
Chapter XX

Abstract Embedding Relations

by J. A. MAKOWSKY

Abstract model theory deals with the generalization of the concept of a logic. A
logic consists of a family of objects called formulas, a family of objects called
structures and a binary relation between them, called satisfaction. Various prop-
erties of logics, however, can be phrased without direct reference to the formulas,
but rather, by considering as the basic concept the class of structures which are the
models of some (complete) theory. The previous two chapters have given plenty of
evidence for this. In Section XVIII.3 we studied amalgamation properties and in
Chapter XIX, the Robinson property, both of which fit this approach. In Chapter
XIX we even went a step further: we looked into the possibility of axiomatizing
abstract equivalence relations between structures, such as they arise naturally
from logics in the form of if-equivalence. There we studied the question under
which circumstances such an equivalence relation does indeed come from a
logic if.

Algebra, on the other hand, deals with classification of algebraic structures and
their extensions. The paradigm of algebraic classification theory, and, for that
matter, the paradigm of model-theoretic classification theory, is Steinitz' theory of
fields and their algebraic and transcendental extensions. But many of the examples
studied in algebra, such as locally finite groups or Banach spaces, are not fit for
first-order axiomatizations. Though classes of algebras can be axiomatized, if
necessary, with the help of generalized quantifiers, this approach does not neces-
sarily help us to axiomatize the corresponding notion of extensions.

In this chapter we axiomatize the notion of if-extensions, but, contrary to the
approach in Chapter XIX, we are not that much interested in the case where it is
derived from a logic if. We are rather interested in the question: Under which
conditions can certain constructions and proofs from model theory be carried
out in a framework which resembles more that of universal algebra or algebra in
general?

Very often, axiomatizations grow out of a better understanding of proofs.
First, they serve only to structure and clarify the flow of reasoning, but sometimes
they gain their own significance and reach maturity. If this happens, new branches
of mathematical activity emerge.

Examples from history are the emergence of Hubert and Banach spaces;
universal algebra and model theory of first-order logic, abstract model theory, and
here especially, the framework of abstract classes. The abstract classes have their
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origin in the attempt to better understand certain constructions of models, as they
occur in the classification theory of models of first-order theory, and in trying to
generalize those constructions so as to fit classes which are not first-order definable.
The constructions we have in mind divide sharply into two cases: In the case in
which amalgamation fails in an abstract class K, they allow us to construct maxi-
mally many non-isomorphic structures of a given cardinality and to show that no
universal structures of a given cardinality exist, or, as a combination of both, that
there are maximally many structures such that no two of them are mutually
embeddable. On the other hand, if some form of amalgamation holds, they allow
us to obtain a structure in a higher cardinality. It turns out that the presence or ab-
sence of various forms of the amalgamation property acts like a watershed. This is
similar to the effect of stability or superstability in first-order classification theory.
The transfer of all the technical knowledge of the classification theory of models of
first-order theories to models of abstract classes, however, poses challenging dif-
ficulties. This chapter presents some of the initial steps towards this aim. The
completion of such a program remains the task of future research.

But the axiomatic framework has yet another advantage: It allows us to discern
more clearly the set-theoretic and combinatorial structure of the proofs and to
separate their combinatorial from their structural contents. Such proofs are usually
based on a property P of our abstract class K which is inherently connected to the
very definition of K, and a set-theoretic part, whose application does not require
more than an axiomatic description of some of the basic aspect of ft together with
the property P. We have encountered such situations in the case of locally finite
groups, such as in Giorgetta-Shelah [1983] or in the model theory of ω1 -categori-
cal sentences of extensions of ^ωω(Qι). It would be interesting to see, if the same
applies to recent results in Banach space theory, cf. Bourgain-Rosenthal-
Schechtman [1981], for instance, where ft is the class of all separable Banach
spaces with the Radon-Nikodym property.

However, the present chapter is not concerned with such deep results of a very
specialized character. Our subject here is the axiomatization of the framework
which allows the use of the set-theoretic machinery. What we present are the first
steps of a theory still to be developed. The chapter is an exposition of and introduc-
tion to three papers by S. Shelah (Shelah [1983b, c, 198 ?c]), and improvements or
elaborations in its exposition due to S. Fuchino, R. Grossberg, and the author.
An early version of this chapter consisted of lectures the author and D. Giorgetta
have given on the subject in Oberwolfach in January 1980. It contains, for com-
pleteness and historical accuracy, also early results of MaΓcev and Jonsson, and
some additional material which we include to stress some analogies or give more
examples.

In detail the chapter is organized as follows. In Section 1 we present the axio-
matic framework and variations thereof. In Section 1.1 we define our program in
detail and in Section 1.2 we state and motivate the axioms. The main results of this
section, presented in Section 1.3, are various forms of axiomatizability theorems
which assert the existence of certain standard logics, in which such classes can be
described. One of them, Shelah's presentability theorem, provides us with some
cardinal parameters, on which the development of the theory depends. It also
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gives rather surprising results on the Hanf numbers of abstract classes, depending
on those parameters, presented in Section 1.4.

In Section 2 we study the effect of the presence or absence of amalgamation
properties in an abstract class ft. In the case when an abstract class has the amalga-
mation property and the joint embedding property they are called Jonsson classes
and were introduced already in 1962 by M. Morley and R. Vaught. It should be
mentioned here, that R. Fraϊsse was seemingly the first to study amalgamation
properties of classes of structures, cf. Fraϊsse [1954]. We give a brief survey on
what we know about Jonsson classes in Section 2.1 for the sake of completeness
and proper perspective. The main advantage of Jonsson classes consists in the
existence of universal, homogeneous models, though not necessarily in every
cardinality. A substitute of saturated models in many of our constructions, is the
limit model, which is introduced in Section 2.2, and some basic properties of limit
and superlimit models are proved. Our fmain interest here, however, is in the
absence of amalgamation properties. The thesis, put forward in Shelah's work and
in this chapter, states that amalgamation properties should not be part of the
axioms, and that, basically, Jonsson's axioms, without amalgamation and joint
embedding, provide us with the correct framework for a structure/non-structure
theory. The main result, presented in Section 2.3, is Shelah's non-structure theorem
for abstract classes and some conjectures for further developments. The non-
structure theorem presupposes some weak instance of the GCH, connected to the
combinatorial principle weak diamond. In Section 2.4 we present an example
which shows that this is necessary. In Section 2.5 we collect the set-theoretic
background about the weak diamond, necessary to prove the non-structure
theorem. The easier parts of its proof are presented in Section 2.6 and the more
complex parts in Section 2.7. The reader interested in the missing proofs will have
to get involved with the technical details and conceptual intricacies of Shelah
[1984a, b].

In Section 3 we study ω-presentable classes, which, by the presentability theorem,
are closely connected to the model theory of S£ωχω. In Section 3.1 we present the
present state of art in classification theory for co-presentable classes and classes
defined by a ££ωiω-sentence, and we state some conjectures on how the latter should
be true also for ω-presentable classes in general. The main results proved in the
sequel are Shelah's reduction theorem and Shelah's abstract ω^categoricity
theorem. For the proofs of the other theorems the reader will have to consult
Shelah [198?c]. In Section 3.2 we present the "soft" aspects of the proof of the
abstract α^-categoricity theorem, and in Section 3.3 the parts which are more
related to the model theory of 5£ωιω. In Section 3.4 we prove the reduction theorem.
In Section 3.5, finally, we give a narrative account of some aspects of the proof of
the existence of superlimits in ω^
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1. The Axiomatic Framework

1.1. Prolegomena

In Chapter XVIII we have seen that various if-extension properties play a fruitful
role in abstract model theory. In Chapter XIX we have seen how one can replace,
under certain circumstances, a logic if by an abstract equivalence relation or an
abstract embedding relation. However, in both cases we still retained the idea of
dealing with a logic with various regularity properties concerning the passage from
one vocabulary to another. The type of results obtained there also requires such
assumptions. If we deal with properties of a fixed class of τ-structures, we are more
in the framework of universal algebra. In fact, some of the classical theorems of
universal algebra can be viewed as precursors of abstract model theory. Let us
elaborate on this a bit.

The first theorem along these lines is Birkhoff's theorem characterizing
varieties.

1.1.1 Definitions, (i) A class V of τ-structures closed under isomorphic images,
cartesian products, substructures, and homomorphic images is called a
τ-variety.

(ii) A class of τ-structures K is automatically definable if K = Mod(Σ) for some
set of atomic τ-formulas Σ.

1.1.2 Theorem (Birkhoff). The τ-varietίes are exactly the atomically definable
classes of τ-structures.

1.1.3 Definitions, (i) A class V of τ-structures closed under isomorphic images,
cartesian products, and substructures is called a quasi-variety.

(ii) An infinitary Horn formula is a formula of the form /\ieI φt -• ψ, where /
is any set and φί9 φ are atomic formulas.
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(iii) A class of τ-structures K is Horn definable, if K = Mod(Σ) for a (possibly
proper) class of infinitary Horn formulas,

(iv) An infinitary clause is a formula of the form \fieI φ{, where / is any set
and the φ?s are atomic or negated atomic (i.e., basic) formulas,

(v) A class of τ-structures K is clause definable if K = Mod(Σ) for a (possibly
proper) class of infinitary clauses over τ.

(vi) A class of τ-structures is basic compact, if for every set Σ of basic formulas
over some vocabulary τl9 τ cz τ 1 ? such that every finite subset Σ o c Σ,
Σ o has a model 91 with 91 f τ e K, the Σ has too.

1.1.4 Theorem, (i) (Cudnovskii). A class K of τ-structures closed under isomor-
phisms and substructures ίffK is clause definable.

(ii) (Cudnovskii [1968]). The quasi-varίeties are exactly the Horn definable
classes.

(iii) (McKinsey [1943]). // additionally K is basic compact then the class
defining K is a set of finitary clauses or finitary Horn formulas.

(iv) (E. Fisher [1977]). The assumption that in (i) or (ii) K is always definable
by a set (Horn) clauses is equivalent to Vopenkάs principle.

For a definition of Vopenka's principle see Section XVΠI.1.3. Similar theorems
hold for classes closed under unions of chains and other closure properties.

Quasi-varieties are particularly interesting because they allow the construction
of free objects (initial objects) and MaΓcev [1954] has given the following char-
acterization of quasi-varieties.

1.1.5 Definition (Free Structures), (i) Let K be a class of structures for a vocabu-
lary τ, 91 e K and X c A such that 91 is generated (as a substructure) by X.
We say that 91 is free in K, if for every S e K and any relation preserving
mapping /: X -> B there is a homomorphism g: 91 -• 23 extending /.

(ii) Let a class K of τ-structures be called free, if for every variety V of τ'
structures such that KnVΦ0, K n V has a τ u τ'-structure which is
free in K n V.

1.1.6 Theorem (MaΓcev [1954]). A class K is free iff it is a quasi-variety.

For a discussion of MaΓcev's theorem cf. also Mahr-Makowsky [1983].

1.1.7 Stating the Problem. The aim of this chapter is to give an introduction in
to a sequence of papers by S. Shelah entitled "Classification theory for non-
elementary classes la, Ib, and II." (Shelah [1983b, c, 198 ?c]). The idea here is very
simple. Instead of having a logic i f we are given a class K of τ-structures satisfying
certain properties. We would like to ask questions concerning the existence of
various models in such a class K. In the following we list the paradigms of our
questions together with a typical instance of a theorem answering such a question
in some special case.
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1.1.8 Categoricity. Under what conditions is K categorical in some cardinal?

The paradigm of such questions concerns categoricity in ω for first-order model
theory. There the characterization theorem due independently to Engeler, Ryll-
Nardzewski, and Svenonious, connects categoricity of a theory with its
Lindenbaum algebras being atomic. In the case of ί ? ω i ω Scott's theorem states
that every complete sentence is categorical in ω. For other cardinalities charac-
terization of categoricity is more connected to transfer properties, such as Morley's
theorem, stating that a countable first-order theory is categorical in one un-
countable cardinal iff it is categorical in every uncountable cardinal. Attempts to
generalize this to J5fωiω have only partially succeeded, cf. Keisler [1971]. Much of
Section 3 is devoted to related questions.

1.1.9 The Spectrum. More generally, denote by I(K, K) the number of isomorphism
types of models in K of cardinality K.IΪK = Mod(Γ) for some first-order theory, we
write /(T, K) instead of I(K, K). What can we say about I(K, κ)Ί

In the case of countable first-order theory, twenty years of research have led to
the following theorem of Shelah, proving therewith a conjecture due to Morley.

1.1.10 Theorem (Shelah). Let T be a countable first-order theory. Then I(T, K) is
not-decreasing on uncountable cardinals and, in fact, either:

(i) I(T, K) = 2K;or
(ii) /(T, ωα) < 3ωi(card(α)).

The proof of this theorem was complete with Shelah [1982f], based on Shelah
[1978a].

Much of Section 2 is devoted to prove similar theorems for abstract classes.

1.1.11 Rigid Models. A model is rigid, if it has no non-trivial automorphisms. Let
R(K, K) be the number of isomorphism types of rigid structures in K of cardinality
K. Interest in rigid models arose, after it was shown by Ehrenfeucht and Mostowski,
that every first-order theory has models with many automorphisms. Generaliza-
tions of this to abstract model theory are discussed in Section XVIII.4.5. The
following theorem shows, unfortunately, that very little can be said about the
function R(T, K) in the case of first-order logic.

1.1.12 Theorem (Shelah [1976b]). Assume λω < λ+ for every λ. For every Σ\-class
C of cardinals there is a sentence φ e J?ωω such that C = {K e Card: R(φ, K) Φ 0}.

This refutes a conjecture of Ehrenfeucht, which tried to describe R(T, K). It
seems that one should ask for rigid models which are also card(Γ)+-saturated. In
Shelah [1983d] there are partial results indicating that at least the existence of
rigid models in some class K can be settled in an abstract framework. In this
chapter we shall not deal with rigid models, but we would like to draw attention
to this promising direction of research. A sample theorem is the following result
due to Shelah, refuting a conjecture (unpublished) of H. Salzmann, suggesting
that every rigid real closed field is archimedian:
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1.1.13 Theorem (Shelah). Assume GCH. There are arbitrarily large rigid ω ^satur-
ated real closed fields.

