'°g. By (P2) and (P4), <* is a transitive, directed relation on
Clearly,

((βd(f))fe&9 (πff')f<*/')

is a commutative, directed elementary system. Let

be a direct limit. Using (C6) we may define ha: 0α -» Ba by requiring commuta-
tivity of the following diagram for all β < α:

(By (P 5), this does define ha on all of 0α.)
We must verify (C 1)-(C 7). The only one that is not entirely trivial is (C 4). But

if α is a countable limit ordinal, then <#, < *> has a cofinal subset of order-type
ω, so (C4) follows from lemma 1.6. That completes the proof of the Gap-2 Theo-
rem using a simplified morass.

We turn now to the question of the existence of a simplified morass. It should
be stressed that the definition of the simplified morass is designed to make appli-
cations easy. The simplified morass structure is not particularly closely related to
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the constructible hierarchy in the way that the "standard" morass is. In fact, in
order to construct a simplified morass, what we shall in fact do is start with a
standard morass and use it to construct the new morass, rather than the fine
structure theory. This construction is not at all intuitive, and is motivated solely
by the aim of obtaining the various properties of a simplified morass.

The general idea is to define the ordinals θa of the simplified morass as the
order-types of certain well-ordered sets (Wa9 <α) of finite tuples of elements of the
standard morass, and to obtain the embeddings in Jζ^ as compositions of some
specific maps from Wa into Wβ. In order to make this work we first of all have to
add some extra points to the morass to enable us to "smooth out" the irregu-
larities in the morass structure which manifested themselves in the large number
of cases required to prove the Gap-2 Theorem using the standard morass.

Beyond this very rough outline, the rest is, unfortunately, highly technical, so
you may expect a somewhat rough ride. Best of luck!

We fix a standard morass

as in section 2. We shall write

v - ^ v iff v immediately succeeds v in —3;

and (see Fig. 8)

μ-\v iff there are v, μ such that v"H^v,/ίeSα.nv, and

Fig. 8

We may (and shall) assume that if α < α and v is minimal in Sά and v is minimal
in Sα, then v —$ v. (Simply extend —$ to achieve this. None of the morass axioms are
effected by this.)

For each α e S° n ω1, we set vα = max (SJ. Let

A = {α G S° n ω11 vα is a successor in —3}

Ao = {α G A I vα is a successor in S J ;

Aί = {cc G A I vα is a limit in Sα but %Vα \ v is not cofinal in vα,

where v ^ * vα}.

We now add some more points to the morass. For <xe A, set
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Extend the relation —$ to ' b y setting, for vα + τ G Sα

+,

τ ^ ' v α + τ iff τ—ί τ ,

and then extending to obtain transitivity.
Let

S = S ° u { α + l l α e ^ o u ^ i } .

F o r α e 5, let

Sa9 iΐaeS°-Λ,

Sa u Sα

+ , if α G ^ — (Ao u Ax),

Sα — {vα} 9 ii oc G A0^J Ax,

Sa u S^+ , if α = α + 1, α G ^ o u ^ i •

F o r v G (J Sα, let
aeS

α'v = the largest α such that v e <Sα,

αj = the smallest α such that v e Sa.

(Notice that there are at most two α such that v eSa.)
Let (yv| v ^ ω j be the monotone enumeration of S. For v

set of all finite tuples (η0,..., ηn) such that n is odd and:

(i) rjoεSyv;

373

x , let Wv be the

Let < v be the Kleene-Brouwer ordering on Wv; that is, (ή) < v(μ) iff μ is an initial
segment of ή or else ή precedes μ lexicographically. It is easily seen that Wv is
well-ordered by < v , so let θv = otp(VFv, < v). In the following we shall identify θv

with (Wv, < v).
Clearly, 0 < θx < ωγ for v < ω l 5 and 0ω i = ω 2 . As a prelude to defining the

sets J*^ of embeddings we define some special maps.
First of all, let v —5 v, oζ- = yα, α^ = yβ. We define π^: Wa -> Ŵ  by

vvί^oX'/is •••? ̂ n)j if 7̂o ^ V,

, v , i / o , . . . , ^ » ) , if ijo > v .

