Chapter VI
Inductive Definitions

“Let X be the smallest set containing ... and closed under ---” A definition
expressed in this form is called an inductive definition. We have used this method
of definition repeatedly in the previous chapters; for example, in defining the
notions of A, formula, £ formula, infinitary formula, provable using the M-rule,
etc. In this chapter we turn method into object by studying inductive definitions
in their own right. We will see that their frequent appearance is more than an
accident.

1. Inductive Definitions as Monotonic Operators

Let A be an arbitrary set. An n-ary inductive definition on A4 is simply a mapping
I from n-ary relations on A to n-ary relations on A which is monotone increasing;
i.e. for all n-ary relations R, S on 4

RcS implies I'(R)=T(S).
If (R)=R then R is a fixed point of T.

1.1 Theorem. Every inductive definition on A has a smallest fixed point. Indeed,
there is a relation R such that:

(i) I'(R)=R,

(i1) for any relation S on A, if I'(S)=S then R<S.

Proof. Let C={S<A"|I'(S)<S]}. Since A"eC, C is non-empty. Let R=(C.
Since (ii) now holds by definition it remains to prove (i), that is, that I'(R)=R.
Let S be an arbitrary member of C. Since R<S and I' is monotone we have
I'(R)=I(S), but I'(S)c=S, so I'(R)=S. Since S was an arbitrary member of C,
and RzﬂC, we have I'(R)c=R. To show that R<T(R) it suffices to prove
that I'(R)eC. But since I'(R)=R we have, by monotonicity, I'(I'(R))<I'(R)
so I'R)eC. O

The proof of 1.1, while correct, tells us next to nothing about the smallest
fixed point of I" and is certainly not the way we mentally justify a typical inductive
definition. Let us look at an example.
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1.2 Example. Our very first use of an inductive definition was the definition
of the class of A, formulas. We defined it as the smallest class containing the
atomic formulas and closed under A, v, 1,Vuev, Juev. How do we convinoce
ourselves that there is such a smallest set? We simply say: start with the atomic
formulas and close under (i.e., iterate) the operations A, v, 1, Vuewv, Juev. We
can turn this process into a much more instructive proof of Theorem 1.1. (By the
way, to make the class of A, formulas fall under 1.1 we let 4 be the class of formulas
of L* and define the 1-ary I" by

I'(U)={¢peA|gp is atomic or o=y A0) for some Y,0eU or...or ¢ =3Iuevy
for some yeU}.)

Motivated by the above example we make the following definitions.

1.3 Definition. Let I" be any n-ary inductive definition on a set A.
(i) The a'™-iterate of I', denoted by I%, is the n-ary relation defined by

?=F(Uﬁ<a1?’) .
(i) I r=Ua I%, where the union is taken over all ordinals.

We will show that I is the smallest fixed point of I referred to in Theorem 1.1.
We use the notation

I; *= UB <a I?‘
to simplify some equations.

1.4 Lemma. Let I" be any n-ary inductive definition on a set A.
(i) Ip=T1(0),
(i) I$=I(IF% foralla,
(iii) a< B implies 1< 1%, and
(iv) 13*1=TI(I%) for all a.

Proof. Parts (i) and (ii) are immediate from the definitions. Part (iii) follows from
monotonicity since

IF*=Ui<alr€Ur<pIr=15*
implies

F=T(IF)<sTUFP)=1}.
Part (iv) follows from (ii) since

It =TI =T07). T
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1.5 Theorem. Let I' be an n-ary inductive definition on a set A.
(i) There is an ordinal y (of cardinality <card(A")) such that

=I5
and hence
Ir={Uy<, 1%

(ii) Iy is the smallest fixed point of I.

@

Fig. 1A. Building up the smallest fixed point I

A'l

Proof. First notice that the relations form an increasing sequence of subsets of A",

0 1—... a atl—,..
IFEII-SE EI,—EIF S,

and hence the sequence must stop strictly increasing for some y of cardinality
<card(A"), i.e.,

=I5,
But then I$=I77 forall a>vy so I =If". To prove (ii), note that
[(I)=IIF)=I}=I5"=1,

by using (i) repeatedly. Hence I is a fixed point and it remains to show that I
is the smallest such. Let I'(S)=S. We prove I$<S for all «, by induction. The
induction hypothesis asserts that I1£<S forall f<a so IF*<S. By monotonicity
we have

I*=T(F)<I(S)cS. D
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1.6 Definition. Given an inductive definition I', the least ordinal y such that
I} =177 is called the closure ordinal of I and is denoted by ||}

Most of the inductive definitions we have used in the previous chapters have
had closure ordinal w so that

IF:Un<w17"'

One of the most important however, the set of sentences provable using the
IM-rule, will in general have closure ordinal greater than w. (In fact, this inductive
definition has closure ordinal O(YR). See Exercise 3.19.)

Our interest in this chapter is in inductive definitions which are definable over
an L-structure MM or over an admissible set Agy,. In order to insure the mono-
tonicity condition on I" we need the notion of an R-monotone formula.

1.7 Definition. Let 9t be a structure for some language K (usually L or L* in
applications). A formula ¢(x, ..., x,,R) of KU{R} (possibly having parameters
from N) is R-monotone on N if for all x,...,x,eN and all relations R; =R,
on N,

RR)E@R)[Xy, ..., x,]
implies
(R,RE@(R)[ x4, .05 X, ] -

Recall the notion R-positive and corresponding notation ¢(R,) from V.2.1.

1.8 Lemma. If ¢(xi,...,x,,R,) is an R-positive formula of K then it is R-mono-
tone for all K-structures .

Proof. Fix 9t and prove the result by induction following the inductive definition
of R-positive. 0

Most inductive definitions are actually given by R-positive formulas because
most inductive definitions do not really depend on the particular structure Jt
and any formula which is R-monotone for all structures 9 is equivalent to an
R-positive formula (see Exercise 1.14).

1.9 Notation and restatement of results. Let 9t be a structure for a language K.
Let R be a new n-ary relation symbol and let ¢(x,, ..., x,, R) be R-monotone on N.
(i) The n-ary inductive definition given by ¢, denoted by I',, is defined by
(X1, .., X )ET(R) iff (M,R)=0(R)[xy,..., x,] .

(i) We let I, denote I, and similarly for Ij, and I;* Thus I, is an n-ary
relation on 9t satisfying

(N 1,)=Vxy, .., x,[0(xy, ..., X, R) > R(X 4, .00 X,)]
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Furthermore, if R is an n-ary relation on 9 satisfying
RR)EVX, ..., x,[@(x1, ..., X, R)=>R(Xy, ..., X,)]

then I,=R. I, is called the smallest fixed point of the inductive definition I',,
and I% is called the o' stage of I',. It satisfies

I ={(x1, .., x) | OIS = @(R) [xy, .., X, ]} -

1.10 Proposition. Let 0t be any K-structure and let ¢(x,, ..., x,, R) be R-monotone
on N, where R is a new n-ary symbol. The fixed point 1, is a I} relation on R.

Proof. By 1.9 we see that (x4, ..., x,)el, iff VR[I',(R)= R—R(xy, ..., x,)] which
becomes

"R':VR[Vylﬁ AR yn(@(yl’ L] yn’ R)—’R(yls LR yn))_’ R(xla CEREY X,,)]
when written out in full. 0

Let 4 ={w,0,+,>. Spector [1959] observed that Kleene's analysis of IT}
relations on 4" showed that every I} relation or could be obtained by means of an
inductive definition. This result will follow from more general results in § 3. We
present the classical proof, nevertheless, since it is attractive and illustrates several
important points.

1.11 Theorem. Let A4 ={®,0,+,"> and let S be an n-ary I1} relation on N .
There is a formula ¢(xy,..., X,,y,R ) with R n+1-ary such that

S(X15..0y Xp) = 1p(X4, ..., X, 1)
for all xi,...,x,eAN".
Proof. We prove the result for n=1 and use the following normal form of Kleene

for I} sets S:
S(x) iff Vf 3InP(x, f(n)

where the following are assumed:

P is recursive,

f(n) is a number s coding up the sequence < f(0),..., f(n—1)>,
s;<s, means that s, is a sequence (code) properly extending s,,
P(x,s,) and s,<s, implies P(x,s,),

1 codes the empty sequence,

if s codes <xy,...,x,> then sr} codes {Xj,..., X))



202 VI. Inductive Definitions
The desired inductive definition ¢ is given by
s is a sequence code and, P(x,s) or Vy R(x,sny).
We first prove that
(1) I,(x,s) implies Vf [if f extends s then 3n P(x, f(n))].

Let R be the set of pairs (x,s) satisfying the right side of (1). Note that
P(x,s)— R(x,s). It sufflces to prove that I(R)=R. If (x,s)el(R) then either

P(x,s) or else VyR(x,s y) But then R(x,s) since every functlon extending s
extends sny for some y.

Next we prove the converse of (1), or rather, as much of it as we need:
(2) Vf InP(x, f(n)) implies I ox,1).

If P(x,1) then (x,1)elg so we may assume —1P(x,1). Assuming the left side
of (2) consider the set S of all s such that —1P(x,s). This set is well founded
(under <) since any infinite descending sequence would produce an f with
—1P(x, f(n)) holding for arbitrarily large n, and hence for all n. Let us write, in
this proof, p(s) for p='S(s); p(s) is defined for all seS since S is well founded.
We prove by induction on ¢ that if p(s)=¢ then (x,s)el;*!. (Since 1€S we
then have (x,1)el;"! where £=p(1).) Observe that

p(s)=sup {p(s ) +1|P(x,§}), yew}.

Now for each y, if P(x,$)) then (x,s(}z)elg, and if —|P(x,sr}1) then (x,sr})elg“
for some f<¢ by the induction hypothesis. In either case

(x,srjv)elf,.
But then by the definition of ¢,
(x,s)el5*!
as desired. Combining (1) and (2) yields the theorem. 0

One of our goals in this chapter is to prove some generalizations of this
result to arbitrary structures. Looking at the above theorem and its proof, we
are struck by three facts.

The most prominent fact is that the proof uses a normal form for IT} pre-
dicates on .4~ which has no generalization to I1] over arbitrary structures. If
we can ignore this unsettling fact, however, we can go on to make two useful
observations.

First, and very typical of the whole subject of inductive definitions, is that
the IT} relation S was not defined as a fixed point but rather as a “section” of
a fixed point:

S(%) <= I,(%,1).
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The proof makes it clear that the last coordinate of I, is where all the work is
going on. It is only at the very last minute that we can set s=1. (To clinch
matters, Feferman [1963] proves that not every I1j set over 4" is a fixed point.)
This motivates the next definition.

1.12 Definition. Let K be a language, 9t be any structure for K and let @ be a
set of formulas such that each e ® is of the form ¢(x;,...,x ,R) for some n and
some n-ary relation symbol R not in K) and is R-monotone on 9.

(i) If S=1I, for some @pe® then § is called a P-fixed point.

(i) A relation S of m arguments is P-inductive if there is a @ fixed point S’
of m+n arguments (n>0) and y,,...,y,eN such that

S(xqyeees X)) UE S(X15eeesXms Visens V)
for all x,,...,x,,eM. S is called a section of §'.

Combining 1.10 and 1.11 (and the triviality that a section of a IT} relation
is I1}) we see that a relation S on 4 is I} iff it is first order inductive.

A final point on the proof of Theorem 1.11. We made heavy use of coding
in the proof, coding of pieces of functions by sequences and sequences by num-
bers, not to mention the coding which goes into the proof of the normal form
theorem. In an admissible set, coding presents no trouble. In an arbitrary struc-
ture M, however, we may be out of luck. In this case we have two options. One
is to restrict ourselves to 9t which have built in coding machinery (this amounts
to Moschovakis [1974]'s use of “acceptable” structures). The second option,
more natural in our context is to replace induction on 9 by inductions on HF,.
We study both approaches in the latter parts of this chapter.

1.13—1.19 Exercises

1.13. Let K be a language with only relation symbols. One form of the Lyndon
Interpolation Theorem asserts that if ¢,y eK,,, if ¢ or ¥ is R-positive, and if

=e—-y)

then there is a @ which is R-positive and has symbols common to ¢ and  such that
F@—->0) and =0-V).

Prove a generalization of this to arbitrary countable, admissible fragments K,.

1.14. Prove that if ¢(x,,...,x,,R) is R-monotone for all models N of some
theory T of K,, (T not involving R, of course) then there is an R-positive
W(xy,...,x,, Ry) of K, such that

THEVX,....x, (@),

[Use the K, version of 1.13.]
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1.15. Let I' be an inductive definition, i. e. a monotonic increasing operation on
n-ary relations on some set A. Show that I' has a largest fixed point.

1.16. Let I" be an n-ary inductive definition on A and define
JP=T(4"

and for >0,
Jr=T(Np<aID-
Jr=aJt-

Show that J is the largest fixed point of I" refered to in 1.15.

Let

1.17. Let I' be an n-ary inductive definition on 4 and let I'" be defined by
C(R)=A"—T(A"—R).

Prove that I is an inductive definition. Prove that, for each «,
xely iff x¢J}

and hence that
I =A"—Jr.

1.18. Let &, @, be classes of formulas R-monotone on a structure 9, closed
under logical equivalence and such that

@(xy,...,x, R)eD,  Uff (T10(xq,...,X,, R))ED,.

A relation S on N is P,-coinductive iff for some @e®, and some parameters
Visees Yn€N

S(XpseeesXp) WM (Xpseees X V15 Yn)€J,,

for all x,,...,x,ed. Show that S is &,-coinductive iff 1S is &,-inductive.
(Hence every coinductive relation on 9 is 1. You can also prove this directly.)

1.19. Let G be an abelian p-group. Define I'(H), for H=G, by
I'(H)={px|xeH}.
Show that J; is the largest divisible subgroup of G. In this case the least ordinal «

such that Jr=ﬂ,,<ani is usually called the length of the group G. It plays a
key role in the study of p-groups.
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1.20 Notes. We have built monotonicity of I" into our definition of “inductive

definition”. There are also things called “non-monotonic inductive definitions”

which have interesting relationships with admissible sets. For references on these

operators, we refer the reader to Richter-Aczel [1974] and Moschovakis [1975].
All the results of § 1 are standard.