1.1.14 Problem. Characterize the abstract classes (defined below) which have
arbitrarily large rigid models.

1.1.15 Homogeneous and Saturated Models. Similar problems can be stated for
homogeneous models. In Section 2 we shall study this question. Theorem 2.1.11
gives some information about the spectrum of homogeneous models H(K, K).
In first-order model theory saturated models are suitable described as universal
and homogeneous. Already in the early days of classification theory, axiomatic
frameworks have been studied. Jonsson [1956,1960] and Fraϊsse [1954] proposed
axioms for the existence of universal and homogeneous structures in a class K and
Morley-Vaught [1962] used this framework to construct saturated structures.
We shall return to a detailed discussion of these axioms in Section 1.2 and for
Jonsson's work in Section 2.1. What we want to note here, is that the construction
of the saturated model heavily depends on the amalgamation property of K. We
shall see that there are good reasons for this. The question arises if there is a suitable
substitute for saturated models? One of the key notions introduced in this chapter
is the limit model. The similarity consists less in the definition, than in its use in
various proofs. Section 2.2 gives the definitions and its presence is felt through the
rest of the chapter.

7.2. The Axioms

Here K is a class of τ-structures and <κ is a two-place relation between members
91, 95 of K. If the context is clear we omit the K in < κ and assume that all structures
91, 93eK.

The axioms presented below are modeled after various examples of model
theory. It is good to have some of these at disposal when reading the axioms, so we
present them before stating the axioms.

1.2.1 Examples, (i) Let Γbe a complete first-order theory over some vocabulary τ

and put Kτ = Mod(Γ) and < be first-order elementary extension,
(ii) Let Kwo be the class of well-orderings and 91 < w o 93 hold if 93 is an end

extension of 91, i.e., every b e B - A is bigger than every aeA.
(iii) Let i f = &ωω(Qωi) be the logic with the quantifier "there exist uncount-

ably many." Let a weak τ-model (91, q) consist of a τ-structure together
with a family q of subsets of A. Let the formulas of ifweak be as for <£ but
define 91 \= w e a k Qxφ(x) if {a e A: 91 N w e a k φ(a)} e q. Let K be the class
of all weak τ-models for some fixed vocabulary τ. We define <** as in
Keisler [1970, 1971a] by 91 < ** 93 iff 91 <^ w e a k ® and for every άeAm

and for every formula φ = φ(x, y) e j£?(τ) we have that if 91 )= ~ι Qxφ(x, a)
then{b 6 A: 91 μ φ(b, a)} = {beB:® \= φ(b, a)}.
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We shall return to this example in more detail in Section 4.

(iv) The category of universal locally finite groups, with K U L F the class of those
groups and < U L F the ordinary subgroup relation, cf. Kegel-Wehrfritz
[1973]. The model theory of uncountable universal locally finite groups
was studied in Macintyre-Shelah [1976] and Grossberg-Shelah [1983].

(v) (Elementary Classes with Omitting Types). Let τ be a fixed vocabulary,
T be a first-order theory over τ, i.e., T a ^ωω{τ\ and Γ be a set of types
over τ. Let K = {9IeStr(τ): 91 \= T and 91 omits every peΓ} and
91 <κ 93 if 91 is an elementary substructure of 93. It is easy to see (cf.
Keisler [1970]) that example (iii) is a special case of this.

We shall return to this example in Section 1.3.
Having these examples in mind, we now state the axioms. They come in several

groups of various degree of strength. First some (almost) trivial axioms concerning
transitivity of our embedding relation:

Axiom 1 (Substructure Axiom). If 91 < 93 then 91 c= 93, i.e., 91 is a substructure
of®.

1.2.2 Definitions, (i) If 91 cz 93 are τ-structures, and/is an embedding of 9ϊ into 93,
say that / is an K-embedding, if /(9I) <κ 93.

(ii) If 91, 93 are τ-structures and/^g is an embedding of 91 into 93, we denote by
[91; 93, fAB] the two-sorted structure consisting of the two structures
91, 93 expanded by a function symbol F interpreted by the embedding
fAB and a new unary predicate symbol U, both not in τ, such that
S Γ U ^ / 4 B ( 9 I ) . If 91 c 93 and fAB is the identity on 9ϊ we just write
[91; 93]. Note the difference between our notation [91; 93] and [91, 93]
for the disjoint pair construction in Chapter XVIII.

Axiom 2 (Isomorphism Axiom), (i) If 91 e K and 91 x ^ 9 1 then 91 x e K.
(ii) If 91 < 93 and [91; 93] ^ [9ί x; 93J then 9^ < 93X.

Axiom 3 (Transitivity Axiom), (i) If 911 < 9l2 < 9I3 then SIX < 9I 3 .
(ii) If 9IX c 9I2 < 9I3 and 9ϊx < 9l3 then 9IX < 9I 2 .

Clearly examples (i)-(v) satisfy these axioms.

1.2.3 Definition. Let 9ία (α < y) be a family of structures in ft.

(i) 9Iα is K-increasing if α > β < y implies that 9lα < 91^.
(ii) 9ία is continuous if for every limit ordinal δ < y we have SHδ = ( J α < 9lα.

(iii) 9Iα (α < y) is a K-chain if it is both K-increasing and continuous.

Axiom 4 (Chain Axiom), (i) If 9Iα (α < y) is a K-chain then 9I0 < {jΛ<y 9l«
(ii) If 9Iα (α < y) is a K-chain, 91 e K and for each α < y 9lα < 91 then
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Again all our examples from above satisfy this axiom.
We denote by Kλ (K<λ, K<λ) the class of structures of X of cardinality exactly

(less than, less than or equal to) λ.
Our next axiom is an analogue of the Lόwenheim-Skolem-Tarski theorem for

first-order logic and introduces a cardinal parameter, which we shall call the
Lδwenheίm number l(K) of (K, < >.

Axiom 5 (Existence of Lόwenheim Number). There is first a cardinal l(K) >
card(τ(K)) such that:

0) Ki(K) Φ 0 ;and
(ii) whenever 21 e K and X is a subset of the universe A of 91 then there is

a 93 e K such that I c β , card(95) < l(K) + card(X) and 95 < 91.

1.2.4 Examples, (i) In the example of well-orderings with end-extensions (Example
1.2.1(ii)) has no Lόwenheim number. To see this, take any well ordering 91
of cofinality ω of cardinality K. If X is a countable cofinal set then for every
95 < w o 91 with I c β w e have 93 = 91.

(ii) The Lόwenheim numbers of Examples 1.2.l(i), (iii), (iv), and (v) are ω.
(iii) If we modify Example 1.2.1(iii) such that the interpretation of the quanti-

fier Qxφ(x) ensures that the set defined by φ is uncountable, then the
Lowenheim number is ωv

(iv) In Gurevic [1982] Lόwenheim properties of general categories are studied.
The situation described there consists of a logic if and an abstract class K
together with a family H of homomorphisms. Supposing that K has
Lόwenheim number λ and JS? has Lόwenheim number μ, we are interested
in the existence of a cardinal g(λ, μ) such that for every 91 e K there is
93 < 91 with card(£) < g(λ, μ) such that for every H e H w e have H(») <
H(9I) is also an if-embedding.

1.2.5 Remark. We could state Axiom 5 only for X cz A with card(Z) < l(K) and
use Axiom 4 to prove Axiom 5 from this weaker assumption.

1.2.6 Definitions, (i) A class K together with a relation <κ satisfying the Axioms
1-4 is called a abstract class.

(ii) A class K together with a relation < κ satisfying the Axioms 1-5 is called a
abstract class of Lδwenheίm number l(K).

(iii) Let Kt be abstract classes over vocabularies τi9 ί e /. We define the inter-
section K = f]ieI Kt to be the class of ( J i 6 / τ rstructures such that for
91, 95eK, 91 < SB iff 31 pτf < 95 [τt holds in Kh i = 1,2.

1.2.7 Proposition, (i) The intersection of any family of abstract classes is again an
abstract class.

(ii) If Kt, iel is a family of abstract classes of Lowenheim number κt then the
intersection f]iei Ki is <*n abstract class of Lowenheim number Σΐei κί-
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1.2.8 Remark. Unions of abstract classes need not be abstract classes. It is easy to
construct examples violating Axiom 3(i) and also Axiom 3(ii). But then Axiom 4(i)
and 4(ii) become meaningless. For disjoint unions only Axiom 3(ii) may be violated,
but unions of disjoint abstract classes are admittedly uninteresting.

1.3. Presentabilίty of Abstract Classes

Our next theorem establishes a connection between abstract classes of a given
Lowenheim number and some infinitary logics and will give as a more precise
cardinal parameter than the Lowenheim number.

1.3.1 Definitions. Let τ be a fixed vocabulary, T be a first-order theory over τ, i.e.,
T cz =£?ωω(τ), and Γ be a set of types over τ.

(i) A class K = MOT(T, Γ) if K = {91 e Str(τ): 91 1= T and 91 omits every
peΓ}.
MOT(T, Γ) stands for Models of T Omitting the Types from Γ.

We say that K is an elementary class omitting some types and write K e ECOT if
there are T, Γ such that K = MOT(T, Γ).

(ii) If τ 0 c τ and K is a class of restructures we write K = MOTτo(T, Γ) if
K = {9ί e Str(τ0): 91 has an expansion 9Γ e MOT(Γ, Γ)}.

We say that K is a projective class omitting some types and write K e PCOT if there
are T, Γ, τ 0 such that K = MOTτo(T, Γ).

(iii) We say that K e ECOT(A, μ) or K e PCOT(Λ, μ) if for Γ, Γ as above we
have that card(Γ) < A, card(Γ) < μ.

(iv) If <K, < x > is an abstract class, we say that K is (A, μ)-presentable if
K e PCOT(A, μ) and K < = {[91, 93]: 91 < κ S} e PCOT(A, μ).

If λ = μ we omit μ and just speak of λ-presentable classes.

1.3.2 Examples. From the examples in 1.2.1 in the previous section, (i) and (iii)
are ω-presentable and (ii) is not presentable for any cardinals A, μ. This follows
from the non-characterizability of the class of well-orderings in ^ o o ω (cf. Theorem
3.3.1) and the theorem below. However, they are axiomatizable in Z£ω ω .

Clearly (A, μ)-presentable classes are projective classes in the logic «5fvω with
v = (sup(A, μ)+), but from the infinitary operations we only use once universal
quantification over infinitary formulas. Example (v) is just an instance of an
PCOT-class.

Clearly, a A-presentable class has Lowenheim number A.

1.3.3 Theorem (Shelah's Presentability Theorem). Let <X, < > be an abstract class
over a vocabulary τ, card(τ) = A, and with Lowenheim number μ > A. Then <K, > >
is (μ, 2μ)-presentable.

Proof. The proof uses two lemmas.
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1.3.4 Lemma (Direct Limit Lemma). Let I be a directed set (i.e., partially ordered
by <, such that any two elements have a common upper bound). Let <K, < > be an
abstract class and 9JΪ, (i e /) be a family of structures in K with i, j el,i < j implies
thatWli <9K j . Then

(i) for every i e / the structure 9D1, < \JjeI 30ΐ; and
(ii) if9leK and for every j e I, 9Rj < 91 then \jjeI 2K, < 91.

Proof. We prove (i) and (ii) simultaneously by induction on card(/). If / is finite
there is nothing to prove, since / has a maximal element.

Suppose card(7) = μ and we have proved the lemma for card(7) < μ. We
can find a family Ia (α < μ) such that:

(a) card(7α) < card(7);
(b) α < β < μ implies that 7α c Iβ a 7;

(c) [jΆ<μIa = I;
(d) for every limit ordinal δ > μ [j(X<δ IΛ = Iδ; and
(e) for each α < μ 7α is directed and non-empty.

Let 9Ra = {Jjei^Wlj. So by indication hypothesis from (i), j e Ia implies
SOΪy < SOΪα and by induction hypothesis from (ii) 9Wα < 9l.Ifα > β then j e 7α implies
2R; < mβ. Hence, by the induction hypothesis from (ii) 9Mα - \JjeU3Jlj < 9M̂
So by the chain axiom 9Wα < {Jβ<μ Wlβ = [jJEl 5R7 , and as jΈ7 α implies
9W7 < 9Kα, we can conclude by the transitivity axiom that ΪRj < (J i e / 9JΪ D . To
conclude that ( J i e / ^ i = ( J α < μ ^ α < 5i w ^ use the second part of the chain
axiom. D

1.3.5 Lemma (Skolemization Lemma). Let (K, >> be an abstract class over a
vocabulary τ with Lδwenheim number l(K) and let τγ = τ u {F": / < l(K\ neω}
a new vocabulary where all the T7" are n-place function symbols not in τ. If 9)1 is a τ-
structure and 30Ϊ* is an expansions of 9Ά to an τ ̂ structure and a e Mn we denote by
SDΪf the minimal substructure qfW* containing a and put 9Ji5 = $R* [ τ. Then every
yjle K has an expansion SDΐ* such that for every neω and ae Mn:

(i) a»fi < 9W;
(ii) card(9Jί,) < /(ft);

(iii) ifb is a subsequence of a then 50ls < W^ and
(iv) for every τ ̂ substructure 91* o/9JΪ* we have that 91* [ τ < 9JΪ.