N o w suppose j | H v . Then there are v,ή such that v—3*v, ήeSavnv and
i. Let η' = n^v(ή). F o r some α, jβ, we have α^ = yα, αj = y^. Let

ρ = αi. Notice that by (M4), η = max(S y J , v = max(Sy y 3), and (hence) yα, yβ e A.
We define σηv: Wa -> Wβ by:

σnv((η0,...,ηn)) =

if η0 < η or (η0 = η and

iϊ ηo = η + τ,τ>0,

if (̂ /o? *7i) = (̂ 7, ̂ /) and ^ 2 e

if (ηo,...,ηn) = (η,η)

+ η),
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Again, let oce Ao. Then we can find v, ρ so that v —B^ vα and vα immediately

succeeds ρ in Sα. Let v = vα, πv-v(ρ) = ρ, α = y$. Define gδ

0: Wδ->Wδ+1 and

01 (faθ, , fn)) =

(η0,..., 77Π), if η0 < ρ or (η0 = ρ and η1 < ρ),

(v, v, η2,..., //„), if 77 0 = £> *7i = Q> a n d either η2 does not

exist or else η2 + v,

(v, η39...9ηj9 if ^o = & *h = &Άi = v,

(v + ρ9ηl9...9ηj9 if j / 0 = ρ and fy± > ρ.

Finally, let oce A1. Then there are v, Λ, such that v—3^ vα and A = sup π^/'v

< vα. By (M 6), v -* λ Let α = ya. Define #£: Wδ -• P^+ x and #?: P^ -• H^ + ί by

(7o = id \ W* and

(^o, . . . , ηn), if y/o < ^ o r (no = λ and r\x < v),

(v,ιy l 9 . . .,f/n), if f7o = A and ^ = v,

(v + ηθ9ηl9...9ηj9 if f/0 > A or (fy0 = A and ^ x > v).

The proofs of all parts of the following lemma are routine (and hence omitted).

4.1 Lemma.

(i) 7ΓyV, σηv, gf are all order-preserving.

(ii) For some α < δ, g\ \ oc = id \ a and g\ (α) ̂  θδ. (Recall that we identify θδ

with (Wδ9 <δ).)

(iii) v —3 v' —3 v ->> πv-v = πv^ v ° πv-v'.

(iv) η H ρ H v -> σηv = σρv ° σ^ρ

(v) Ifη-\ v, where v"—3* v and /y —^^ f/, ί/ien π^v = σ^v ° π ^ .

(vi) Lei v ^ H c v = va, 0LeA0uAl9 oc = yδ, andjet λ = sup π v v

r / ( 5 a v n v). Lei
2 —3 A be swc/i ί/iaί ax = av-. (T/zws eiί/ier v = λor else v immediately succeeds
λίn Sa_.) Lei X—3* A' —3 A. T/ien π^v = gf? ° π ^ and for allη-\v we have either

(jMV = q\ © 7Γ;;' ° σM;' or e/se ΐj = λf and onx = Q\ ° ftnλ.

(vii) Lei τ e S a n va, a G Aou Al9 a = y3. Γ/zen:

σηv = gδ

0 D

Let # be the set of all the maps π v v, σηx, g\9 and let 3F be the closure of # under

finite compositions. For α < β ^ ω l 9 set

= Wa and ran(/) e

The structure

is not yet a simplified morass, but as we show below it already has most of the

properties we require.
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4.2 Lemma. Jί0 has property (P 1), i.e. | J ^ | ̂  ω for α < β < ωx.

Proof. Clear. D

4.3 Lemma. Ji 0 has property (P2), i.e. i/α < β < y ^ ω 1 ? then

Proof, (Ώ) By definition.
(^). By induction on y. There are many different cases. As an example we deal

with the case v —$„, v, v a limit point in Sα_, πvv is cofinal. Then y is a limit ordinal.
We must use the induction hypothesis to show that (where dom(πvv) = Wa):

(*) for cofϊnally many β < y, there are fe &βy, g e J ^ such that πv-v = / ° α.

