
Chapter XVIII

Compactness, Embeddings and Definability

by J. A. MAKOWSKY

This chapter presents an overview of the author's joint work with S. Shelah in
abstract model theory, which had started as early as 1972. It is mainly based on our
papers (Makowsky-Shelah-Stavi [1976]; Makowsky-Shelah [1979, 1981,1983])
and on an unpublished manuscript of S. Shelah (Shelah [198?e]) which he wrote
while this chapter came into being. The present exposition, however, tries to give
a more coherent picture by putting all our results into a single perspective together
with results of M. Magidor, H. Mannila, D. Mundici, and J. Stavi.

The main theme of this chapter is abstract model theory proper, especially the
relationship between various compactness, embedding, and definability properties
which do not characterize first-order logic. More precisely, we look at various
classes of logics defined axiomatically, such as compact logics, logics satisfying
certain model existence or definability properties. The classes of logics are some-
times further specified by set-theoretic parameters, such as finitely generated,
absolute, set presentable, bounds on the size function, or by set-theoretic assump-
tions such as large cardinal axioms. Within such classes of logics we want to explore
which other properties of logics follow from the axiomatic description of the class.
In Chapter III first-order logic was characterized in this way. In Chapter XVII the
class of absolute logics was studied. Most of the other chapters (with the exception
of Chapters XIX and XX) study families of logics which bear some inherent simi-
larity which stems from the way they evolved, such as infinitary logics or logics
based on cardinality quantifiers, and establish particular model-theoretic results
for those logics. In this chapter we want to clarify the conceptual and metalogical
relationship between these model theoretic properties. Success in this program can
be achieved in three ways: by establishing non-trivial connections between these
properties; by applying the former to gain new insight about particular logics
previously studied and by using this insight to construct new examples of logics,
and ultimately, by showing, that our list of examples is, in some reasonable sense,
exhaustive.

The chapter consists of four sections, in each of which one aspect of abstract
model theory is developed to a certain depth.

Section 1 is devoted to compactness properties and is almost self-contained.
Its main results are the abstract compactness theorem and the description of the
compactness spectrum. Here a thorough understanding of various compactness
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phenomena is obtained and the theory is provided with new examples. Especially,
the examples described in Section 1.6 play an important role in the successive
sections as well.

Section 2 is devoted to the study of the dependence number. Its main result is
the finite dependence theorem, the proof of which is given completely on the basis
of three lemmas, which are only stated. The complete proof may be found in
Makowsky-Shelah [1983]. The finite dependence theorem clarifies how little
compactness is needed to ensure that a logic is equivalent to a logic which has the
finite dependence property. In fact, assuming there are no uncountable measurable
cardinals, [ω]-compactness suffices. Finally, the dependence structure is intro-
duced, a concept which appears here for the first time. It is the appropriate general-
ization of the dependence number, as the examples and the finite dependence
structure theorem show.

Section 3 is devoted to various aspects of embeddings, whose existence is
implied by the compactness theorem, such as proper extensions, amalgamation,
and joint embeddings. Joint embeddings are also discussed in Chapter XIX and
amalgamations in Chapter XX. The main result here is the connection between
[ω]-compactness and proper extensions and the abstract amalgamation theorem.
Again, this section is rather self-contained. The abstract amalgamation theorem
also leads to the discovery that various logics with cardinality quantifiers do not
satisfy the amalgamation property. This solves a problem which had been stated
explicitly in Malitz-Reinhardt [1972b].

Section 4 is devoted to definability properties, as introduced already in Section
II.7, and to preservation properties. Preservation properties for sum-like opera-
tions already played an important role in Chapters XII and XIII. A common
generalization of these two properties, the uniform reduction property, was intro-
duced in Feferman [1974b]. The first two subsections are devoted to an exposi-
tion of those properties and their interrelations. The main results here are the
equivalence of the uniform reduction property UR^ with the interpolation property
and the equivalence, for compact logics, of the pair preservation property and the
uniform reduction property for pairs. The Robinson property and especially its
weaker versions, the finite Robinson property and the weak finite Robinson
property are the topic of the next three subsections. In Chapter XIX the Robinson
property is studied further.

Our main results here are: The finite Robinson property together with the
pair preservation property implies that a logic is ultimately compact, and therefore
has the finite dependence property, provided that there are no uncountable mea-
surable cardinals. The Beth property together with the tree preservation property
implies the weak finite Robinson property and the Robinson property together
with the pair preservation property implies the existence of models with arbitrarily
large automorphism groups. The last subsection discusses more examples, in
particular a compact logic which satisfies the Beth property, the pair preservation
property, but not the interpolation property.

Measurable cardinals play an important role in our presentation. They are in
some sense J f̂-compact cardinals, which is to say, if such a cardinal μ exists then
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every finitely generated logic is, stationary often, weakly compact below μ. The first
cardinal for which a logic is [/c]-compact is always measurable (or ω). But mea-
surable cardinals, of which the first could conceivably be as big as the first strongly
compact cardinal, also appear frequently in the hypotheses of various of our
theorems. They also appear in various examples and counterexamples and some-
times their existence turns out to be equivalent to certain assumptions in abstract
model theory.

In the same sense, it turns out, Vopenka's principle is a compactness axiom:
It is equivalent to the statement that every finitely generated logic is ultimately
compact or, alternatively, that every finitely generated logic has a global Hanf
number. We have not centered our presentation around this theme, but the reader
will easily discern it throughout the chapter.

Finally, a word on future research. Some of the possible directions of future
research in abstract model theory are outlined in Chapters XIX and XX. The
purpose there is to get away from the syntactic aspects of logic completely and to
study classes of structures more in the spirit of universal algebra. If we want to
stay in the framework of abstract model theory and logics I can see three directions
in which to pursue further research.

The first direction is to study, what we have rather neglected in this chapter,
the impact of various axiomatizability and dependence properties of logics on
their respective model theory. We know that axiomatizability implies recursive
compactness. But we do not know, for instance, if there are any model-theoretic
properties distinguishing axiomatizable logics from logics axiomatizable by a
finite set of axiom schemas. Only recently, in Shelah-Steinhorn [1982], it is
shown that the logic i?ωω(βaω) is a n axiomatizable logic which cannot be
axiomatized by schemas. This was the first example of its kind. Similarly, we know
that [ω]-compactness implies the finite dependence property (assuming there are
no uncountable measurable cardinals), but we have not investigated if other model-
theoretic properties, such as Lowenheim or Hanf numbers, have similar effects. The
same holds for the finite dependence structure and dependence filters, as discussed
in Section 2.4.

The second direction is the search for more model-theoretic properties which
fit into the abstract framework. In Section 4.5 an attempt in this direction is pre-
sented: the existence of models with large automorphism groups. Incidentally, this
also gives us a new proof for the case of first-order logic. In Shelah [198?e] a
host of new notions occur in his study of Beth closures of logics preserving com-
pactness and preservation properties. There is a danger here of proving theorems
which apply only to first-order logic, such as compactness and chain properties
imply the Robinson property. Since it is open whether there are logics satisfying
both the Robinson property and the pair preservation property, the results in
Section 4.5 should be taken with a grain of salt.

The third direction consists in incorporating the theory of second-order
quantifiers, as presented in Chapter XII, into the study of the model-theoretic
properties as presented in this chapter. What are the compact second-order
quantifiers, what are the second-order quantifiers satisfying preservation and
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definability properties, etc? I am convinced that abstract model theory will remain
a fruitful area of active research for many years to come.

We have not included detailed historical notes. Most of the results presented
in this chapter are taken from my joint papers with S. Shelah and from his un-
published manuscript mentioned above. Some of the theorems and corollaries
are stated here for the first time as a result of reflection upon the material presented.
Results which appear here for the first time in print are marked with an asterisk.
Whenever possible, we refer to the other chapters in the book rather than to
original papers.

Acknowledgment

I would like to express my gratitude to the editors and originators of the present
volume, J. Barwise, S. Feferman, G. Muller and D. Scott, for their patience,
encouragement, and shared enthusiasm; and also to all the other contributing
authors for their collaboration, criticism and suggestions. I am particularly in-
debted to J. Baldwin, H.-D. Ebbinghaus and J. Flum for their critical reading, and
to M. Magidor for his advice concerning large cardinals, and to A. Mekler for
his advice concerning stationary logic.

Finally, I should like to thank the Swiss National Science Foundation for its
support during the preparation of this chapter, and also the Computer Science
Department of the Technion in Haifa for providing me with its computer and
word-processing facilities, on which this chapter was written.

In particular, I am indebted to S. Shelah for ten years of gratifying, stimulating,
and challenging collaboration, for his permission to include unpublished material
in this chapter, for his critical reading, and for his almost infinite patience.

1. Compact Logics

1.1. [fc, λ]-compactness

In this section we will study compactness properties of abstract logics. Tradi-
tionally, one looks at a set Σ of sentences of cardinality K such that every subset
Σ o c Σ of cardinality less than λ has a model and concludes that Σ has a model.
This is called (K, Λ)-compactness. By abuse of notation we write (oo, ̂ -compact-
ness instead of (<oo, ̂ -compactness. We call (<oo, ω)-compactness just com-
pactness.

In contrast to this we look at two different situations:

(*) Given two sets of sentences Δ and Σ with card(Σ) = K, card(Δ) arbi-
trary and such that for every subset Σ o cz Σ of cardinality less than λ
Σ o u Δ has model. Then Σ u Δ has a model.

(**) Given a family Γα (α < k) of sets of sentences such that for every set
X c= K of cardinality less than λ the union \JaeX Γα has a model. Then
(J α < κ Γα has a model.
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1.1.1 Proposition. For a regular logic J£? properties (*) and (**) are equivalent.

Proof. (*) -• (**) Let P α (α < μ) be unary predicates not in (J α < ί C Γα and let φa be
the formula 3x Pa(x). Now we put

Δ = {Ψa^φ'-a < κ9φeΓa},

and

Σ = {ψa: α < K}.

Clearly Δ u Σ o has a model iff ( J^ α e Σ o Γα has a model.
(**) -> (*) Let {φa: α < K} be an enumeration of the formulas of Σ and put

Γ, = Δ u {φ.}. D

1.1.2 Remark. (*) was first systematically studied in Makowsky-Shelah [1979b]
and in Makowsky-Shelah [1983]. (**) was introduced for topological spaces in
Alexandrofϊ-Urysohn [1929], as was pointed out to us by H. Mannila. (*) was
called first relative (TC, λ)-compact and then (K, /l)*-compact. (**) is called in the
topological literature [JC, λ]-compact.

The motivation behind (*) stems from working with elementary extensions and
with diagrams. Δ usually plays the role of a diagram, and Σ describes the properties
the extension should have. A similar situation occurs in Chang-Keisler [1973,
Exercise 4.3.22].

1.1.3 Definition. A regular logic <£ with property (*) or (**) is called \κ, λ]-
compact. If K = λ we simply write [K] -compact.

1.1.4 Examples, (i) J?(β ω i ) is (ω, ω)-compact but not [ω]-compact.
(ii) (Bell-Slomson [1969, Theorem 2.2, p. 263]). If K is small for λ, then ^(Qλ)

is [K, ω]-compact. In particular, ω is small for (2ω) + .

Recall that K is small for λ if for every family μf (i < K) such that μt < λ Y\t μt < λ.

1.1.5 Definition. We write [K, λ] -> [μ, v] whenever [K, Λ,]-compactness implies
[μ, v]-compactness. Similarly for conjunctions of compactness properties implying
other such properties.

The following lemma collects some simple but useful facts:

1.1.6 Lemma, (i) [K, λ] -• [μ, λ] for μ < K.
(ii) [fc, λ] -• [/c, v] for v > λ.

(iii) [μ] Λ [K, μ + ] -• [/c, μ].
(iv) [/c + ] Λ [κ,μ]->[fc + , μ ] .
( v) lfίP\ and for every α < β, [κα] and [κα, μ] then \Σ«<β κ*> μ]

(vi) [cf(fc)] -> [/c].

Proof Trivial for (i) and (ii).
(iii), (iv) and (v) follow from definition (*).
(vi) follows from definition (**). D
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1.1.7 Proposition, (i) A logic & is [K, λ]-compact iff & is [μ]-compact for every

μ, λ < μ < K.

(ii) A logic ϊ£ is [oo, κ]-compact iff ^ is (oo, κ)-comact.

Proof. For (i) we use Lemma 1.1.6 and (ii) follows from the definition. D

Mannila [1982, 1983] has investigated what results from topology give us
refinements of Theorem 1.1.7. He showed that results from Alexandroff-Urysohn
[1929] and Vaughan [1975] can be translated into our framework and we obtain

1.1.8 Proposition, (i) A logic J£ is [/c, ώ]-compact iff J£ is [μ]-compact for every

regular μ, ω < μ < K.
(ii) Assume cf(κ) > λ. A logic X is [K, λ]-compact iff & is [μ, λ]-compact for

every regular μ, λ < μ < K.