Proof We define by induction on neω for every aeMn the values of/ t(ά), the
interpretation of F"(ά\ where / < l(K). By our assumption on the Lόwenheim
number of K there is for every subsequence b of a an 9JlB of cardinality less or equal
than l(K) such that 9JlΈ < 9)1. So we can find 9Rά of cardinality less or equal than
l(K) such that:

(a) 9R-a < 9)1;
(b) for every subsequence b of α, 9RB < 9Rά < SCR; and
(c) the choice of 9Rά does not depend on the order of a.
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To secure (b) we need Axiom 3(ii).
Now let {c, : i <j < l(K)} be an enumeration of the universe of 9JΪ5 and put

/»(α) = a for i < j and /J(δ) = c0 for 7 < I < l(K).
Clearly, (i)-(iii) hold for SDΐ*. To verify (iv) we use Lemma 1.3.4. D

1.3.6 Proof of Theorem 1.3.3. Let 9Jί* be as in Lemma 1.3.5 and let Γn be the set of

complete n-typesp = p(x0, . . . , xn-i) in ^ωω{τγ) such that:

(a) if a e Mn realizes p in 9Jί* and h is a subsequence of α then 9Jl5 < κ 3R5.

Clearly, (a) can be expressed by a first-order type over τv

Now let Γ the set of complete π-types in &ωJτ{) which are not in ( J m e ω Γm

and put K' = M O T ( 0 , Γ).

Claim 1. // 91 e X' ί/zβπ 91 Is τ e K.

If 91 is finitely generated, this is true since the only types realized in 91 take care of
this. Otherwise we write 91 as the union of its finitely generated substructures and
apply Lemma 1.3.4.

Claim 2. // 91 e K then it has an expansion 91* e K'.

This clearly follows from Lemma 1.3.5.
This proves that K e P C O T . To prove that {[31; 95]: 31 <κ

<$>) is also in
PCOT we repeat the same proof for pairs of structures. D

Shelah's presentability theorem uses additional function symbols, even in the
case where <* is just the substructure relation. On the other hand it guarantees
axiomatizability in J£?κω for some K depending on the Lόwenheim number of K.
One should compare this with the following easy generalization of the classical
Chang-Los-Suszko theorem:

1.3.7 Proposition*. Let K be a strongly inaccessible cardinal, 1 a vocabulary with
card(τ) < K and K an abstract class of τ-structures with Lδwenheim number l(K) < K
and <κ the ordinary substructure relation. Then there is a prenex ^-sentence
φ e ^κκ{τ) such that K = Mod(φ).

7.4. Hanf Numbers

Hanf numbers were defined in Chapter II for arbitrary logics. In Section IX.3.2
Hanf numbers for infinitary logics are studied. We want to apply these results
together with the presentability theorem and characterizability theorem to ab-
stract classes. We first define Hanf numbers for abstract classes and recall some
material from Chapter IX.

1.4.1 Definitions (Hanf Numbers), (i) Let K be any class of structures closed under
isomorphisms. We define the Hanf number h(K) to be

h(K)= (J {card(9I) + :9ίeK}.

If h(K) > K for every cardinal K we write h(K) = 00.
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(ii) If C is a family of classes of structures closed under isomorphisms, we define
the Hanf number h(C) to be

h(Q = (J {h(K): K e C and h(K) < oo}.

h(C) is the smallest cardinal K such that if some some K e C has a model of
cardinality K then it has arbitrary large models.

The concept of a Hanf number is only interesting for families of classes K, such
as Jonsson classes, abstract classes with Lowenheim number l(K) = λ, ECOT(>1, μ),
PCOT(/l, μ\ etc.

1.4.2 Examples, (i) If all models 91 e K are of cardinality strictly less than K then
h(K) < K.

(ii) If K is P C ^ ω i ω then h(K) < 3 ω i , by Theorem VIII.6.4.4.
(iii) If K is PCOT(X μ) and λ < μ then /i(K) < 2(2μ)+, by corollary IX.3.2.14.

1.4.3 Theorem*. Lei K be an abstract class over a vocabulary τ with card(τ) = λ
and with Lowenheim number l(K) = μ. Put κ0 = 2λ + μ and K = Π(2κ0)+ Then
h(K) < K.

Proof. Use the presentability theorem (1.3.3) and Example 1.4.1(iv) above. D

2. Amalgamation

2.1. Jonsson Classes and Universal and
Homogeneous Models

We did not require in our definition of abstract classes any form of amalgamation.
In fact, the point of our approach is, that amalgamation is not needed to get a nice
structure/non-structure theory. It turns out that the presence or absence of
amalgamation is like a watershed: The resulting model theories differ considerably.
In this section we look at the case where amalgamation is true for any triple of
models, a case which had been studied in the literature already in Jonsson [1956].
In Morley-Vaught [1962] they are called Jonsson classes. Jonsson classes are
special cases of our abstract classes in the sense that the axioms of abstract classes
are part of the axioms of Jonsson classes which we shall discuss now. Note that
our terminology will differ slightly from the terminology scattered in the literature.

Let K be an abstract class. We shall introduce some more axioms:

Axiom 6 (Amalgamation). If % eK, i = 0,1,2 and 9I0 < 91,-, j = 1, 2 then there
is 216 K such that 2ly < 21,7 = 1,2 and such that the diagram of the embeddings
commutes.
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Axiom 7 (Joint Embedding). If 91, eK, j = 1, 2 then there is 91 e K such that
91, < A.

Axiom 8 (Unboundedness). K contains structures of arbitrarily unbounded
cardinality.

2.1.1 Definitions, (ΐ) K is a weak Jonsson class (with Lδwenheim number K) iϊK is an
abstract class (with Lόwenheim number K) satisfying additionally Axiom 6.

(ii) K is a Jonsson class (with Lδwenheim number K) if K is an abstract class
(with Lόwenheim number K) satisfying additionally Axioms 6 and 7.

(iii) K is an unbounded Jonsson class (with Lδwenheim number K) if K is an ab-
stract class (with Lόwenheim number K) satisfying additionally Axioms
6, 7, and 8.

2.1.2 Proposition*, (i) Every weak Jonsson class K is a disjoint union of (possibly a
proper class) of Jonsson classes.

(ii) IfK is a weak Jonsson class and l(K) = λ then K is a disjoint union of at most
2λ many Jonsson classes.

Proof. To see (i), we define an equivalence relation 91 = 95 for 91,95 e K by: 91 = 95
if there is (£ e K such that 91 < (£ and 95 < (L By the amalgamation axiom this is
indeed an equivalence relation and every such equivalence class is a Jonsson class,

(ii) is obvious. D

2.1.3 Examples, (i) If Σ is a complete set of first-order sentences with an infinite
model, then Mod(Σ) with the elementary embedding < is a unbounded
Jonsson class.

(ii) Jonsson classes are not necessarily unbounded: Let K(oc) be the class of
well-orderings embeddable into <α, <> with end-extensions. As noted
already in Example 1.2.1(ii) this gives rise to an abstract class and amalga-
mation and joint embedding hold trivially.

Unbounded Jonsson classes are the right framework for the construction of
universal, homogeneous, and saturated structures. A fair exposition of this ap-
proach may be found in Bell-Slomson [1969, Chapter 10].

However we note that Jonsson classes are rather rare. In fact we have:

2.1.4 Proposition. Let ^ be a logic with occurrence number below the first un-
countable measurable cardinal such that for every complete set of sentences Σ c j£f (τ)
with an infinite model, Mod(Σ) together with 3?-extensions is a weak Jonsson class.
Then $£ = J^ω ω.

Proof. From the abstract amalgamation theorem (Theorem XVIΠ.3.4.2) we get
that j*f is compact. Now we apply Theorem 3.1.9 also from Chapter XVIII. D

2.1.5 Definitions. Let K be a fixed abstract class with Lόwenheim number l(K) = λ
and K > λ.
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(i) A structure SOΪ e K is (K, κ)-universal, if whenever 21 e K is of cardinality
strictly less than K then there is a iC-embedding of 21 into SDΪ.

(ii) A structure 9K e X is K-unίversal, if it is card(SOΪ)+-universal.
(iii) A structure 9WeiC is (K, κ)-homogeneous, if whenever 91 < X 95 <κWl,

card(33) < jcand/: 91 -• 9Dΐ is a K-embedding, then there is a K-embedding
/ ' : 33 -* STC such that / ' Is 91 = /.

(iv) A structure 3QΪ e K is K-homogeneous, if its card(9Jl)-homogeneous.

The following theorem is at the origin of Jonsson classes. It was first proved in
Jonsson [1960] for countable vocabularies. The general treatment occurs first in
Morley-Vaught [1962]. A fair treatment is in Bell-Slomson [1969] and Comfort-
Negrepontis [1974].

2.1.6 Theorem (Jonsson). Let K be a unbounded Jonsson class with Lόwenheim
number l(K) = λ. Let further κ> λbe a regular beth number. Then there isWleK
which is K-homogeneous and K-unίversal and 9PΪ is unique up to isomorphism.

If the Jonsson class K is not unbounded, we can still get universal and homo-
geneous structures, even if we relax the amalgamation axiom a bit.

2.1.7 Definitions. Let K be an abstract class.

(i) Let 91 e K. We say that 91 is an (λ, μ)-amalgamation base for K, if for every
»!, 332 e K with c a r d ^ ) = A, card(952) = μ, 91 < x 95, (i = 1, 2) there is
m E K and X-embeddings /•: » f - 9JI such that fx {91 = f2 [ 91. We call
SDΪ also an amalgamating structure for 91, S l 5 232

(ii) We say that K has the (K, λ, μ)-amalgamation property, if every 91 e K with
card(9I) = K is a (A, μ)-amalgamation base.

(iii) If K = λ we just speak of the (A, μ)-amalgamation property. If K = λ = μ
we just say that Kλ has the amalgamation property.

(iv) We write (< λ, μ)-amalgamation property, if K has the (λ\ μ)-amalgama-
tion property for every λ' < λ and similarily for the other parameters.

The precise theorem on the existence of homogeneous and universal models,
using basically the same proof, is the following:

2.1.8 Theorem (Shelah). Let K be an abstract class with Lδwenheίm number l(K),

κ<λandλ = λ<κ.

(i) If K has the (<κ, λ)-amalgamation property, then for every 91 e X of
cardinality λ there is κ-homogeneous model StR of cardinality λ such that
9I<X9K.

(ii) // in (i) K = λ and additionally, K has the joint embedding property (i.e.,
satisfies Axiom 7), then there is a universal, homogeneous model SDΪ of
cardinality λ.

(iii) If in (i) additionally l(K) < λ and K = λ then the universal and homogeneous
model of cardinality λ is unique up to isomorphism.
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2.1.9 Remarks, (i) If X is an unbounded Jonsson class then the universal and
homogeneous model of cardinality λ has a proper X-extension. In fact, if λ is
regular and λ > /(X), then it is a (λ, λ)-limit, as defined in the next section.

(ii) If X is not unbounded, then the universal and homogeneous model can be
rigid and have no proper X-extensions. Take, for example, the class of well-order-
ings of order type less or equal to some fixed cardinal K together with end-extensions.
Then </c, G> has all the above properties.

(iii) If we drop Axiom 4(ii) in our definition of abstract classes we still can
prove an analogue to Theorem 2.1.8(ii), losing universality only. More precisely,
there is a homogeneous, (,< A)-universal model in X which is smooth, i.e., the union
of a continuous X-chain of models of cardinality strictly smaller than λ. Axiom
4(ii) is used to get the universality from ( < λ)-universality and smoothness. An
example of a class X, where this situation applies, is given in Section XVIII.3.4.

(iv) In the literature before 1980 Axiom 4(ii) is usually not required for the
definition of a Jonsson class. Presentations of the original theory of Jonsson classes
may be found iiί Bell-Slomson [1969] and Comfort-Negrepontis [1974]. The
latter also contains detailed historical remarks.

Given an abstract class X we might also be interested in the number of homo-
geneous models X has in a given cardinality:

2.1.10 Definition. Let X be an abstract class. We denote by H(K, λ) the number of
isomorphism classes of X-homogeneous models of cardinality λ.

2.1.11 Theorem (Shelah). Let X be an abstract class (over a vocabulary τ) with

Lδwenheim number l(K) = λ and K > λ. Then H(K, K) < 2 λ + c a r d ( τ ) .

Outline of Proof. We observe that two X-homogeneous structures 91, 95 of cardi-
nality K > λ are isomorphic iff they have the same substructures of cardinality λ.

D

It remains an open problem to characterize H(K, K) further.
We conclude this subsection with a theorem on the existence of universal

models in big cardinals.

2.1.12 Theorem (Grossberg-Shelah [1983]). Let K be a compact cardinal and
λ > K with λ strong limit and of cofinality ω. Let X be an abstract class with
Lδwenheim number l(K) < K which satisfies the joint embedding property. Then
there is a universal model in Kλ.

There are non-trivial applications of the above theorem in the case of locally
finite groups.

Proof In Grossberg-Shelah [1983] this is proved for X the class of all models of
some ifκκ-sentence φ which satisfies the joint embedding property for 2K many
models simultaneously. In the case of an abstract class the latter can be replaced by
the simple JEP, using Axiom 4 (unions of chains). It is easy to see how the proof in
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Grossberg-Shelah [1983] can be adapted to abstract classes: We use the Lowen-
heim number and the presentability theorem to get that K is a projective class in
<£κκ. Next we observe that the proof in Grossberg-Shelah [1983] also works for

projective classes. D

2.2, Limit Models

One of the more powerful tools in classical model theory is the use of saturated or
special models. Their construction can be carried out in the context of Jonsson
classes as described in the previous section. However, we have also seen there that
Jonsson classes are very rare outside of first-order model theory. So we need a
substitute for saturated models whose existence does not depend on the amalga-
mation axiom.

2.2.1 Definition ((A, κ)-Limit Models). Let K be an abstract class with <κ.

(i) A model 9Ϊ e K is a weak λ-limit if the following properties (a), (b), and
(c) are satisfied.

(a) card(SR) = λ
(b) 91 has a proper extension 9)1 with 9Ϊ <κ 9)1.
(c) For every 9)1 eK such that card(Stt) = λ and 91 <K9Ά there is a

91' e K such that 91 ^ 91' and 9)1 <κ 91'.

(ii) A structure 91 e K is a (λ, κ)-limit model in K, if it is a weak A-limit and
additionally the following property (d) holds.

(d) If {91,-: i < K < λ} is a K-chain and for each i < K, % £ 91, then

ιu % = *•
(iii) A model 91 e K is a λ-superlimit if it is a (λ, /c)-limit for every K < λ.