2. X Inductive Definitions on Admissible Sets

Let X(R.) be the collection of R-positive T formulas of L*(R) and let X, be the
union of the £(R,) as R ranges over all relation symbols not in L*. Applying
Definition 1.12 (with K=L*, 9=y, and ¢&=X%,) we have the companion
notions of X, fixed point and X, inductive relation. These notions are the primary
object of study of this section. The proofs, however, give information about a
wider class of relations.

Let o be a class of L*-structures and let X(R7T.¢") be the collection of
¥ formulas ¢(x,,...,x,, R) of L*(R) which are monotone increasing on each
structure in . We let X(1.#") be the union of the X(R1.¢") as R varies. (Read
“% increasing on A~ for X(14°).) Given a structure UyeA” we have corre-
sponding notions of X(1.¢") fixed point on gy and X(1A°) inductive relation
on gy If A ={Ag} then we write T(1WUgy) for Z(1.4).

Note that by Lemma 1.8, X, =X(1¢") for all . If £ is the class of all
structures for L* which are models of some theory T then Exercise 1.14 tells us
that £, =X(14"), up to logical equivalence. In the results below, however,
A is usually a single admissible set or a class of admissible sets.)

We have already studied the most important X, inductive definition at some
length back in Chapter III. Let K, be an admissible fragment and let Thm, be
the set of theorems of K,. By definition, Thm, is the smallest set of formulas
of K, containing the axioms (A 1)—(A 7) and closed under (R 1)—(R 3). This is,
of course, a typical example of an inductive definition. Let I, be this inductive
definition.

2.1 Proposition. Using the notation just above we have
(i) I is a X, inductive definition, and hence
(if) Thm, is a X, fixed point.

Proof. We simply write out the definition of I, to see that it is in fact X, . Let R
be a new unary symbol and recall that

xely(R) iff xeK,A[(A)v(R1)v(R2)vR3)]
where we have used

(A) “xis an instance of (A1)—(A7)".

(R1) 3y[yeRA(y—>x)eR].

(R2) “x is of the form (Y — Vv 6(v)) where v is not free in  and (Y — 0(v))eR’.
(R3) “x is of the form (- A ®) and, for each pe®, (Y —p)eR”.
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We can rewrite this schematically in the form

xely(R) iff AjA[A;vE(R,)VvA(R,)VAR,)],
so I is indeed a X(R,) inductive definition. 0

Now one of the primary aims of § II1.5 was to prove that Thm, was in fact
Y, definable on A. In this section we use this fact to prove that every X, in-
ductive relation on an admissible set is X, on that admissible set. For A countable,
even more is true.

2.2 Theorem. Let A be a countable admissible set. Every Z(1A) inductive rela-
tion on A is X, on A.

Proof. 1t clearly suffices to prove that every X(1A) fixed point on A is X, since
the X, relations are closed under sections. Let ¢(x,...,x,, R)eZ({ A). The proof
goes back to the Extended Completeness Theorem for countable admissible
fragments and, hence, to our analysis of I3, carried out in § IILS. Let K be the
formalized version of L*(R)u{X|xeA} and let K, be the fragment given by
A (=Ag). Let T be the K, theory:

Diagram(A),

Vo[vedeo\/,,v=X] forall aeh,

Voi,...s 0, [@(V15- .., 0 R) = R(vy,...,0,)] .
We claim that

(1) (pporerx)el, iff TERRy,....%,)

from which the conclusion follows by the Extended Completeness Theorem.
The (<=) half of (1) follows from the observation that

(A,1)=T

when R is interpreted by I,. To prove (=>) suppose that (Bg,R) is an arbitrary
model of T. We need to prove that whenever (x,,...,x,)el,, we have

(Bg,R) = R(X,...,X).
If we let Ry=R[Aq then we note that (up to isomorphism)
(ASDI’RO) Eend(%‘.mlz)

so what we need to prove is that I,=R,. This will follow (from 1.5 (ii)) if we
prove that I'(Ry)=R,); i.e., that

(2) (AM’RO)':Vyla"'?yn [(p(yl"">ym R)_’ R(J’p---’)’n)] N
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So suppose that y,,...,y,eAqg and

(ABJI’RO)': (P(yla""yn’ R)

Since ¢ is a T formula and (Bg,R) is an end extension of (Agq,R,) we have

(%WaR)': (p(yl""sym R),

and so, by the last axiom of T, R(y,,...,y,) holds, and hence Rg(y;,...,y,). This
establishes (2) and hence the theorem. 0

Let @(x;,...»Xp Ug,-..,0, R) be a fixed ¥ formula of L*(R). The following
remarks are intended to lift much of Theorem 2.2 to arbitrary admissible sets
by means of the Absoluteness Principle.

2.3 Remark. The X, formula defining I, in Theorem 2.2 is independent of A
except for the parameters occuring in ¢. More fully, let

I(p(A’yl""7yk)
denote the smallest fixed point defined on A by I', when v, =y,,...,y,=y; (pro-
vided @(x1,..., X5 Vis--s Vio R)EZ(RTA)). There is a Z, formula Y(x,..., Xy, Uy, .., 0))
of L* such that for all countable, admissible A and all y,,...,y €A,

(3) if O(X1s--sXps Y1s--+5 Vs R) is R-monotone on A then for all x,,...,x, €A,
(g5 X)EL(RA, Y1, yi) U AEY(Xq, s Xy Viseens Vi) -
Proof. Let y be the formula which expresses
Ip [p is a proof of 6— R(X,,...,X,) where o is a conjunction of members of T],
where T is as in the proof of 2.2, and examine the proof of Theorem 2.2. [
2.4 Remark. The operation I}(A,y,,...,y,), isa X operation of A, y,,...,);, since

it is defined by £ Recursion on «. In ZF we proved the existence of an a (de-
pending on A, y,,...,y,) such that

LAy, y0) = 148, g, 00 -

(This step takes us outside KPU since it requires some form of X, Separation.)
Thus, in ZF, the predicate

(X150 X)) EL(B, Y1see s Vi)
is a A, predicate of A, Xy,...,X,, V1,---, V- It is expressed by the X, formula

o [(xy,..., x)EINA, yy, ..., y)]
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and the I, formula

Vo [I5(B, Y1, yi) =15 (B, s ) = (Xgse s X)ETHB Yy, ., 1)

(The characteriz_ation of I,(A,yy,...,y) as smallest fixed point of I, gives an-
other IT; definition.)

2.5 Remark. The conclusion of line (3) above is a A, predicate of A, y,,...,y,. The
hypothesis, however, is a I1, predicate of A, y,,...,y, which makes (3) of the
form IT,— A, and hence a X, predicate of A, y;,...,y,. To apply the Absoluteness
Principle we would need the result to be IT,.

We are now ready to lift Theorem 2.2 to the uncountable. We give two proofs
because each contains information not available in the other (see the two corol-
laries 2.7 and 2.8).

2.6 Gandy's Theorem. Let A be any admissible set. Every X, inductive relation
on Ais Z, on A.

First Proof of Theorem 2.6. Fix ¢(xy,...,X,, U;,...,0, R)EX(R,). Since ¢ is
R-positive it is R-monotone for all structures for L* and hence for all admissible
sets. The troublesome hypothesis of line (3) is thus superfluous and we see that
we have proved for all countable A:

if A is admissible then for all y,,...,y,€ A and all x,,...,x,€M

(X1see s X EL(BA, Yiy. ., Vi) S AEY(X ., Xy, Ve, Vi) -

The displayed part is A; so by the Lévy Absoluteness Principle, the result holds
forall A. 0

2.7 Corollary. Let ¢ be a class of admissible sets which is Z, definable in ZFC.
Then for any AeX, every Z(1A) inductive relation on A is X, on A.

Proof. The hypothesis asserts that there is a £, formula 0(x) without parameters
such that

Aex iff 6(A),
ZFCHO(A)— A is admissible.

Replace “A is admissible” by “6(A)’ in the above proof. [

For example, the /" in 2.6 might be the class of all admissible sets or the
class of L(x) where a is recursively inaccessible or nonprojectible.

Second Proof of Theorem 2.6. This proof is more traditional in that it uses the
Second Recursion Theorem. For simplicity we let n=1 and we suppress
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parameters y,,...,y, entirely since they are held constant in this proof. To
simplify notation, whenever S is a relation on A and ¢(x,R)eX(R,), we write

A= ox,S)
instead of the more accurate

(2,5)F o(R) [x].

Now let ¢(x,R)eZ(R,). Use the Second Recursion Theorem to define a X
formula ¥ of L* such that

KPUY(x, ) o(x, Iy < y(-,x)).
(More precisely,
KPUFy(x, ) olx, Ay Iy <B y(y, 7).
To fit thus into Second Recursion Theorem, first let S be a new binary symbol
and let ¢'(x,p,S) be ¢(x,Iy<BS(-,y) and then apply the Second Recursion
Theorem.) We claim that
(4) for f<o(p)
xelb iff AEy(x,p).

The proof proceeds by induction on B. The induction hypothesis gives us,
for y<p,

I ={x| A= y(x,7)}
so0, taking unions,

I30 = {x| A =3y <By(x,)}.
Then for any xe A we have

xell iff xel(I57)
iff A= o(x, 177
iff A=k, Iy<By(-,y)
iff A=y(x,p).

Let a=o0(A). From (4) we obtain

() 1 = {x|A=3BY(x,p)} .
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Now we claim that
6) I(I;5=1,"
It suffices to prove I(I,*)=1,*, so suppose xel (I, %), i.e. that
A= o(x,15%).
By (5) this becomes

A= o(x, 3B (-, B)).

By the X Reflection Theorem and Lemma V.2.2 there is a § <a such that
A= o(x,AB<oY(,p)

which, by (4), is equivalent to
AEo(x,157).

Thus xel(I;%)=I). But I;c1;* so xel;* as desired. But (6) immediately
implies that I,=1I;%, so |[I,]|<a and

I, = {x|A=3B Y(x,p)},
which proves that I, is X, on A. [

2.8 Corollary (Second half of Gandy's Theorem). Let A be admissible and let
o(xy,...,%X,,R;) be a X formula with parameters from A. Let o=o0(A).

) IL,l<a.

(i) For all B, 1% is =, on A.

Proof. Part (i) was explicitly mentioned in the second proof of 2.6. For (ii) we
have the result for f>a by 2.6 and for f<a by line (4) above. [

The results mentioned in 2.8 also hold for arbitrary R-monotone ¢(x,R) if
the admissible set A is countable. The proof of this, however, must await a
stronger reflection principle, the s—1II! Reflection Principle.

For sets of the form L(x) the conclusions of 2.6 and 2.8 are actually equivalent
to the hypothesis of admissibility. This will follow from Theorem 3.17 in the
next section.

2.9—2.11 Exercises

29. Let Ay, be a nonstandard model of KPU. Show that #7(Uyy,) is a X, fixed
point which is not first order definable over g What is the length of the in-
ductive definition?
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2.10 (Stavi). Show that there are pure transitive sets which are not admissible
but such that every X, inductive relation is X,. [Hint: Let A=1L(7)nV(®) for
suitably nice o, w <a<7t,.]

2.11. Let ¢(xy,...,x,,R;) be a Il formula and let J, be the largest fixed point
of I, on an admissible set A. Show that J, is IT.

2.12 Notes. The fact that, over an admissible set A, a X, inductive definition I,
has a %, fixed point and closure ordinal |I||<o(A) is usually called Gandy's
Theorem. He proved this theorem in lectures at the UCLA Logic year in 1968
by adapting the proof-theoretic approach used to prove the Barwise Com-
pleteness Theorem. A similar approach is taken in Gandy [1974]. We have given
two new proofs for this theorem, one which shows that the result can be derived
from the Barwise Completeness Theorem, the other a much more standard
recursion theoretic approach using the Second Recursion Theorem.

The recursion theoretic approach to Gandy's Theorem suggests an alternate
approach to the material in this book. One could prove Gandy's Theorem (by
means of the Second Recursion Theorem) and then quote it to prove that the
set Thm, of theorems of an admissible fragment K, is £, on A. This would
suffice for many applications of the Completeness Theorem, but not all. Some
applications actually need the notion of K,-proof used in § IIL5, since there is
important information coded inside the proof.

The approach taken here also has the advantage of stressing the interplay of
all branches of mathematical logic, which is one of the attractive features of
admissible set theory.

3. First Order Positive Inductive Definitions
and HY Py,

We have seen various ways in which HYPy; is a mini-universe of set theory
above M. For countable M, we have seen that the relations on 9 which are
elements of HYPy, are exactly the A] relations. This characterization breaks
down for uncountable M (see Exercise VII.1.16) so we are left with two problems
in the general case:

To characterize the relations on 9t which are elements of IHY P, and
To characterize the Aj relations on M in terms of HY Py,

The first of these two problems is solved by Theorem 3.6 below. The second
problem is solved at the end of § VIIIL.2.
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3.1 Definition (Moschovakis). Let K be a language and let @ be the set of all
finitary formulas of the form ¢(R,), for any new relation symbol R. Let 9 be
a structure for K and let S be a relation on 9.

(i) S is a (first order positive) fixed point on N if S is a P-fixed point (in

the sense of 1.12) on N.

(i) S is inductive on N of S is P-inductive on N.

(iii) S is coinductive on N if 1S is P-inductive on N.

(iv) S is hyperelementary on N if S is inductive and coinductive on N.

(For more intuition into the notion of coinductive, the student should do
Exercises 1.15—1.18.)

The theorems of this section are suggested by the following classical result.

3.2 Theorem. Let A ={w,0,+,-) and let S be a relation on N".
() S is I} on A iff S is inductive on N
(ii) S is A} on A iff S is hyperelementary on A"

Proof. We proved (i) in 1.10 and 1.11; (ii) is immediate from (i). 0
Thus we see that for relations on A/,

X, on HYP, =inductive on A,
element of HY P, = hyperelementary on A".