Proposition 1.1.8 was first stated in Makowsky-Shelah [1983], where it was
derived from Lemma 1.1.6.

Using the methods developed in Sections 1.3 and 1.4 this can be sharpened to:

1.1.9 Theorem. Let λbe a cardinal and $£ a logic. The following are equivalent:

(i) 5£ is \ji\-compact for every regular μ > λ.
(ii) i f is \_μ~]-compact for every μ > λ.
(iii) $£ is [oo, λ]-compact.
(iv) !£ is (oo, λ)-compact.

Proof (ii) implies (iii) by Proposition 1.1.7(i); (iii) is equivalent to (iv) by Proposi-
tion 1.1.7(ii) and (iii) implies (i) by Lemma 1.1.6(i) and (ii). So we have to prove
that (i) implies (ii). Assume (i) and that λ is singular. So i f is [A+]-compact. Now
we use the abstract compactness theorem (1.3.9(ii)) which gives us a uniform
ultrafilter F on λ+. By Lemma 1.3.11(i) F is [λ+, λ]-regular, so by Theorem
1.3.9(i) i f is [A+, A]-compact, and therefore [^-compact. D

We have put this proof here, though it uses material from Section 1.3, to
illustrate the power of the abstract compactness theorem, which gives rise to
various transfer results. We shall see more transfer results in Section 1.5.

We shall call logics i f satisfying any of equivalent properties above ultimately
compact.

1.2. Co final Extensions

One useful tool for the study of [κ]-compactness is its characterization via the
non-characterizability of certain ordered structures. In Chapter II, Proposition
5.2.4 we have seen the paradigm of this procedure: A logic i f is (oo, ω)-compact
iff its well-ordering number is ω. Here the well-ordering is replaced by the co-
finality of some linear order.
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1.2.1 Definition, (i) Let 91 be an expansion (possibly with new sorts) of the structure
<κ, < > and 93 and JSf-extension of A. 93 extends 91 beyond K if there is an
element bεB n dom( < β ) such that for every aeAn dom( < A ) B \= a < b.
If there is no such element, we call 93 a confinal extension ofSΆ.

(ii) Let i f be a logic and K a regular cardinal. j£? confinally characterizes K or /c
is cofinally char act eriz able in J£f if there exists an expansion 91 (possibly
many-sorted with additional sorts) of the structure <κ, <> such that
every if-extension 93 of 91 is a cofinal extension of 9ϊ. In this case we also
say that 5£ cofinally characterizes K via 91.

1.2.2 Theorem. Let K be a regular cardinal. A logic i f is [κ]-compact iff K is not
cofinally characterizable in ££.

Proof. Like in Chapter II, Proposition 5.2.4. D

Theorem 1.2.2 gives a quick proof of Lemma 1.1.6(vi). It can be used, together
with a classical result due to Rabin and Keisler (Keisler [1964]) (cf. also Chang-
Keisler [1973, Theorem 6.4.5]), to study the existence of if-maximal structures.

Recall that a complete structure 91 is a one-sorted structure where every subset
X a An is the interpretation of some relation symbol Rx. In the case of many-
sorted structures we have to allow also relations with mixed arities.

1.2.3 Theorem (Rabin-Keisler). Let 91 be a complete structure of cardinality
λ < first uncountable measurable cardinal, PA be a countable infinite predicate o/9l
and 93 fee a proper if'ωω-extension o/9ί. Then PA §Ξ PB.

One can now easily prove from Theorems 1.2.2 and 1.2.3 a generalization of a
result of Malitz-Reinhardt [1972b] and independently (Shelah [1967]):

1.2.4 Proposition. If a logic <£ is not [ω~]-compact then there are arbitrarily large
^-maximal structures of cardinality less than the first uncountable measurable
cardinal.

Recall that a structure is if-maximal if it has no proper if-extensions, if-
extensions are further studied in Section 3.

The following observations will be useful later:

1.2.5 Lemma (Mundici). Let K, λ be regular cardinals and i f a logic. Let 9IK, 9Iλ

be expansions of(κ, < >, <λ, < > to τ-structures such that 5£ cofinally characterizes
K, (λ) via 91*, 91A, respectively. Then there exists no <£-embedding o/9lκ into 9Iλ.

The proof is left to the reader.

1.2.6 Proposition*. Let ^bea logic which is not ultimately compact. Then there is a

proper class of τ-structures £ such that for no two 91, 93 e & there is an &-embedding

from 9ί into 93.
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Proof If JSP is not ultimately compact, there is a proper class <£0 of regular cardinals
K for which j£? is not [τc]-compact (use Lemma 1.1.6(vi)). So by Theorem 1.2.2
each K e (£0 is cofinally characterizable in i f via some 2lκ. We can arrange it that
each 9lκ is a τ-structure for some countable τ. For this we code many n-ary relation
symbol by one (n + l)-ary relation symbol and the use of constants. Now put
(£ = {9IK: K e d0}. By Lemma 1.2.5 (£ has the required property. D

7.5. Ultrafilter s, Ultrapowers and Compactness

In first-order logic compactness is intimately related to the ultrapower construction.
One can turn this observation easily into a characterization theorem for ^ωω.

1.3.1 Definition. Let JSP be a logic, i f is said to have the Los property if for every
τ-structure 31 and every ultrafilter F and every formula φ e i f [τ] the ultrapower

\= φ iff {ίG I: %\= φ} e F.

1.3.2 Theorem. Lei 5£bea regular logic which has the Los property. Then L = i f ωω.

Proof. By coding a family of structures in one structure and using the Keisler-
Shelah theorem, that elementarily equivalent structures have isomorphic ultra-
powers, the proof is straightforward. D

1.3.3 Remark* Theorem 1.3.2 was folklore already around 1972. A detailed version
may be found in Sgro [1977] and Monk [1976, Exercise 25.53]. Sgro [1977]
contains interesting additional material concerning maximal logics.

To study compactness for abstract logics we need a generalization of the Los
property.

1.3.4 Definitions, (i) Let i f be a logic and F be an ultrafilter over /. We say that F

relates to ϊ£ if for every τ and for every τ-structure 91 there exists a τ-
structure © extending f|7 3I/F such that for every formula φ e Ĵ f [τ],
φ — φ(xχ, x2, , Xi,. •)> i < oc with α many free variables and every
fi e A1, i < at we have:

iff

{j e I: 911= φ{W)J2{j\ ... Jij\ ...)} e F.

(ii) We define UF(if) to be the class of ultrafilters F which are related to ^.

1.3.5 Remark. Note that 23 is always an elementary extension of Y[j 9I/F.
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1.3.6 Examples, (i) Every ultrafilter is in UF(J^ ω ω ).
(ii) Let J2? be JS?ωω(βκ), i.e., first-order logic with the additional quantifier

"there exist at least K many." Then every ultrafilter on ω is related to JSP,
provided ω is small for K.

1.3.7 Proposition, i f is compact iff every ultrafilter is related to JSf.

Proof. Let 9W be a τ-structure and F an ultrafilter on a set /. For every f sM1 let
cf be a new constant symbol not in τ. Put

and {teI:m\=φ(f1(t),f2(t),...)}eF}.

If JSf(τ) is a set, so is T and obviously every finite subset of T has a model: We
just expand 501 appropriately. So let ?l be a model of T. Clearly

and by the definition of T, 91 satisfies the requirements for F e UF(JSf). In the case
JS?(τ) is a proper class, we have to take a subclass To a T which is a set and still
guarantees that

Π m'/F c SB,

and that 91 satisfies the requirements for F e UF(JSf). For this we observe that over
the structure 9K7 there are only set many inequivalent formulas with less than
card(9M/)+-many free variables. t

The converse is trivial. D
The next theorem connects the compactness spectrum Comp(j?) with the

filters in UF(J£f). To be more explicit, we need some more definitions.

1.3.8 Definitions. Let F be an ultrafilter on /, and λ, μ be cardinals with λ > μ.

(i) F is said to be (A, μ)-regular if there is a family {Xa: α < A}, Xa e F such
that if {(Xi < λ: ί < μ} is any enumeration of μ ordinals less than λ, then
f]i<μ XΛ. = 0. The family {Xα, α < λ} is called a (λ, μ)-regular family.

(ii) A (λ, ω)-regular ultrafilter on λ is called regular.
(iii) F is A-descendingly incomplete if there exists a family {XΛ: a < λ}, Xa e F

with Xβ c Z α for α < β < λ such that P | α < λ XΛ = 0.
(iv) F is uniform on λ if every X e F has cardinality λ.

1.3.9 Theorem (Abstract Compactness Theorem). Let λ, μ be cardinals, λ > μ, and

let <£ be a logic.

(i) ££ is [A, μ~]-compact iff there is a (λ, μ)-regular ultrafilter F on I = P<μ(λ)
in UF(if).

(ii) If λ = μ and μ regular, then J£ is \X\-compact iff there is a uniform ultra-
filter Fonλ in UF(JSP).
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The proof of this theorem is delayed to Section 1.4.
Theorem 1.3.9 allows us to use known results from the theory of ultrafilters to

understand [λ, μ]-compactness. The following lemma collects some simple results
from (but not due to) Comfort-Negrepontis [1974].

1.3.10 Lemma, (i) If F is (λ, μ)-regular and μ < μx < λx < λ then F is (λl9 μx)-
regular.

(ii) // λ is a regular cardinal and F is λ-descendingly incomplete, then F is
(λ, λ)-regular.

(iii) // E is uniform on λ then F is (λ, λ)-regular.
(iv) IfF is (cf(λ), cf (λ))-regular then F is (λ, λ)-regular.

The abstract compactness theorem and Lemma 1.3.10 give us immediately the
corresponding statements in Lemma 1.1.6.

The next lemma collects some more sophisticated theorems from the literature
on ultrafilters. For Lemma 1.3.1 l(ii) one may also consult Comfort-Negrepontis
[1974, Theorem 8.36].

1.3.11 Lemma, (i) (Kanamori [1976]). IfF is uniform on λ+ and λ is singular, then F
is (λ+, λ)-regular.

(ii) (Kunen-Prikry [1971]; Cudnovskii-Cudnovskii [1971]). IfF is uniform
on λ+ and λ is regular, then F is λ-descendingly incomplete, and hence
(λ, λ)-regular.

This lemma, together with the abstract compactness theorem, is the key to
the study of the compactness spectrum in Sections 1.5 and 1.6. It is also used in
the proof of Theorem 1.1.9.

1.4. Proof of the Abstract Compactness Theorem

Before we prove the abstract compactness theorem we shall give a model-theoretic
characterization of (λ, μ)-regular ultrafilters which will give us the link between
[A, μ]-compactness and the existence of (λ, μ)-regular ultrafilters. This is implicitly
in Keisler [1967b] (cf. also Comfort-Negrepontis [1974, Theorem 13.6]).

Let H(λ) denote the set of sets hereditarily of cardinality <λ and let ξ>(λ) be the
structure <if(λ),e> where e is the natural membership relation on H(λ).

1.4.1 Lemma (Keisler). For an ultrafilter F on a set I the following are equivalent:

(i) F is (λ, μ)-regular.
(ii) In the structure 9t = Y\j ξ>(λ+)/F there is an element b = b/F where

b: I -+ H(λ + ) is a function, such that 91 \= b c λN and 91 \= card(b) < μN

but for every α < λ 91 N (xN e b.

Recall that for an ordinal α < λ, OLN denotes the image of a under the natural
embedding into 91.
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Proof, (i) -> (ii)Defined: / -+ H(λ+)by b(t) = {<xe λ: teXa} for t e /and {Xa:a eλ)
a (A, μ)-regular family. Now Xα = {t el: oceb(t)} so $l\= ocNeb, since for each
α e λ, Xa e F. But clearly, b(t) has cardinality < μ for each ί e /, since pfα: α 6 λ} is a
(A, μ)-regular family, so 911= card(fo) < μ. Trivially, we have also 911= b c λN.

(ii) -• (i) Let b = b/F be the required element in 91. Define b' by b'(t) = b(t) if
b(ή a λ and card(7?(ί)) < μ and fe'(ί) = 0 otherwise.

Obviously b/F = b'/F since 9ί N b c= λN. We want to construct a (A, μ)-
regular family. Put Xa = {tel: αei ' ( ί)} for each αeλ . Now suppose that for
some {αt : ieμ} the intersection P | ί 6 μ Xa. Φ 0. So there is a ί e / such that for
each i e μ, α, e ft'(ί)> which contradicts the fact that card(fc'(ί) < μ. D

1.4.2 Definition. Let F f be ultrafilters on /f (i = 1, 2). F 2 is a projection of Fι if
there is a map/ : /λ -• I2 which is onto and such that Fί = {f~1(X): X e F2}

Projections are closely related to the Rudin-Keisler order on ultrafilters
over a fixed set /, cf. Comfort-Negrepontis [1974]. We use now Lemma 1.4.1
together with complete expansions (i.e., complete structures over their original
universe, cf. Section 1.2), to get:

1.4.3 Lemma. If λ is regular and Fγ is (λ, λ)-regular ultrafilter on I then there is a
uniform ultrafilter F2 on λ which is a projection ofFx.