Superlimits are closely related to saturated models:

2.2.2 Proposition, (i) 7/501 is saturated or special and of cardinality λ then 9)1 is a
(λ, cf(λ))-limit in K = {21 e Str(τ): 9)1 =^ωω 91} with elementary embed-
dings.

(ii) If K is an abstract class and 91 e K is K-universal and K-homogeneous of
cardinality λ, then 91 is weak λ-limit iff 91 is not K-maximal.

Proof (i) We have to verify (a), (b), (c), and (d). (a) is true by hypothesis, (b) follows
from the compactness of first-order logic and (c) follows from the fact that saturated
models are universal. For (d) we have to show that if for every i < d(λ) 9Jt, is
saturated then {jί<cUλ) 901, is saturated, too. For λ regular this is easy (Chang-
Keisler [1973, Exercise 5.1.1]). For λ singular, see Shelah [1978a]. From this,
together with the uniqueness of saturated models, we conclude that
Uί<cf(λ) Wli = Wl. The proof for special models is similar and left to the reader,

(ii) is trivial. D



764 XX. Abstract Embedding Relations

The following two simple propositions will be used in the later sections.

2.2.3 Proposition. Let K be an abstract class with Lδwenheim number l(K) < λ+

which has a weak λ-limit model 91 e K. Then there is a model 9RsK with
card(SK) = λ + .

Proof. By (b) there is W e K such that 91 <κ W. If card(9M') > A+ we get 9W from
the Lόwenheim number. If card(9W') = A we apply (c) to get 91' ^ 91 with 91 <K9l'
and use this to construct a K-chain of length λ+. Now we apply the chain axiom. D

2.2.4 Proposition. Let K be an abstract class with Lδwenheim number l(K) < A
which has, up to isomorphism, exactly one model 91 e K of cardinality A. Then 91 is
λ-superlimit ijfK has a model 9R of cardinality strictly bigger than λ.

Proof. If 91 is weak A-limit we can apply Proposition 2.2.3. So assume that 9)1 eK
is of cardinality strictly bigger than A. Using the Lowenheim number we can get
9Ji0 <K9Jl1 <K9Jl with both 9Λ0,50^ of cardinality A and isomorphic to 91. This
proves (b) of the definition of the superlimit (Definition 2.2.1). Properties (c) and
(d) are trivial under the hypothesis of categoricity in A D

We conclude this section with a few observations on the uniqueness of super-
limits, whose proofs are trivial.

2.2.5 Proposition. Let K be an abstract class with a λ-superlimit 9JI.

(i) If 91 is also a λ-superlimit then 9l^9Jl iff either 9l<9Jlor9Jl<9l (modulo
some K-embedding).

(ii) // K has the joint embedding property, then the superlimit is unique, up to
isomorphism.

(iii) If 9)1 is universal, then it is unique.

2.2.6 Example. Here is an example of an abstract class KP which has exactly α + 1
A-superlimits of cardinality ωα. Let K consist of structures with one unary predicate
R, whose interpretation is infinite. We put <X, RA} < <β, RB} iff A cz B and
RA = RB. Clearly (A, RA} is A-superlimit iff 4̂ — RA has cardinality A.

We shall often deal with a situation where an abstract class K with Lόwenheim
number l(K) < A has a A-superlimit 9)1 which is universal, homogeneous and is an
amalgamation basis for Kλ. Clearly then, only by universality and homogeneity,
K has the ( < A, A)-amalgamation property.

2.2.7 Problem. Does Kλ in this case also have the (A, A)-amalgamation property?

In Section 2.3 we state a conjecture, whose proof would follow from a positive
answer to this problem.
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2.3. Counting Models in the Absence of an Amalgamation Bases

In this section we assume K is an abstract class, which is not a Jonsson class and
therefore does not have the amalgamation property, but still does have a λ-
superlimit 9JZ e Kλ. Our main theorem of this section is:

2.3.1 Theorem (Shelah's Non-structure Theorem for Abstract Classes). Assume
2λ < 2λ +. Let K be an abstract class such that:

(i) there is a λ-superlimίt 30ΐ e Kλ\
(ii) 9W is not an amalgamation basis for Kλ+.

Then I(K, λ+) = 2λ+ and there is no universal model in Kλ+.

At this point it is appropriate to state some conjectures. The first one deals
with the existence of universal and homogeneous superlimits.

2.3.2 Conjecture (Shelah). Let K be an abstract class with Lόwenheim number
l(K) < λ such that I(K, λ+) < 2λ\

(i) If K additionally satisfies the joint embedding property (Axiom 7), then
there is K-universal and K-homogeneous A-superlimit SDΪ e K.

(ii) If K has arbitrarily large models, then there is a X-universal and K-homo-
geneous Λ-superlimit 30ΐ e K.

(It may be enough to assume that there is a model of cardinality bigger than 2λ+.)

An instance of this conjecture is Theorem 3.1.8, with λ = ω1 and K ω-present-
able. A proof of this conjecture would give us, with the help of the previous theorem,
also a proof of the following conjecture:

2.3.3 Conjecture. Assume GCH. Let K be an abstract class with Lόwenheim
number l(K) = ω which has arbitrary large models and such that for every λ > ω,
/(X, λ) < 2λ. Then K has the amalgamation property and therefore is a weak
Jonsson class.

2.3.4 Problem. Could we replace l(K) = ω by arbitrary λ in the above conjecture?

Finally we state a conjecture which presents an improvement on Theorem 2.3.1.

2.3.5 Conjecture. Assume 2A < 2A+. Let K be an abstract class with Lόwenheim
number l(K) < λ such that:

(i) there is a universal and homogeneous Λ-superlimit 3Qΐ e Kλ;
(ii) I(K,λ+)<2λ + .

Then Kλ has the amalgamation property.
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Clearly, from Theorem 2.3.1, 9JI is an amalgamation basis for Kλ, and, by uni-
versality and homogeneity, K has the ( < A, /^-amalgamation property.

We conclude this section with another conjecture, generalizing Morley's
categoricity theorem for first-order logic to Λ-presentable classes.

2.3.6 Conjecture (Shelah). Let K be an abstract Λ-presentable class and let hλ be
the Hanf number for A-presentable classes. If /(X, K) = 1 for some K > hλ then
I(K, K) = 1 for every K > hλ.

Added in Proof. Recently R. Grossberg and S. Shelah announced the following
Theorem:

2.3.7 Theorem. Let K be an unbounded abstract λ-presentable class. If there is a
μ > λ such that for every neω I(K, μ + n) = 1 then for every K > λ I(K, K) = 1.

2.4. Martin's Axiom Disproves the Non-structure Theorem

Before we discuss the proof of Theorem 2.3.1 we want to comment on its set-
theoretic hypothesis 2λ = λ+. For this we have to recall Martin's Axiom MA from
set theory.

2.4.1 Definitions (Partial Orders), (i) A partial order is a pair <P, <> such that P
is not empty and < is a transitive and reflexive relation on P.

(ii) Given /?, qe P we say that p and q are compatible if there is r e P such that
r < p and r < q and p and q are incompatible if they are not compatible. A
antichain in P is a set A a P such that for every p, qeP either p = q or p
and q are incompatible,

(iii) A partial order <P, < ) satisfies the countable chain condition (c.c.c) if
every antichain in P is countable.

(iv) A set D a P is dense, if for every pe P there is a q e D such that q < p.
(v) A set G cz P is filter in P, if any two elements in G are compatible and

whenever p e G and q > p then q e G.

2.4.2 Martin's Axiom, (i) MA(/c) is the statement: If <P, <> is a partial order
satisfying c.c.c and {Df: i < K} is a family of dense subsets of P then there
is a filter G in P such that for every i < K, DtnG φ 0.

(ii) MA is the statement: For every K < 2ω MA(κ).

For more references the reader may consult Kunen [1980] or Shelah [1982c].

2.4.3 Proposition (Shelah). Assume ZFC + MA + i CH (and therefore 2ω = 2ω i).
Then there is an ω-presentable abstract class Ko e ECOT such that:

(i) /(X, K) = 1 for every K < 2ω;
(ii) I(K, K) = 0 for every K > 2ω; but

(iii) Kω does not have the amalgamation property.
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Proof. We first define the class Ko. The vocabulary τ 0 consist of a binary predicate
C and a unary predicate P. A τo-structure 21 = <4, E, P> is in Ko if:

(1) P is countable.

(2) If xEy then xεP but yφP.

For every ^ P w e define Sy = {xeA: xEy}. Clearly Sy c P.

(3) (Extensionality of E). lΐxφ y,x,yφP then 5X # Sy .

(4) For every xφP and for every finite set C c= P there is a y φP such that the
symmetric difference SXA Sy = C.

We define an equivalence relation on A - P by x = y iff SλΔ Sy is finite. Clearly
every equivalence class is countable. Let the number of such equivalence classes
be the dimension dim(2I) of 21. Now we require that:

(5) If xί9 x 2 , . . . , xn are mutually inequivalent and not in P, then every finite
boolean combination of the sets Sxι, S X 2 , . . . , SXn is infinite.

This concludes the definition of Ko.

Next we define the substructure relation < 0 for 21 = <4, EA, PΛ>,
93 = <£, EB, Pβ>, both in Ko by 21 < 0 95 if 21 c 93 and PA = PB.

We have to verify that this defines an abstract class with (i)-(iii). We leave the
verification of the axioms to the reader. To verify (i) and (ii) we prove five claims:

Claim 1. There are no models of cardinality greater than 2ω.

By (1) P is countable and by (4) every element is either in P or in some Sx for xeP.
So the claim follows from (3). This proves Proposition 2.4.3(ii).

Claim 2. Ko is categorical in ω.

This one can prove using (5) and a Cantor-style back-and-forth argument.

Claim 3. MA(κ) implies that Ko is categorical in K < 2ω.

Clearly 21, 93 e Ko have the same cardinality iff they have the same dimension. So
let 21, 93 G Ko be of the same dimension K < 2K. So let Ef, Ef, i < K be an enumera-
tion of the equivalence classes in 21, 33, respectively. Let F be the family of all finite
partial isomorphisms/: 2ϊ -• 23 such that additionally to the isomorphism condi-
tions we have:

(a) for every x e dom(/), xeEf iff/(x) e Ef; and
(b) if x, y e dom(/), x, y φ P, and x = y then the finite set SXA Sy c dom(/).

Clearly F is a partial order by the natural extension relation of partial isomor-
phisms: / < g iff/extends g. To show that F satisfies c.c.c, we show:

Claim 4. // {/f: i < k} a F for some K such that ω < K < 2ω then there is / C K ,

card(7) = fc, such that {/•: i e 1} are all compatible.

This follows from the fact that all the sets PΛ, Ef are countable.
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Now we define Da = {feF:ae dom(/)} and Db= {feF:be rg(/)}. Clearly,
all the Da, Db are dense in F. So let G be a filter in F which intersects all the D f l,
Db with aePA and bePB. Such a filter exists by MA(/c). Next, we define g =

Claim 5. g: 91 -» 93 is an isomorphism.

g is one-one and onto by our choice of the Da,Db, and # is an isomorphism, since
every finite restriction of g has an extension in F.

So Claims 3-5 prove Proposition 2.4.3(i).
We still have to prove Proposition 2.4.3(iii). For this let 91 = (A, EA, PA} e Ko

be countable. Let Sι §f S2 §j PA be two generic subsets different from all the
Sx, x e A — PA. We now form 91, (i = 1, 2) by adding the necessary new points to
A — PA to ensure that Sι is of the form Sx for some xeAt — PA and to make
(2)-(4) true. No points are added in PA. Clearly 9l{ can be constructed to be
countable and in Ko, and 91 < 0 9It. Now assume 93 is an amalgamating structure.
Then there are ztGB - PA (i = 1, 2) such that Sz. = Sι and SZl n SZ2 = 0 , con-
tradicting (5). Therefore 93 φ Ko. U

2.5. Preliminaries for the Weak Diamond

In this section we collect the set-theoretic preliminaries needed in Section 2.6.
They are concerned about the relation between various instances of the GCH and
combinatorial principles related to O First we present a variation of Ulam's
theorem (cf. Lemma XVIII.4.3.9). Recall that an ideal J on a set I is the dual of a
filter F on the set /, and that an ideal is normal, if the dual filter is normal. A subset
S a I is called J-positive, if S φ J. Since the filter Dκ of closed and unbounded sets
on K is normal, the stationary sets on K are D^-positive.

2.5.1 Ulam's Theorem. Let J be a normal ideal on κ+.
(i) (Ulam). Let K be an infinite cardinal. IfS a κ+,SφJ,S may be decomposed

into κ+ disjoint J-positive subsets.
(ii) There is a family S of 2K+ many J-positive subsets ofκ+ such that for any

S l 5 S2 e S the symmetric difference S{ Δ S2 is J-positive as well.

Proof, (i) is standard, e.g., Theorem 3.2 in Chapter B.3 of the Handbook of Mathe-
matical Logic [Barwise 1977], where it is stated for stationary rather than J-
positive sets. But the same proof works for this generalized version.

To prove (ii) let {Sa: α < κ+} be the disjoint family of J-positive sets from (i).
Let X aκ\X Φ0. Define Tx = {JaeX S2a u [j^x S2a+1. Clearly each Tx is
J-positive and X Φ Y implies that Tx Δ Tγ is J-positive. D

2.5.2 Jensen's O Jensen's O for ω ^ O j can be formulated as: There exists
a family of functions {gΛ\ α -• α: α < ω x } such that for every/: ωγ^ ωγ^iQ have
that {α < ωί :f [ α = ga} is stationary.
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2.5.3 The Principles Φ and Θ of Devlin and Shelah. Let F be a function which
maps (0, l)-sequences of length α < λ into {0, 1} = 2, and let S a λ.