We would like to generalize these equations from 4" to an arbitrary struc-
ture M. We would like to, but we can’t because the generalization works only
for M which have some built in coding machinery. We discuss just how much
coding is needed in the next section. For now we simply state one special case
where all goes smoothly, and then take a different tack.

3.3 Theorem. Let A be an admissible set and let S be a relation on A.
(i) Sis X, on HYP(A) iff S is inductive on A.
(i) S is an element of HYP(A) iff S is hyperelementary on A.

Proof. We merely sketch a proof since this result is a special case of Theorem 3.8
and the results of the next section. The proof sketched here is more direct. As
usual, (ii) follows trivially from (i). We first show that if S is inductive on A then
S is X, on HYP(A). It clearly suffices to prove the result for the case where S
is a fixed point I, of some first order positive inductive definition I,. Since ¢
is first order over A it is A, in IHYP(A) so I, is, in particular, a £, inductive
definition over HYP(A), hence by Gandy's Theorem, I, is £, on HYP(A). (A
more direct proof which works here but not in 3.8 is to observe that I is a
HYP(A)-recursive function of B, for f<o(HYP(A)), and use ¥ Reflection to
prove that ||I,||<o(IHYP(A)). This would give the following X, definition of S:

S®) iff HYP(A)=3B(xelb).)
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To prove the other half, suppose SCA is X, on HYP(A). By Theorem IV.7.3
(or, more precisely, Corollary 3.14 below) S is weakly representable in KPU'
using the A-rule, where KPU' is the theory

KPU,

diagram (A),

XeA (all xeA),

3a Vv [veaA(v)].

But the set C,(KPU’) of consequences of KPU' using the A-rule is clearly an
inductive subset of A. Thus we have

Sx) iff f(X)eC,(KPU)

for some A-recursive function f. An easy exercise (Exercise 3.20) establishes
that S is inductive on A. [

We have been deliberately sketchy in the above proof to give the student a
feel for the main idea. This must be gone into in more detail to prove Theorem 3.8
below, the main result of this section. First, though, let’s draw some easy corol-
laries of Theorem 3.3.

3.4 Corollary. If A is a countable admissible set then

1} on A = inductive on A,

A} on A = hyperelementary on A.

Proof. This is an immediate consequence of Theorem 3.3 and the results of
§IV3. O

3.5 Lemma. Let A be admissible.
(i) There is an (n+ 1)-ary inductive relation on A which parametrizes the class
of n-ary inductive relations on A.
(ii) There is an inductive subset of A which is not hyperelementary.

Proof. By V.5.3, HYP(A) is projectible into A. Thus the lemma is just a restate-
ment using 3.3. [

Using these results we can show just exactly how one gets from one ad-
missible ordinal 7, to the next admissible ordinal 7, ;. Namely

To+1=SUp{||Il,|l: I, is a first order positive inductive definition over L(z,)},

and this sup is actually obtained. This is a special case of the following result.
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3.6 Corollary. Let A be admissible and let a=0o(HYP(A)). Then o is equal to

the sup of all |I,|| where T, is a first order positive inductive definition over A,
and this sup is actually attained.

Proof. We know that any first order positive inductive definition I', over A4 is
Z, over HYP(A) (in fact “A,,”) so [II,|[<a by the second half of Gandy's
Theorem. To show that « is such an ordinal ||I, ]|, use 3.5(ii) to choose an inductive
subset SSA which is not hyperelementary. Then S is a section of some fixed
point I,. Clearly I, is not hyperelementary either. We claim that |I,[|=a. As
mentioned in the proof of Theorem 3.3, I2 is a HYP(A) recursive function
of B, for f<a. Hence I,’;EIHYP(A) for all f<a. But then, if |I,|=p<a,
1,=I5eHYP(A) which makes I, hyperelementary, a contradiction. [

As we'll see in the next section, the hypothesis that A is admissible is far
too strong for the above results. All we really need is a reasonable amount of
coding apparatus.

What we are really after, though, is a characterization of the relations on M
in HY Py, which works for all structures i, not just those with built in coding
machinery. The best way around this is to slightly strengthen the notion of in-
ductive definition, so that one can do the coding needed in the inductive de-
finition itself.

3.7 Definition. Let @ be the set of extended first order formulas ¢(R,) of L*(R)
as defined in I1.2.7, p. 50. Let M be a structure for L and let S be a relation
on M (or even HFEy).
(i) S is extended inductive (written inductive®) on I iff S is @ inductive on
HF,.

(i) S is extended hyperelementary (written hyperelementary*) on I iff S and
18 are inductive* on .

Our second, and principal, generalization of Theorem 3.2 is the following
result.

3.8 Theorem. Let M={M,R,,...,R,> be a structure for L and let S be a rela-
tion on M (or even on HEy,).

(1) Sis X, on HYPy, iff S is inductive* on .
(i1) S is A, on HY Py, iff S is hyperelementary* on 9.

Its corollaries are analogous to those of 3.3.

3.9 Corollary. Let M={(M,R,,...,R,> be a countable structure for L.
(i) T} on M = inductive* on M.
(i1) Al on M = hyperelementary* on M. 10

3.10 Lemma. Let 9 =<{M,R,,...,R,> be a structure for L.
(i) There is an (n+1)-ary inductive* relation on HFy, which parameterizes the
class of n-ary inductive* relations on HFg,.
(i1) There is an inductive* relation on HFy, which is not hyperelementary*.
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Proof. HYPy, is projectible into HFg, again by V.5.3, so the results follows
from V.5.6 and 3.8. 0

We use these corollaries to get the most intelligible description yet of O(9)
(and hence of HY Py, since HYPy=L(a)yy where a=O0(MN)).

3.11 Theorem. If M=<{M,R,,...,R,> is a structure for L then

O(M) = sup {||T,|| | I, is an extended inductive definition over M}

and this sup is actually attained.

Proof. The proof of 3.11 is exactly like the proof of 3.6 when O(IR)>w for
then HFyeHYPy. Suppose HY Py, has ordinal w. Let I, be an extended first
order inductive definition on M. As we will see in the proof of Theorem 3.8,
I,is X, on HYPy, so ||I,|<w by the second half of Gandy’s Theorem. It is
simple to give an example of extended first order inductive definitions of
length w, e. g.,

xel'(R) iff “xis a natural number A Vy<x R(y)’
defines w in HFg; with
1+ ={0,...,n}
so |[Fl=w. 0

It is worthwhile digressing to compare 3.8 with the following consequence
of 3.3, just to make sure the student is not confusing two distinct things.

3.12 Corollary. Let M=<{M,R,,...,R,> be a structure for L which is not re-
cursively saturated. Let S be a relation on I (or even HFy).

(i) Sis £, on HYPy, iff S is inductive on HFg,.

(i) SeHYPy, iff S is hyperelementary on HFg,.

Proof. Since M is not recursively saturated, o(HY Py)>w so HFyeHY Py,
But then HYP(HFy)=HYP,, since HYP(IHF,,) is the smallest admissible set
with HF,; as an element. Thus 3.10 is a special case of 3.3. [

The student must be clear about the difference between inductive* definitions
on MM and inductive definitions on HFy,. The latter are, in general, much more
powerful since they allow unbounded universal quantification over sets in HF,
in addition to the unbounded existential allowed by inductive* definitions.

We have already done most of the work for proving Theorem 3.8 back in
§ I11.3, the section on IM-logic and the M-rule.

In the discussion below we let M=(M,R,,...,R,> be a fixed L-structure
and we let L* be an expansion of L with a new unary symbol M and symbols p
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for each peM, just as in our discussion of M-logic in § II1.3. We assume that
L* is coded up in an effective way on HFy,.

3.13 Proposition. Let T be a set of sentences of L., which is £, on HFg. Let

Cxn(T) be the set of formulas of LY, which are provable from T using the M-rule.
Then Cy(T) is inductive*.

Proof. We simply write out the original definition I' of Cqy(T) given in II1.3.4
and observe that it has the correct form. Let R be a new unary symbol and
define I' by

xel(R) if xelLi ,A[(1)v--v(9)]
where (1)...(5) are given below.

(1) (Logical Axioms) “x is an axiom of first order logic”;
(2) (Nonlogical Axioms) xe T ;
(3) (Modus Ponens) 3y [yeR A(y—x)eR];

(4) (Generalization) “x is of the form (Y — Vv 60(v)) where v is not free in ¥
and (¥ —6(v))eR”;

(5) (M-rule) “x is of the form Vv, [M(vy)—0(v,)] and for all pe M, 6(p/v,)eR™.

Clearly I' defines Cgy(T), i. €., Cqp(T)=1Ir so that Cg(T) is actually a fixed point.
I’ is definable over HFg; by an R-positive formula; the only unbounded universal
quantifier is in (5) and it is a quantifier over M. [

The reader may remember that we left a couple of proofs unfinished in § IV.7,
the section on representability using the 9-rule. We proved 1V.7.3 and IV.74
in the countable case but left the absoluteness of those results until later. Prop-
osition 3.13 allows us to finish these proofs.

3.14 Corollary. Assume the notation of Proposition 3.13.

(1)) xeCqy(T) is a A, predicate of x, T and M, A, in the theory ZF.

(i) Consequently, the proofs given in§IV.7 of IV.7.3 and IV.7.4 for the countable
case, together with Lévy's Absoluteness Principle, yield the general results.

Proof. Part (i) is a consequence of Remark 2.4. For (ii), the proofs of
IV.7.3 and IV.74 are quite similar. Since IV.7.3 is the more important for us
here (we apply it in the next proof) let us treat it in some detail. Again 7.3 (i)
and 7.3 (i) are similar so we prove (i). Suppose, as in the proof of (i), that
@(X15- -5 Xps P15--->Dis M) is @ I, formula with the property that for all g,...,q,e M

HY Py = ¢(qy,.--, 4D, M) iff KPU' =g o@@y,...,q,, P, M).
Now, if 9 is countable we use the Mi-completeness theorem to write

HYPSIJlt:(p(qla“ﬂqmﬁ’M) iff KPU+ *_mz‘P(_QU---,amT)aM)-
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I. e, we have for all countable M and all gq,,...,q,eM:
HYPy = 04y, 4u P> M) iff  @@y,-.., G P, M)e Cn(KPU™).

We claim that this is a A, predicate of M, A, in ZF. The right hand side of the
iff is A, by (i), and the left hand side is A, since satisfaction is A, and since IHY Py,
is a X, operation of 9 by the argument given in IV.3.5. By Lévy Absoluteness,
the result holds for all . 0

Theorem 3.8 will follow from Proposition 3.13 given the next lemma. It is a
special case of the Combination Lemma of Moschovakis [1974].

3.5 Lemma. Let UcHFy, be inductive*, let f:HFgh— HFy, be Z; on HFy
and let P be defined by

P(xy,....,x,) iff f(xg,...,x,)eU.
Then P is inductive* on M.

Proof. Suppose U is a section of the fixed point I, where ¢(v;,v,,R,) is ex-
tended first order positive on I, say

U(y)e=((y,z0)€l,).

We define an n+ 3-ary inductive* definition I, so that a section of I} (with i=0)
imitates I}, and the section with i=1 takes care of f. Define ¥(i,x,,...,X,,0;,0,,S4),
where S is n+3-ary, by the following, where t,,...,t,,2,,z, are arbitrary but
fixed elements of HFy:

i=0AX=TA@{,0,,Aw; w,;S(0,1,,...,t,,w;,w,)/R), or

i=1A0,0,=21,2, AS(0,t4,..., L0 [ (X15---5Xp)s Z0) -
A simple proof by induction shows that

(6) 1;(01,02) lff I$(03t1"--9tna Uy, Uz)
so that
U(y) iff Iw(()’tla-"atmyszo)-
Another proof by induction, using (6), shows that
(f(xp-- o X0),20)e s iff (1,x4,...,X,,24,2,)€ I3
Thus
P(xy,...,x,) iff (1,x,,...,%x,,2y,2,)€l,
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so P is a section of I,. The only universal quantifiers in i are those in ¢ so ¥
is extended first order positive. [0

We now return to prove the main theorem of this section, Theorem 3.8.

3.16 Proof of Theorem 3.8. (i) Let I, be an extended first order inductive de-
finition over 9. Since HF; is a X, subset of HY Py, relativizing the unbounded
(existential) set quantifiers in I, to HFy and relativizing the unbounded quan-
tifiers over M to the set M turns I, into a X, inductive definition over HY Py
and hence I, has a %, fixed point I,, by Gandy's Theorem.

To prove the other half, let us consider a relation S on M which is ; on
HY Py, By Theorem IV.7.3, S is weakly representable in KPU™ using the M-rule.
Thus there is a formula ¢(vy,...,v,) of L* such that for all x,,...,x,eM,

S(xpse..rx,) Iff @(Xy,...,X,)eCu(KPU™T).

Now, by 3.13, Cir(KPU™) is inductive* over M. Let f(xy,...,X,) = @(X;/04,...,X,/V,).
Then
S(xp,e0px,) Aff f(x45...,X,)€Cn(KPU™)

so S is inductive* by Lemma 3.15. The same proof works if S<HF; except that
Exercise IV.7.5 replaces Theorem IV.7.3. Part (ii) follows from (i) as usual. [

The final results of this section show that for nonadmissible sets of the form
L(a)gy (for example), £, inductive definitions are just as strong as arbitrary first

order inductive definitions, and that they are just as long. The results thus yield

partial converses to the results of § 2 by showing how necessary the assumption
of admissibility was for those results.

3.17 Theorem. Let M <a where a is transitive in V,, and let B be any limit
ordinal such that

Agn =(M; Lia, B)n Van, €)
is not admissible.
(iy A relation S on Agy is 2, on HYP(Ag) iff S is X, inductive on Ag.
(i1) The ordinal o(HYP(Ag)) is equal to
sup{||I,I | I, is a X, inductive definition on Mgy}

and the sup is actually attained.