By 4.1 (v) we have

πv-v = σ,v o πήη for f/Hv.

By morass properties (see the argument used in handling Case 3.3.2 in the proof
of the Gap-2 Theorem in section 3) we have:

Thus (*) follows.
For the other cases, use 4.1 (iii), (iv), (vi), (vii). •

4.4 Lemma. Let oc < ω1. Then J^ Λ+ί is either a singleton or else consists of a pair
{id r 0α,/J such that for some δ < θa9 fa \ δ = id \ δ andfa(δ) ^ θa.

Proof. If ya e Λo u Aγ, then we are done by 4.1 (ii). If ya φ Ao u Ax, then y = ya+1

is a successor in S°, so by morass properties 5y- = {v} for some v. By our initial
special assumption on the morass tree, we have v —^v for some v. Thus J^? α + 1

= {πvv}, and again we are done. D

4.5 Lemma. Jί0 has property (P 4).

Proof Let α ̂  ω x be a limit ordinal. We define a certain subset ^ α ^ (J J^α and
y <α

leave it to the reader to check that it is always possible to find a g e ^ α which
verifies (P4). Let y = yα, and if α < ω l 9 let v = vα.

Case /. y e Ax or α = ωx.
Set ^ α = {πτ-τ| τ - ^ τ, τ e S y , τ < sup(Sy)} .

Case 2. yeA0.
Let v immediately succeed τ in S7α. Set ̂ α = {πfτ| τ

Case 3. γe(Sonω1)-A.

Case /̂. y e yl — (^40 u y4x).

Set # β ={σ, v Ii/Hv}. •
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4.6 Lemma. ω2 = (J {/" θa\ α < ω1 &fe J^αωi} .

Proof. Obvious. D

Our task now is to modify Ji0 so that (P 4), (P 5) and (P 0) are satisfied, as well
as (P 1), (P 2) and (P 3). The only part of (P 0) that we do not have so far is θ0 = 1.
Lemma 4.4 tells us that we are part way to having (P 3) already. And lemma 4.6
gives us (P 5) for the case α = ω x.

By 4.6,

ω2= U (UίΓβyl/e^ωJ).
y<ωi

So we can find a γ < ω1 such that

\\J{f"θJ\fePyaι}\ = ω2.

For γ < α ̂  ω l 9 let

Notice that by choice of γ,

4.7 Lemma. Ifγ < β < α ̂  ωl9 then

Proof, s; = U {Λ" θyIΛ e ̂ y J = (J {(/o gγ θy\fe Fβa9 g e

= U { r (U {9" θy\9£ ^yβ}) l/e ̂ .} = U {/" ^

Before we state our next lemma, we note that if α < j? ̂  ωx and τ l 5 τ2 < θα,
/ i»/2 e ^aβ, a n d i f / i ( τ i ) =f2^2% t h e n τ i = τ 2 a n d fx \τx =f2 \τ2. (Thi s is eas i ly

proved by induction on β, using 4.4 for the initial step β = α + 1, 4.3 for the
successor step, and 4.5 for the limit step.)

4.8 Lemma. Let y < β < a < ωx. The following are equivalent:

( i ) ( ] / e J ^ α ) ( f S μ s ; ) ;

(ii)

Proof, (i) -* (ii). Choose / e J^α such that f" S'β = S'a. Suppose there is a g ^
such that 0(τ) Φ/(τ) for some τ e S .̂ By (i), g" S'β c Ŝ  =f"S'β, so we can choose
τ' e 5^ such that /(τr) = g (τ). But clearly, τ' φ τ, so this contradicts the obser-
vation made above.

(ϋ)->(ϋi). By 4.7.