(i) The principle Φ\{S) says that for every such function F there is a function
g: λ -• 2 such that for every other function/: λ -> 2 the set

is stationary on A.
(ii) The principle Φ is just Φ

(iii) The principle Φκ

λ(S) is obtained from Φj by replacing every occurrence of
2 by K, both in the range and domain of F as well as in the range of g and
the domain of/,

(iv) If S = λ we omit it.
(v) The principle Θ says that if {fη: η e ω i 2} is a family of functions with each

fη: ω1 -* 2ω, then there is η e ω i 2 such that the set

{δeωx: (3pe ω ' 2 ) [/ n f<S = /„ Γ^ and p Γ<5 = Ά Γ^ and

is stationary.

2.5.4 Theorem, (i) (Jensen). <>ωi implies 2ω = ωv

(ii) (Devlin-Shelah). O ω i implies the principle Φ.

(iii) (Devlin-Shelah). 2ω < 2 ω i imp/ies Θ.

A proof of (i) may be found in textbooks like Kunen [1980]. (ii) and (iii) are
proved in Devlin-Shelah [1978]. The important fact about the principle Φ is the
following theorem:

2.5.5 Theorem (Devlin-Shelah [1978]). The principle Φ is equivalent to 2ω < 2ω\

2.5.6 Definition (Small Sets), (i) A subset S a λ is (λ, κ)-small, if Φ$(S) fails,
(ii) Let us denote by S(A, K) the set of all (A, κ)-small subsets of λ.

2.5.7 Remarks, (i) Clearly, (A, κ:)-small sets are stationary in λ.
(ii) The principle Φ is equivalent to ω1φ S(ω1 ? 2).

2.5.8 Proposition (Shelah). (i) S(λ, k) forms a normal ideal on λ.
(ii) Φ^ holds iff S(λ, K) forms a non-trivial normal ideal on λ.

Proof, (i) is a special case of Lemma 14.1.9 in Shelah [1982, Book] and (ii) follows
trivially from the definitions and (i). D

2.5.9 Strong Negations of Φ. First we write out the negation of Φ ^ : there is a
function F which maps (0, l)-sequences of length α < λ into {0, 1} = 2, such that
for every function g: λ -• 2 there is a function/: λ -> 2 such that the set
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is closed and unbounded in A. We want to generalize and parametrize this further.
Let A be a regular cardinal and μ = (μ(i): i < λ},χ = <χ(0 i < ^> be sequences

of cardinals. We want to generalize the above negation of Φ for a function F with
domain

dom(F) = D(μ) = U Π ΛO
<X<λ i<Λ

Now we denote by Unif(A, μ, χ) the statement:

There is a function F such that:

(a) for every α < A, if */ e Y[i<a £ ( 0 , t h e n ^0?) < *(<*); and
(b) for every h e f]«<Λ K α ) there exists /̂ e ]~]α<A μ(α) such that

is closed and unbounded in A.

Such a function F is said to exemplify Unif (A, μ, χ).
If μ, χ are singletons we use the obvious notation. If μ = μ(0), μ(l) we use the

obvious abuse of notation. In 14.1.5 of Shelah [1982c] it is proved that we can
always assume that μ is a sequence of length two. Clearly Unif(A, 2, 2) is just
the negation of Φ^, and Unif (A, /c, K) is just the negation of Φ$.

The version of the weak diamond needed in Section 2.7, and its connection to
the continuum hypothesis, is captured in the following proposition:

2.5.10 Proposition. Assume 2K < 2K +.

(i) Φl+ holds,
(ii) Unif(/c+, μ, 2, 2) fails for every μ with μω < 2K\

This proposition follows from the following two results from Shelah [1982c]:

2.5.11 Theorem (Shelah). Assume that A is regular and

(i) 2<λ < 2A;
(ii) μω < 2\

Then Unif(A, μ, 2 < A , 2<λ)fails.

Proof Shelah [1982c, Theorem 14.1.10]. D

2.5.12 Proposition (Shelah). Unif(A+, μ, 2, 2) implies Unif(A+, μ, 2\ 2λ).

Proof Shelah [1982c, Lemma 14.1.7(1)] for the case A replaced by A+. D

Proof of Proposition 2.5.10. We prove (ii) since (i) follows from (ii) by putting
μ = 1. We apply Theorem 2.5.11 with A = κ+ and therefore 2<λ = 2K. So we get
that Unif(τc+,μ, 2K, 2K) fails, for every μω < 2K + . So by Proposition 2.5.12
Unif (κ+, μ, 2, 2) fails, for every μω <2K + . D
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2.6. Proof of the Non-structure Theorem:
The Countable Case

The purpose of this section is to prove completely some special cases of the non-
structure theorem (2.3.1) and to understand some of the intricacies of its complete
proof. The complete proof appears in Section 2.7. For expository (and historical)
reasons we shall work our way from the moderately simple case to the more
difficult.

2.6.1 Theorem. Assume 2ω < 2ωv. Let K be an abstract class with Lδwenheim
number l(K) = ω such that:

(i)
(ii) I(K9ω1)Φ0\and

(iii) Kω does not have the amalgamation property.

Then there is no universal model in Kωι and therefore I(K, ω^ > 1.

Outline of Proof. The proof consists of several stages: A construction of a system of
countable models, a construction of uncountable models, and a verification that
no model of cardinality α^ is universal. The same pattern will be followed in sub-
sequent proofs, so we try to give this first proof a modular structure.

2.6.2 Construction of Countable Models. Clearly, by (i) and (ii) and Proposition
2.2.4 the unique countable model 91 e K is an ω-superlimit. Let SPΪ* e K be of
cardinality ωl9 so without loss of generality we can assume that its domain
M* = ωv By (iii) there are countable 901 <κ^i 0 = 0, 1) which exemplify the
failure of the amalgamation property and 9JI ^ 9Mf = 9t. Since the Lόwenheim
number l(K) = ω we can assume that SDΪ <κ SPΐ*. We shall show that 901* is not
universal.

For this we define by induction on α < ωγ countable models 9DΪ̂  where η e α2,
i.e., η ranges over sequences of O's and Γs of length l(η) < α. If η, v are two such
sequences, we write η <= v if η is an initial segment of v, and if β < α we denote by
η {β the restriction of η to β.

Now we require that:

(1) 1ΰlη is countable and the universe Mη = ω(l + l(η)).
(2) Iff/ d v then 9ft,, < x 9Jί v .
(3) If δeωί is a limit ordinal and η is a sequence of length δ then

To construct all the TO^'s we put for α = 0,9Jlφ ^ % * id for the α = δ limit we take
the limits, as K is an abstract class. For α = β + 1 we have to work a bit. For each
η of length < β we choose an isomorphism fη from $R onto 9Dΐ̂ . Here we use (i).
Now we define functions/^ and models SDΊff-<£> such that/J, extends fη and is an
isomorphism from 9Dlί onto 9Dl̂ ^<ί>. In other words, at every stage we copy our
original counterexample to the amalgamation property.
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2.6.3 Construction of Models in ωx. Now we construct models of cardinality ωγ.
For every η of length ω1 we put Wlη = | J α < ω i SR, P α.

2.6.4 9Jί* is not Universal. Assume, for contradiction, that SCR* were universal.
Then for each η of length ωx there is an embedding gη from SER̂  into 9JI* such that

Now we use the principle Θ and get two sequences η, v of length ω x and a < ω1

with α = ωα such that:

(4) */ Is α = v p α, f/(α) = 0, v(α) = 1 and

But this shows that 30ϊo,
 <ίJlί can be amalgamated over $R with amalgamating

structure 3DΪ* by setting

and

a contradiction to our choice of SR, 5R0 > ΪRi D

This proof describes the basic structure of all the further proofs. We have, till
now, avoided two problems: How to get maximally many models in λ+ = ωl9

rather than just no universal models, and how to replace ω by general cardinals λ.
Historically, Shelah solved these two problems one after the other, and the proof
of the general theorem evolved while various versions of Shelah [1983b, c, 198 ?c]
were written. For instance, the following theorem can be proven with just slightly
more combinatorial effort:

2.6.5 Theorem. Assume 2ω < 2 ω i and let K be an abstract class with Lδwenheim
number l(K) = ω such that:

(i) I(K9ω)= 1;
(ii) I(K9ω1)Φ0\and

(iii) Kω does not have the amalgamation property.

Then I(K, ωx) > 2ω

The best possible results for λ = ω was first proved using the additional
hypothesis that K be ω-presentable. However, in the following section we present
the general case with a complete proof, taken from Shelah [1983b, c].
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2.7. Proof of the Non-structure Theorem:
The General Case

In the general case we have to analyze closer, how the A-superlimit fails to be an
amalgamation basis. We distinguish two cases:

2.7.1 Definitions (Failures of Amalgamation). Let K be an abstract class with
Lόwenheim number l(K) < λ and 91 e K be a /l-superlimit, which is not an
amalgamation basis for K.

(i) We say that 9K, 9Jl0, 9JΪ1? all isomorphic to % form a maximal counter-
example, if 901 <κ 301, cannot be amalgamated in K, but for every %k e Kλ

(ί,k = 0, 1) such that SD̂  <κ%tk there is an amalgamating structure
95,. G K for m <κ

 (Hik (k = 0, 1). '
(ii) We say that 91, 9JΪ, 9JΪO, 9Jlx, form an extendible counterexample, if they are

all isomorphic to 91, 91 <κ SOΐ and for every 93 e Kλ with 91 <κ 33 there are
K-embeddings ff: 33 -• 30Ϊ, such that 91 <κ,f? ^i has no amalgamating
structure.

2.7.2 Lemma. Let K be an abstract class with Lδwenheim number l(K) < λ and
9leKbe a λ-superlimίt, which is not an amalgamation basis for K. Then either:
Case 1. There is a maximal counterexample', or
Case 2. There is an extendible counterexample.

Proof. Let Wϊ, Mt (i = 0, 1) be a counterexample which is not maximal. So without
loss of generality for every Λ-extension S e f t a of 9W0 there are 5l-extensions 93£ e ftA

(i = 0, 1) of 93 such that Sϊίί, 93f have no amalgamating structure. Put 91 = SJΪ
and 9W = 9JΪO. Clearly, using property (c) of the definition of super limits (Definition
2.2.1), for every Λ-extension S e f i λ of 9K0 there are SDί, (/ = 0, 1) isomorphic to 91
and embeddings ff such that 9 1 < X / B 9 3 1 / has no amalgamating structure.
So 91, 9JI, 90ΐ£ is our extendible counterexample. D

This lemma is the key to the proof of the non-structure theorem for abstract
classes. For the sake of readability we state it once more, in a sharpened form:

2.7.3 Theorem (Shelah's Non-structure Theorem for Abstract Classes). Assume
2λ < 2λ+. Let K be an abstract class with Lδwenheim number l(K) < λ and 91 e K
be a λ-superlimit, which is not an amalgamation basis for K. Then I(K, λ+) = 2λ+.(In
fact there are 2λ+ many structures in Kλ+ such that for no two of them is there a
K-embeddίng from one into the other.)

Proof The proof uses Lemma 2.7.2 and therefore treats the two cases separately.
In each case the proof proceeds along the pattern of the proof of Theorem 2.6.1:
Construction of a system of models is of cardinality λ, each of them isomorphic
to the superlimit; construction of models is of cardinality λ+ and the verification
that there are many non-isomorphic models.
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2.7.4 Case 1: Construction of Models of Cardinality λ. We define by induction on
a < λ+ models yjlη indexed by (0, l)-sequences η e α2 such that:

(1) 30^ is isomorphic to the A-superlimit $R the universe of SOΪ̂  is the set
Mη = λ(l + l(η)).

(2) Iff; < vthenTO, < Λ
(3) If δ G λ+ is a limit ordinal and η is a sequence of length δ then

α<<5

The construction is the same as in subsection 2.6.2, using the maximal counter-
example and the properties of the 2-superlimit.

2.7.5 Case I: Construction of Models of Cardinality λ+. For every (0, l)-sequence

2.7.6 Case I: Counting the Models of Cardinality λ+. Let δ < λ+ be such that
λδ = δ, η9 veδ2 SOΪ,,, SDΪV models of cardinality λ as constructed above, and
h: Wlη -• 9Jlv, a ft embedding. We now define a function F(η,v,h) such that
F(η, v, h) = 1 iff 9JJ,, <κ9Jί^<0> and 9Jl̂  <χ,h^<o> have an amalgamating structure,
and F(η, v, h) = 0, otherwise. Note that, by our assumptions on δ the universe of
SJϊη is the set Mη = δ. Use now 2Λ < 2A+ and Proposition 2.5.10 to conclude that
λ+ is not (A+, 2)-small. Then apply Ulam's theorem (2.5.1) and Proposition
2.5.8(ii) to partition λ+ into a family {Sα: α < λ+} of disjoint non-(/l+, 2)-small
subsets. Now apply Φ^+ to find a family {ρae

λ+ 2: oc < λ+} such that for each
α < A + , η , v e λ + a n d h : λ + -+ λ + t h e s e t {δ < λ + : F ( η [δ,v [δ,h [δ) = p a ( δ ) }

is stationary in λ+.

For each / <= λ+ we define a (0, l)-sequence ηjeλ* 2 such that ηj(ί) = pa(i)
if i e ( J α e / Sα and 77/0 = 0, otherwise. This is well defined since the 5α's form a
partition of λ+.

Our next goal is:

2.7.7 Lemma. Given /, J a λ+,I - J Φ 0, then there is no K-embedding

Proof of Lemma. Assume, for contradiction, that h: StR̂  -• SOΪ̂  is a X-embedding,
but there is γ e / — J. Clearly the set

C = {δ < λ+ : h Γ δ is a function into £ and λδ = δ}

is closed and unbounded. Look at Sγ. We use C and F, /? defined above, to define

δ, ι/y [δ9h[δ) = py(δ)} n C.

By the choice of p above we conclude that S'y φ 0. Now we choose δ e S'y and put
η = Y\I\ δ and v = Y\J [ δ. From the definition of η and the fact that {Sa: oc < λ+}
forms a partition, it is clear that ηj(δ) = 0.
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We now proceed to show that both possibilities, ηj(δ) = Oand^7(ί5) = 1, lead to
a contradiction.

Case 1: ηΣ(δ) = 0.