Proof. Let 9ί # be the complete expansion of 91 - [ ] / θ ( Λ + ) a n d b : I ~> H(λ+>> a s

in Lemma 1.4.1 and without loss of generality b(t) a λ for all tel. Now put
c(t) = sup(ft(ί)) so c(i) e λ since λ is regular, and 911= b <= c. Clearly c: I -> λ. We
define now F 2 by F2 = {S a λ: 91* = c e S } where S is the name of S in 91*. It is
now easy to verify that F 2 is a uniform ultrafilter on λ which is a projection of F1. D

To prove the abstract compactness theorem we shall prove a slightly more
elaborate statement:

1.4.4 Theorem (Abstract Compactness Theorem). Let <£ be a logic, λ, μ be cardinals

and λ > μ.

(i) The following are equivalent:

(a) There is (A, μ)-regular ultrafilter F on I = P<μ(λ) which is in UF(JSf).
(b) For every (relativized) expansion 91 ofξ>(λ+) there is an ^-extension

95 and an element beB such that 93 N= cardφ) < μB but for every α < λ
we have 93 1= ocBeb.

(c) i f is [A, μ\-compact.

(ii) Furthermore, if λ is regular then the following are equivalent:

(d) There is a uniform ultrafilter F on λ which is in UF(JSf).
(e) i f is [λ~]-compact.

(iii) In particular, we have:

(f) If there is a (A, μ)-regular ultrafilter F on any set / which is in UF(JSf),

then i f is [A, μ]-compact.
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Proof, (a) -• (b) Let F be a (A, μ)-regular ultrafilter in UF(JSf) and let SOΐ be any
expansion of <#(A+), e>. Put 9l0 to be the ultrapower Y\j 9R/F and 9lί the extension
of 9l0 as required for F e UF(if). First we observe that 5R0 < ^ 1 (&ωω) a n d > bY
Lemma 1.4.1 there is an element b in 9l0 with the required properties. But then
the same element b has the same properties also in 911 since 9l0 < 9ti(JSfωω). But
by the definition of 9t l 9 9TO < 9l1(JSf), so we are done.

(b) -• (c) Let Δ, Σ be sets of Jίf [τ]-sentences satisfying the hypothesis of
[A, μ]-compactness. We define an expansion 9W(Δ, Σ) of </ί(A+), e> to apply (b).
For this purpose let {5α: α < λ<μ} be an enumeration of all the subsets of Σ of
cardinality less than μ, 2Iα be a model of Δ u Sα and {cα: α < P<μ(λ)} an
enumeration of all the subsets of A of cardinality less than μ. Finally we put
v = (supα(card(2ϊα))) + A+), and define Aα = card(2Iα). We now define 3W(Δ, Σ)
to be <H(v), da, e, R, Pya<λ^,Peτ such that da is the name of α < A+, R is a binary
predicate not in τ and the domain of R is A. We arrange it such that for each
α < λ the set Kα = {xeH(v): (α, x ) e # } has cardinality λa and such that
< J R α ,P> P e τ £ 9Iα. In other words we put all the models 9lα into $R(Δ, Σ) in
way, that when we now apply (b) we shall get a model for A u Σ . More precisely,
we observe that for each formula φ e Δ:

(1) 2R(Δ, Σ) N card(fc) < dμ - φ* b

and for each /? < A and for Σ = {φf: i < λ} an enumeration of Σ we have

(2) 9M(Δ, Σ)\=(dβec A card(c) < dμ) -> φ^b.

Now let 93, ft G β be as in the conclusion of (b) for 21 = f ] 2R(Δ, Σ)/F.

Claim. < R b , P > P e t N Λ u Σ .

This follows from the definition and from (1) and (2).
(c)-+(a): So assume if is [A, μ]-compact but no (A, μ)-regular ultrafilter

F on P <μ(λ) is related to j£?. So for every such i7 there is an ^-structure 2IF

exemplifying this.
We now proceed to construct an ultrafilter Fo on A which contradicts the

choice of the 2t/s. For this we construct first a rich enough structure SR such that:

(1) for each 2IF there is a unary predicate PF in SCR with <P F , P}Peτ = 2I f

(2) 9Ji is a model of enough set theory to carry out the argument; and
(3) SR is an extension and expansion of (H(λ+\ e> (or equivalently (H(λ+), e)

is a relativized reduct of SOΐ).

Let 9K# be the complete expansion of 9K and put Δ = T h ^ (9W#), the first-order
theory of $R# where i f * is the vocabulary of 9Jl#. Furthermore, put

Σ = {b a dλ A card(b) < dμ A d e b: α < A}.

Clearly Δ and Σ satisfy the hypothesis of [A, μ]-compactness using the model
SOΪ#. So Δ u Σ has a model 9i. We want to use 91 to construct our filter Fo. First
we observe that S0ΐ# < ^ 91. Let αb be the interpretation of ft in 91. We define Fo on
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P<μ(λ) by Fo = {ReP<μ(λ):9l\=abeR*}. This makes sense, since 9K# is a
complete expansion and hence every subset of λ of cardinality <μ corresponds to a
predicate in SDΪ# (remember (H(λ+), e) is present in SDΪ#).

To complete the proof we have to verify several claims:

Claim 1. Fo is ultrafilter.

Obvious.

Claim 2. Fo is (λ, μ)-regular.

Let XΛ = {teP<μ(λ): α e ί } α < A . Now XΛeF0, for say Xa corresponds to Ra

then 91 \= ab e Ra iff 91 \= da e ab9 which is true for all α < λ be definition of ab.
Now {Xai: ί < μ) be a subfamily of the Xa

9s. Clearly, f]i<μ XΛ. = 0 , since each t
in some Xa has cardinality <μ.

Now consider the ultraproduct f ] 9 K # / F 0 = SR0. If r̂ is an element of 9l0

then g is an ivequivalence class of functions g: P<μ(λ) -• 9K# so gf corresponds
to a function g*" in SDΪ# with name g (since $R# is the complete expansion) and
ab e Domίg91). So we define an embedding / : 9l0 -> 91 by f(g/F0) = g * ^ ) .

Claim 3./is we// defined and 1-1.

Let #/F 0 = #'/F 0 . We want to show that this is equivalent to 91 \= g(αc) =
g'(αc) iff Y = {t e P<μ: g(t) = g'(t)} e Fo. But the latter is true iff ab e Yn which is
equivalent to q(ab) = $'(ab).

So we have shown that/is an embedding of 9l0 into 91.
Now let g = {gJF0: i < α} be in 9l0.

Claim 4. For every ̂ -formula φ we have

9lϊ=φ(g) iff Y={teP<μ:9Ά\=φ(gi(t),g2(tχ...)}GF0.

Clear, since Y e Fo ifif 79 1 contains ac iff 911= (Kg^α,), 92(«cX •)•
Now look at 9ϊF o. By assumption there is no 9ΐ extending ]~J SΆFJF0 satisfying

Claim 4. But (P*0,P}PeτF is such an 51' by construction. This completes the
proof of (i).

(d) -> (e) This follows from the above, since uniform ultrafilters on λ are
(cf(A), cf (Λ))-regular and A is a regular cardinal by our hypothesis.

(e) -> (d) Here we use Lemma 1.4.3 and (a) -> (c). This completes the proof of
(ii).

To prove (f) we just observe that in the proof of (a) -• (c) we did not use that
/ = P<μ(λ). This completes the proof of Theorem 1.3.9. D

7.5. The Compactness Spectrum

In this section we study the structure of the compactness spectrum Comp(j£?) and
the regular compactness spectrum RComp(i?) defined below.
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1.5.1 Definition. For a logic i f we define Comp(if), (RComp(if)) to be the class
of all (regular) cardinals such that i f is [K]-compact.

1.5.2 Theorem. The first cardinal λ0 in Comp(if) is measurable (or ω).

Proof. By Theorem 1.2.2(i) each regular λ < λ0 is cofinally characterizable in if
via a structure 93(/ί) with κλ the cardinality of 93(/l). Let μ be defined by

μ = (sup{/cΛ: λ < λ0}) + λ£

and let 33 be the complete expansion of the structure <μ, ε>. Therefore (*) in
every if-extension of S all the ordinals smaller than λ0 are standard. By [Λ,o]-
compactness 93 has an if-elementary extension d with some c e C — B and
such that (£ 1= c e λ%. Since λ0 is minimal we have for no λ < λ0 that (£ \= c e Ac.
We now define an ultrafilter F on Ao by

where X is the name of the set X in 93. Clearly F is an ultrafilter. We propose to
show that F is A0-complete.

Let {Xa: α < μ < λ0} be any family in F. The function / with /(α) = Xα is
a function in 93 with name, say, f. Put now X = f]a<μ Xa. So 93 1= X = p | α < μ Xα

and therefore

93 1= Vx(Vi(i < α -> xef(0) ^ x e Πi<αf(0)

But by (*) the ordinals α < λ0 in 93 are the same as in (L So £ N c e X since
f is a function of (£ with fc [ B = fB. So X e F and therefore λ0 is measurable. D

1.5.3 Example. If K is a strongly compact cardinal, the logic ££κκ is (oo, κ:)-compact
and therefore [/c]-compact. But the logic 5£κκ is not [2]-compact for any λ <κ.

Note that, as a corollary, we get that strongly compact cardinals are measur-
able. By Magidor [1976] it is consistent that the first measurable and the first
strongly compact cardinal coincide.

Our next aim is to study the structure of Comp(if). The main theorem here is

1.5.4 Theorem. For every cardinal λ and every logic $£, λ+ e Comp(if) implies
λ e Comp(if).

Proof. Use the abstract compactness theorem 1.4.4 and Lemma 1.3.11. D
For λ regular this was first proved in Makowsky-Shelah [1979] giving a

direct proof by relating [λ]-compactness to descendingly incomplete ultrafilters.
The general result was proved in Makowsky-Shelah [1983]. There the connection
with ultrafilters was first recognized, on which the presentation here is based.
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The next result concerns the structure of Comp(if). The following was proven
in Makowsky-Shelah [1979, Lemma 6.4(ii)] by an extension of the argument for
Theorem 1.5.2.

1.5.5 Lemma. Let λ > μ be two regular cardinals and <£ be a logic such that
λ ε Comp(if) but μ φ Comp(^f). Then there is a uniform μ-descendingly complete
ultrafilter on λ.

Consider the following assumption A{λ\ where λ is an uncountable cardinal.

A(λ): "if g is a uniform ultrafilter on λ, then g is μ-descendingly
incomplete for every μ < A."
We denote by A(oo) the statement "for every infinite cardinal λ, A(λ)
holds."

Donder-Jensen-Koppelberg [1981] and Magidor [198?] have studied this
assumption. The following theorem summarizes their results (with part (v) being
Theorem 8.36 in Comfort-Negrepontis [1974], see also Lemma 1.3.11).

1.5.6 Theorem, (i) (Jensen-Koppelberg). Assume ~ ι θ # . Then for every regular
cardinal λ we have A(λ).

(ii) (Donder). Assume there is no inner model of ZFC with an uncountable
measurable cardinal. Then A(cc) holds.

(iii) IfA(oo) holds then there are no uncountable measurable cardinals.
(iv)* (Woodin). Assume there are uncountable measurable cardinals. Then it is

consistent with ZFC that A(ωω) fails.
However, in ZFC we already have:

(v) (Kunen-Prikry and Cudnovskii-Cudnovskii). For every neω, A(ωn)
holds.

Magidor has informed us of the yet unpublished result of Theorem 1.5.6(iv) of
Woodin. He had previously proved a similar result, where one has to replace the
existence of an uncountable measurable cardinal in the hypothesis by the existence
of a supercompact cardinal.

The assumption A(oo) is intimately connected with compactness properties:
It implies that Comp(if) has no gaps. On the other hand, the existence of strongly
compact cardinals allows us to construct logics where Comp(i?) does have gaps.
More precisely:

1.5.7 Theorem, (i) Assume A(oo) holds. Then Comp(if) is an initial segment of the
cardinals, i.e., λ e Comp(J^) and μ < λ implies that μ e Comp(j^).

(ii)* (Shelah). Let μ : < μ2 be two uncountable strongly compact cardinals.
Then there is a logic <£ which is [κ]-compact ιffκ < μγor κ> μ2.