(iii)^(i). Trivial. D
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We shall call an ordinal α ̂  ω x redundant if there are β < α, fe #pα such that
β > y and f" S'β = S'a. Let

N = {α ^ ωι I α > y & α is not redundant}.

Clearly, ω1eN.

4.9 Lemma. N nω1 is a club subset ofωί.

Proof. To prove closure, suppose that α is a limit point of N n ω x and that α is
redundant. Choose /? < α and / e J^ α such that β > y and f"S'β = S'a. Since α is
a limit point of JV n ω x we can find a δ eN nωί such that β < δ < oc. Choose
g e J^α and h e ^βδ such that f=g°h. Since (5 is not redundant, h" S'β a S'δ. But
then / " S'β = (go h)" S'β c g" Sδ^Sa, contrary to the choice of β and /.

To prove unboundedness, let y < β < ωλ. We find the least element of
N nω1 greater than β. Let α be the least ordinal such that β < α ̂  ω x and
{if e^βa)(f" Sf

β Φ S'a). Such an ordinal exists, since we clearly have (V/G #β ω i )
• (f"S'β Φ S^J. By 4.8 we can choose fx ,/2 e &βa such thatΛ \ S'β φ / 2 t S'fi. If α is
a limit ordinal, then by applying 4.5 we can get a counterexample to the min-
imality of α. Thus α = δ + 1 < ωx for some δ ^ β.Iϊδ > β, then by the minimality
of α there is an fe^βδ such that / " S ^ = S'δ. If ^ e J ^ α and ^"S^ = S'a9 then
g°fe^Fβa and (g°f)f S'β = Sa, contradicting the choice of α. Thus (V^e J^α)
. (g" s j φ s^). Clearly, the same conclusion holds if δ = β. It follows easily that α
is not redundant, so oce N nω1. Note that we have shown that if y < β < ωί9

then the least element of N — β is a successor ordinal δ + 1 for some δ ^ β, and
if 5 > j8 then (3/e ^ ) (/"" S'β = S'δ). D

Now let (f7v I v < ωx) be the monotone enumeration of N, and for v ^ ω l 5 let
0'v = otp(^ v ) . Note that for v < ωl9 ηγ < ωl9 so 0 < θ'y < ω1. Also, ηωι = ωγ and
l^ωj = ω 2 , so θ^i = ω 2 We identify <Ŝ v with θ'v from now on. Subject to this
identification, let J ^ denote «^vfh.

4.10 Lemma. Except for the fact that θ'o may not equal 1, ί/ie structure

is α simplified morass.

Proof. Most of this is quite straightforward, and is left for the reader to check. To
prove (P4), use the fact that N is closed. For (P 3), note that for any v < ω1, ηv+ x

is the least element of N — ηv, so by the proof of 4.9, ηv+1 = δ + 1 for some δ ^ ηV9

(V/6 ^ v + , ) ( / " Ŝ  Φ S;v+ J, and if δ > ηv then (3/e J ^ ) ( / " S;v = Si), so by 4.8,
(V/, flf e &nJ (/ t S;v = g \ S'J. Clearly, i ^ v + 1 = ̂ , + x is as in (P 3), and it is now
not hard to show that ^v[v+ί is too. (P 5) follows easily from 4.7. D

Finally, if θ'o > 1, we simply add an initial segment to the structure obtained
above and reindex. All that is required is to build up to the existing θ'o by a
simplified morass-like structure consisting of θ'o levels, starting with {0}. This is
easily achieved. We are done.
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5. Gap-n Morasses

In order to prove the Gap-(n + 1) Cardinal Transfer Theorem, we need a morass
structure which enables us to construct a model of cardinality ωn+ί using only
countable structures. The morass required to do this is a gap-n morass, or more
precisely a (ω1, n)-morass. Assuming V = L, such morasses can be developed, and
thus, assuming V = L the Gap-n Theorem is valid for all n. Unfortunately, for
n > 1, the definition and construction of a gap-n morass is little short of horren-
dous, and would require for a reasonable treatment a volume comparable to the
present one. However, although it is not possible to even give the definition of a
gap-n morass here (for n > 1), it is possible to indicate why one might expect that
such a structure exists, and what it should look like.