3.18 Corollary. Let M <a where a is transitive in Vo and let f be any limit
ordinal. Let

A= L(a, f)n Vg, €).
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The following are equivalent, where o=o(Agy).
(i) Agy, is admissible.
(i) Every X, inductive set on Ay is T, on Ag.
(iii) For every X, inductive definition I, on Agy, ||I,|<a.

Proof. By the results of the previous section, (i)=>(ii) and (i)=>(iii). To prove
(ii) = (i), suppose Agy, is not admissible. Let S be a subset of Ay, which is Z; on
HYP(Aq) but not HYP(Ay)-finite; such an S exists since HYP(Agy) is pro-
jectible into Agy. But then S is ¥, inductive on Ag by 3.17. S cannot be X, on
Ay, for then it would be A, on HYP(Ay), hence in HY P(Ag). Thus —(i) = (ii).
For the same reason, the length ||I,| of an inductive definition of S could not
be <a so —I(i)=(iii). 0O

The proof of Theorem 3.17 uses ideas similar to those used in the proofs of
Theorem 3.3 and 3.8. We leave a few of the details to the student.

Proof of Theorem 3.17. We prove (i) assuming Ay, is countable, leaving the exten-
sion (via Lévy's Absoluteness Principle) to the student. The (<=) half of (i) is ob-
vious, so let S be a relation on Agy, which is £, on HYP(A). Every xeHYP(Ag)
has a good X, definition with parameters from L(a,f)u{L(a,p)} by IL.5.14. Since
Agy is not admissible, § and hence L(a, f) also have X, definitions on HYP(Ag)
with parameters from L(a, ) by the last step in the proof of I11.5.14. Thus every
xeHYP(Ay) has a X, definition with parameters from L(a, ). But then S has
a X, definition (as a subset, now, not an element) with parameters from L(a, f)
since the other parameters can be defined away. Thus suppose that for all
xeL(a, B)

S(x) iff HYP(Ag)=o(x,y)
where yeL(a,f) and ¢ is X,. By the Truncation Lemma S(x) is equivalent to
(7) for all By 2qBy, if By =KPU then By olx,y).
Since 8 is a limit, L(a, f) is closed under pairs, union and A, Separation so we
may code up K=L*U{X|xehAy} on Agy. Let K, be the (nonadmissible) frag-

ment of K, given by Ag. Let T<=K, the the theory

KPU

Diagram (Ay)

Vo[veae\/ ,v=%], forall aeAg,
Vp [peM].

Every model of T is isomorphic to some By 2..q4A¢p so (7) is equivalent to

TE @(X,y).
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By Theorem II1.4.5 (really I11.4.6) this is equivalent to saying that ¢(X,y) is in
the smallest set of sentences of K, containing T and (A 1)—(A 7) which is closed
under (R 1)—(R 3). This clearly amounts to a £, inductive definition I', such that

R(x) iff X, y)elr.

Therefore R is X, inductive by Exercise 3.21.

To prove (ii) we need only find a £, inductive definition on Ag, with length
o(HYP(Ag)). Let RS Ay be HYP(Ag)-r.e. but not an element of HY P(Agy).
There is such an R since HYP(Ag) is projectible into Ay, by V.5.4. Then R is
a section of I, where I, is some X, inductive definition. But now the argument
used earlier, in the proof of 3.6 for example, shows that |I}||=0o(HYP(Ay)). [

3.19—3.22 Exercises

3.19. Let Cun(KPU")=I,, where I, is extended inductive, by 3.13. Show that
O(M)=||T,|. Thus, for example, O(IM) is just the least ordinal not assigned to
a proof using the M-rule, under the usual assignment of ordinals to proofs.

3.20. Let A be a structure, let U be inductive on A and let f: 4A"—> A4 be first
order definable. Modify the proof of 3.15 to show that

PRX) iff U(f(X)
defines an inductive relation on A.

3.21. Let A be a structure, let U<WU be X, inductive on A, let f: A" > A have
a X, graph and define P by

P(xq,...,x,) iff  f(xy,...,x,)eU.
Show that P is X, inductive on UA. [Mimic the proof of 3.15.]

3.22. Give the absoluteness argument for lifting Theorem 3.17 from the countable
to the uncountable.

3.23 Notes. The main results of this section are from Barwise-Gandy-
Moschovakis [1971], at least in the case of pure admissible sets. Theorem 3.17
and its corollaries are new here.

4. Coding HF g, on IR

A pairing function on a set M is simply a one-one function mapping M x M
into M. An n-ary function f on a structure 9 is inductive (or hyperelementary)
if its graph is an (n+ 1)-ary inductive (or hyperelementary, respectively) relation
on IN. In this section we show how to code HFg; on M using an inductive pairing
function on M. Our goal is to prove the following theorem.
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4.1 Theorem. Let M=<{M,R,,...,R,> be a structure with an inductive pairing
function. The inductive and inductive* relations on M coincide.

We give the applications of this theorem (and a couple of related results
obtained along the way) in the next section by showing how a great many results
on inductive relations on 9 can be obtained in a simple fashion by projecting the
recursion theory of HY Py,. In so doing, we tie up the theory of admissible sets
with the theory of inductive relations as developed in Moschovakis [1974]. Since
our aim in these sections is to relate our theory to Moschovakis theory, we feel
only mildly apologetic for using without proof two results (4.2 and 4.3 below)
from Chapter 1 of Moschovakis [1974]. The proofs are sketched in Exercises
4.17 and 4.18.

A relation P on M is defined from Q by hyperelementary substitution if there
are hyperelementary functions f,..., f, so that

P(xy,...,x,) iff  Q(fi(%155X0)see s [ilX15- -5 X))
for all x,,...,x,eM.

4.2 Theorem. The inductive relations on M contain all first order relations and
are closed under A, v, 3,V and hyperelementary substitution. Hence, the hyper-
elementary relations on MM contain all first order relations on M and are closed
under 1, A, v, 3, V and hyperelementary substitution.

Proof. This result follows easily from 4.3. See Theorem 1D.1 of Moschovakis
[1974] or Exercise 4.18. 0O

The inductive relations on 9t are closed under induction in a sense made
precise by 4.3.

4.3 Theorem. Let S,,...,S, be relations on M and consider an inductive defi-
nition I, over the expanded structure (M,S,,...,S,), where ¢ is of the form
@(X15--sXns Ry, Sys...,Sy) in LU{R,S,,...,S;}.

@) If S,,...,S, are hyperelementary on MM then the fixed point 1, defined on
(M, S,,...,S,) is inductive on the original structure IN.

@) If S,,...,S, are inductive on M then the conclusion of (i) still holds provided
@ is S;-positive for i=1,...,k.

(iii) In either case (i) or (ii), I, is a section of a fixed point I, for some
Y(xy,..., X, Ry)ELU{R} with | >|T,|.

Proof. See Theorem 1C.3 of Moschovakis [1974] or Exercise 4.17. 0
There is one simple consequence of 4.2 that deserves mention. If f is an in-
ductive function on M and if its domain D is hyperelementary (e. g., if f is total)

then f is hyperelementary, since

fGpenx)#y iff (X%, DV IZ[f(xy,..,X)=2A2#Y].
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Thus, if MM has an inductive pairing function p, p is actually hyperelementary
since p is total.

The plan for the proof of Theorem 4.1 is simple. Fix an inductive pairing
function p on M. We are going to use p to assign notations to the elements of
IHF,,. The set T of notations will be inductive on 9 but not, in general, hyper-
elementary. An extended first order formula of the form

JaeHF(...)
will translate into
Ax (xeT A7)

which will keep us within the class of inductive relations since the inductive
set T occurs positively. On the other hand, a quantifier of the form

VaeHFg(...)
would translate into
Vx(x¢T v )

which is not permitted since T occurs negatively. The only complications in the
proof are caused by the following two facts. Since {p,q}={q,p} we are not going
to be able to have unique notations for the elements of HFy,. Secondly, we must
find some way to handle bounded universal quantifiers in a positive way. (This
accounts for the relation & used below and most of the other complications.)

The notation system used is based upon the fact that HFy, is the closure of
Mu{0} under the operation

Sx,y)=xu{y}.
Define a hierarchy HE} as follows:

HER = {0},
HEg ") = HEg U {au {x}: a, xe HE UM} .

This hierarchy grows more slowly than the HFy(n) hierarchy used in § I1.2 but
it eventually gets the job done.

4.4 Lemma. HF,=|J,-, HER.
Proof. Suppose there were some set aeHFy which did not appear at any stage
of our new hierarchy. Among such sets a choose one of least rank and, among

those of least rank, choose one of smallest cardinality. Since 0e HE, a is non-
empty so we may write

a={X{ye0s X1}
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Let ag={x,,...,x;}. Since rk(ao)<rk(a) and card(a,)<card(a), a, is formed

in our new hierarchy, by choice of a. Since rk(x,,,)<rk(a), x,,, is also formed.
Pick n so that both a, and x, ,, are in HE. Then a=S(ay,x;,,) isin HEZ*D. 0

Let M be an infinite set with pairing function p: M x M > M. Let x,, x;, X,
be distinct elements of M. We use the following notational conventions.

® for P(xo,xo),
X for p(xlax)a
xdy for plx,,p(x,y)).
4.5 Lemma. The functions fi, f, defined below are one-one, they have disjoint

ranges and Q is in the range of neither. They are HF g ,-recursive and hyper-
elementary on (IR, p):

filx)=x frx,y)=x3y.
Proof. This is immediate since p is one-one and x,, X,, x, are distinct. [

We use these functions to define two sets of closed terms: the ur-terms denote
elements of M; the set-terms denote hereditarily finite sets over M.

4.6 Definition. (i) For each xe M, x is an ur-term and x denotes x, written
x|=x.
The set of ur-terms is called T,.
(ii) The set T, of set-terms and the function || mapping T, onto HF,, are

defined inductively:
a) @ is in T, and 0 is a notation for 0, i.e.,

10| =0.

b) If xisin T, and y is in T,uT, and if |y|¢|x| then xJy is in 71; and
Ix3yl=Ix|u{lyl}.

(iii) The set T of all notations is T,UT,.

We require |y|¢|x| to keep the set of notations of each acIHF,, finite.

The definition of T, is an inductive definition, not over (9, p) but rather over
HEFgy ,)- One of our tasks is to show that 7 is actually inductive over (M, p)
after all.
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Note that by Lemma 4.4, every aeHF,, is |x| for some xeT, Define the
following relations on M:

x&y iff x,yeT and |x|e[y[;
x&y iff yeT and if xeT then |x|¢|y|;
xxy iff x,yeT and |x|=|y|;
xxy iff yeT andif xeT then |x|#|y|.

4.7 Main Lemma. The sets T,, T and the relations &, &, ~, and % are all in-
ductive on (M,p). The set T, is definable on (M, p).

Proof. It is clear that T, is definable on (M, p) since
yeT, iff Ix(y=x).

We will give an informal simultaneous inductive definition of the six other rela-
tions as well as two auxillary relations R and R. First, however, let N be the
smallest subset of M containing @ and closed under

if xeN then (xJdx)eN.

Thus N is inductive on (M,p) and N contains a unique notation for each
natural number. We will confuse a natural number with its notation in this
proof. Define

R(n,x) iff neN and xeT, and |x|e HF{;
R(n,x) iff neN and if xeT, then |x|¢ HF{.

The following clauses constitute a simultaneous inductive definition of all the
above relations. It should be pretty obvious to the reader how one could turn
this into one giant inductive definition over (M,p) and then extract the given
relations as sections. (If he needs help, the student can consult the Simultaneous
Induction Lemma on p. 12 of Moschovakis [1974].)

(1) xeT, iff x=0 or there is a yeT, and a ze T,uT, such that z&€y and
xis ydz.

(2) xeT iff xeT, or xeT,.
(3) x&y iff yeT, and y is of the form udv and x&u or x=v.

(4) x&y iff yeT and yis @ or yeT, or y is of the form udv and x&u
and x%v.

V(S) x~y iff x,yeT and x=y or x,yeT, and for every z (z&xv z&y) and
(z&yvz&x).

(6) R(0,x) iff x=0;
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R(n+1,x) iff xe T, and R(n,x) or else x is of the form ydJdz where R(n,y)
and (ze T, v R(n,z)).

(7) R0,x) iff x#0;
R(n+1,x) iff R(n,x) and either x is not of the form uduv (for all u, v) or
relse x is of the form udv but one of the following holds:

véu, R(n,u), R(n,v).

(8) x&y iff there is an neN such that R(n,x) but R(n,y) or there is an neN
such that R(n,x) and R(n,y) (in which case x is in T,) and there is a z such that

(z&xAzEY)v(zEynz&X)).

It takes a bit of checking to see that in each case the induction is pushed back,
but this checking is best done on scratch paper. [

The relations R, R used above are needed only to prove the Main Lemma.
They should not be confused with other relations R used later on.

We are now ready to fill in the outline of the proof of Theorem 4.1. For
simplicity of notation let us suppose our language L has only one binary sym-
bol Q. Let R be a new relation symbol for use in inductive definitions. We con-
sider L*(R)=L(e,R) as a single sorted language with unary symbols U (for
urelements) and S (for sets) with bounded quantification as a primitive. We let
K be a new language with atomic symbols

Q,U,S,R, 4,8, ~, %.

We define a mapping " from L*(R) into K as follows: given ¢el*(R), first
push the negations inside as far as possible so that the only negative sub-
formulas in ¢ are negated atomic. Replace each positive occurrence of xey by
x&y, each occurrence of —(xey) by x&y, each positive occurrence of x=y
by x=zy, each occurrence of —i(x=y) by x*y, each bounded quantifer

Vxey(..) by Vx(xé&yv..),
Ixey(..) by Ix(xEyna..).

Thus, in ¢, all occurrences of &, &, =, & are positive. If ¢ is extended first order
then S also occurs positively in ¢ since it only appears in the contexts

Ix (S(x)A...)
and
Ix (U(x) v S(X) A...).