Proof, (i) Assume Comp(L) Φ 0. Since ^(oo) implies that there are no uncount-
able measurable cardinals, by Theorem 1.5.6(iii), the first cardinal in Comp(if) is
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ω, by Theorem 1.5.2. Now, if ω < λ e Comp(^f) and ω < μ < A, μ φ Comp(J2?), μ
regular, we apply Lemma 1.5.5 and get a contradiction to A(co). If μ is singular,
we apply Lemma 1.5.5 to cf(μ) and then use Lemma 1.1.6(v).

(ii) will follow from Proposition 1.6.7. D

The question which remains, is whether Comρ(if) is empty or not. Now clearly
the logic ^?

aΰω is not compact in any sense, so Comp(if ^ J is empty. But if we
assume that the logic i f is bounded in some sense and have some very strong
assumption on the existence of large cardinals we can get more specific results.
For terminology and results on large cardinals we refer to Jech [1978].

1.5.8 Definition. A logic is set presentable if:
(i) there is a cardinal K such that whenever a vocabulary τeH(κ) and

Σ c S£\τ\ has cardinality <κ then Σ cz H(κ)\ and
(ii) for every φ e JSf [τ] Mod(φ) is a set-theoretically definable class of τ-

structures.

(Recall that H(κ) is the family of sets hereditarily of cardinality < K.)

1.5.9 Example. Let JS? = JSfJJ be like nth-order logic except that we allow conjunc-
tions and disjunctions of less than K many formulas. Clearly <£ is set presentable
and so is every sublogic of it.

1.5.10 Definition. Let SComp(if) be the class of cardinals K such that JSf is (oo, in-
compact and WComp(^f) be the class of cardinals K such that $£ is (/c, κ)-compact.
Clearly we have SComp(if) c Comp(if) c WComp(JSP).

1.5.11 Proposition (Magidor [1971]). // K is an extendίble cardinal then KE
SComp(ί?ϊ).

1.5.12 Definition. The following statement is called Vopenka's principle:
Let C be a proper class of τ-structures for some finite vocabulary τ. Then there
are two structures 91, 93 e C such that 91 is (first-order) elementary embeddable
into 93.

Now Magidor [1971] also shows

1.5.13 Proposition. // Vopenkds principle holds then the class of all extendίble
cardinals is closed unbounded.

So Propositions 1.5.11 and 1.5.13 give us immediately:

1.5.14 Theorem (Magidor-Stavi). Assume Vopenkάs principle holds and that <£ is
a set presentable logic. Then SComp(j£?) is a non-empty final segment of the cardinals
(in other words, !£ is ultimately compact).

For WComp(if) we do not need Vopenka's principle to prove an analogue
of Theorem 1.5.14.
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1.5.15 Theorem (Stavi [1978]). Let μ be a uncountable measurable cardinal and F
be a normal ultrafilter on μ and <£ be a sublogic of J£n

μ. Then WComp(if) n μeF.

Theorem 1.5.15 holds under much weaker assumptions (cf. Stavi [1978,
Section 5]) and is also discussed and proved in Chapter XVII, Section 4.2.

The structure of Comp(if) definitely deserves further investigation. We
combine the content of Lemma 1.1.6(v), and Theorems 1.5.2, 1.5.4, and 1.5.14 into
the statement:

1.5.16 Theorem. For a logic 3? we have:

(i) cf(k) e Comp(if) -+κe Comp(if).
(ii) κ+ eComp(j^) ->κeComp(if).

(iii) The first cardinal in Comp(if) is measurable (or ω).
(iv) // S£ is set presentable and Vopenkds principle holds, then Comp(i^)

contains a final segment of the class of all cardinals.

Our last theorem illustrates that Vopenka's principle is the right large cardinal
assumption in this context.

1.5.17 Theorem* (Makowsky). The following are equivalent:

(i) Vopenka's principle.
(ii) For every logic & SComp(if) Φ 0.

(iii) For every finitely generated logic i f SComp(if) Φ 0.
(iv) For every finitely generated logic i f Comp(j£?) Φ 0.

Proof (i) -> (ii) follows from Proposition 1.2.6. So we only have to prove (iv) —• (i).
Let C be a proper class of τ-structures and let Qc be the Lindstrom quantifier
defined by C and i f = i f ωω(Qc) Clearly C contains a proper subclass C o of the
form C o = Mod(Γ) where T is a complete i f [τ]-theory. Assume that /ceComp(if)
and let 9 I e C 0 be of cardinality >κ. Using [/c]-compactness we now find 93 t= T
which is an (first-order) elementary extension of 91 and clearly S e C . D

1.6. Gaps in the Compactness Spectrum

In this section we want to study a family of examples of logics with gaps in the
compactness spectrum. These examples will also be used in the subsequent sections
to illustrate various phenomena concerning dependence numbers and amalga-
mation properties (see Example 2.2.5 and Section 3.5).

1.6.1 Example. Let K be a cardinal and F be an ultrafilter on K. We define a logic
if = <£>Fω by adding to first-order logic ifωω the following formation rule: If
{ψi'. ί < K) is an indexed family of i^-sentences, then f]F {φt : i < K} is an <£-
sentence. We additionally assume that if-formulas have < ω many free variables.
Satisfaction for ^ is defined by the additional clause: If 91 is a τ-structure then
SΆ t= f]F {φ.: i < K) iff {ί < K: 91 N φ j eF.
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1.6.2 Proposition. Let μ be a measurable cardinal and F be a μ-complete non-

principal ultrafilter on μ.

(ii) 5£¥ω is not [μ^-compact.
(iii) J5fFω is \X\-compact for every λ < μ.

Proof, (i) and (ii) are left to the reader. To prove (iii) we make use of the abstract
compactness theorem (1.3.9) and we show that every ultrafilter D on λ is in UF(if).
Let us spell this out precisely:

1.6.3 Lemma. Let i f = ifFω and D be any ultrafilter on λ < μ. Furthermore let
{9If: i < λ} be a family of τ-structures, φ e ϊ£[τ] and {fy.j < v < μ} be a family of

functions in Y[ieλ 2Ij. Then the following are equivalent:

(ii) Xφ = {i eλ: % |= φ(fi(0, f2(i), - -, f/0, W e D.

Proof Like Los' theorem for first-order logic. G

Example 1.6.1 can be still further extended:

1.6.4 Example*. Let μx < μ2 with μx measurable and μ2 strongly compact. Let
3 be a μx -complete non-principal ultrafilter on μv We define the logic £?

F,μ2 as
above, but we allow existential quantification over sequences of variables
{xy.j < α < μ2).

1.6.5 Proposition* (Shelah). (i) <£¥^ < J^M 2,M 2.

(ii) The logic ^Fiμi is [κ]-compactfor every K < μγ and K > μ2.

Proof (i) Clearly, the operation f]F can be expressed by conjunctions and dis-
junctions in J£?μ2fμ2, since μ2 is a strong limit cardinal and μx < μ2.

(ii) For K < μx this is similar to Lemma 1.6.3 and for K > μ2 this follows from
(i) and the fact that μ2 is strongly compact. D

Clearly, in Proposition 1.6.5, [μj-compactness fails. But it is not clear,
whether for any K with μx < K < μ2, we have [κ:]-compactness. However, we
can construct a more refined example:

1.6.6 Example* (Shelah). Let D(μί, μ2) be the set of μx-complete ultrafilter F on
some set / c μ2 such that μx < card(/) < μ2. Instead of allowing f]F for one
ultrafilter we can now form"a logic ^D(μί,μ2),μ2 a s follows: We close first-order
logic cSfωiω under all the operations (°|F for F e D(μu μ2) as in the previous example.
Additionally we close under existential quantification over strictly less than μ2

many individual variables.

The next proposition is proved exactly as Proposition 1.6.2.
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1.6.7 Proposition* (Shelah). Let μ1 be measurable and μ2 be a strongly compact

cardinal bigger than μv Then:

(l) ^D(μi,μ2),μ2

 < = ^ 2 , ^ 2 '

(ii) ^D(μuμ2),μ2 is [κ]~compact for every K < μt and K > μ 2 ; and

(iii) £?D(μ1,μ2),μ2 *5 n o t [κ]-compactfor any K with μ1 < K < μ2.

This also establishes Theorem 1.5.7(ii). Using the same type of examples we can
actually find logics with a compactness spectrum containing various gaps. How
far we can go with this, is described in the following theorem:

1.6.8 Theorem*, (i) Assume there are arbitrarily large measurable cardinals. Then
there is a [ω]-compact logic i f such that both Comp(i^) and its complement
are confinal in the class of all cardinals.

(ii) Assume there are arbitrarily large strongly compact cardinals. Then there
is a \_ω~]-compact logic $£ such that both Comp(if) and its complement are
cofinal in the class of all cardinals and consist of intervals whose length is a
strongly compact cardinal.

Proof. Combine Examples 1.6.1 and 1.6.4, respectively. D

Note however, that for set-presentable logics if, Vopenka's principle (Theorem
1.5.14) implies that Comp(if) is a final segment of all cardinals.

2. The Dependence Number

2.1. introduction

In this section we develop further an idea mentioned briefly in Chapter II, Section
5.1, namely the meaning of the assertion that a formula φ e J£?[τ] depends only on a
subset σ c i . We present the material of this section for one-sorted logics only.
We leave it to the reader to adopt the definitions and results to the many-sorted
case. Let us recall a definition:

2.1.1 Proposition. Let i f be a logic and φ e i f [τ].

(i) φ depends (only) on (the symbols in) σ, σ cz τ if for all τ-structures 21, ©
such that 21 \ σ ^ 93 [ σ we have 21 N φ iff 93 1= φ.

(ii) A logic ^ is weakly regular, if <£ satisfies the basic closure properties (1.2.1)
and the relativization property (1.2.2) of Chapter II.

The difference between weakly regular and regular is the absence of the sub-
stitution property (1.2.3) of Chapter II.

If φ e ̂ [τ] does only depend on σ <= τ, one would generally expect, that
there is a φ e J?Ί>] which is equivalent to φ. If this is the case, we say that the logic
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if is occurrence normal. However, our definition of a weakly regular logic does not
imply this. Nevertheless we have:

2.1.2 Proposition*. For every weakly regular logic <£ there is a logic 5£\ such that:

(i) ^ = SΊ
(ii) ifφ e <£ ̂ τ ] , α c τ and φ depends only on σ, then there is a φ e $£ j[σ] such

that for every σ-structure 91, 911= φ iff every expansion o/9I to a τ-structure
9I 1 ,9I 1 t=φ.

Proof. We just add new atomic formulas and consider them as being of the required
vocabulary. D

Regular logics are closed under substitutions of formulas for atomic predicate
letters. For one-sorted logics there is no problem in stating this directly, for many-
sorted logics we have to be a bit careful about the sorts. Gaifman pointed out that
the definition of a regular logic ensures that <£ x actually is if.

2.1.3 Proposition*. Every regular logic is occurrence normal.

Proof One-sorted case: Assume φ, σ, and τ as in the definition of occurrence
normal above. To construct φ we first make use of the eliminability of function
symbols (which follows from the substitution property, Definition II. 1.2.3) and
assume that τ — σ contains only relation symbols. Next we construct for every
predicate symbol R e τ — σ a formula of first-order logic SR with equality only and
with free variables according to the specifications of the one-sorted arity of R.
We now obtain φ by substituting SR for every occurrence of R in φ, using the sub-
stitution property again. Note that we do not need the relativization property
here.

In the case of many-sorted logics, the definition of the substitution property
(1.2.3) from Chapter II has to be modified. There is no difficulty in doing this so
that it implies occurrence normality. We leave this as an exercise to the reader. D

In the light of Propositions 2.1.2 and 2.1.3 we can restrict ourselves for the rest
of this chapter to occurrence normal or regular logics. For such logics we can define
the concept of a dependence number in a semantical way. In Chapter II (after
Definition 1.2.3) a syntactic concept of occurrence property was introduced.

2.1.4 Definition, (i) Given a regular logic if, we define a cardinal o(if) = K to be
the smallest cardinal such that every formula φ e ^[_τ] depends only on
some subset τ 0 c τ with card(τ0) < K. If no such K exists we write o(if)
= oo. If o(if) = ω we also say that ^ has finite dependence or has the

finite dependence property.

(ii) Given a regular logic ^, we define a cardinal OC(if) = K to be the smallest
cardinal such that for every formula φ e J£[τ] there is σ a τ with card(σ)
< OC(if) and φ e L(σ).
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In Chapter II (Definition 6.1.3) the finite occurrence property was introduced,
which is the syntactic counterpart of our finite dependence property. In our
terminology the finite occurrence property is equivalent to OC(J2?) = ω. Using
Proposition 2.1.3 one easily sees that every logic ϊ£ which has the finite dependence
property, contains a sublogic j£?0 equivalent to it which has the occurrence
property in the syntactic sense. In fact, more generally we have:

2.1.5 Proposition*. Let & be a regular logic with dependence number o(S£\ Then
there is a regular logic ££ 1 with OC(j£?) = o(i?) which is equivalent to <£.