Then ρy(δ) = 0 and, since δ e S'γ9 we have F(η, v,h[δ) = 0. But by the choice of h
and (5 we know that $«„ < 9K r<0> and TO,, < f lr59Kv^<o> have an amalgamating
structure, contradicting the definition of the function F.

Case 2: ηj(δ) — 1.

Then both ρy(δ) = 1 and F(η, v, h [ δ) = 1, and, by the definition of F,
ΪR^ < 9Jί^-<0> and 9Ŵ  <Λ r < 5 9Jίv-<o> have an amalgamating structure. On the
other hand we have

Fact 1: SOΪ̂  < 9M^<i> and Ώlη <Λ r < 5 9Kv~<0> have an amalgamating structure
inside 9M .̂

But h Γ £: 9JΪ̂  -> 9WV is a K-embedding, by the choice of (5.

We now construct two models 9lu9l2 of cardinality λ such that:

(i) S0rίv-<o> < 911 and SOΪ̂ -<0> is embeddable into 9^ by some h0 extending
h [δ.

(ϋ) yi2 = yjlηj[y for some γ with δ + 1 < y < λ+ and SW,,^^ is embeddable

into 9l2 by some mapping /ix extending h [δ.

To get (i) is trivial. To get (ii) we use Fact 1.

Fact 2.2Rv>Xo> < Sft^andϊR,, < S ^ a n d ϊ ϊ ζ < 9ί2 have an amalgamating structure.

This follows from (i) and (ii) and the fact that our construction is based on a
maximal counterexample.

But we have

Fact 3. a V < 0 > <Λ o 9tl9 aV<!> < Λ l 9li and h0 [ δ = hx [ δ = h [ δ.

Furthermore, since our construction is based on counterexamples to amalga-
mation, we have

Fact 4.301,, < 3Jlη-<0> and Wη < 9W,-<i> have no amalgamating structure.

But Facts 2 and 3 contradict Fact 4, which concludes the proof of the lemma.

2.7.8 Case 2: Construction of Models of Cardinality λ. We define by induction on
α < λ+ models 9Jί̂  indexed by (0, l)-sequences η e α2 such that:

(1) SDΪ̂  is isomorphic to the A-superlimit 3PΪ and for the empty sequence < >

we put 9K< > = SR.
(2) lίηc vthenSR,, <*9KV.
(3) If δ E ωx is a limit ordinal and η is a sequence of length δ then

= U*»U
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(4) For each η the structures % 5R^<0>, S0ϊ̂ <i> have no amalgamating struc-
ture.

The definition of Case 2 is ready tailored for the construction of the 9JlJs. The
construction of models of cardinality λ+ is the same as in Case 1.

2.7.9 Case 2: Counting the Models of Cardinality λ+. If η, v e λ+2, η Φ v, there is no
K-embedding /: 9Jlη -> 90ΐ such that / Γ 31 = id. For, otherwise, let α be minimal
such that >/(α) # v(α) and put δ = η [ α. Then/would allow us to find an amalga-
mating structure for 91, 9Ma<0>, 9W<5<i>

So there are 2λ + many models of cardinality λ+ which are not isomorphic over
91. Since 91 has cardinality A there are at most (λ+)λ = 2λ many ways of inter-
preting 91 in 9Jlη. Since we assumed that 2λ < 2λ +, we conclude that I(K, λ+) = 2λ + .
This completes the proof of Theorem 2.7.3, and therefore the nonstructure theorem.
The statement in the parentheses now follows with a subtle counting argument
which we leave to the reader. D

2.7.10 Remark. If we just want to show that there are at least 2λ many non-
isomorphic models in Kλ+ we can use Proposition 2.5.10(ii) instead of 2.5.10(i)
and simplify the proof a bit. We change the definition of the function F to be a
function of four variables where the new variable ranges over the indexes of a list of
μ < μ+ = 2λ many non-isomorphic models of K. Instead of using first Ulam's
theorem to partition λ+ we can now apply Unif(A + , μ, 2, 2) directly.

3. ω-Presentable Classes

3.1. Classification Theory for ω-Presentable Classes

In this section we shall study some examples which illustrate that some of the
classification theory of first-order model theory can be carried over to abstract
classes, provided they are ω-presentable. For £Cωιω this was initiated by
G. Cudnovskii, J. Keisler, and S. Shelah, cf. Keisler [1971] and was carried out to
considerable extent in Shelah [1984a, b, c]. It seems that, with enough effort and
ingenuity, many results should be provable, in some form or another, also for λ-
presentable classes. This is still in the making, but we think that this direction of
future research is among the most challenging tasks of "higher model theory."

The first two theorems along these lines are direct descendants of two theorems
in Shelah [1975c]. The proofs, which we are going to sketch, appear, in this stream-
lined form, here for the first time in print.

3.1.1 Theorem (Shelah's Reduction Theorem). Let K with <κbe an abstract ω-
presentable class over a vocabulary τ such that:
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Then there is a ω-presentable abstract class K with <κ, over a vocabulary τ', τ c τ'
such that

(i) ifWeK'thenSH \τeK\
(ii) ifSΆ^eK' andSΆ<κl^βthen^ί \τ <κ*6 [τ;

(iii) if 91, 93 e K' and 91 <κ 95 ί/zerc 91 < ^ 95; and still
(iv) I(K,ωί)Φ0ίff(K\ω1)Φ0.

In particular, I(K\ ω) = 1 by (iii).

Recall that 91 < o o ω 2? here means that for every finite set of constant symbols
Ao the expansion <9I, Ao} = <95, Ao} in the logic J S ^ .

3.1.2 Remarks, (i) The reduction theorem allows us to construct Scott sentences of
uncountable structures. We shall return to this in Section 3.4.

(ii) In Shelah [1975c] the reduction theorem is proved by constructing what
is called there "nice" sentences,

(iii) In the reduction theorem above, we can replace the assumption

I(K9 ωj < 2ω i

by the assumption that K has arbitrary large models and Lόwenheim
number ω, and get the same result.

3.1.3 Theorem (Shelah's Abstract αvCategoricity Theorem, 1977). Let K with
<κbe an abstract ω-presentable class such that:

(i) I(K9ω)= l and
(ii) I(K9 ωx) = 1.

Then I(K, ω2) Φ 0 .

3.1.4 Corollary (Shelah). Let φ be a sentence of the logic £fωιω(Qi) which has
exactly one model of cardinality ωv Then φ has a model of cardinality ω2.

3.1.5 Historical Remark. Corollary 3.1.4 shows that there are no theories in
Si = =£?ωω(βi) which have exactly one uncountable model. This had been asked by
J. T. Baldwin (Friedman [1975c]) and actually was the origin of Theorem 3.1.3.
In Shelah [1975c, Corollary 3.1.4] was proved with the additional set-theoretic
hypothesis O, and in Shelah [1983b, c] under the hypothesis 2ω < 2ω i. Without any
set-theoretic hypothesis Corollary 3.1.4 was proved by S. Shelah in 1976 (my
personal notes).

3.1.6 Theorem (Shelah 1977). Assume that 2ω < 2ωi < 2ω\ Let K with <κbean

abstract ω-presentable class such that:

(i) I(K,ω)= l and
(ii) 1 < I(K, ωx) < 2°\

Then I(K, ω2) Φ 0.
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Assumption (i) in the two theorems above is not essential. Though it does not

follow from (ii), we can always replace K satisfying (ii) by K which also satisfies (i)

using the reduction theorem.
The main tool in the proof of Theorem 3.1.6 is the use of a αvsuperlimit. The

concept of superlimit models was introduced with generalizations in mind. The
following theorem guarantees its existence. If our only purpose was to prove
Theorem 3.1.6 we could also avoid the construction of superlimits. S. Fuchino
[1983] has presented such a direct proof.

3.1.7 Theorem (Existence of Superlimits). Assume thatlω < 2 ω i < 2ω\ Let K with
<κbe an abstract ω-presentable class such that:

(i) I(K, ω) = 1 and
(ii) / (X,ω 1 )<2 ω i ;

(iii) I(K, ω2) < 2ω\

Then there is a ω^superlimit model SQΪ in Kωι which is homogeneous and universal.

Clearly, Theorem 3.1.6 follows from Theorem 3.1.7 together with Proposition
2.2.3. Actually we shall only need that there is a weak limit in ωv We shall give a
narrative account of the proof of Theorem 3.1.7 in Section 3.5. The existence of a
weak limit in ω x will be proved as Claim 3.5.2.

3.1.8 Corollary. Assume K is as in the theorem above. Then the ω^superlίmit
model 5R is an amalgamation basis for Kωi.

Proof. Use the non-structure theorem (2.3.1) together with Theorem 3.1.7. D

This corollary is somehow not satisfactory. What we really would like to
obtain is the following conjecture:

3.1.9 Conjecture (ωί-Amalgamation Conjecture). Assume that 2 ω < 2 ω i < 2ω\
Let K with < κ be an abstract ω-presentable class such that:

(i) / ( K , ω ) = l and
(ii) / ( K , ω i ) < 2 ω i ;

(iii) I(K, ω 2) < 2ω\

Then Kωi has the amalgamation property.

Note that this conjecture follows from Conjecture 2.3.2.

In the remainder of this section we shall prove Theorems 3.1.1 and 3.1.3 com-
pletely, and sketch the proof of Theorem 3.1.7, from which Theorem 3.1.6 follows.

We conclude this section with the statement of the main theorem of the classi-
fication theory for J£?ωiω (Shelah [1984a, b]) and a conjecture on how this should
generalize for ω-presentable classes.
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3.1.10 Theorem (Shelah's Classification Theorem for «2^ia)). Assume 2ωn = ωn+1

for every n < ω. Let K = Mod(φ) for some sentence ψ e J£ωiω. If K has an un-
countable model then at least one of the following is true. Either:

(i) for some n > 0 I(K, ω t ) = 2ω n; or

(ii) K has models in every infinity cardinality, and if it is categorical in some
λ > ω x then it is categorical in every μ> ωv

3.1.11 Remark. Theorem 3.1.10 is not true, when we replace K by some P C ^ ω i ω -
class. To see this consider the class K of structures (with equality only) of cardinality
at most ωί. Clearly K is categorical in every infinite power and has no models
bigger than ωv Using the fact that the natural numbers are characterizable in
J2?ωiω, one easily sees that the class of αvlike orderings in P C ^ ω i ω . Therefore also
K e P C ^ ω i ω . For a discussion of categoricity in j£?ωiω see Keisler [1971, p. 91ff.].

For generalizations of Theorem 3.1.10 we shall finally discuss several con-
jectures :

3.1.12 Conjecture (Shelah). If an abstract ω-presen table class K has one uncount-
able model then it has at least 2 ω i many non-isomorphic uncountable models.

3.1.13 Comments. Possibly one has to use some set-theoretic hypothesis such as in
the classification theorem for JS£,iω, or 2ωn < 2ω"+ 1 for every neω to prove this
conjecture. Theorem 3.1.7 was proved in Shelah [198?c] as a basis for a proof of
Conjecture 3.1.12. A special case of this conjecture consists in showing, for example,
that if K has exactly one model in ω2 then it has a model in ω 3 . As we shall see in the
next section, however, there is one application of the non-characterizability of
well-orderings (Theorem 3.2.1), which cannot be adapted in an obvious way:
We cannot prove that the superlimit SR, whose existence is stated in Theorem 3.1.7,
can be embedded into itself such that it forms a dense pair as defined in the next
section (Definition 3.2.4). Only a deeper analysis of the types realized in models in
K reveals that such dense pairs do not exist. What one really does is more in the spirit
of stability theory, than in the original spirit of abstract model theory. But it
seems that this is where the future lies: To use the concepts and methods of stability
theory in the framework of abstract classes. The following remarks show, however,
that this is more complicated than one might be ready to believe at first glance.

Next we look at the logic ifωω(pos), which was introduced in Chapter II, and
its infinitary extensions ifω i ω(pos). These logics were studied in Makowsky-
Shelah [1981] and Makowsky [1978a]. J^ωω(pos) is a countably compact extension
of £?ωω(Qι) which is properly contained in ifω ω(aa). The reader may also want to
consult Chapter IV.

3.1.14 Conjecture (Classification Theorem for i?ω i ω(pos), Makowsky-Shelah)).
Assume 2ωn = ωn + 1 for every n < ω. Let K = Mod(^) for some sentence
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If K has an uncountable model then at least one of the following is true. Either:

(i) for some n > 0,1(K, ωn) = 2ωn; or
(ii) K has models in every infinite cardinality, and if it is categorical in some

λ > ωx then it is categorical in every μ > ωv

3.1.15 Remarks, (i) The straightforward notions of stability theory (Shelah
[1978a]) do not adapt readily to our situation. In fact, it is consistent with
ZFC + 2ω = ω 2 that there is an ω-presentable abstract class which is categorical
in ω x but is unstable. Also all its models are of cardinality at most 2ω. Take the
j£?ωω(pos) sentence which says that < is a dense linear order with no first or last
element, that each interval is uncountable, but that there is a dense countable
subset. Categoricity in ωx follows from Baumgartner [1973], the bound on the
cardinality of the models and instability are obvious.

(ii) Conjecture 3.1.14 becomes false for ^fω ω(aa): There is a sentence

such that φ has, up to isomorphism, exactly one model and this model is of
cardinality ω ^ To see this, let φ be the sentence which says that < is a dense
linear order with no first or last element, each initial segment is countable, but the
model is not, and aas 3x Vy(s(y) <-» y < x). The only model of φ is, up to isomor-
phism, the structure (η x ωί9 < >. (See also Remark IV.4.1.2(v).)

(iii) The analogue of Theorem 3.1.6 for J2?ωiω(pos) has been proved in
Makowsky-Shelah [198 ?a]. At the time of completion of this chapter, this paper
was still in the process of being checked.

5.2. Extensions With and Without First Elements

Let K with <κ be an abstract ω-presentable class such that: (i) I(K, ω) = 1, and
(ii) I(K, ω x) = 1. We want to show that /(X, ω 2) Φ 0. For this purpose we show
first:

3.2.1 Lemma. Under the above hypotheses the following are equivalent:

(i) I(K, ω2) Φ 0 .
(ii) There are 21, 93 e Kωi such that 21 < 93 and 21 Φ 93, i.e., 21 e Kωi is not

maximal.