Let M be the infinite set with pairing function p used above. Let Q be any
binary relation on M. Define Q on T, by

0(p,q) iff Q(p,q)
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for all p,qeM so that map t—|t| gives an isomorphism of (T:,,Q) onto
M=(M,Q). We let M be the structure for K with universe M and with inter-
pretations given by

S
R
2

Q

symbol: u s
interpretation: T, T; Q

&
& & ~ =

Thus U, Q are interpreted by (hyper)elementary relations; the other symbols
(which will occur positively in ¢ whenever ¢ is extended first order) are inter-

preted by inductive relations so things are set up to apply Theorem 4.3 (i), (ii).
Given an n-ary relation R on HFy, we define R on T by

R(t,...,t) iff R(tyl,...,|t.), for t,,...,t,eT.

4.8 Lemma. For any formula ¢(vy,...,v,, R)eL*(R), any relation R on HFy, and
any t,....tyeT we have

(HFy, R)= o[t ltl] i OR)=o[1,...0].
Proof. By induction on formulas ¢@el*(R). For atomic and negated atomic

formulas, it follows by the definitions. The induction step is immediate since
every xeHF,; is denoted by some term t. [

4.9 Lemma. Let ¢(xy,...,x,, R,)eL*(R). For eacha and each t,,...,t,e T we have
(ltlla”"ltnl)EI; lff (tl"“atn)EI(%’
where the induction on the left is over HFy, that on the right over IR.

Proof. By induction, of course. The induction hypothesis asserts that
(ol It el iff (¢, 0)€l5",

i. e, that (;Ea)zlg"‘. But then

(ltll7"" |tn|)EI:) lff (]I—IFW’I;LI)‘: (p(ltll"'-»ltnL R+)

iff (R I59 =@ty Ry)  (by 4.8)
VN (R 1=0 £ S|

We are now ready to prove Theorem 4.1. The following result comes out of
the proof.

4.10 Corollary. Let M be a structure for L with an inductive pairing function.
If T, is an extended first order inductive definition over I then there is a first
order inductive definition I, over M with ||[}|=|T,||.
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Proof of Theorem 4.1 and Corollary 4.10. Let It ={M,Q) be an L-structure and
let p be an inductive, hence hyperelementary, pairing function on . By 4.2 (i),
Pt and the expanded structure (M, p) have exactly the same inductive and hyper-
elementary relations. Thus T, O are hyperelementary on M, and T,, &, &, =,
‘and & are inductive on IN. Let S M" be inductive*. Choose an extended first
order inductive definition I, and parameters y,,...,y,€ MUHFy, such that

S(xy,..,x,) AT (xy,...,x,, e,

Now consider the inductive definition I'; over 9. By the above lemma |I; Wl =150
and, for any t,,...,t,. €T,

(tb n+k)EI[b lff (ltliy'.."tn-!-k,)el

By Theorem 4.3 (ii) and the remarks above about the relations T, &, &, ~ and &
all occuring positively in @, I; is inductive over the original 9. Choose ...,
with |t;|=yy,....|ts| =y Then, for all x,,...,x,eM,

S(xpseeenXy) M (Xq,.0, X b, t)ET,

so § is obtained from the inductive set I; by hyperelementary substitution and,
hence, is inductive. By 4.3 (iii) there is an inductive definition I, over I with
N =] =IT,]l, so this also proves the corollary. [0

The notation system we have been using can be seen to be a notation system
in the precise sense of § V.5. This follows from the next lemma. We assume the
notation from above.

4.11 Lemma. Define a function © on HE,, , by

m(x)={ye T||y|=x}
I
Then m is a total HF gy ,-recursive function.

Proof. Given a set a of cardinality >1, we call a pair (a,,x) a splitting of a if
a=agu{x} but x¢a,. Let

Spl(a) = {(ag,x)|(ay, x) is a splitting of a}

for all aeHF,,. It is a simple matter to check that Spl is HFy-recursive. We
first define = more explicitly and then discuss the method used to see that the
definition is HFg, ,-recursive. The definition of 7 parallels the proof of 4.4.

n(p)={p} for peM,
m(0) = {0} .
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For nonempty sets a, n(a) is defined by a double induction, first on rk(a) and,
among sets of the same rank, on card(a). So suppose n(x) is defined for all xea
and all x<a with card(x)<card(a). If a={x,...,x,} with n>1 then we look
at any splitting (a,, x) of a. Now n(a,), n(x) are defined and, for t,en(ay), |tol=a,
and for t,en(x), |t;|=x so |toSt;|=aou{x}=a. Thus we may define

ni(a) = {to, S t,: for some (a,,x)e Spl(a), toen(ao) and t, en(x)}.

With this definition n is clearly HF g ,-recursive by the Second Recursion
Theorem. [

4.12 Theorem. Let M=<{M,R,,...,R,> be a structure for L.
(i) If M has an HFy-recursive pairing function then HFy is projectible
into M.

(i) If M has a IHY Py-recursive pairing function then HY Py, is projectible
into M.

Proof. (i) The sets in HFy, depend only on M, not on the whole structure I,
so if we add a pairing function p to MM, HEg, , has the same sets as HEy. By
Lemma 4.11, HEgy, , is projectible into I; i.e., there is an HFqy , recursive
notation system 7 with D, =M. But then, if p is HFy-recursive, 7 is also HFy-
recursive. The proof of (ii) is similar. Let p be a HY Py-recursive pairing function
so that HY Py and HYPgy, ,) have the same universe of sets. By V.5.3 we have
a notation system m, for HY Py with D, = HFy. By 4.11, there is a HYPy -
recursive map m; on HFy with n,(x)eM, n,(x)n7n;(y)=0 for x#y. Let n be
defined by

n(x) =) {m ()l yemo(x)}.
Then n is a notation system for HY Py, with D, =M. 0

The following special case of 4.12 (ii) will be of great use to us in the next
section.

4.13 Corollary. Let M={(M,R,,...,R,> be a structure for L with an inductive
pairing function. Then HY Py, is projectible into IN.

Proof. If p is an inductive pairing function on 9 then it is hyperelementary and
hence an element of HY Py,. Thus 4.12 (ii) applies. [

4.14—4.18 Exercises

4.14. Let M=(M, ~)> where ~ is an equivalence relation on M which exactly
one equivalence class of each finite cardinality. Define

x<y iff card(x/~)<card(y/~).
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(i) Prove that < is X; on HFy; and hence is extended inductive on 9.
(ii) (Kunen). Prove that < is not inductive on .
(iii) Prove that o(HY Py) > w.

4.15. This exercise introduces the Moschovakis [1974] notions of acceptable and
almost acceptable structures. A coding scheme € for a structure I consists of:
(a) a subset N¢ of M and a linear ordering <¥ of N such that

(N¥ <®y=(w, <), and

(b) an injection ¢ »® of the set of all finite sequences from M into M.

Given a fixed coding scheme ¥ we use 0,1,2,... to indicate the appropriate
members of N as ordered by <¥. Associated with a coding scheme & there are
some natural relations and functions.

Seq®(x) iff x=¢ ¢ or x={x,...,x,»¢ for some n and some x,...,Xx,.

Ih%(x)=0 if —1Seq®(x)
=n if Seq®(x) and x={x,...,x,>%.

q%(x,m)=x,, if for some xi,...,X,, x={x,...,x,»¢ and 1<m<n
=0 otherwise.

A structure I is almost acceptable (or acceptable) if M has a coding scheme €
with all of N¥, <%, Seq®, Ih¥, q hyperelementary (or first order, resp.).

(i) Show that every almost acceptable structure has an inductive pairing
function.

(i) Let M be a structure with an inductive pairing function. Show that M is
almost acceptable iff M is not recursively saturated. [It is easy to see that if M
is almost acceptable then o(HYPy)>w. To prove the converse use Corol-
lary 4.10.]

4.16. Show that all models of Peano arithmetic, KPU and ZF have definable
pairing functions, even the recursively saturated ones.

4.17. Let M=(M,R,,...,R;> be an infinite structure and let I}, be an inductive
definition over M, say Y =y(uy,...,u,,S,). Now let IM'=(IM,S) where S is
defined by:

S(xy,x5) iff (xq,%5,a1,a,)€l,.

Let ¢(vy,...,v3,S,,T,)eLU{S,T}, where S is binary (to denote S) and T is 3-ary
(to be used in an induction) and let I, be the natural inductive definition over
(9, S) given by ¢. We are going to outline the proof from Moschovakis [1974]
that I, is inductive over the original structure IR, thus proving Theorem 4.3.
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Let 0,1,u,,...,1,,7;,...,05 be constants from M with 0#1. Let Q be a new
8-ary (8=1+4+3) relation symbol and define 0, u,,...,uy,vy,...,03,Q,) by

[l=0/\ ‘//(ula'”,u4> Q(O, ERERE .a51952’53)/R] v
[i=1 A QD(UI, Uy, 03, Q(O’ * ‘aal,az’-ﬁb_v_z’v:&)/s’Q(iaﬁl’ﬂbai«hah " 3)/T] .

Consider the induction definition I'y over IR.
(i) Prove that for each «a,

(uy,...,ugely it (0,uy,...,u,,7,,...,03)€ 0§

and hencé

(uy,...,ug)el, ff (0,uy,...,u,,7,,...,03)€l,.

(ii) Prove that if (1,u,...,uy, vy,...,v3)€lf then (vy,...,v3)€l}.
(iii) Prove that if (vy,...,v;)el} then for some B, (1,u,...,uq, V..., 0318, by
induction on «, using (i).
(iv) Use (ii), (iii) to conclude that I, is a section of I, and hence is inductive
on IM.
(v) Show that ||I,|| >[Il
(vi) Prove Theorem 4.3.

4.18 Use Theorem 4.3 to prove Theorem 4.2 [For example, show that if S;, S,
are inductive on I then S,uUS, is inductive on (M, S, S,) with an inductive de-
finition in which S, S, occur positively.]

4.19 Notes. The fact that an inductive pairing function suffices for coding HFg,
on M goes back, indirectly, to Aczel [1970]. The proof of Theorem 4.1 given
above owes much to ideas of Aczel and Nyberg.

5. Inductive Relations on Structures with Pairing

Inductive and coinductive definitions appear in most branches of mathematics.
Spector [1961] was the first to focus attention on them as objects worthy of study
in their own right, but then only over the structure .#" of the natural numbers.
The development over an absolutely arbitrary structure 9 was not carried out
until Moschovakis [1974] produced his attractive and coherent picture. Our
object in this section is to view portions of Moschovakis picture as projections
of HY Py,

Let us summarize the results at our disposal.

5.1 Theorem. Let M={(M,R,,...,R,> be a structure with an inductively definable
pairing function. Let S be a relation on IN.
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(i) S is inductive on M iff S is Z; on HY Py,.
(i) S is hyperelementary on MM iff SeHY Py,
(iii) O(IM) is equal to

sup{|[, |l | I, is first order positive inductive on I}

and this sup is attained.
(iv) HY Py, is projectible into M.

Proof. Part (i) follows from Theorems 3.8 and 4.1; (ii) follows from (i). Part (iii)
follows from Theorem 3.11 and Corollary 4.10. Part (iv) is Theorem 4.12 (ii). [

We want to use this theorem to obtain some of the results in Moschovakis
[1974]. In order to facilitate comparison we use the same names for theorems
as in Moschovakis, even when our theorem is a little more or a little less general.

5.2 Corollary (The Abstract Kleene Theorem). If M={(M,R,,...,R,)> isa counta-
ble structure with an inductively definable pairing function then the T1} relations
coincide with the inductive relations on IN.

Proof. Both classes of relations coincide with the class of relations on 9t which
are X, on HYPy, by 5.1 and §IV.3. [

Notice that this result makes no reference to admissible sets; it is only in
the proof that they appear. The same remark applies to many of the results
below. In order to make this more obvious we use Moschovakis notation

k™ = sup {||T, ol [ I, is a first order positive inductive definition over M}.

Thus x™=0(M) if M has an inductive pairing function. In this section IN always
denotes a structure {M,R,,...,R,> for the language L.

5.3 Proposition (The Closure Theorem). Let M have an inductive pairing function
and let ¢(xy,...,x,,R,) define I, over M.

(i) For each a<xk™, I3 is hyperelementary on 9.

(ii) I, is hyperelementary iff || <x™.

Proof. I, is a HYPy-recursive function of «, for aclHYPy. Hence each
I,eHY Py, for aeHYPy and is thus hyperelementary by 5.1 (ii). This proves (i)
and the (<) half of (ii). Consider the map p, defined on I, by

po(x) =least f(xeI£).
This is clearly HY Py-recursive. If 1,eHYPy, then, by £ Replacement
T\l = sup {p,(x)|xe1,}

exists in HY Py, and is thus less than ™. 0
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One of the awkward points in the theory of inductive definitions (when not
done in the context of admissible sets) is that one needs to deal with ordinals but
the ordinals are not in your structure. To get around this difficulty, Moschovakis
introduces the concept of an inductive norm. A norm on a set S is simply a
mapping p of S onto some ordinal 1. We use

p:S > A

to indicate that p is a norm mapping S onto A. Given p:S—- 4, define
x<,y iff xeSA(y¢Svp(x)<p(y),
x<,y if xeSA(y¢Svp(x)<p(y).

A norm p:S— A is inductive on M if the relations <, and <, are inductive
on M. Notice that if p: S —- 4 is inductive then S is inductive since S(x) iff x<,x.
The most natural inductive norms are those on fixed point I, defined by

p(x)=least f(xeIf).
(To see that this norm p=p, is inductive observe that

x<,y iff xel,Ay¢lsr®,
x<,y iff xel,Ay¢Is®
and the relations on the right are clearly £, on HY Py, hence inductive on I.)
One of the most useful lemmas on inductive definitions is the Prewellordering

Theorem which asserts that every inductive set has an inductive norm. In terms
of admissible sets, this is a consequence of the fact that HY Py, is resolvable, in fact

HY Py = L(0)n

where a=O0(M). Most of the consequences of the Prewellordering Theorem in
Moschovakis [1974] are actually obtained more easily from this equation. See
for example, Exercise 5.19 for the Reduction and Separation Theorems.