Proof. Similar to Proposition 2.1.2. D

The above proposition shows that up to equivalence of logics, the occurrence
number and the dependence number coincide. In Makowsky-Shelah [1983] the
dependence number is, indeed, called occurrence number. The change in termi-
nology was motivated by the requirements of Chapter II and by the notion of the
dependence structure, introduced in Section 2.4.

2.1.6 Examples, (i) In Chapter II, Proposition 5.1.3 shows that for a (K, Λ,)-compact
logic with o(J2?) < K we actually have o(j£?) < λ. This fact was first pointed
out in H. Friedman [1970].

(ii) Let us look at the logic 5£Fω defined in Example 1.6.1. Obviously o(J^)
< κ+. But if φ E i?[τ], card(τ) = K then there is no smallest T O C T such
that φ depends exactly on the symbols in τ0.

2.1.7 Substitutes for the Dependence Number. The dependence number is a
concept which keeps the size of a logic limited. Other assumptions in this direction
are:

(i) For every vocabulary τ with τ a set ^[τ] is also a set. We call such logics
small. In Section 4.3 this concept will be used.

(ii) For every vocabulary τ, if τ is a set, card(J*f [τ]) = card(τ) + K for some
fixed cardinal K. This gives us a special case of a size function, as defined in
Section 4.3. There we also look at tiny logics, i.e., logics i f such that
whenever card(τ) is smaller than the first uncountable measurable cardinal
μ0, then card(J2?[τ]) is also smaller than μ 0.

(iii) The presence of a Lowenheim number ZK(JS?), as introduced in Section
Π.6.2.

For various theorems in abstract model theory such limiting assumptions are
needed, as we shall see in the further course of this and the next chapter. Note that
from the above properties (ii) -> (i) and in the presence of an dependence number
(iii) -> (ii), up to equivalence of logics. In fact, we have the following:

2.1.8 Proposition. Let 5£bea logic with o(j5f) = μ and /i(JS?) = K and τbea vocabu-
lary with card(τ) = λ and μ < λ <κ. Then there are, up to logical equivalence, only
< 2 2 many τ-sentences.
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The proof consists of a crude counting argument. Note that we do not get the
stronger conclusion card(if [τ]) < 22*, since there may be many equivalent
formulas.

One would actually expect that if Z ĴSf) = K then o(if) < κ+ and one might
add this to the definition of the Lowenheim number, but it is an open field to deter-
mine which model-theoretic properties have what impact on the size of the
dependence numbers. The only exception is compactness and the rest of Section 2
is devoted to this.

2.2. Compactness and Dependence Numbers

This section is devoted to the statement of the finite dependence theorem and
the discussion of several examples. The proof of the finite dependence theorem is
discussed in the following section but for a technically complete exposition of the
proof we refer the reader to Makowsky-Shelah [1983].

To simplify the statements of the following theorem and its corollaries, we
denote by μ the first uncountable measurable cardinal, if there is one, and oo
otherwise. We stipulate further that if μ = oo, then μ+ = oo.

2.2.1 Theorem (Finite Dependence Theorem), (i) (Global version). Let $£ be a
regular, \ω\-compact logic with dependence number o(if) < μ. Then !£ has
the finite dependence property, i.e., o(if) = ω.

(ii) (Local version). Let *£ be a regular, [ω~\-compact logic, τ a vocabulary and
φ e i ? [ τ ] a formula which depends only on some τ 0 c τ with card(τ0) less
than the first uncountable measurable cardinal. Then there is a finite τί c τ 0

such that φ depends only onτ1.

Clearly, (ii) implies (i). The proof of (ii) is presented in Section 2.3.

2.2.2 Corollary. Let <£ be a regular, \κ\-compact logic, K < μ and o(if) < μ+.
Then i f has the finite dependence property.

Proof of Corollary. By Theorem 1.5.2 5£ is [ω]-compact, so we can apply the
finite dependence theorem. D

As a second corollary we get a representation theorem of some compact logics
via Lindstrom quantifiers (cf. Section II.4). Let us recall a definition:

2.2.3 Definition. A logic i f is a Lindstrom logic if i f = ^ωω(Qi)ieI for some in-
dexed set of Lindstrom quantifiers Qt (i e /). !£ is finitely generated if i f is a Lind-
strom logic and card(/) < ω.

Note that by Theorem 4.1.3 of Chapter II every regular logic !£ which has
the (syntactic) finite occurrence property is a Lindstrom logic.
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2.2.4 Proposition*, (i) Let & be a regular logic with o(J^) = ω. Then <£ is equiva-
lent to a Lindstrom logic.

(ii) If a regular logic ϊ£ is small, \_κ]-compact and o(if) < K < μ+ then J£
is equivalent to a Lindstrom logic.

Proof. Using Corollary 2.2.2 we can reduce (ii) to (i). So assume that <£ has finite
dependence. Let τ be a finite vocabulary. We want to replace every φ e S£\τ\
which is not equivalent to a first-order formula, by a formula consisting of a new
quantifier Qφ applied to a sequence of atomic formulas. The problem is to keep the
number of quantifiers so introduced small. But the type of the quantifier does not
really depend on the vocabulary τ, but only on the similarity type, i.e., on the
number and arities of the symbols τ. Now there is a countable universal vocabulary
τ^ such that for every finite τ there is τ' c τ ^ which is of the same similarity type
as τ. Therefore, every <peJS?[τ] can be obtained from some ψe£?[τa0~] by an
application of substitution. By our assumption, ^ [ T ^ ] is a set. So writing every
formula in S£\τ^\ as a Lindstrom quantifier, we complete the proof. D

Both the theorem and the corollaries have assumptions involving measurable
cardinals. In the sequel we shall discuss examples which show, that these assump-
tions are necessary.

2.2.5 Examples, (i) Let μ be a strongly compact cardinal. So JSf = 5£μμ is [μ]-
compact and o(JSf) = μ. As noted before, it is consistent that the first
strongly compact and the first measurable cardinal coincide, by Magidor
[1976]. This shows that the assumption on measurable cardinals cannot be
dropped in the corollaries.

(ii) Let μ be a measurable cardinal and F be a μ-complete non-principal
ultrafilter on μ. We look again at the logic JSf = JSfFω from Example 1.6.1.
By Proposition 1.6.2 this logic is [ω]-comρact, but clearly its dependence
number is μ+. This shows that the assumption on the measurable cardinal
cannot be dropped in the finite dependence theorem.

23. Proof of the Finite Dependence Theorem

The proof of the finite dependence theorem uses three lemmas (Lemmas A, B, C).
We do not prove these lemmas here and refer the reader to [Makowsky-Shelah
[1983]. Instead, we present the three lemmas without proofs and show how the
finite dependence theorem is proved from them. The reader will gain a rather
transparent picture of the structure of the proof.

Let us fix a [A]-compact logic JSζ a vocabulary τ and a sentence φ e ί?[τ] . We
want to study subsets of τ on which φ does not depend. Each lemma introduces a
new aspect of the notions involved: Lemma A uses compactness to construct a
dummy subset of τ. Lemma B builds a function on the power set of τ which is used
to apply Lemma C, which makes us conclude that card(τ) was measurable.

Lemma A' is an improvement of Theorem 5.1.2 in Chapter II, and its proof is

very similar.
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2.3.1 Lemma A', (i) For every τί a τ with c a r d ^ ) < λ there is α τ 0 c τ 1 with
card(τ0) < λ such that φ does not depend onτ1 — τ0.

(ii) There is a μ < λ such that for every Ϊ J C T with c a r d ^ ) < λ there is a
τ0 c= τ1 with card(τ0) < μ such that φ does not depend onτ1 — τ 0 .

Now Lemma A' can be used to prove Lemma A.

2.3.2 Lemma A. There is a τ1 c τ with cardCrJ < λ such that for every τ 0 cz
τ — τ t with card(τ0) < λ does not depend on τ 0 .

The second lemma used in the proof of the finite dependence theorem gives us
the connection to ultrafilters. Here we use some material from Section 1.3, in
particular, the definition of UF(if).

2.3.3 Lemma B. Let μbe a cardinal, ̂  be a logic and φ a <£\τ\-sentence. Ifτ2 <= τ
but for each τί cz τ2 with c a r d ^ J < λ, φ does not depend on τ l 5 then there is a
function f: P(τ2) -• {0, 1} such that:

(i) fis non-constant.
(ii) For every σu σ2 cz τί with card(a t Δ σ2) < λ we havef{σx) = / ( σ 2 ) .

(iii) For every ultrafilter F e U F ^ ) (on μ) f is F-continuous.

Recall that if F is an ultrafilter on μ, {σ^. i < μ}, σ are subsets of τ 2 then
limF σt = σ iff for every P e τ2 the set IP = {i e μ : P e σf <-̂  P e σ) e F and
/is F-continuous iff σ = limF σf implies that/(σ) = limF /(σ f).

The third lemma, used in the proof of the finite dependence theorem, gives us
the connection to measurable cardinals:

2.3.4 Lemma C. IfF is a uniform ultrafilter on ω and f: P(k) -» {0, 1} satisfies
(i)-(iii) of the previous lemma, then there is a measurable cardinal μ0 such that
ω < μ0 < K.

We are now in a position to prove the finite dependence theorem.

Proof of the Finite Dependence Theorem. Assume 5£ is [ω]-compact and o(J^) > ω.
Then there is an J^[τ]-sentence φ which does not depend only on a finite subset of τ.
So card(τ) > ω, and if card(τ) = ω we are done by Theorem 5.1.2 of Chapter II.
So card(τ) > ω. By Lemma A (for λ = ω) we can assume that φ does not depend
on any countable subset of τ. Now we apply Lemma B to construct the function/
and by the abstract compactness theorem (1.3.9) and Lemma A we know t h a t /
is F-continuous for some uniform ultrafilter on ω. So by Lemma C we know that
card(τ) > μ0, the first uncountable measurable cardinal. But this shows that
o(J£?) > μ0, a contradiction. D

2.4. Dependence Filters

So far we have studied the concept of a formula depending on some subset of a
vocabulary τ, and our main result was the finite dependence theorem. However, as
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the examples in Section 1.6 and their discussion in Examples 2.1.6 show, this need
not be the appropriate notion. We are facing here a similar problem as in the
analysis of compactness properties. There it turned out that the more appropriate
tool to study compactness is the class of ultrafilters UF(if). Similarly here, we
have to look at dependence filters.

2.4.1 Definition. Let τ be an infinite vocabulary and assume, for notational
simplicity, that τ = {R^. i < λ}, where Rt are relation symbols. Let φ e i f [τ] be a
formula of some logic if. If X a λ we write τx for {Rt: i e X}.

(i) Let F be an ultrafilter on λ. We say that φ depends on F only, if, given two
τ-structures 91 = (A,Rf}i<λ and 93 = (B,Rf}i<λ, and a set XeF such
that 91 Is τx ^ 93 {τx then 911= φ iff 93 \= φ. We call F an dependence
filter for φ.

(ii) Let Yo u Yx u u Yn be a finite partition of λ and Fk (k = 0, 1,. . . , ή) be
ultrafilters on 1 ,̂ respectively. We say that φ depends on Fo, Fί,..., Fn

only, if, given two τ-structures 91 = (A, Rf)i<λ and 93 = (B, Rf)i<λ,
and sets XkeFk such that 91 [τx £ 93 Γτ x , where * = Uo */> t h e n
911= φ iff 33 1= φ. We call Fθ9Fl9 ...,Fn a finite dependence structure for φ.

(iii) We can modify (ii) to allow infinite partitions. In this case we speak of
dependence structures for φ.

2.4.2 Examples, (i) If a logic i f has finite dependence, φ e S£\τ\ then φ has a
principal dependence filter generated by the finite set τ 0 c τ o n which φ
only depends.

(ii) Let us return to the logic j ^ F ω from Example 2.1.6(ii), introduced in
Example 1.6.1 Recall that F is an ultrafilter on some set /. Let Rif ί e / be
relation symbols. The formula f]F {R^: ί e 1} has among its dependence
filters also the ultrafilter F. However, if τ = {R^. iel} u {St: iel} then
the dependences of the formula f]F {R^ iel} A f]F {#,-: ie 1} has to be
described by a finite partition of τ and a filter on each of the components,
which in this case is F.

(iii) If we look at Example 1.6.5 it is easy to construct examples of sentences
whose dependence is described by more complicated partitions and more
complicated ultrafilters.

That those examples are more than accidental is shown by the following

theorem from the treasure box (Shelah [198?e]).

2.4.3 Theorem* (Shelah's Finite Dependence Structure Theorem). Let i f be α
[ω~\-compαct logic, τ = {R, : i < λ} α vocabulary and φe<£\τ\. Then there is a
finite partition Yo u Yx u u Yn of λ and countably complete ultrafilters Fk

(k = 0, 1,. . . , ή) on Yk, respectively, such that φ only depends on Fo, F\,... ,Fn.
In other words, every φ e i f [τ] has finite dependence structure.