The simplest type of system for building models is an elementary chain, which
we may regard as a one-dimensional system. Then come gap-1 morasses (together
with their associated model complexes), which we may think of as two-
dimensional systems. A gap-2 morass would then be a three-dimensional system,
and in general a gap-n morass would be an n + 1-dimensional system. The formal
definition of a gap-n morass would then proceed in the "obvious fashion". Just as
a gap-1 morass was defined on a set, £f9 of ordered pairs (α, v) of ordinals, with
α ^ ω b v < ω 2 , s o a gap-2 morass is defined on a set, £f, of ordered triples (α, τ, v)
of ordinals such that α = ζ ω 1 , τ ^ ω 2 , v < ω 3 , and so on. Indeed, the construction
of such a structure is, in principal the same as in the gap-1 case, using the fine
structure theory. Unfortunately, matters rapidly become very complicated, and so
we must end our rather brief account at this point.

Exercises

1. Morasses and the Kurepa Hypothesis

Prove that the existence of a κ + -morass implies KH(κ+). (Hint. For each v e Sκ+,
let Xv= {veS 1 nιc + |v-ίv}, and show that the family & = {Xv\veSκ+} is a
κ+-Kurepa family.)

2. Morasses and the Combinatorial Principle D

Prove that if there is an ωί-morass, then D ω i is valid. (Hint. For each limit point
v of Sωi, let Cv = {sup (πv-v"v) | v —3 v} n v, and investigate the properties of the sets
Cv.) Does this generalise to arbitrary successor cardinals κ+ in place of ωx?

3. Cardinal Transfer Theorems

The first result to be proved is that, assuming GCH, if s/ is a X-structure of type
(ω l 5 ω), then for any uncountable regular cardinal K there is a K-structure & of
type (κ+, K) such that J Ξ ^ . The general idea is to proceed much as in 1.7, using
saturated structures of size K instead of countable homogeneous structures. 1.1 (i)
guarantees that all of the structures in the chain are isomorphic. The difficulty lies
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in ensuring that limit stages preserve saturation. This requires the use of a clever
trick. Fix si as above now.

A K-structure $ is said to be JJΓ-saturated if it satisfies the definition of satura-
tedness for all element types Σ (x) which contain the formula U (x).

3 A. Show that if & is a saturated K-structure of cardinality K such that M = srf,
then there is a saturated K-structure J " of cardinality K such that £8 < M\ 0& φ J",

u* = υΛ\ @ s sf.
3 B. Show that if $ is a C/-saturated K-structure of cardinality K, there is a
saturated K-structure J " of cardinality K such that & -< J " and [7Λ = 17Λ#.

There is no less of generality in assuming that the given model si has a binary
predicate E with the property that for each finite set H c u^, there is an element
a E U^ such that H = {x\ xE^ a}. Using this assumption, the following key step
of the proof can be established.

3C. Show that if λ < κ+ and (βv\v < λ) is an elementary chain of ^/-saturated
structures elementarily equivalent to &i, each of cardinality K and all having the
same distinguished subset 17, then (J ^ v is ί7-saturated.

v<Λ

3 D. Show that there is a K-structure gβ of type (κ + ,κ) such that I Ξ /

The second result to be proved is that, assuming V = L, if si is a K-structure
of type (ω l 5 ω), then for any singular cardinal JC there is a K-structure J* of type
(κ: + , K) such that ^ = si. (What we actually require is D κ together with GCH.)

Fix K a singular cardinal from now on, and let μ = cf (/c). Let G: μ -• /c be an
increasing sequence of regular cardinals such that G(0) = 0, G ( l ) > ω , and
sup(G"μ) = K. By D κ , let (Sα| α < κ + Λ lim(α)) be such that:

(i) Sa is a closed subset of α;

(ii) if cf (α) > ω, then iSα is unbounded in α;

(iii) |S β |< ιc ;

(iv) if y G Sa, then Sy = y n Sα.