5.4 The Prewellordering Theorem. Let 9 have an inductively definable pairing
function. Every inductive relation S on I has an inductive norm.

Proof. Let Sbe X, on HYPy, , say
S(x) iff L()gF 3z 0o(x,2)

where ¢ is A, and a=0(HY Py)=x™. Let R be the HY Py-recursive predicate
given by ‘

R(B,x) iff FzeL(B)yo(x,z)
S0

S(x) iff 3IBR(B,x).
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Now the map f on S defined by

f(x)=1least B R(f, x)
is not onto an ordinal so it is not a norm. Define p on S by
p(x)={yeM|Fy< f(x)R(, )}

Now

y<x iff yep(x)

is a well-founded relation so its associated rank function p=p< is a norm. We
claim it is inductive on M. To see this observe that

y<,x iff yeS and VB<f(y)R(B,x),
y<,x iff yeS and x¢p(y)

so both relations are X, on HY Py, hence inductive on M. [

The Closure Theorem shows that every fixed point I, is the uniform limit of
hyperelementary sets, the I2. The Prewellordering Theorem allows us to extend
this from fixed points to arbitrary inductive sets. If p: S —- 1 then p endows S
with stages S% in a natural way:

S8 ={xeS|p(x)<B}.

The Boundedness Theorem, Corollary 5.6, is the natural generalization of the
Closure Theorem.

5.5 Theorem. Let M be a structure with an inductive pairing function. Let
p:S— A be an inductive norm on a relation S.
(i) A<o(HYPy) and p is HY Py-recursive.
(i) For each a<o(HYPy), S:e HYPy, and, as a function of o, S is a HY Py-
recursive function.

Proof. Define a function p with domain S by
p(x)= {ye M| p(y)<p(x)}.

For xeS§,
p(x)={yeM|y<,x}={yeM|(x<,y)}

so p(x)e HYPy by A, Separation. Further, p is HY Py-recursive since its graph
is X, definable:

p(x)=z iff xeSAVyez(y<,x) AVyeM—z(x<,y).
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Now we may apply V.3.1 to p. Define
y<x iff yep(x);

and note that < is well founded since y<x implies p(y)<p(x). But then p is
HY Py-recursive by V.3.1 since

p(x) = sup {p(y)+1|y<x}.
This proves (i). To prove (ii) first define Q(f,x) by
QB,x) iff f<l and p(x)<p.
We claim Q is HYPy-recursive. The clause f<A4 causes no trouble since either

A=0(HYPy) in which case the clause is redundant or else A<o(HYPy) in
which case “B< 1’ is A,. But for <1

0B, x) iff Iy [p(x)=yAr7<,B],
208, x) iff Iy [p(y)=pAry<,x]

so Q is A; on HY Py,. But
Sh=1{xeM|Q(B,x)}

so S5eHYP,, by A, Separation. The graph z=S% is %, since it is equivalent to
Vxez Q(x,B) A VxeM [Q(x,B)—xez]

so (ii) holds. 0

5.6 Corollary (The Boundedness Theorem). Let I be a structure with an induc-
tive pairing function. Let p:S—— A be any inductive norm.
(i) A<k™
(ii) For each a<xk™, S, is hyperelementary.
(i) S is hyperelementary iff i <x™.

Proof. The only part left to prove, after Theorem 5.5, is that if S is hyper-
elementary then every inductive norm p:S—>1 has A1<x™. This follows by
% Replacement since

A=sup{p(x)|xeS}

and p is HY Py-recursive. 1[I

The next result, the Covering Theorem, is one of the most useful consequences
of the Boundedness Theorem. We state only the special case that we need in
the Exercises.
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5.7 Corollary (The Covering Theorem). Let IR be a structure with an inductive
pairing function. Let S be an inductive subset of MM and let T<S be coinductive
on M. Let p:S——>A be any inductive norm on S. Then T is a subset of one of
the hyperelementary resolvents S& for f<x™.

Proof. Suppose that the conclusion failed. Then we could write
M—S={xeM|VyeM(yeT—y<,x)}

which makes M —S a X, subset of IHYPy; and hence Se HYP,, since S is also
%, on HYPy,. But then S=S;,1 and A<k™ by 5.6, so T is, after all, a subset of
the hyperelementary resolvent Si. 0

We now return to more familiar matters.

5.8 Theorem. Let M be a structure with an inductive pairing function. For each
n=1 there is an inductive relation of n+1 arguments that parametrizes the class
of n-ary inductive relations.

Proof. In view of 5.1(iv), this is just a restatement of V.5.6. [

As always, we have the following corollary, to be compared with 5.13 below.

5.9 Corollary. If I is a structure with an inductive pairing function, then not
every inductive relation is hyperelementary. [

Some further uses of HY Py, in the study of inductive relations are sketched
in the exercises, see especially 5.19, 5.23 and 5.24.

We can get an excellent feeling for the inductive, coinductive and hyper-
elementary relations on a structure by returning to infinitary logic.

Let « be an admissible ordinal, let A=1(x) and let L, be the admissible
fragment of L, given by A. We refer to the elements of L, as the a-finite formulas.

Let 9 be a structure for L. A relation S on M is defined by an a-finite formula
if there is an a-finite ¢(x,,...,X,, 1,--., ) and there are g¢,...,q, €M such that

1) S(X15erXy) Aff MEQ[Xq,..0 X, G1s- 0]

for all x,,...,x,€IR. S is defined by an a-recursive n-type if there is an a-recursive
set D(Xy,...,Xp V1s---» i) Of a-finite formulas and there are g,,...,q,€M such that

) S(xpy-.0sxy) Iff ME Ayeo @[X1-- 0 X0 G15-- -, G ]

for all x,,...,x,e9M. Replace the infinite conjunction in (2) by an infinite dis-
junction

(3) S(xlﬁ"ﬂxn) lff il)?’z\/(peq) q)[xh"'axns ql’---qu]
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and we say that S is defined by an a-recursive n-cotype. Notice that S is defined
by an a-recursive type iff 1S is defined by an a-recursive cotype. The student
should compare 5.10 with Theorem I1.7.3. (Another version holds without the
pairing function assumption; see Exercise 5.29.)

5.10 Theorem. Let M be a structure for L with an inductive pairing function and
let o=O0(M).

(i) A relation S on M is hyperelementary on I iff S is defined by an a-finite
Sformula.

(i) A relation S on M is inductive on M iff S is defined by an a-recursive cotype,
S is coinductive on M iff S is defined by an a-recursive type.

Proof. We first prove the (<=) parts of (i) and (ii). Since x™=o(HYPy),
L(e)cHY Py, so every a-finite formula is in HY Py,. Thus any relation defined
by an a-finite formula is in HYPy, by A, Separation and, hence, is hyper-
elementary. It suffices to prove either half of (ii) so suppose that @ is an a-recursive
(or even a-r.e.) set of o-finite formulas and S is defined by (3) above. Then
S(x4,...,x,) iff the following is true in HY Pyy,:

W [WeP AMEY [ Xy, s X Gro-- Q] ] -

This makes S a X, set on HYPy, so S is inductive on 9 by 5.1.
We now prove the (=) parts of (ii) and (i). Suppose S is inductive on I, say

S(x) iff (x,q0)€l,
where ¢(v;,v,,9,R,) has R binary and has an extra parameter g. Since o=«x",
I,= UB <a Ig :

We define formulas y/,; by recursion on f as follows, where 60(f/R) denotes the
result of replacing R(t;,t,) by t;#t; At,#t,:

Yolv,v2,v3) 18 @(v1,05,03,1/R),

wﬁ(vlavz’v3) is  @(vy,0,,03, \/y<p Y (., v3)/R).
A simple proof by induction shows that

(x,y)ell iff Me=yyx,y,q)
and, hence,

(yel, iff M=\, ¥px,v.9).

Then we have

Sex) iff M=\ g, ¥p(x,q0,9).
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Thus it remains to check that the set

P ={Ylf<a}

is an a-recursive set. The function f(B)=y, is clearly definable by X Recursion
in L(x) so @ is at least a-r.e. Define a measure of complexity of formulas, say
¢(6), by recursion as follows:

cf)=1 if 0 is atomic,

cO)=ciy)+1 if Ois W, vy or Vo,

c(0)=sup {c(y)+1lye®} if 0is \O or \/6O.
Then c(yz)=p so

fed iff 3P<c0)[0=y,]

which shows that @ is a-recursive. This finishes the proof of (ii), but what happens
if S is actually hyperelementary? Then SeHYP,, and we can define a function
geHYPy with dom(g)=S by

g(x)=least f (M= (x, q0,9)).

Let y=sup(rng(g)). Then y<a by X Replacement in HY Py. Then

S(e) iff M=\ pe, ¥plx,90,9)
so S is defined by an o-finite formula. 0

The converses of Theorem 5.10 (i), (ii) also hold. We prove the converse of (i)
and leave the other as Exercise 5.22. First a lemma.

5.11 Lemma. Let M be an L-structure with an inductive pairing function, let L,
be an admissible fragment which is an element of HY Py, and let

S"={S<=M"| for some pel,, and some q,,...,q,eM,

MEQ[X1seees X Gpse s @) U S(x1,- 05 X,)
for all xy,...,x,eM}.

(i) The collection S" can be parametrized by an n+1-are hyperelementary
relation, with indices from M.
(i) There is a hyperelementary set which is not in S'.

Proof. (ii) follows from (i) by the usual diagonalization argument. The proof
of (i) is a routine modification of Theorem V.5.7 since HYPy, is projectible
into M. 0
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5.12 Theorem. Let M be a structure for L with an inductive pairing function and
let o be an admissible ordinal. If the hyperelementary relations on M consist of
exactly the relations definable by a-finite formulas, then a=x™.

Proof. Lemma 5.11 shows us that if every hyperelementary relation is definable
by an a-finite formula then k™ <a. We now show that if every relation definable
by an a-finite formula is hyperelementary, then a<x™. Suppose, to prove the
contrapositive, that a>x™ and let S be any inductive relation which is not
hyperelementary. By 5.10, S is definable by a k™-recursive cotype. But then,
S is definable by an a-finite formula since a>«x™, so not every relation definable
by an a-finite formula is hyperelementary. 0

It is interesting to compare the following corollary of 5.10 and 5.12 with a
result in Moschovakis [1974].

5.13 Corollary. Let M be a structure with an inductive pairing function. The fol-
lowing conditions on M are equivalent:
(i) M is recursively saturated.
(i1) Every hyperelementary relation is first-order definable.
(i) k™ =w.

Proof. Since k™ =0(HYPy), we proved (i) <= (ii) back in § IV.5. We have the
implication (iii)=>(ii) by 5.10 or by I1.7.3. By 5.12 we have (ii)=(iii). 0

Moschovakis assumes that his structures are acceptable (see Exercise 4.15),
a stronger condition than having an inductive pairing function. Corollary 5B.3
of Moschovakis [1974] asserts that if 9 is acceptable then there is a hyper-
elementary relation that is not first order definable. Since an acceptable struc-
ture MM always has k™ >w (by 4.1), this follows from 5.13. But 5.13 also shows
us that the restriction to acceptable structures rules out many of the most inter-
esting structures, model theoretically interesting at any rate.

The general version of 5.13 reads as follows.

5.14 Corollary. Let MM have an inductive pairing function and let o be an admissible
ordinal. The following are equivalent:
(i) M is a-recursively saturated and not B-recursively saturated for any ad-
missible f<a.

(i) The hyperelementary relations are just those definable by a-finite formulas.
(iii) k™ =a.

Proof. We have (ii) <= (iii) by the theorems above and (i) <> (iii) by Exercise
IV.5.11 and the equality k™ =0o(HYPy). 0

Let M have an inductive pairing function and let a=x". By 5.14 we see
that the hyperelementary relations on 9t are just the relations explicitly definable
by a-finite formulas. One could imagine stronger notions of inductive and hyper-
elementary where one allowed an o-finite or even a IHY Py-finite formula
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¢(xy,...,x,R,) to define an inductive operation I,. Refer to these notions, for
the time being, as o-inductive, a-hyperelementary, HY Py-inductive and HY Py-
hyperelementary . The next result shows that the notion of inductive on I is
“stable” in that it coincides with a-inductive and IHY Py-inductive.

5.15 Theorem. Let M have an inductive pairing function and let o=x™.
(i) The inductive, a-inductive and HY Py-inductive relations on M all coincide.
(i) Hence, the hyperelementary, a-hyperelementary and HY Py-hyperelementary
relation on M all coincide with the relations explicitly definable by a-finite formulas.

Proof. It suffices to prove that if ¢(x,...,x,,R,) is a formula of L,, where
A =HY Py, then I, is inductive on M. The proof uses the ideas from the two
halves of 5.10 (ii). First note that I/ is a HY Py-recursive function of B, for f<a,
since it is defined by X Recursion in HY Py,. As before, the X Reflection theorem
shows that ||I}||<a. Now define the formulas ,; as in the proof of 5.10:

Volxgs-.r Xp) = @(x4,...,X,, {/R),
'//ﬂ(xla""xn)z (p(xl”"’xn’ \/y <p l// ()/R)

so that (xy,...,x,)els iff M=y, [x,,...,x,]. Thus

(Xpsee s x)el, iff M=\, ¥plxy,...0x,].

But the set of HY Py-finite formulas {y,|f<a} is a-r.e. (actually a-recursive) so
I, is Z; on HYPy, and hence inductive on M by 5.1(1). 0

5.16—5.30 Exercises

5.16. Show that each of the following structures has a definable pairing function.
(i) & =(w,0,+,>.
(i) Any model of Peano arithmetic.
(iii) Any model of ZF, KP or KPU.
(iv) L(a,A) for any limit ordinal 4.
V) Z={w°vw,w,0, +, ,App>, where w® is the set of all functions mapping
o into w and

App(f,n,m) iff f(m)=n.