The proof of the finite dependence structure theorem consists of elaborations
of the Lemmas A, B, and C in Section 2.3. The finite dependence structure theorem
opens new perspectives in the study of dependence phenomena for compact logics
for the case that there are uncountable measurable cardinals.
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3. ^-Extensions and Amalgamation

3.1. Basics

Given a logic ίP, it is clear how to define the analogue of elementary equivalence
of two structures of the same language τ: They have to satisfy the same τ-sentences.
It is more problematic to generalize the notion of elementary embeddings, because
already in the first-order case either free variables or new constant symbols are
used in the definition and various definitions are equivalent only because of the
finite occurrence (finite dependence) or even because of compactness. In the
general case it is convenient to introduce a cardinal parameter.

Let us recall that the if-diagram of an τ-structure 91 is the set of S£ sentences
true in the structure <9I, A}, i.e., the structure 9ί augmented with names for all its
elements. We denote the if-diagram of 91 by D

3.1.1 Definitions, (i) A τ-structure 93 is an i^-extension of a τ-structure 91, if 91 is a
substructure of 33 and the two structures <9I, A} and <93, A} satisfy the
same if-sentences. In this case we write 91 <^ 93.

(ii) A τ-structure 93 is a (K, i f )-extension of a τ-structure 91, if 91 is a substructure
of 93 and for every subset Ao\= A with card(X0) < K the two structures
<9l, Ao} and <93, Ao} are if-equivalent. In this case we write 91 <\ 93.

3.1.2 Examples, (i) For ^£ = ^?

ooω without occurrence restrictions we have
clearly 9ί <#> 33 iff 91 = 33. Using indiscernibles, it is easy to construct
9ί, 33 such that 91 <^ o o ω 33 for a given K.

(ii) If o(if) = K then clearly every (K, j?)-extension is an if-extension,
(iii) If i f is a compact logic, then we have, by the finite dependence theorem of

the previous section, that if-extensions and (K, i f )-extensions coincide
for every K.

In model-theory extensions are studied extensively and the following three
situations are characteristic:

(i) Do models have (K, i f )-extensions ?
(ii) Given a chain of extensions, is the union an extension of each member

of the chain?
(iii) Given three τ-structures 9I i? / = 0, 1, 2 such that 9I0 is an if-substructure

of both 91! and 9I 2, does there exists an amalgamating extension 9I3?

In fact, in Chapter XX we shall describe an approach to abstract model theory,
which is entirely based on those aspects and not on the notion of formulas and
logics. Here, however, we shall study logics which allow these constructions.

In this chapter we shall deal with logics which allow one of the above construc-
tions (i)-(iϋ) universally.

3.1.3 Definition, (i) A logic ^£ satisfies EXT(if) or has the extension property, if
every infinite τ-structure 91 has an if-extension 33.
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(ii) A logic S£ satisfies REXT(if) or has the relativized extension property, if
for every infinite definable set X in some τ-structure 91 there is a τ-structure
95 which is a if-extension of 91 which extends X properly.

Clearly, REXT(if) implies EXT(JS?) for every logic jSf.

3.1.4 Example. Every compact logic i f satisfies REXT(if).

In fact, the following proposition is easily proved by the reader:

3.1.5 Proposition. If a logic <£ is [ω~]-compact then <£ satisfies REXT(if).

We shall return to the study of EXT and REXT in Section 3.2.

3.1.6 Definitions, (i) A family of τ-structures 91,, i < K is an i^-chain if 91, is an

if-extension of 9ί7 for every j < i < K.
(ii) A logic i f satisfies CHAIN(κ, i f) or respects chains of length K, if given

a if-chain 9II? i < K then [ji<κ 91, is an if-extension of each of the 9I,'s.
(iii) A logic ^£ satisfies CHAIN(if) or has the chain property, if it satisfies

CHAIN(κ, ^) for every K.

3.1.7 Remark. CHAIN(ω, ̂ ) was called in Chapter III the Tarski-union-
property.

3.1.8 Examples, (i) <£κω has the chain property.
(ii) If K is regular than <£κκ respects chains of length A, cf (λ) > K.
In Chapter III (Theorem 2.2.2) the following result of Lindstrδm [1973] was

proved:

3.1.9 Theorem (Lindstrόm). If a logic J£ is compact and respects chains of length ω

There are no logics known which are [ω]-compact and satisfy CHAIN(if).
It is open whether this is due to a theorem or simple ignorance of more examples. It
would be interesting to explore more consequences of CHAIN-properties. In
Tharp [1974] and Makowsky [1975] "continuous" or "securable" quantifiers are
studied, which, if added to first-order logic, give us logics which do satisfy
CHAIN(JSf). In Lindstrόm [1973a, 1983] a variation of Theorem 3.1.9 is studied in-
volving only (A, ω)-compactness and a modification of the Tarski-union-property.

3.1.10 Definitions, (i) A logic $£ satisfies Am(/c, 5£) or has the κ-amalgamation
property if, given three τ-structures 9ϊf, i = 0, 1, 2 such that 9ϊ0 < ^ 9I7 ,
j = 1, 2 there is a τ-structure 95 such that 91; < ^ 95, i = 0, 1, 2 and the
diagram commutes.

(ii) A logic ^ satisfies Am(i^) or has the amalgamation property, if Am(κ, 5£)

holds for every K.
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(iii) A logic i f satisfies JEP(if) or has the joint embedding property if any two
if-equivalent τ-structures 91,., i = 1, 2 have a common if-extension 23.

One can also introduce cardinal parameters for if-equivalence and the joint
embedding property, but we shall not need this in our exposition.

3.1.11 Theorem, (i) Every compact logic <£ has the joint embedding property.
(ii) If a logic & satisfies JEP(if) then it has the amalgamation property.

Proof, (i) Since ^£ is compact, JS? has finite dependence, by the finite dependence
theorem. So we can use compactness again to show that DL(^i^) u DL(*Ά2) has a
model 33 which is a (/c, i f )-extension of both the 9l i ? i = 1, 2.

(ii) Let 9I i5 ί = 0, 1, 2 be as in the hypothesis of the amalgamation property.
Clearly the two structures <9l l 5 Ao}, <9l2, Λo} are if-equivalent, so let 93 be an
if-extension of both of them. Clearly this 33 satisfies the requirements of the
amalgamation property. D

3.1.12 Examples, (i) If K is a strongly compact cardinal, then 5£κκ satisfies the joint
embedding property.

(ii) Let 5£ = i f ooω, but with finite occurrence. It is easy to see that ^£ does
not satisfy the amalgamation property.

3.1.13 Definition. A logic 5£ has the Robinson property if whenever Σ f

i = 0, 1, 2 are such that τ 0 = τί n τ 2 and Σ o is complete and Σ o u Σj9j = 1, 2 has
a model, then ( J | ϊ o Σ f has a model. Recall that a set of sentences Σ is complete if any
two models of Σ are if-equivalent.

D. Mundici has studied various aspects of the Robinson property, cf. Mundici
[1981d, 1981c]. The Robinson property is extensively discussed in Chapter XIX.
Here we only note the following theorem:

3.1.14 Theorem. Every logic <£, which has the Robinson property also has the
amalgamation property.

Proof Let Σ t = £^(91^) where the 9ίf are as in the hypothesis of the amalgamation
property. D

The amalgamation property is further studied in Sections 3.3 and 3.4.

Let us summarize here some rather unexpected consequences of the amalga-
mation property, as they follow from Theorem 3.2.1 and the abstract amalgama-
tion theorem (3.3.1).

3.1.15 Theorem. Let <£bea regular logic with occurrence (dependence) number less
than the first uncountable measurable cardinal

(i) //Ί£ has the amalgamation property, then REXT(if) holds.
(ii) // CHAIN(ω, 5£) holds and <£ has the amalgamation property then
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This theorem stresses the connections between the more "algebraic" properties
of logics, as they are at the core of Chapter XX. In our context the theorem is
trivial. But then, the reader may try to prove (i) directly. The same challenge
applies to Corollary 3.3.4.

3.2. J?-Extensions

In this section we prove a converse of Proposition 3.1.5 and explore further
variations of extension properties.

3.2.1 Theorem. A regular logic & satisfies REXT(if) iff& is [co^-compact.

Proof. Assume REXT(if) and that i? is not [ω]-compact. So by Theorem 1.2.2
(or Chapter II, Proposition 5.2.4) ω is cofinally characterizable in if by some
expansion 91 of </c, < >. But clearly ωA is a maximal definable subset of 2t, a con-
tradiction. The other direction was Proposition 3.1.5. D

We next introduce a cardinal parameter into our extension properties:

3.2.2 Definition. A logic ££ satisfies EXT(/c, if) if, whenever a τ-structure 21 has
no proper if-extension then card(2I) < K.

3.2.3 Proposition. If a logic if is [λ]-compact then <£ satisfies EXT(λ, ^£\

The proof is left to the reader.
The next theorem is one of the least constructive theorems in logic: Its proof

uses the replacement axiom very heavily. To test our assertion the reader should
try to prove Theorem 3.2.4 below in ZC rather than in ZFC. (This problem was
suggested by A. Dodd.)

3.2.4 Theorem. Let λ0 be an infinite cardinal and 5£ satisfies EXT(λ0, ^) then there

is a cardinal K such that <£ is \κ\-compact.

Proof We prove the contraposition: If ^£ is not [τc]-compact for any cardinal K
then for every cardinal λ0 there is a maximal structure 23 with card(23) > λ0.
(Recall that a structure is maximal for ^£ if it has no proper if-extensions.)

By Theorem 1.2.2 every regular cardinal λ is cofinally characterizable via
some expansion 23λ which we assume without loss of generality of minimal
cardinality g(λ).

Now let μ be the first cardinal such that:

(i) If v < μ then g(v) < μ.
(ii) λ0 < μ.

(iii) cf (μ) = ω.

Clearly such a cardinal exist, e.g., the ω-limit of the first fixed points of the function

g(v). (This is where the replacement axiom is used without control over the com-

plexity of the set-theoretic formula involved.)
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Let 93 be the complete expansion of the structure <μ, e>. We claim that 95 is
maximal. For otherwise, let (£ be an if-extension of 95. If (£ is proper there is a
cεC - B. Remember cf(μ) = ω and let {bn: neω} be a cofinal sequence in 95.
Since ω is cofinally characterizable in 5£ via 95, g(ω) < μ and 95 is a complete
structure, {bn: neω} is also cofinal in (L So clearly, (£ \= cebk for some kεω.
Now let d e B be the smallest (with respect to e) element in 93 such that (£ 1= c e d.
We note that d is an ordinal. Let δ = cϊ(d) and {d^ i < δ} be a sequence cofinal
to d in 95. Again, since g(δ) < μ and δ is cofinally characterizable in & via 93
{df: Ϊ < (5} is cofinal to d in (L So there is a; < δ with ( ί N c e dj, which contradicts
the minimality of d. This establishes that 95 is maximal. Clearly, card(95) > λ0

by our construction, which completes the proof. D

If there are no uncontable measurable cardinals, we get the following situation:

3.2.5 Theorem. Assume there are no uncountable measurable cardinals and 5£ is a
regular logic. Then the following are equivalent:

(i) ££ is [ω~\-compact.
(ii) 5£ satisfies EXT(Jέf).

(iii) i f satisfies REXT(if).

Proof, (i) -» (iii) was Proposition 3.1.5 and (iii) -• (ii) follows from the definitions.
To prove (ii) -• (i) we apply Theorem 3.2.4 and then Theorem 1.5.2. D

Also the existence of uncountable measurable cardinals is closely related to
our extension properties. Let us look at the following example:

3.2.6 Example. A logic i f for which EXT(if) and REXT(if) do not coincide.
Let Qλκ be a quantifier of type <1, 1> with satisfaction defined by

211= QλKxy(φ(x), Φ(y)) iff card(φ^) < λ and c a r d ( ^ ) > K

3.2.7 Lemma. Let i f = i f ω ω(βω 2M0) where μ0 is the first uncountable measurable
cardinal.

(i) ^£ is \_μ0~]-compact.
(ii) 5£ satisfies EXT(if).

(iii) 5£ does not satisfy REXT(if) and therefore is not \_ώ]-compact.

Proof. We prove (iii) first. For this we look at the structure 2ί = <(2μ o)+, e>. It is
straightforward to find an expansion 9IX of 91 in which <ω, e> is cofinally char-
acterized in 5£, so we apply Theorem 3.2.1 together with Theorem 1.2.2.