Modifying the previously defined notion of "special" a little, let us now agree
to call a K-structure $ of cardinality K special iff there is an elementary chain
(J*α| α < μ) of saturated structures such that J* = (J 3tΛ and | 5 β | = G(α) for each

OL< μ

a < μ. A mapping r: 5 -• μ is called a ranking of J* iff there is such a chain with

r(x) = the least α such that x e ΰ α + 1

for all x e ΰ . Similarly we define the notions of Ό-special and Ό-ranking by
replacing "saturated" by "L7-saturated".

3 E. Show that if si is any K-structure, there is a special structure $ such that
J* = si. (We are assuming GCH throughout.)

3 F. Show that if si, $ are special structures with rankings r, s, respectively, then
si = 3ft and there is an isomorphism f\ si ^3S such that s (/(x)) = r (x) for all
x G A.
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3 G. Let si be [/-special with [/-ranking r, and let J* be special with ranking s,
and suppose that ^ Ξ J . Show that there is an embedding /: srf -< ̂  such that
U* <= ran(/) and s (/(*)) = r(x) for all x e A.

3 H. Let s/ be a X-structure of type (ω1, ω). Let J* be a [/-special structure with
[/-ranking r, $ = stf. Show that there is a special structure &' with ranking r' such
that 01 < J", J* + J", 17* = I/*', and r <Ξ r ' .

Given [/-special structures J*, J " with [/-ranking r, r', respectively, we write:

(#, r)<] (#', r') I Λ ^ « ' f t r c r ' 4 [ / < ί = I/*';

(#, r) acy(£', r') iff ^ -< & & r f t/Λ = r' \ Vm & UΛ = t/Λ#

ά(r(x) < y ̂  r'(x) < y) & (r(x) > y - r(x) = r'(x));

(Λ, r) oc («', r') iff (3y)[(Λ, r) acy{β'9 r')].

Fix J / a given K-structure of type (ω1 ? ω) now. As before, assume that stf has
a binary predicate E which codes the finite subsets of Vs* by elements of U^. To
obtain a K-structure J^ of type (κ:+, K) such that ^ = j / , the idea is to construct
an elementary chain (βy\v < κ+) of [/-special structures, all having the same
[/-set, and a sequence (rv\ v < κ+) such that rv is a [/-ranking of J v, with J*o = J / .
The construction is carried out to preserve the following conditions:

(A) α < j 8 - ( Λ β , r β ) c x : ( ^ , r / l ) ;

(B) *eSβ-+(aa9rJ<ι(<gβ9rβ);

(C) if α = Sγ(G(β)), then x e Ay - ^ α -> ry(x) > j8.

The only difficulty lies in the limit step in the definition. In case Sa is cofinal in α
(for a limit stage α), set:

^ α = U #β> ra = U rβ.
βeSa βeSΛ

In case Sα is not cofinal in α, in which case cf (α) = ω, of course, pick a sequence
(αn I n < ώ) cofinal in α with α0 = sup (Sα), let ̂  be least such that G (ι/̂ ) > otp (Sα),
and pick a monotone sequence (φj π < ώ) of ordinals such that φ0 = 0, φ x > ψ,
and φn< μ, with

for all i < ω. Then set

For x e Ba, let i(x) be the least i such that xe Ba., and set

31. Check that the above definitions can indeed be carried out, and that they
define a sequence ((^α, rα)|α <κ+) as stated, to prove the Gap-1 Theorem for
singular K.



5. Gap-« Morasses 381

Further details of the above results can be found in Chang-Keisler (1973),
Devlin (1973), and Jensen (1972).

Finally we consider the Gap-2 Theorem.