Proof, (i) -> (ii) We just apply Axiom 5.
(ii) -> (i) Since here 21 ^ 93 we can construct a K-chain of length ω2 which

gives us the required model. D

3.2.2 Definition. A structure 21 in an abstract class K (Kλ) is K-maximal (Kλ-
maximal), if there is no © e K (93 6 Kλ) such that 21 < 93 and 21 Φ 93.

In this section we write 21 < 33 only for proper extensions, and we shall use
21 < 93 if we allow also the identity.

What we really prove to get Theorem 3.1.3 is the following:
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3.2.3 Theorem. Let K with <κbe an abstract ω-presentable class such that:

(i)
(ϋ)

(iii) every 91 e Kωι is Kωι-maximal.

Then I(K, ωx) = 2°\
Clearly, in the above situation, the structures in Kω are not maximal, since

there is an uncountable model.

3.2.4 Definitions. Let K with < be an abstract class, λ a cardinal, and 91 < 93
with b e B - A and 21, 95 e Kλ.

(i) We say that b is a first element for 91 < 93 if for every 9IX, 95 x such that
9Ϊ < <Ά1 < 951?95 < 95 x we have that be A v (We assume here for simplicity
that the embeddings are the identity. The reader can easily formulate the
definition for the more general case.)

Note that, if there is no first element for 91 < 23, we can think of this as an amalga-
mation property: For every beB - A there is a structure <Ά1 eK and an amalga-
mating structure 93 x such that b$Aγ. If there is no first element for 91 < 93, this
can happen in a strong form:

(ii) We say that 91 < 95 is a dense pair if for every beB — A there is a structure
<Άί in Kλ such that 91 < 9l2 < 95 with b e B - Av

The above definitions are our key tools in the proof of Theorem 3.2.3 and
therefore of the abstract categoricity theorem.

3.2.5 Example. To illustrate the proof idea let us recall a simple theorem about
the number of non-isomorphic dense linear orderings of cardinality ωv We take
here X e n d to be the class of all dense linear orderings without extremal elements,
and define for 91, 93 e Kend the substructure relation 91 < e n d 93 as the end-
extensions. Clearly K e n d j ω has, up to isomorphism, only one element.

3.2.6 Proposition. There are 2 ω i many non-isomorphic linear dense ωγ like orderings.

Proof. Let I a ωv We define 9I7 = ί j α e ω i 9Iα where each 9Iα is isomorphic to a
copy of the rationals Q = <β, < >. Let Q f i r s t = <[fc, 1), < > be a copy of the ra-
tionals with a first element b and put Qx = Q + Q f i r s t and Q2 = Q + Q. Clearly
Q <end ̂ 2 is a dense pair and b is a first element for Ώ < e n d Q x . Now we put
9I0 = Q and 9^ = {Ja<δ 9lα for δ a limit ordinal. To get 9I α + 1 we make 9Iα < e n d

9Iα+! isomorphic to Q < e n d Qlifael and isomorphic to Q < e n d Q 2 if α Φ I-
Let I,Jczωί and F be the c.u.b. filter on ωv We claim that 9t7 ~ 9tj implies

that I = J (mod F). By Ulam's theorem (cf. Theorem 2.5.1 or Lemma XVIII.4.3.9)
there are 2 ω i many non-equivalent stationary subsets of ωί9 hence the result. D

The next lemmas will allow us to copy this proof for our abstract classes.
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3.2.7 Lemma. Let K with < be an abstract class with Lόwenheim number λ and

(i)
(ii)

(iii) every 91 e Kλ + is K-maximal

Then there are 91, 93 e Kλ and beB - A such that b is a first element for 31 < 95.
In other words, if no pair 91 < 93 of structures from Kλ has a first element, then

there is a non-maximal 9IX e Kλ+.

Proof. Assume for contradiction that 9I0 < 93O are given in Kλ with no beB0 - Ao

a first element. Fix boeBo - Ao. So there are 91 x < 93 x with 9ϊ0 < 91 x and

93O < 931 and b0 e Bί - Av

From this situation we construct X-chains 9ϊα, 93α (α < λ+) with b0 e Ba - Aa9

using that I(K, λ) = 1. Now we put 91 = (Jα 9Iα and © = (Jα 95α and find that

91, 93 G KA +, 91 < 93 and b0 e B - A. D

3.2.8 Lemma. Let K with <κbe an abstract ω-presentable class such that:

(i) I(K,ω)= l and
(ii) I(K, ωx) Φ 0 .

Then there is a dense pair 91 < 93 in Kω.

The proof of Lemma 3.2.8 consists in an application of the Morley-Lopez-
Escobar theorem on the non-expressibility of well-orderings in ifooω which was
first used in Shelah [1975]. We shall return to this in Section 3.3.

Proof of Theorem 3.2.3. We are now in a position to copy the proof of Proposition
3.2.6. We put now Q to be the only countable model of X, Q x a countable extension
of Q with b G g i a first element (Lemma 3.2.6), and Q 2

 a countable extension of Q
such that Q <κ Q 2 is

 a dense pair (Lemma 3.2.8). The rest of the argument remains
unchanged. D

3.3. Some Model Theory for Lωiω

In Section 1.3 Shelah's presentability theorem tells us that every ω presentable
class K is actually a PC-class in ifωiω. Some of the model theory of JSPωiω has been
developed in Chapter VIII, but for the reader's sake we make this section as self-
contained as possible. Our aim here is to prove Lemma 3.2.8 and Shelah's reduction
theorem (3.1.1). Both theorems use heavily the non-characterizability of the class
of well-orderings as a PC-class in £fωιω9 which we state here precisely (cf. Section
VIΠ.1.3, Section Π.5.2 and Proposition IX.3.2.16)

3.3.1 Theorem (Non-characterizability of Well-Orderings). Let φe£fωιω[τ] and
let 17, < e τ be a unary and a binary relation symbol of τ. Suppose that for each
oteωuφ has a model 91 = (A, [/, <, .. .> such that < linearly orders U and
<α, <> c <£/, <}.Then:
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(i) φ has a countable model 93 = <£, V, < , . . . > such that < linearly orders
V and <K, < > contains a copy of the rationals < β , < >;

(ii) φ has an uncountable model 93 = <B, 7, < , . . . > such that < linearly orders
V and <K, < > contains a copy of the rationals <β, < >.

(i) is due to Morley [1965] and Lopez-Escobar [1966]. A proof may be found
in Keisler [1971a]. (ii) can be proved by combining (i) with the construction and
characterization of the existence of suitable end-extensions, as described in Keisler
[1971a]. But it was Shelah who first observed that this theorem can be used in many
situations as a substitute for compactness. This is the main theme of this section.
We shall use Theorem 3.3.1(ii) to construct, in certain situations, Scott sentences
of uncountable models, and also, if such Scott sentences exist, to construct dense
pairs of countable models. Let us recall some definitions:

3.3.2 Definition (Scott Sentences), (i) Let φ e JS?ωiω[τ]. We say that φ is a Scott
sentence, if all models of φ are JS?^-equivalent,

(ii) Let φ e ^ωiω{τr) and τ cz τ'. We say that φ is a weak Scott sentence {for τ),
if all τ-reducts of models of φ are JSf^-equivalent.

(iii) If 91 is a τ-structure then we say that 91 has a Scott sentence, if there is a
Scott sentence φ e -Sfωiω[τ] with 9ϊ 1= φ. Similarly for weak Scott sen-
tences.

(iv) If 91 is a τ-structure which has a (weak) Scott sentence φ, we denote by
σ(9I) a formula logically equivalent to φ.

In Theorem VIΠ.4.1.6 these definitions are justified.

3.3.3 Lemma. If a τ-structure 91 has a weak Scott sentence σw over a vocabulary τ'
then it has also a Scott sentence σ.

Proof Let 93' be a countable model of σw and 93 = 93' [ τ. Put σ = σ(93). By the
completeness theorem for S£ωιω σω \= σ, so 911= σ. D

3.3.4 Definition, (i) (Fragments of &ωιω). A countable fragment 5£ of J?ωιω is a
countable subset of ^ωιω closed under taking subformulas, name changing,
applying the finitary connectives and quantification.

(ii) (if-embeddings). Let i f be a fragment of ^ωιω and 91, 93 two τ-structures.
We say that 91 is an <£\τ\-substructure of 93 if 91 is a substructure of 93 and
for every finite subset Λo c A the expansions by constants for elements of
Ao, <9I, Ao} and <93, Ao), are J^-equivalent.

(iii) (Karp Substructures). Let 91, 23 two τ-structures. We say that 91 is a
Karp-substructure of 93 if 91 is a substructure of 93 and for every finite
subset Ao a A the expansions by constants for elements of Ao, <9I, Ao}
and <93, Ao), are Jί^-equivalent.
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(iv) (ω-Presentable Substructure Relation). Let oc be a binary relation be-
tween τ-structures such that 91 oc 93 implies that 91 is a substructure of 23.
We say that oc is an ω-presentable substructure relation, if:

(a) for every 91 we have 91 oc 9ί;
(b) oc satisfies the transitivity axiom;
(c) oc satisfies the chain axiom; and
(d) the class of restructures [91; 93] such that 91 oc 93 is PCOT(ω, ω).

Obviously we define τ s r such that the universe of 91 is the interpretation of a
distinguished unary predicate of τ s r . Note that (d) ensures that we have Lowenheim
number ω.

3.3.5 Lemma, (i) Let X be a countable fragment of J^ ω i ω . Then the notion of a
5£ -substructure gives rise to an ω-presentable substructure relation.

(ii) The notion of a Karp-substructure is also an ω-presentable substructure
relation.

Proof. Both statements are easy coding exercises. For (i) we use the truth ade-
quacy of ifωiω for countable fragments. Details are discussed in Section XVII. 1.
For (ii) we use the characterization of ifooω-equivalence in terms of partial iso-
morphisms, as described in Section II.4 and Chapter VIII. The questions which
interest us now, are whether an uncountable structure 91 has a (weak) Scott
sentence, and under what conditions a Scott sentence has uncountable models?
The following is a variation on a special case of Theorem XVIΠ.7.3.1, which is due
to Gregory [1973].

3.3.6 Theorem. Let φ be a weak Scott sentence. Then the following are equivalent:

(i) φ has an uncountable model;
(ii) for every countable fragment $£ containing φ there are countable models

93, £ ofφ such that 93 $<? d and 93 ̂  (£;
(iii) for every ω-presentable substructure relation oc there are countable models

93, (£ ofφ such that 95 oc (£, 93 is a proper substructure of(ί and 93 = (£.

Proof, (ii) implies (i) trivially (in contrast to the proof of Theorem XVIΠ.7.3.1),
since 91 ^ 93 allows us to construct a chain of length ωί whose limit is the desired
model.

(iii) implies (ii) by the lemma above.
So assume (i). To prove (iii) we just use the reflexivity of oc and the Lowenheim-

Skolem theorem for seωχω together with the properties of the weak Scott sentence.

D

For weak Scott sentences with uncountable models we can already construct
dense pairs for any countable fragment S£ of 5£ωγω.

3.3.7 Theorem. Let φ be a weak Scott sentence with an uncountable model X) and
oc an ω-presentable substructure relation. Then there are two countable τ-structures
93, £ such that 93 oc (£ is a dense pair for oc.
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Proof. We can write T) as the union of a oc-chain of length ωt {T)α: α e ω x} with
Dα oc T)β for every α < β < ωv We can code this situation in a model 9JΪ and
describe it by a formula # 6 JS?ωiω[τ'] over some vocabulary τ' extending τ, which

satisfies the hypothesis of Theorem 3.3.1. Here we use the ω-presentability of oc.
The universes of the models ϊ) α are coded by a binary predicate symbol and
constants R( —, cα). The second argument of R ranges over some linearly ordered
set <t/, <>, the index set.

Now we apply Theorem 3.3.1(ii) and get a model 91 such that a copy of the
rationals <β, < > can be embedded into the index set. Let {dn:ne ω} be a decreasing
sequence in 91 and d be a lower bound for it. Put now (£ to be the model defined in
91 by R(-,d0) and [ja<dnR(-,a) = Π » e » Λ ( - X ) = ® T h i s i s n o t e mPty>
since the structure defined by R(-, d) is contained in it. Clearly, $ can be chosen
such that 95 oc £ is a dense pair. D

3.3.8 Proof of lemma 3.2.8. Our first step in the proof is the construction of a
Scott sentence. So let K be an ω-presentable class with Kωi Φ 0 and I(K, ωx)
< 2ω\ Then there is a 95 e Kωι which has a weak Scott sentence σ. To see this, we
apply Shelah's reduction theorem (3.1.1) to K. So let K' be as in Theorem 3.1.1 and
let 95 G K'ωi. Since Kf is ω-presentable, there is a countable 51 e K' with 21 <κ 95
and therefore 9Ϊ < ^ o o ω 95. Let σ = σ(9I). Clearly, 95 1= σ. Now the lemma follows
from Theorem 3.3.7 D

3.4. Constructing Scott Sentences for
Uncountable Models

Our second application of Theorem 3.3.1(ii) is the proof of the reduction theorem
(3.1.1). First we need a lemma on the minimal number of types realized in models
in Kωι. Let us recall the definition of types.

3.4.1 Definition, (i) (if [τ]-types). Let 9Ά be a τ-structure, i c M a subset of the
universe of SOI, a e Mm and let φ(x) range over <£[τ]-formulas with all the
free variables among x = (x 0, x l 5 . . . ) . For beA let b be a constant
symbol whose interpretation in 901 is b. We define

tp(ά, A, % STC) = {φ(x, b): φ e JSf(τ), 9K 1= <p(x, M * E],/\he A"}

be the m-type of a in 9)1 over A.
(ii) If t = tp(#, 4, Jέζ SDΪ) is a countable type we define by St the conjunction

of all the formulas of t. Note that St is not necessarily a formula of <£.