To prove (ii) we distinguish two cases: On structures 91 with card(9I) < 2μo S£
is equivalent to first-order logic, since the quantifier Q acts trivially, being always
false, so first-order extensions will do. On structures 91 with card(9I) > 2μ o we
apply (i).
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To prove (i) we use the abstract compactness theorem (1.3.9) and show that
every μ0-complete ultrafilter F on μ0 is in UF(if). We need μ0-completeness to see
that finiteness is preserved under ultrapowers over F and we need that μ0 is small
for (2μ°)+ to see that the other cardinality restriction is preserved under such
ultrapowers. D

This example together with Theorem 3.2.5 gives us immediately the following
characterization of the existence of uncountable measurable cardinals.

3.2.8 Theorem. The following are equivalent:

(i) For every logic <£ EXT(if) holds iff REXΊ(^) holds.
(ii) There are no uncountable measurable cardinals.

Finally, let us have a look at Hanf numbers. We shall draw some corollaries
from results in the previous sections, giving links between existence of some new
type of Hanf numbers and various forms of compactness. The existence of this
new Hanf number for every finitely generated logic is, as it turns out, equivalent to
Vopenka's principle. Let us first recall some definitions from Section II.6:

3.2.9 Definitions. Let 5£ be a logic.

(i) Let Φ c JSf [τ] be a set of sentences and λ be a cardinal. Φ pins down the
cardinal λ, iff Φ has a model of cardinality λ, but Φ has no models of arbi-
trary large cardinalities.

(ii) We define a function ftκ(JS?) to be the supremum of all cardinals that can
be pinned down by a set of if-sentences of power < K. h^Sf) = Λ(JSf)
from Section Π.6.

(iii) We define hjje) to be the supremum of all hκ(£?) if it exists, and otherwise
we write h^{^) = oo. We say that j£? has a global Hanf number, if hj^5£)
< oo.

Global Hanf numbers do not necessarily exist, even for finitely generated logics.
Clearly compact logics do have global Hanf number ω. The following clarifies
the relationship between compactness and global Hanf numbers:

3.2.10 Proposition* (Makowsky). Let <£ be a logic.

(i) If <£ is (oo, λ)-compact then hJJ£} < λ.
(ii) ifSe is lώ\-compact and CHAIN(if) holds, then !*„{&) = ω.

(iii) IfSe has a global Hanf number, then Comp(JSf) Φ 0.

Proof, (i) This is a standard application of the method of diagrams.
(ii) Using Proposition 3.1.5 we construct an if-chain of proper if-extensions.

Now CHAIN(if) allows us to go as far as we want.
(iii) Let λ0 be the global Hanf number of if. Clearly, every structure of cardi-

nality > λ0 has a proper if-extension, i.e., EXT(A0, 5£) holds, so the result follows
from Theorem 3.2.4. D



676 XVIII. Compactness, Embeddings and Definability

3.2.11 Corollary* (Makowsky). Assume there are no uncountable measurable
cardinals. If5£ is a logic which has a global Hanf number then <£ has finite depen-
dence.

Proof. By Proposition 3.2.10, Comp(if) Φ 0 , so by Theorem 1.5.2 and the assump-
tion on measurable cardinals, S£ is [ω]-compact. Now we apply the finite depen-
dence theorem (2.2.1). D

The following is an improvement of Theorem 1.5.17.

3.2.12 Theorem* (Makowsky). The following statements are equivalent:

(i) For every finitely generated logic <£ SComp(if) Φ 0.
(ii) Every finitely generated logic J£? has a global Hanf number.

(iii) For every finitely generated logic j£? Comp(if) Φ 0.
(iv) Vopenkάs principle.

Proof (i) -• (ii) This follows from Proposition 3.2.10(i) above,
(ii) -> (iii) This follows from Proposition 3.2.10(iii) above,

(iii) -> (iv) and (iv) -• (i) both follow from Theorem 1.5.17. D

Theorem 3.2.12 tells us that there are logics which have no global Hanf number
provided Vopenka's principle is false. Let us end this section with some examples:

3.2.13 Examples, (i) Let i f be &ωχω. Let 21 be a complete expansion of a structure

of cardinality λ. If there are no uncountable measurable cardinals, 51 has no
proper if-extensions (see Theorem 1.2.3), so the complete if-theory of 91
pins down λ. Hence, assuming there are no uncountable measurable
cardinals, i f has no global Hanf number,

(ii) Let if0 be the logic ^ωω(Q0) and <£γ be J?ω ω(6i) I n Malitz-Reinhardt
[1972b] it is shown that hjje^ (i = 0,1) is bigger than the first uncountable
measurable cardinal,

(iii) Let i f be Se2

ωωi i.e., second-order logic. By Magidor [1971] hj^<£) is
smaller than the first extendible cardinal,

(iv) In Corollary XVΠ.4.5.12 it is shown that Λ1(Δ3(if^)) is bigger than the
first extendible cardinal.

3.3. The Amalgamation Property

In this section we present our main theorem in the analysis of the amalgamation
properties:

3.3.1 Theorem (Abstract Amalgamation Theorem). Let <£ be a logic with depen-
dence number o(if) = λ and with the amalgamation property. Then $£ is ultimately
compact. In fact it is [oo, λ]-compact.

The proof of this theorem will be outlined in Section 3.5. Here we mainly
illustrate various consequences of this theorem and discuss examples and limita-
tions.

For logics with finite dependence we immediately get:
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3.3.2 Theorem. For a logic <£ with finite dependence the following are equivalent:

(i) ££ is compact.
(ii) ££ has the amalgamation property.

(iii) ££ has the joint embedding property.

Proof. We have seen in Theorem 3.1.11 that (i) implies (ii) and (iii), and that (iii)
implies (ii). So let us assume (ii). From Theorem 3.3.1 we get immediately that j£? is
[A]-compact for every regular λ and therefore compact by Theorem 1.1.8 D

D. Mundici has studied the joint embedding property extensively, cf. Mundici
[1982b, 1983a]. In general the joint embedding property is not known to be
equivalent to the amalgamation property. In Chapter XIX some consequences of
the joint embedding property are studied. Using more of the set-theoretic
machinery we get

3.3.3 Theorem. If <£ is a logic with o(if) < μ0, where μ0 is the first uncountable
measurable cardinal, then the following are equivalent:

(i) ££ is compact.
(ii) i f has the amalgamation property.

(iii) i f has the joint embedding property.

Proof. We only have to prove (ii) -• (i): Using Theorem 3.3.1 we get [/^-com-
pactness for some K < μ0, so by Theorem 1.5.2 we get [ω]-compactness and
therefore by Theorem 2.2.1, finite dependence. So now the results follows by another
application of Theorem 3.3.1. D

3.3.4 Corollary. Let S£ bea logic with o(if) < μ 0, where μ0 is the first uncountable
measurable cardinal.

(i) // i f has the amalgamation property (joint embedding property) then every
sublogic ££0 < i f has the amalgamation property (joint embedding property).

(ii) // 5£ has the amalgamation property (joint embedding property) then Δ(Jίf)
also has the amalgamation property (joint embedding property).

Proof, (i) This is clearly true for compactness, so by Theorem 3.3.3 also for the
amalgamation property.

(ii) It is easy to see, that the Δ-closure of logics preserves compactness and

finite dependence. D

The reader may try to prove this without using Theorem 3.3.3.

3.3.5 Corollary. Let ̂ bea logic with o(if) < μ0, where μ0 is the first uncountable
measurable cardinal. If J? has the Robinson property, then i f is compact.

Proof. Use Theorem 3.1.14 and Theorem 3.3.3. D
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For logics with finite dependence we shall see in Chapter XIX another proof of

Corollary 3.3.5 without using Theorem 3.3.1.

The rest of this section is devoted to examples and applications of the above

theorems. The first example gives a real application of Theorem 3.3.2 for the

following result was originally derived from it:

3.3.6 Example. Let ^ωω(Qκ) be the first-order logic with the additional quantifier
"there exist at least K many." Theorem 3.3.2 gives us immediately that this logic
does not satisfy the amalgamation property for any cardinal K. For K = ω or ω x

this was shown by Malitz-Reinhardt [1972b], the other cases were open till
Theorem 3.3.2 was proven.

The next examples all show that the assumption on large cardinals cannot be
dropped in any of the above statements.

3.3.7 Examples, (i) The logic S£^^ has no occurrence number. Since this logic can
describe any structure up to isomorphism, one easily verifies that the
Robinson property and the amalgamation property hold trivially, but
J ^ ^ has no compactness whatsoever.

(ii) In Makowsky-Shelah [1983] it is shown that if K is an extendible cardinal,
then $£2

KK, i.e., second-order logic with conjunctions, first-order and
second-order quantification over < K many formulas or variables, satisfies
the Robinson property, and hence the Amalgamation property and is
[oc, K]-compact. Clearly, o(if lκ) = K and <£\κ is not [A]-compact for any
λ < K.

(iii) Now let us look at $£λω with additionally the finite dependence property.
It is easy to see, that for λ > ω the amalgamation property fails. But
£fλω < S£\κ for λ < K, so Corollary 3.3.4 cannot be improved,

(iv) The logic j£?1

aoω satisfies the amalgamation property trivially, but does not
satisfy the Robinson property, as pointed out in Makowsky-Shelah
[1979].

(v) In Section 3.5 we present a [ω]-compact logic ££ which has the amal-
gamation property, but for which Comp(if) has a large gap. This example
presupposes the existence of strongly compact cardinals.

3 A. Proof of the Abstract Amalgamation Theorem

3.4.1 Synopsis. We first observe that by Theorem 1.1.9 it suffices to prove the
following weaker theorem:

3.4.2 Theorem. Let λ be a regular cardinal and <£ be a logic with dependence
number o(JS?) < λ and with the amalgamation property. Then <£ is \X\-compact.

We give first an outline of the proof, to help the reader. We assume for con-
tradiction that λ is regular and S£ is not [A]-compact. Using Theorem 1.2.2 we
construct a class K of linear orderings with additional predicates in which points of
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confinality λ are absolute. Inside K we show the existence of some sufficiently
homogeneous structure 9t. In 91 we shall find SPΪ, (i = 0, 1, 2) being a counter-
example to the amalgamation property for <£. The dependence number and the
isomorphism axiom will be needed to show that SDΪ0 <L9Ji t (ί = 1, 2) and the
absoluteness of "cofinality λ" to show that there is no amalgamating structure.

The counterexample to amalgamation is patterned after the following example:
Let K be the class of dense linear orderings with an additional unary predicate
Red such that both Red and its complement are dense. Let 91 < x 23 hold if 91 is an
elementary substructure of © and the universe of 91 is a dense subset of the universe
of S. We shall show that K with this notion of substructure <κ does not allow
amalgamation: For this let 9l0 be the rationals properly coloured, and let 9It

(Ϊ = 1, 2) the rationals augmented by one element (say π) coloured Red in 911 and
not coloured in 9l 2. Clearly, 9I0 <κ 91; (ί = 1, 2), but no amalgamating structure
exists, since otherwise π is simultaneously coloured and not coloured.

3.4.3 The Structure 9K. Now, let λ > OC(JS?) be regular and j£? not [A]-compact.
By Theorem 1.2.2, λ is cofinally characterizable in S£ in a structure 9Jί. We need
some more information on 9JΪ:

Let Δ, Σί = {φΛ: α < λ) be the counterexample to [A]-compactness. Put Σ α i =
{φβ: β < α} and 9Jϊα | = A u Σ α i . Without loss of generality the 9Wα's are structures
of some countable vocabulary τ (coding more predicates with parameters), and
have the same power μ > λ, ϊJζ = <Mα, Qn (n e ω)>.

We want to code all the 9Ma's into one structure. So we let SDΪ be such that:

(1) m j
(2) <M, < ) is a linear order of cofinality λ such that every initial segment has

power μ (of order type μ* + λ, for example).
(3) {Cj'.j < λ} a M is increasing and unbounded.
(4) If x < Cj but x > Ci for every / < j then

<{yeM:y<x},Qn(x, - , - , . . . , - ) > ^ 9Wα.

Let T = Th#(W) for some fixed SOΪ as described above.

Claim. Then T cofinally characterizes λ.

This is proved like Theorem 1.2.2.

3.4.4 The Class K(W). For the rest of this section 9W is fixed. We now define a
class of structures K(W):

. The vocabulary of K{W) is that of 30Ϊ without the constant symbols for c3 but with
two additional unary predicate symbols P and R and one additional binary
predicate symbol /. Actually our main focus is on the order together with P, R,
and / is used to code copies of SOΐ, which we need to guarantee the absoluteness of
cofinality λ.
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A model in X(9W) is of the form 21 = <4, <, Qi9 P, R, I) with the requirements:

(Kl) If x e P then the cofinality of x in (A, < > is A with a witnessing sequence

{cj(x):j<λ}.
(K2) (α, x) G / implies that a < x.
(K3) (α, x) G / implies that X G P and aφP.
(K4) P(x) implies that /(c/x), x) for every j e A.