5.17. Show that no nonstandard model of Peano arithmetic is acceptable. Show
that some nonstandard models of Peano arithmetic are almost acceptable and
that some are not. [Show that if (), Z) is a model of nonstandard analysis then
9N is not almost acceptable. |

5.18 (Moschovakis [1974]). Let M=<(a, <) where a is any ordinal >w. Show
that M has an inductive pairing function. This is not easy. First assume
a=2;,(f-2+1).



240 VL. Inductive Definitions

5.19 (Moschovakis [1974]). Let M be a structure with an inductive pairing func-
tion. Prove the following results using Theorem 5.1.

(i) k™=sup {p(<)|< is a hyperelementary pre-wellordering of 9t}.

(i) If M has a hyperelementary well-ordering then

k™ = sup {p(<)| < is a hyperelementary well-ordering of 9}.

(iii) (Reduction). Let B, C be inductive on M. Show that there are disjoint
inductive sets By<B, C,<C such that B;uCy=BUC. [See V.4.10.]

(iv) (Separation). Let B, C be disjoint coinductive subsets of M. Show that
there is a hyperelementary set D containing B which is disjoint from C.
[Use (iii).]

(v) (Hyperelementary Selection Theorem). Let S(x,y) be an inductive rela-
tion on 9. Show that there are inductive relations Sy, S; such that

SocS,
dom(S,)=dom(S),
xedom(S)=Vy (So(x, y)=>8,(x, ).

5.20. We give an application of the covering theorem; in fact, the original version
of it due to Spector. We use the notation from Rogers [1967]. Let

W = {e| p? is the characteristic function of a well-ordering <} .

Let p(e) =the order type of <,, for eeW.
(i) Show that W is I} on 4.
(ii) Show that p is an inductive norm,

p: W wf.
(iii) Let B be a =} set of natural numbers, B W. Show that sup {p(e)jec B} < .

5.21. Show that 5.10 (ii) remain true if “a-recursive type” is replaced by any of
the following:
(i) a-r.e. type,
(if) HYPg,-recursive type,
(i) HYPg-r.e. type.

5.22. Let M be a structure with an inductive pairing function and let « be an
admissible ordinal. Suppose that the inductive relations on 9 are exactly the
relations defined by an a-recursive cotype. Show that o=x™.

5.23. Let 3 have an inductive pairing function. Let S, T be inductive relations
which are not hyperelementary.

(i) Show that TeHYPFg s, and hence that HYRg 5, and HY PRy, 1, have
the san}e universe of sets. [Show that o(HYPgys)>o0(HYPy) and then use
5.10 (ii).
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(i) (Moschovakis [1974]). Show that the two expanded structures (9, S) and
(M, T) have the same inductive and hyperelementary relations.

5.24 (Moschovakis [1974]). Let M be a structure with an inductive pairing func-
tion and let S be an inductive relation on 9 which is not hyperelementary. Show
that for any relation T on I,

S is hyperelementary on (M, T) iff x@1) > ™,

5.25. Show that Theorem 5.15 is not true without the hypothesis that 9 has an
inductive pairing function. [Use the 9 of Exercise 4.14.]

5.26. Our proof of the Abstract Kleene Theorem, Corollary 5.2, is a bit round
about. Prove it directly from the 9-completeness theorem and Proposition 3.13.
(This proof, by the way, establishes the second order version given in Moschovakis
[1974] without change.)

5.27. Let M be a structure for L with an inductive pairing function.

(i) Show that Cym(KPU™), in the notation of Proposition 3.13, is inductive
but not hyperelementary.

(i) Show that k™ = closure ordinal of the inductive definition of “provable
from KPU* by the M-rule”.

(iti) Show that Coi(KPU ™) can be used to parametrize the inductive relations
on M. [Use the closure of the inductive relations under hyperelementary sub-
stitution and some hyperelementary coding of formulas.]

5.28. The following definition, due to Nyberg, will be useful in Exercise VIIL.9.16
and in Theorem VIIL9.5. A structure M={(M,R,,...,R,> is a uniform Kleene
structure if for every I} formula ®(x,S.) in some extra relation symbols S there
is a first order ¢(x,y,R,,S.) and a yeM such that for all x and all S

(M, )= D(x,S4)
if and only if
(x, el (M,S),

where the R in ¢ is used for the induction over the structure (9t,S). Prove that
every countable structure with an inductive pairing function is a uniform Kleene
structure. Let a be any ordinal of cofinality w. Show that (V(«),€) is a uniform
Kleene structure. (This last is due to Chang-Moschovakis [1970].)

5.29 (Makkai and Schlipf, independently). Improve Theorem 5.10 as follows:
Let M be a structure for L and let a=0(M). Let S be a relation on M. Show that:
(i) SeHYPy, iff S is defined by an a-finite formula;
(ii) S is £, on HYPy, iff S is defined by an a-recursive cotype. [Hint: Use
the fact that every acHYPy, is of the form ZF(py,...,p,,M,L(A)a,---» L{Z)aw)
for some limit ordinals A,,...,4, and a substitutable function #.]
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5.30 (Moschovakis [1974]). Let 9 not have an inductive pairing function. Prove
that k™ is admissible or the limit of admissibles. It is an open problem to find
an M where ™ is not admissible.

5.31 Notes. Some of the results discussed above hold without the pairing func-
tion assumption. For example, all of 5.3 through 5.6 are proved directly in
Moschovakis [1974]. On the other hand, some of the results are false without
the pairing function (like 5.2, 5.8—5.12) and those that do hold are much harder
to prove without the admissible set machinery. For structures without an in-
ductive pairing function we are left with two distinct approaches, inductive
definitions and HY Py, (equivalently, inductive* definitions). Only time will tell
which is the most fruitful tool for definability theory.

6. Recursive Open Games
An open game formula is an infinitary expression %(X) of the form
Vy, 3z, Vy, 3y, ... Vy, 3z, "'\/n<w(pn(5é’ylizl9 cos Vs Zn)

where each ¢, is a formula of L . Note that 4(%) itself is not a formula of L,
due to the infinite string of quantifiers out front. If {¢,|n<w} is a recursive set
of finitary formulas then %(x) is called a recursive open game formula.

For our study, the most important result on game formulas goes back to
Svenonius [1965] where he proves that, for countable M, the 1] predicates are
exactly those defined by recursive open game formulas (Theorem 6.8 below). This
result went largely unnoticed until the formulas were rediscovered by Moschovakis
[1971]. He established that for acceptable M (of any cardinality), it is the in-
ductive relations on 9 which are definable by recursive open game formulas
(Corollary 6.11 below). Thus, from our point of view, Moschovakis was proving
the “absolute version” of the Svenonius theorem.

Before going into these results in detail, let’s step back to examine the concept
of “absolute version” with some detachment.

We have been using ZFC as a convenient informal metatheory and hence
may construe all our results as statements about the universe V of sets. By a
class C on ¥V we mean a definable class,

xeC iff VEo[x]

for some formula ¢(v) of set theory. A predicate P on V is, by definition, given by
P(x) iff VEy[X]

for some formula Y(vy,...,v,).
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6.1 Definition. Let C be a class defined by a ¥, formula without parameters and
let P be some predicate. A relation P*® is an absolute version of P on C if the
following conditions hold:

(i) P*™ is absolute on C (that is, there are T and IT formulas ¥,(vy,...,v,),
¥,(vy,...,v,) such that for all xeC

P(%) iff Vg, [X]
iff VeEy,[x]).
(i) P and P agree on CnH(w,) (that is, for all x,,...,x,e CnH(w,),
P(x) iff P*%(X)).

While not every predicate has an absolute version, at least there can be at
most one absolute version.

6.2 Metatheorem. Let C be a X, definable class, let P be some predicate and let
Py, P, be absolute versions of P on C. Then for all XeC,

P() iff Py(%).

Proof. This is just a special case of the Lévy Absoluteness Principle, one we
have used several times in special cases. The hypothesis can be written

Ve H(w,) [$€C— (P (F)=Py())].

The part within brackets is equivalent to a IT formula so the conclusion follows
from the Lévy Absoluteness Principle. 0

6.3 Example. Let C be the class of pairs (I, S) where 9 is a structure. Let P(I, S)
assert that S is IT} on M. Let P**(I, S) assert that S is £, on HY Py,. Then we
have shown that P and P*™ agree on countable structures and that P*™ is ab-
solute. For other examples, see Table 5 on page 254.

The distinction between P?* and P is the distinction between Part B and
Part C of this book.

In this section we apply these general considerations as follows. We first
prove that for all countable M=(M,R,,....R,>, a relation S on M is I1] iff it
is defined by a recursive open game formula. Next we show that the notion
“S is definable on 9 by a recursive open game formula” is absolute. It will then
follow that for any I,

S is =, on HY Py, iff S is definable by a recursive open game formula
and hence, by Theorem 5.1, that if M has an inductive pairing function,

S is inductive on M iff S is definable by a recursive open game formula.
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(For M without an inductive pairing function, we must replace inductive by
inductive*.)

The first question to settle is the very meaning of an infinite string of quan-

tifiers. Given a relation R(yy,Zzy,..., Y Zm--.) Of infinite sequences from M, what
is to be meant by

M=Vy, 3z,...Vy, Iz,...R(y,,2;,.-.)?

The sensible interpretation is by means of Skolem functions. The above is de-
fined to mean

aFI’FZ""[(g‘R’FIS""Fm'“)t:Vyl V)’2---R(YpF1(Yl),Y2aF2(J’1’)’2)»-~-)]~
For ease in presenting informal proofs it is convenient to rephrase this in
terms of an infinite two person game, one played by players V and 3. The
players take turns choosing elements a,,b,a,,b,,... from M. Player I wins if
R(ay,by,a;5,b,,...); otherwise V wins. Then

ME=Vy, Iz ... R(yy, 24, )

is equivalent to:

Player 3 has a winning strategy in the above game.

Formally, of course, a strategy for 3 simply consists of a set {F;,F,,...} of Skolem
functions such that

(M, F,..)E Yy Yy, ROy, F(01), Y2, (01, 02),-)-
For games which begin with a play by 3,
Ay, Vz,...R(yy,24,...),

we use the convention that a function of 0 arguments is simply an element of IR.
We have already defined the notion of an open game formula %(x)

vyl 3Zl“' \/n (pn()-é’ylazla""ymzn)-

The important part here is the infinite disjunction, not the fact that it begins
with V (we could always add a superfluous V if it started with 3) nor the fact
the quantifiers exactly alternate one for one (again we could introduce super-
fluous quantifiers if necessary). The reason this is referred to as an “open” game
formula is that in any given play

a;,by,a,,b,,...
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of the game, if 3 wins then he wins at some finite stage n and thus it wouldn’t
matter what he played after stage n. (That is, there is a whole neighborhood of
winning plays for 3 in the suitable product topology.)

The dual of an open game formula is a closed game formula, one of the form

vyl 3Zl Vy2 3ZZ /\n (pn(i’yl’zl""’ymzn)'
In a closed game, 3 must remain eternally diligent if he is to win.

6.4 Examples. (i) The simplest example of an important recursive open game
sentence is given by

vyl vyZ"‘\/n<a)—_‘(yn+1Eyn)'

This sentence holds in (9, E) iff E is well founded. This is a rather boring game
for 3 since he never gets to play. Once V has played a sequence ay,a,,...,3 wins
if it is not a descending sequence. Hence, 3 has a winning strategy iff there are
no infinite descending sequences.

(i) The Kleene normal form for I} relations on A" ={w,0, +, >,

S(x) iff Vf3InR(f(n),x),

can be considered as a reduction of Il relations to recursive open game for-
mulas, namely S(x) iff

Yy, Vy,...\/n 3s [s codes {yy,...,y,> A R(s,x)].
(iii) On arbitrary countable structures we must use game formulas in which

both players get to play if we are to characterize I1} relations. Suppose M is
countable and let MM =(M,R,S> where R, S are binary. Then M is a model of

vyl aZl vyl 3ZZ e /\n,m <w R(yn’ym)HS(ZmZm)

iff (M,R>~(M,S). Here we have expressed a ] sentence by a recursive closed
game sentence.

Given a game formula %(X) we write
ME=1%(X)
as shorthand for
not (ME=%(X)).

In general one must resist certain impulses generated by experience with finite
strings of quantifiers. There is no reason to suppose that

M=y, 3z,... R(yy,24,--)
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implies

ME=3y, Vz, ... Ry, 245+ 1) -
That is, just because 3 has no winning strategy in the first game is no reason
to suppose he does have a winning strategy in the second game. One can find
R’s for which this fails. For open and closed games, however, this tempting

maneuver is perfectly acceptable, as Theorem 6.5 shows. We shall use the idea
from this proof a couple of times later on.

6.5 Gale-Stewart Theorem. For all I and X,

MEVY, 320\ @ulZ V121 os Vi Z0)
iff
METy; Vzi oo N\ 10X, V15215 Vs Z) -
Proof. Let game I be the game given by
‘]ﬁ':vyl 3Zl"'\/n (pn(ylszl""’yn’zn)
(we are suppressing the X since they play no role) and let game II be given by
M=y, Vzy oo Aw 010 215 Vo Z) -
It is clear that 3 cannot have a winning strategy in both games, for then V could
use T's strategy from game II to defeat him in game 1. Thus we have the (<) half
of the theorem. (This part does not use the openness hypothesis.) Now suppose
3 has no strategy in game I. We show that V has a winning strategy in I which

of course amounts to a winning strategy for 3 in II. Now since 3 has no strategy
in I there must be a fixed a, such that 3 still has no strategy in the game

M=z, Vy, 325\, 000,21,y Vs 20) -

Why? Because if each a, gave rise to a strategy s(a;) for 3 then he would have
had a winning strategy at the start; namely

answer V's play of a, by using s(a,).
Thus V's first play is to play an a; such that
M=z, Vy, 3z, ..\, 0ua1, 20,0, Vo Z0) -

Now after 3 makes some play z, =b,, V again plays an a, so that 3 still has
no winning strategy; i. e.