3.4.2 Lemma. Lei τ czτ\φe A:ωiω[τ'] and i f α countable fragment of £Pωιω. Put
K = Mod(ι/0 Γτ. Then:

(i) (Keisler [1970, Theorem 5.10]). If in some uncountable model 9)1 of φ un-

countably many <£[τ]-types are realized, then I(K, ωt) = 2ω\
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(ii) (Shelah). Here we assume 2 ω i > 2ω. If in some uncountable model 9)1 of φ
there is a countable subset A c M such that in SR uncountably many S£\τ\-
types are realized over A, then I(K, ω x ) = 2ω i .

Proof. To prove (ii) from (i) we observe that there are at most (ω^ = 2ω many
ways of interpreting countably many constants in a model of cardinality ω x . More
details may be found in Shelah [1978a, Chapter 8, Lemma 1.3]. D

The next theorem extends this to ifωiω proper.

3.4.3 Theorem (Shelah). Let τ a τ' be Wo vocabularies, φ e J^ω i ω[τ'] a formula, and
yjibe a τ' -structure of cardinality ωx such that 9ER 1= φ.

(i) If for every countable fragment i£ only countably many ϊ£\τ\-types are
realized in 9JΪ, then φ has a model 91 of cardinality ωx in which only countably
many ^ωγω[τ]-types are realized.

(ii) If for every countable fragment <£ and for every countable subset A a M
only countably many 5£\τ\-types are realized in SCR over A, then φ has a
model 91 of cardinality ωλ in which over every countable A c: N only
countably many ^ωχω[τ]-types are realized over A.

(iii) Ifφ has a model 91 of cardinality ωx in which over every countable A cz N
only countably many ^ωχ(ύ[.τ]-types are realized over A, then 91 {τ has a
Scott sentence σ = σ(9l Γ τ).

Proof (i) For every α < ω1 we define a countable fragment j£fα of J5fωiω. j£?0 = ifωω

and 5£δ = {jβ<δ^β for δ a limit ordinal. J5fα+1 is the minimal fragment of J£ωιω

containing f̂α and for every a e Mm the formula # ί ( 5 ) where t(a) = tp(α, 0 , J^α, 901).
Clearly, for every α < ωγ the fragment JS£ is indeed countable. Let τ" be τ' u
{Cn, Fπ: n e ω}. We now expand SOΪ to a restructure W in the following way:

First we assume without loss of generality that M = ωγ. Now

9K" = <SR, <9EO9...9 £ „ , . . . , F 0 , . . . , F π , . . . > π e ω ,

where

(a) < is the natural ordering on ωv

(b) En is a (In + l)-ary relation and (α, a, b) e En iff a, b e Mn and

tp(α, 0 , &„ m) = tp(5, 0 , Jίfβ, W).

(c) Fn is an (n + l)-ary function with the finite ordinals as its range and
Fn(a, a) = Fn((x, b) iff (α, α, b)eEn. Such an Fn can be chosen because
the number of j£?α-types realized in 9Jί is countable by our hypothesis.

We note the following facts:

Fact 1. Every En defines a family of equivalence relations Ea n on n-tuples of W
indexed by the first argument.

Fact 2. If α < β then Eβjn refines Ean.
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Fact 3. Each £ α „ has at most countably many equivalence classes.

Fact 4. < is an ordering with a first element, which we call 0, and (0, a, b) s En iff
the Jέfo-types of a and b are equal.

Fact 5. If (α + 1, α, b)eEn then for every ceM there is a deM such that

(α, α, c, 5, d)<=En+1.

Clearly, Facts 1-5 can be expressed by a sentence χ e J^ ω i ω [τ"] . To express Fact 3
we need the functions Fn.

Now we apply Theorem 3.3.1(ii) to the sentence φ Aχ. We get a model
9t" )F= φ A χ of cardinality ω1 where < contains a copy of the rationals. Put
91 = 91" Is τ. Let {dn: ne ω} be an infinite decreasing sequence of elements in 9i".
We use it to define equivalence relations E« on n-tuples of 9Γ by putting

for some meω.lt is easy to check, that for this equivalence relation we have

Fact 6. If (α, b) e E» then for every c e N there isa.de N such that (a, c, δ, d) e E*+ x

and

Fαcί 7. Each £ α „ has at most countably many equivalence classes.

We just use the fact that 91" 1= φ A χ and the definition of £n

+.

Using Fact 6 we can show by induction on φ:

Fact 8. For every φ e JS?ωiω[τ], if (a, B) e £n

+ then 91 N φ(a) iff 9T N φ(5).

This together with Fact 7 shows that in 9i only countably many ifω i ω[τ]-types are
satisfied. This ends the proof of (i).

To prove (ii) we repeat the same proof but change the definition of the frag-
ments such as to include the constants required.

To prove (iii) we remark that φ A χ is a weak Scott sentence. To obtain a
Scott sentence we apply Lemma 3.3.3. D

3.4.4 Corollary (Shelah). Let Kbea FC-class in <?ωιω with at least one, but less than
2ω\ many models of cardinality ωv Then there is an uncountable model ΪΆeK which
has a Scott sentence.

This corollary was proved by different methods (admissible sets) in Makkai

[1977] under the stronger hypothesis that there are less than 2ω many models of

cardinality ωί.
We are now in a position to prove Theorem 3.1.1.

3.4.5 Proof of the Reduction Theorem. Assume that 2ω < 2ω i. Let K with < κ be an
abstract ω-presentable class over a vocabulary τ such that I(K9 ω x ) < 2ω\ Let
φ e JS?ωiω[τ'] be the sentence defining K. By our assumption on K we can apply
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Lemma 3.4.1 and find an uncountable model S)ΐ \= ψ such that the hypothesis of
Theorem 3.4.2(ii) is satisfied. So we can use Theorem 3.4.2(iii) to find a model
91 \= φ of cardinality ωλ such that 91 I τ has a Scott sentence σ.

We have to show that there is a ω-presentable abstract class K' with < κ over a
vocabulary τ', T C T ' such that:

(i) i f 3 I e K ' t h e n 3 I Γ τ e K ;
(ii) if 31, 95 E K' and 31 < κ, 95 then 91 {τ <κ 95 Γ τ;

(iii) if 31, 95 e K' and 31 < κ 95 then 31 < nω 95; and still
(iv)

So we put X' to be Mod(ι^ Λ σ). Clearly, (i) is satisfied. To define < κ, we define it as
an ω-presentable substructure relation such that 31 <κ 95 iff 31 <κ 95 and 31 is a
Kαrp-substructure of 33, applying Theorem 3.3.5(iii). Clearly, this ensures that (ii),
(iii), and (iv) are now satisfied. D

3.5. How to Construct Super Limits

The purpose of this section is to give a brief survey on the difficulties in the proof of
Theorem 3.1.7. Let us state it once more:

3.5.1 Theorem (Existence of Superlimits). Assume that 2ω < 2ω i < 2ω2. Let K
with <κ be an abstract ω-presentable class such that:

(i) I(K,ω) = ί and
(ii) l ^ / ( K , ω i ) < 2 ω i ;

(iii) I(K, ω2) < 2ω\

Then there is a ω^superlίmit model SCR in Kωι which is homogeneous and universal

3.5.2 Amalgamation and Joint Embedding Property in ω. First we observe that the
unique countable model Wω of K is a ω-superlimit, by Proposition 2.2.4, since K
has uncountable models and is ω-categorical. Therefore, using Theorem 2.3.1,
9Jiω is an amalgamation basis for Kω. Again by ω-categoricity, Kω has the joint
embedding property.

Now we are in a position to apply Theorem 2.1.8. We need the above hypothesis
to ensure that ωx = λ = λ<λ. So there is a universal and homogeneous model

We would like next to prove the following:

3.5.3 Claim. SDΪ is a weak-limit.

Note that Claim 3.5.3 is enough to prove Theorem 3.1.6 as pointed out im-
mediately after Theorem 3.1.7.

Proof. We have to verify the conditions (a-d) of Definition 2.2.1. Clearly, the cardi-
nality of SOt is ω l 9 so (a) is satisfied.



3. ω-Presentable Classes 789

To verify (b), i.e., to show that SOΪ is not maximal, we use a modification of
Lemma 3.2.7, respectively, Theorem 3.2.3, stating that if SDΪ e Kωι is universal and
maximal, then I(K, ωx) = 2ωι.

We recall property (c): Given 91 e Kωι with 9)1 < κ 91 there is 9)1 ̂  9R' such that
9JI <κ SDΓ. To construct 9R' we write 91 as a union of an increasing X-chain of
isomorphic copies of the ω-superlimit and reconstruct a universal and homo-
geneous model in Kωι along this chain. Then we use the uniqueness of the universal
and homogeneous model (Theorem 2.1.8(iii)). D

Next we want to establish the following claim:

3.5.4 Claim. TO is a (ωl9 ωj-limit.

We only have to show that unions of X-chains of ωλ many isomorphic copies
of 9)1 are again isomorphic to 9Ά. To see this, we show that such an union is again
homogeneous. For this, we use the homogeneity of SOΪ and the following lemma:

3.5.5 Lemma. // 9W0, 9)l1 e Kωι are both homogeneous and 9t ε Kω with 91 < κ 9Sl0,
then every K-embedding of 91 into 9RX can be extended to an isomorphism from 9Ά0

onto 9RV

Proof. Besides homogeneity, we use that K is ω-categorical and that K also satisfies
closure under directed systems. D

To end the proof of Claim 3.5.4 we apply the lemma cofinally often along the
chain and use that every countable substructure already appears in an element of
this chain. D

3.5.6 Types and Forcing. The main difficulty in the proof of Theorem 3.5.1 is to
prove that it gives a (ωu ω)-limit. For this we need a better description of the
homogeneous model 9Ά in Kωι. We would like to build 2W as a union of countable
models 9Iα, α < ωu such that in every 9I α + 1 all the types over 9Iα, satisfied in SOΪ, are
already satisfied. This leads us to a natural, but rather complicated, definition of
forcing, a corresponding definition of" types " and a machinery to apply techniques
connected with non-forking, symmetry, and finite bases of types, stationarization,
etc., as in Shelah [1978a].

3.5.7 The Big Two-Dimensional Picture. All this machinery is needed to cope with
the following situation. Let 9Jlh i e ω be a countable X-chain of isomorphic copies
of SDt and let each SO!,- = (Jα 9la t be the union of countable models. To show that
\Ji9Άi^9)l we have to verify that various finite configurations of countable
models in this system allow amalgamation within this system. This is needed to
replace this two-dimensional presentation of (J t 9Jlt by an ωx long X-chain of
countable models from the two-dimensional presentation, which will enable us
to show that 9JI Ξ ( J ί ^
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3.5.8 The Underlying Philosophy. The underlying philosophy in all of this is, that
instead of types, as in first-order model theory, we have to deal with certain general-
izations of amalgamation properties of countable structures. Proving the existence
of uncountable structures with certain properties is then reduced to proving more
and more complicated countable amalgamation properties.

A proof of Theorem 3.1.6 which does not use Theorem 3.5.1 can be found in
Fuchino [1983]. There also the condition 2ωi < 2ω2 is not needed.

3.5.9 A Gourmet End (Joint Work with Irit M. Manskleid). In the tradition of
some of the books of this Perspectives of Mathematical Logic, I would like to
conclude this last chapter with a gourmet treat. The following recipe is connected
with my work with Saharon Shelah in two ways: In 1974, when we started to work
together on abstract model theory, I also visited Florence, Italy. There I dined at
Sabatini's, a restaurant renowned for its combination of Italian and French
cooking. Italian cooking puts the emphasis on the main ingredients of a dish by
letting them have their optimal gustatory and olfactory effects; French cooking is
famous for refining the ingredients of a dish by the addition of ornamental, but
dominant, components, especially sauces. The most exciting dish I tasted at
Sabatini's was "vermicelli colla salsa di tartufi" (homemade, very thin spaghetti
with a truffle cream sauce). Truffles are ugly, potato-shaped mushrooms, but
inside they hide, like many of Shelah's proofs, a delicate core. In a multitude of
attempts I tried to find appropriate truffles and to reconstruct the dish. Here is the
result.

3.5.10 The Truffles (Fungus; Tuber, Hebrew: Kmehin). Truffles are famous, rare,
and expensive, especially the French and Italian kind. They grow on calcarious
ground in symbiosis with oaks, beeches, or some desert bushes. Less fancy truffles
grow in North Africa, the Carmel mountain, and the Negev desert. They also grow,
though rarely, in California and Oregon. These truffles are much cheaper but
they are good enough, if pickled for one month in dry white wine with bay leaves.
We need about 200 gr of them, after washing and peeling. If they come from sandy
areas, such as the Carmel or the Negev, this is equivalent to more than half a kilo
bought on the market.

3.5.11 The Vermicelli. Prepare a dough (standard pasta dough, possibly with
half the flour whole grain). Let it rest. Using a pasta machine, roll as thin as
possible and cut into the thinnest possible slices. Separate them by hand and let
them dry for an hour. This is like counting to ω l 5 naming every ordinal. You will
get acquainted with every slice personally. Boil in water with salt and olive oil
added. You need two tablespoons of olive oil per liter of water and half a liter of
water per 100 gr of pasta.

3.5.12 The Sauce (The quantities are for half a kilo pasta). A quarter liter of
sweet (fat) cream is heated with 100 gr of butter till the butter is melted. Add the
truffles, chopped very thin. Simmer for about ten minutes. Add 150 gr of ground
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dry cheese (parmesan). Stir well till the cheese is melted like in cheese fondue. Add
salt and fresh ground pepper.

3.5.13 Serving. When the pasta is ready (al dente, not too soft), pour it into a sieve,
but do not rinse in cold water. Return the pasta into a heatable dish and add the
hot sauce. Stir well and reheat if necessary. Eat and enjoy. Serves four to six.

3.5.14 Postscript. This recipe may look complicated. But here is another analogy
to many of the proofs in this chapter: Once you are through, you understand
that it was worth it, and moreover, that it was the appropriate way to do it.