3 J. Assume V = L. Show that for any infinite cardinal K, if s/ is a X-structure of
type (ω 2 , ω) there is a K-structure J* of type (κ+ + , K) such that & = si. (Hint. If
K is regular, the proof is a straightforward modification of the proof given in this
chapter, using the ideas from exercises 3 A through 3 D above. If K is singular, a
mixture of the methods used in the chapter and those of exercises 3 E through 31
is required, but in this case the proof is quite tricky. In particular, the D κ -
sequence used must be obtained from the morass. (More precisely, from the fine
structure construction of the morass.)

4. Morasses and the Combinatorial Principle O ω 2

4 A. Show that it is possible to define transitive structures M v , for each v e S1 in
an ω1 -morass, such that:

(i) v G dom (Mv), and dom (Mv) n On is less than any element of Sαv and any
element of S° above αv. (So, in particular, M v is countable for all v e S1 n co^)

(ii) For v —s τ, there is an embedding σvτ: M v -<x Mτ such that all of the follow-
ing conditions are satisfied:

(iii) (σvτ I v —3 τ) is a commutative system.

(iv) σvτ ί v = π v τ \ v.

(v) if τ -3 τ, v e Sατ n τ, v = πτ-τ (v), then σv-v = στ-τ f Mv-.

(vi) if τ G S1 is a limit point of—5, then M τ = (J σ v τ "M v .

(vii) (^(v) n M v | v G Sωi) is a Oω2-sequence.

(viii) (^ (v) n Σ1 (Mv) | v G Sωi) is a O « 2 - s e q u e n c e

(Hint. Consider the structures < J ρ ( v ) , ^4(v)> used to construct the morass.)

4 B. Use 4 A to construct an ω2-Souslin tree by means of a morass-like system of
countable trees and embeddings between them.

5. A Coarse Morass

We investigate what kind of morass structure can be constructed using only
elementary properties of L.

Let us call an ordinal v special iff:

(i) either L v 1= ZF~ or else {τ G v | Lτ N ZF~} is unbounded in v;

(ii) L v = "there is exactly one uncountable cardinal".

For example, ω2 is special. We define

S1 = {v G ω21 v is special};

αv = ω^v, for v e S 1 ;

S^ίαJveS1};

S^lveSV^α}, for αeS°.
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5 A. Prove that Sαv n v is uniformly definable in L v for v e S 1 .

5B. Prove the following. Let v e S α . Then there is an admissible ordinal
β — β(y) > v such that for some element/? of Lβ, every member of Lβ is definable
from parameters in α u {p} in Lβ. Moreover, if τ succeeds v in Sα, then there is such
a β < τ .

For each v e S1, let j8(v) be the least ordinal as above, and let p(v) be the
<L-least such parameter.

5C. Prove that v is uniformly definable in Lβiv).

5 D. Let v eSa, and set β = β(v\ p = p(v). Let α < α, and suppose that X is the
smallest X <Lβ such that X n α = α and peX. Let π " 1 : X = Lp9 and set
v = π" 1 (v),/ = π" 1 (p) . Show that OCGA, v e Sd, β = β{v), p = p(v).

For v, τ e S1, define v —3 τ iff αv < ατ and there is an embedding σ: L^(v) -< L^(t)

such that σ \ αv = id \ αv and σ (/? (v)) = /? (τ).

5 E. Prove that if v —$τ, the map σ above is unique.

Denote the unique map σ in the above by σvτ. Note that by 5C. above,
σvτ(v) = τ. Hence (σvτ t ^ v ) : ^ v ^ Lτ. Note also that σvτ ί αv = id \ ocv, and σvτ(αv)
= ατ. Let πvτ= σvτ \(v + 1).

5F. Prove that —5 is a tree ordering on S1.

5 G. Verify that the system just constructed satisfies morass axioms (M 0) through
(M 5), and investigate what happens when you try to prove (M 6) and (M 7).

The structure defined above is sometimes referred to as a coarse morass.

6. Morasses and Large Cardinal Axioms

Prove that if V = L[A], where A c co1, then there is a morass. Deduce that if ω2

is not inaccessible in L, then there is a morass in the real world.