ME=3z, Vys Ay \a0uagn by ay, 250 Vs 2,)
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The same reasoning as above shows that such an a, exists. Now V keeps on
playing at the m™ play some a,, so that

ME132, Vi1 Izpito- Ve 001,01, Oy Zygs o1 2,)
and, in particular
ME Ni<m 10uag,by,....a.,by).
Then, at the conclusion of play we have
ME= Ni<o 10ag, by, a, b)),
a win for V in game 1. We have thus defined a winning strategy for V in game I. [
6.6 Corollary. For all M, X,

‘J‘R':ﬁv)ﬁ 3Zl s /\n (Pn(-)-é’yl’zlvnaymzn)
iff
M=y, Vzy .\ 0uF, V10 24, Y Z0).
Proof. The following are equivalent:
M=y, Yz, \V0uE 102, Vi Z0)
not [ME=13y, Yz ... \/ 10 Vi Zgse ey Vs Za) ] by 6.5
not [ME=Vy, Iz, ... Aw 110U, V15 210w ees Vs Zn) ]
M=y 3z A\ 0uF Vi Zrsee s Yo Zy) .
A simple application of the Gale-Stewart Theorem is to show that recursive
open game formulas define I1! sets. We'll improve this later by improving the

Gale-Stewart Theorem.

6.7 Corollary. Let %(xX) be a recursive open game formula of L. There is a 11}
formula O (X) such that for all infinite L-structures M and all x,,...,x,eM,

M=%(X) iff MEOX).
Proof. Let 9(X) be

Vy; 3z, ..\ @uZ s 2,)-

To prove the corollary it suffices, by the Gale-Stewart Theorem, to find a X{
formula equivalent to

Ay, Yz \p 10uE Yysees 2).
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This expression is equivalent to

3F [F is a function with dom(F)=all finite sequences from M A for all n
and all y;,...,V,€M, 0%, Y1, F(¥1 D)5 os Vs F V15 Vo)) ] -

This is co-extended X} by Proposition IV.2.11 and hence is £} by Proposition
IV.2.8. To see that the same =} formula works in all structures one simply notices
that the proofs in § IV.2 were uniform. [

We now come to the theorem of Svenonius referred to above, a partial con-
verse to 6.7.

6.8 Svenonius Theorem. For every I1} formula ©(X) of L there is an recursive

open game formula 9(X) of L such that for all countable structures M and all
Xisoeor X €M,

M=YE) iff M=OR).

Proof. 1t suffices, by the addition of constant symbols for the variables x,,...,Xx,,
to prove the theorem for I1] sentences. We actually prove the dual, that every
¥1 sentence is defined by some recursive closed game sentence in all countable

structures. By the Skolem Lemma of V.8.7, any X! sentence is equivalent to
one of the form

-

3S,,...S, Yy 324,02 0(F,2,S)
where ¢ is quantifier free with no function symbols. We prove the special case
AS Vy1y; 321 2, (31, Y25 21,22, S),

the general case being only notationally more complicated. We need the fol-
lowing fact.

(1) For each quantifier free formula 0(0,S) there is another quantifier free
formula 0°(%) such that

0°()~3S 0(3,S)

is valid. Moreover, one can find 0° effectively from 0.
To prove (1), first write 6(7,S) as a disjunction

0,(5,S)v v 0,(5,5)

where each 0; is a conjunction of atomic and negated atomic formulas. Since 3
commutes with \/ it suffices to prove (1) for formulas which are conjunctions

of atomic and negated atomic formulas. So suppose we have to get rid of the
3S from 3S 0(5,S) where 6(3,S) is

[d’l(aa S) ZARRRA lkq(l-ja S)]
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and each y; is atomic or negated atomic. This just amounts to propositional
logic. First remove all equalities like (x=y) and make up for them by replacing
x by y and y by x everywhere they occur (see examples below). Next we simply
inspect the new list of formulas to see if it is consistent in propositional logic.
If it is, 6° consists of the conjunction of all the formulas in the original list that
don’t mention S; if it isn’t consistent, #° consists of some false formula like (x # x).
We give three examples.

Example 1. Suppose 0(7,S) consists of
R(x,2), S(x), (x=y), —S(y).
The new list consists of
R(x,2), R(y,z), S(x), S(»), —S(y), —S(x).
This is not consistent so there can be no such S.
Example 2. Suppose 6(#,S) consists of
Rix,2), S(x), (x#y), (y=2).
The new list consists of

R(x,z), R(x,y), S(x), (x#y), (x#2).
This is consistent so there will be such an S iff

R(x,2) A (x#y) A (y=2).

Example 3. Suppose ¢(v,S) consists of
S(x), (x=y), (y=2), (x#2).
The new list will contain (y#y) which is not consistent; there is no such S.
These examples should convince the student that the procedure decribed
above actually works. It is obviously effective. This proves (1).
Now, using (1), let ¥,(y11, V1221152125 V215 Y225 22152225+ Vnts Yn2> Znts Zn2) D€ @
quantifier free formula equivalent to
HS /\1 <m<n (p(yml’ymz,zml’sz’S)

and let the closed sentence 4 be

Vyi0:9123211,212 VY21, 9223251, 222 - /\nl//n(yll’--wzrnZ)'



250 V1. Inductive Definitions
First we prove that:
(2) For any model W, if M=3SVy,,y,3z,,2z, ¢, then M=%,

For suppose (M,S)=Vy,Vy,3z,3z,0(y1,92,21,22,S). Let 3 play with the
strategy:

if V plays a,,a, at stage n, then choose b,,b, so that (M,S)=¢(a,,a,,b;,b,,S).
This clearly presents 3 with a win.
To conclude the proof we need only prove

(3) If M is countable and M=% then there is a relation S on M so that

M, S)=Vy1,v,324,2, 0(V1,V2,21,22,S) .

Suppose M=% so that player 3 has a winning strategy. Since M is countable,
so is M2, so enumerate M2, M?={{a,,a,,>|n<w}. Let V play y,;=a,; and let
dplay z,,=b,,€M using his winning strategy. Thus, we end up with

EUU: 38/\1 $m$n(p(am17am27bml’bm2= S)

for each n<w. Then, by the ordinary Compactness Theorem for propositional
logic

Diagram (M) U {@(dp1> Amas Bn1> B> S) | M < 0}
is consistent. Thus there really is an S such that
(M, S)= @(Am15 Am2s b1 B2y S)
for each m, since ¢ is quantifier free. Thus, since every pair is {a,,,a,,,» for some m,

(M, 8)=Vy1,y2321,2,0(y1,Y2,21,22,S) -

This proves (3).
The proof of the theorem is complete except that % is not quite in the form
demanded of a recursive closed game formula. But trivial modifications with

superfluous quantifiers, renaming variables and renaming the subformulas
obviously puts it in the desired form. [

We have carried out half our task by showing IT} is the same as “defined by a
recursive open game formula” for countable structures. It remains to show that
it is absolute. We prove more than this in the next two results.

The next theorem can be viewed as an effective version of the main theorem
of Keisler [1965]. The proof is rather different.
Given a recursive open game formula 4(X), say,

Vyl 3ZIVI.VZ 322 "'\/n(pn(x’yhzl""’ ymzn)
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we define its finite approximations 9,,(X) by :

O is Yy 3z, VY32, \ ncm @uZ V15 Z1s s Vi Za) -
It is obvious, from a gamesmanship point of view, that

VX [5,(%)-%()]
is true in all structures.

6.9 Theorem. Let M be recursively saturated. Then, using the notation of the
previous paragraph,

ME=VE[D(Z) <o On(3)] -

Proof. We already have the trivial implication («). To prove the contrapositive
of the other direction we imitate the proof of the Gale-Stewart theorem. We
assume

ME= A <o 10m(X)
and exhibit a winning strategy for V in the game

Vy,3z,Vy, 325 0. Vu @ul X Y1021 oo Y Z) -
We claim that there is an a, such that, for each m<w,

M=z, Vy, 325 ... VY32, Vo cm @ulXo 1521, V2. 295 o5 Vs Z0) ] -
Why? Suppose that for every a,eM there is an m such that

M=z, Vopem@ulXoay, .00
Now this all holds in HY Pg,, which has ordinal w, so, by  Reflection there is a
k<w such that m can always be chosen less than k. (Here we are using the fact
that ¢, is a recursive function of n, so is X, in HY Pg,.) But then

ME=0,(X),

contrary to assumption. Thus there is such an a, and we let V play it. Let 3 play
z,=b,. We claim that there is an a, such that, for all m <w,

ME=[3z,Vys3z5... ¥y, 32, \fucm @uX a1, b1, 00,255 ., Y 2,)] -

The reasoning is just as for a,. If V continues in this way, do what 3 will, a sequence
a,bia,b, ... will be generated which satisfies

ME=—p,(ar,by, ..., apb,)

for each n. Hence we have described a winning strategy for V. [
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Now, if 9 is a structure with a=o0(HYPg) one would hope to show that,
on M, %(x) is equivalent to the disjunction of its a-finite approximations:

M= VE[D(R) o \/p <. 05F)]

This turns out to be true once one has the correct definition of the 6B’s.
Let 4(X) be a recursive open game formula, say

Vyl 321V)’2 322 "'\/n(pn(')_é’ybzl’ A ynazn)‘

Define formulas 0j(x, 1,21, ..., YuZn)

5'(')(55’))1’ ARRE] Zn) iS \/mSn(pm(iayl,Zl’ LERE] ymzm)5
> . 1/=
5'['3+ l(x’yl’ R Zn) 18 vyn+1 3zn+162+ (x’ylazla coos Yt 1’Zn+1)’

O3(Z, V15 --er Z) i \fp<; 0 if 4 is a limit ordinal.

Let d,(X) be 52(3?). Note that J,, for n<w, has the same meaning as it did in
Theorem 6.9. Also note that d, is an a-recursive function of f<a, whenever «
is an admissible ordinal.

6.10 Theorem. Let o=0(HYPg). Then, using the notation of the previous para-
graph,

Mi= V3 [(E) o \/; <, 0,%)]

Proof. To prove the easy half («) one first proves by a straightforward induction
on f that

5?}(55’})1’21’ R ymzn)_’vyn+lgzn+1 \/m(Pm(f,YuZp ters ym’zm)

for all n. For n=0 this gives the desired result. The proof of the other half is so

similar to the proof of Theorem 6.9 (a special case of 6.10) that we leave it to the
student. 0

6.11 Corollary. For any structure M={(M,R,,...,R,> and any relation S on N,
the following are equivalent:

(i) S is definable by a recursive open game formula on M.
(i1) S is inductive* on M.
(ii)) S is X, on HY Pg,
If M has an inductive pairing function, these are also equivalent to
(iv) S is inductive on IN.

Proof. It follows from 6.10 that
“S is definable on 9 by a recursive open game formula”

is absolute so the theorem follows from Theorem 6.2. We present a slightly more
direct proof which shows a bit more uniformity.
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We see immediately that (i)=>(iii), from Theorem 6.9, since
A <a[ME=,)]
is X, on HYPg, It thus suffices to prove (ii)=(i). Let ¢(¥,R,) be any extended

first order formula. Write I(9) for the fixed point defined on M by I,. We prove
that there is a fixed recursive open game formula %(%) such that

(4) for all M, XeI (M) iff M=Y(x)

Now I,(9) is extended IT} on 9, hence I} on M by Proposition 1V.2.8, and the
same I1! formula &(%) defines I ) for all M;

(5) for all M, xel (M) iff M= P(X).
Now use Theorem 6.8 to choose %4(X) such that
(6) for all countable M, M= P(X) iff ME=%(X).
Now, combining lines (5) and (6) we have
for all countable M[xel (M) iff M=H(X)]
and the part in brackets is absolute. Hence, by Lévy Absoluteness, we have (4). 0
6.12 Exercise. The Interpolation Theorem for L,, can be stated as follows.

Let &(x,, ..., x,) be a finitary £} formula of L, and let ¥(x,, ..., x,) be a finitary
I1} formula of L. If every L-structure M is a model of

* VX, .o X, [@(X)—> P(X)]
then there is a first order formula 6(X) such that every L-structure 9 is a model of
(**) Vxy, ..., X, [[P(X)=0(X)] A[0(R)-P(Z)]].

We can turn this into a local result as follows.

(i) Let 9t be a recursively saturated countable model of (*). Show that there
is a 8(%) such that M is a model of (**). [This is easy from Exercise V.4.8. A more
direct proof goes via Svenonius Theorem and the Approximation Theorem 6.9.
Of course one could also cheat and apply the Interpolation Theorem for L,
with A =HYPg,]

(ii) Prove the interpolation theorem for L, directly from (i).

6.13 Notes. The student would profit from a comparison of our treatment with
that in Moschovakis [1971], [1974]. His proof [1971] makes it clear where the
approximations o, originate. The model theoretic interest of the Moschovakis-
Svenonius results was brought out by the important paper Vaught [1973]. The
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student is urged to read this and Makkai [1973] in the same volume. This section
(VL.6) of the book is included partly to make these papers more accessible.

Table 5. Absolute versions of some nonabsolute notions

Primitive notion P

Absolute version P**

Relevant class C of objects

1. Sis 1} on M

2. SisIIj on M
. Sis 1} on M

w

. Sis T} on M

=

M=N

M=N

. S is strict 1} on A

© N w oA

9. M is rigid
(cf. § VILT)

Sis X, on HY Py,

S is inductive* on M

S is inductive on M

S is defined by an open recursive game
=

M=, N (cf. § VILS)

M=N(L,,) (cf. § VIL5)

Sis X, on A (cf. § VIIL.3)

every element of M is definable by a
formula of L, HY Py, without
parameters

all structures M=<{M,R, ...

and relations S on M
same as (1)

I, S as in (1) when M has an

inductive pairing function
same as (1)

all sentences of L,

all structures M, N

same as (6)

all admissible sets A and
relations S on A

all L-structures M=<{M, R, ...

’Rl>

R