Put JA = {aeA: (a, x) G/} and 35 be the substructure of <4, <, Qt> induced by

JXΛ

(K5) The structure <3S, c/x)> is isomorphic to SCR.
(K6) R c P.

We call a structure in K(9M) pwre if additionally

(K7) Qi is false where not defined by the previous requirements.

3.4.5 Comments. Note that if 21 G K(W) is pure and P in 21 is empty, then 21 is just
a linear ordering, i.e., all the other relations are empty, too, by (K7). If we add to
9Jt one point at the end, say x and let P = {x}, we get a structure in K(W). We
denote this structure by 9Jl+ ί.

In general the structures in X(9JΪ) are linearly ordered structures where every
point in P has a copy of 501 attached to it in such a way that different points have
almost disjoint copies of 30Ϊ, and 9JI cofinally reaches its point in P. The choice of R
can be any subset of P. More precisely:

Fact 1. For every 21 e K(3DΪ) and every a, a' eA,Ja

An Ja

A is bounded below both

a, a'.

This is proved using the fact that SR is of order type μ* + A. Note that this is
first-order expressible and could have been stated also as an axiom among
(K1-K7).

Fact 2. If 21 G K(9Ji) and aePΛ and we form 21' by changing the truth value of
a G RA, but leaving everything else fixed, then 2Γ e

Next we define the notion of X-substructure, 21 czκ 95 for, 21, 95 G K(W) by:

(K8) 21 <= 95.
(K9) If xePΛ then J% c A.

(K10) If x GP B - PΛ then {a e A: a < x} is bounded below x in 95, i.e., there
is bx G B such that bx < x and for each aeA with a < x we have a < bx.

The idea behind this is that in © new points in PB are added to PA in a way that
they are not limits of points from 21, and that points in 21 which are of cofinality A,
are also of cofinality A in 23 with the same copy of 3DΪ ensuring this as in 21.

This ends the definition of Â (30ϊ) and of X-substructures.

3.4.6 Some More Facts About K($R). Before we proceed with the proof of the
theorem we collect some more facts:
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Definition. If 2^. 2I2 e X(9M) we define 2^ + 2I2 to be the disjoint union of 2I1? 2ϊ2

with the linear ordering of 2^ and 2I2 for their elements and aί < a2 for every
aιeAι,a2eA2. For the other relations we just take their unions.

Fact 3. If 2Tl5 2I2 G K(9K) SO 8^ + « 2 e X(9K) and 21, czκ 2ϊ t + 2I2 (i = 1, 2).

This is clear from the definitions.

Definition. Denote by LA = {a e A:a < x} and by QA the structure 21 [LX

A. If
95 G K(aR) and i c β w e define a substructure (£04) of 93 by

(£(A) = 93 Γ U -JS u A

This makes sense by Fact 1 and ensures that :

Fact 4. For every 93 e K(9ft), A a B, d(A) czκ 93, but in general (£04) is not pure.
Furthermore, if A is bounded in 23 by b, i.e., there is b a B with yl c L^, SO
(£04) cz 2b

B and

Fact 5. If 21 e X(9M) and d G P^4 then 21 [ Ld

A aκ 2ϊ.

Fαcί 6. If {2It: / < α} is a sequence of structures in K(W) such that 2I, czκ%+1 then

21 = U < « ^ i e K W a n d ^i ^K 21 for each i < α.

Definition. If 2I1? 2I2 e K(ΪR), 93f c=x2I f (f = 1, 2) and / : &± ^ 932 is an isomor-
phism, we define 211 +f 2I2 in the following way: Form the disjoint union of 21 x

and 2I2 modulo/(i.e., identify elements only via/). This makes it into a partially
ordered structure where at e Ai (i = 1, 2) are comparable only if one of them is in
the range or domain of/ or there is b between au a2 which has been identified. For
incomparable al9 a2 we extend the order on 2^ +f 2l2 setting aί < a2.

Fact 7. If 2ί1? 2I2 e X(SR) and / : 93, s 93'2, » £ cz^ 21, (i = 1, 2) then 2ίx + 7 2I2 e
and 21, 01^21! + r 9 I 2 .

The proofs of the facts are left to the reader.

3.4.7 Two Lemmas. The next lemma is crucial for our construction:

Lemma 1. // 2ϊ e K(W) and 23 is an <£-extension of 21 and {df. j < λ} is confinal in
Ja

Afor a G PA, then {dy.j < λ] cofinal in Ja

B.

Proof. Let a e PA, so 3^ ^ 9ft by (K5) and by our assumption on i f and 501, ^
cofinally characterizes λ in 9W. Using relativization of <£ the structure 3J is an
^-extension of 90ΐ so SR is confinal in %, hence {dy.j < λ) is cofinal in 3£ which
proves the lemma. D

The next lemma is proved in a similar way as one usually proves the existence
of homogeneous structures for Jonsson classes (cf. Chapter XX). We omit the
proof here and show how one can now complete the proof of the theorem. A
detailed proof of the lemma may be found in Makowsky-Shelah [1983].
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Lemma 2. There is a structure 91 in K(9Jl) and dx < d2 < d3 in 91 with dt

(i = 1, 2, 3), dx e R\ d2 φ RN such that:

(i) 91 {Ld

N> s 91 [14? s 91 {Ld

N>; and
(ii) // 91 c= κ 9ίl p JL^ (i = 1, 2) is boumted m 91 [ 1$ then 91 [ Lft s 91

91 (j = 1, 2).

3.4.8 Proof of the Abstract Amalgamation Theorem. Put 9K, = 91 [Lft (ί = 1, 2, 3).
We have to verify some claims:

Claim 1.301,- <^9M 3 (1 = 1,2).

Proof. Let φ be an L[τ(S0lf)]-sentence. Since the dependence number o(JS?) < A,
φ depends on < A many constants, hence there is a e M, and all the constants of φ
are in La

Mi. So by Fact 4, 9Jlι \La

M. is a bounded K-substructure of both 9Rt and
9Jί3. So, by Lemma 2(ii) above, <9K/, L^.> is isomorphic to <30ϊ3, L^3> hence by
the basic isomorphism axiom,

Now let / : 9Ά λ = 9R2 be the isomorphism from Lemma 2(i) above, and gi:9Ri^9R3

(i = 1, 2) the if-embeddings from Claim 1.
Since i f has AP, let 91 be the amalgamation for g1: 9 ^ -• 9W3, # 2 / : SMi -• 9M3.

Claim 2. 911= ^ = d 2 .

Proof, di e PM* (i = 1, 2) are both of cofinality A and ^ ( M ^ is cofinal in 9Jl3 \ L^}3,
and g2f(Mί) is cofinal in 9M3 pL^|3, so by Lemma 1 above also in 21 \Ld^ and
91 \Ld

A\ hence 91 N ̂  = rf2-
But Claim 2 contradicts our assumption of Lemma 2 above that ^ e R 9 1 and

d2 £ K81. This completes the proof of the abstract amalgamation theorem. D

In fact the same proof gives also the following versions of the abstract amalga-
mation theorem:

3.4.9 Theorem*. Let K be a regular cardinal and if be a logic such that:

(i) The Lowenheim number /κ(if) of i f is K.
(ii) Am(κ, ^) holds.

Then $£ is (K, κ)-compact.

3.4.10 Theorem*. Let <£bea logic with dependence number o(if) < A. //Am (K, ^)
holds for every κ> λ then $£ is [oo, λ]-compact.

It is open whether the converse of Theorem 3.4.10 also holds. Note however
that for A smaller than the first uncountable measurable cardinal the converse
does hold.
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5.5. An Intriguing Example

Let us now look at logics which do have the amalgamation property, but have a
large occurrence number. One naturally wonders if such a logic has to be an
extension of <£κκ for some uncountable /c, possibly bigger than the occurrence
number. This is clearly not the case, provided the logic i f is [ω]-compact. The
purpose of this section is to present an example of a logic J^ with occurrence
number OC(if) bigger than the first uncountable measurable cardinal μ0, which
is still [A]-compact for every λ < μ 0, satisfies the amalgamation property, but is
not compact. If, however, a logic i ? satisfies the amalgamation property but is not
[ω]-compact, then we know that its occurrence number is bigger than μ0, and
therefore, by Proposition 1.2.4, every τ-structure 91 with card(2I) < μ0 has an
if-maximal expansion. This can be used to show that for every φ ε JS?μ ω[τ] there
is τ', T C T ' and a set Σ cz i f [τ r] such that Mod^M o ω(φ) = Mod^(Σ)} τ. In the
presence of the Robinson property τ' can be assumed to be τ. We develop this idea
further in Chapter XIX, Theorem 1.12.

3.5.1 Definitions. Let μ be a cardinal and E c P(μ) a family of subsets of μ.

(i) We say that E is ( < /enclosed, K a cardinal, if for every λ <κ and every
ultrafilter F on λ the following holds: Given {At c μ: i < λ}9 <then
{i ε μ: Ate E} ε F implies that lim f At= {ae μ: {/ e l α e A(} ε F} ε E.
We say that E is ( < κ:)-bi-closed if both E and P(μ) — E are (</enclosed.

(ii) If {φi . i ε μ} is a family of if-formulas, we define a connective f\feμ φi by

3.5.2 Remarks, (i) If £ is a /c-complete ultrafilter on μ then both E and P(μ) - £
are ( < κ)-closed.

(ii) The connective /\feμ Φi is a generalization of the connective f]F where
F is some ultrafilter.

3.5.3 Definitions, (i) Let κγ < κ2 be two strongly compact cardinals. We denote
by E(κu κ2) the set of (<κ;1)-bi-closed families E a P(μ) with μ < κ2.

(ii) Let ^E(κuκ2),κ2 ̂ e t n e closure of first-order logic under all the infinitary
operations /\ feμ for E ε £0^,κ:2).

(iii) Recall that JS? = ifD(κi,κ2),κ2

 w a s defined in Example 1.6.6 in a similar
way as (ii) above, but instead of (</c1)-bi-closed sets we only used in-
complete ultrafilters.

3.5.4 Proposition* (Shelah). Let κx < κ2 be two strongly compact cardinals and

~z = ^E(κuκ2),κ2

(l) <^D(κuκ2),K2 < ^ '

(ii) <£ < i ? K 2 > K 2 .

(iii) i f is [oo, κ2~\-compact.
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(iv) Every ultrafilter F on μ <κx is in UF(JSf), i.e., is related to ££.
(v) For every cardinal μ < κίίs the logic t£ [β]-compact.

(vi) For no cardinal μ,κx < μ < κ2is J£ [μ^-compact.

Proof. Essentially the same as in Section 1.6. D

3.5.5 Theorem* (Shelah). Let κ1 < κ2 be two strongly compact cardinals and
^ = ^E(KUK2),K2' Then <£ satisfies the joint embedding property, and therefore the
amalgamation property.

Outline of Proof Let SRl5 50l2 be two disjoint τ-structures such that (SRί =# 30ΐ2

and let 2)^(2^) (i = 1, 2) be their J^f-diagrams. We want to show that D* =
DA^i) u D^(9W2) has a model. Since SS < ^K2,K2 and κ2 is strongly compact, it
suffices to show that for every subset Γ\ c DJ^01X) and Γ 2 c D^(SDΪ2) with
card(Γz) < κ2, Γt u Γ 2 has a model.

Let Γ l 5 Γ 2 be given and assume Γ 2 = {φ^ά): i < μ < κ2}. Put

£ 0 = {^ d μ: Γί u {φf: Ϊ e A) has a model}.

If μeEo we are done. So assume, for contradiction that μφE0. Clearly, 0 G £ O ,
since 9 ^ can be expanded to a model of Γ\.

Claim 1. Eo is (<κ^-closed.

This can be established using Proposition 3.5.4(iv).

Claim 2. IfE a P(μ), μ < κ2, is (<κλ)-closed andμφ £, then there is
Ex c: P(μ) — E with μeEx such that E^ is {<κγybi-closed.

This is proved using a reduction to infinitary propositional calculus with
conjunctions of length less than κ1 and the fact that κι is strongly compact.

Clearly, 9Jί2 |= /\ieμ φ^ά), and therefore, 9Jl2 1= /\f*μ φfja). Since J^ is closed
under existential quantification of length less than κ2, 3x /\fe

2

μ Ψi(x) is an ££-
sentence and 9K2 N 3x /\f*μ φt(χ). So also 9Jij N 33c /\f*μ φ^x). Therefore there
is b from yjiί and X e E j such that SÔ  N/\ i e i 4 <Pi(5) which shows that
Γ\ u {(/>,(«): i e A} has a model. From this we conclude that A e Eo, contradicting
E1czP{μ)-E0. D

Using the finite dependence structure theorem and the fact that ^ E ( K I , K 2 ) , K 2

is [ω]-compact, we get now

3.5.6 Proposition* (Shelah). Let κγ < κ2 be two strongly compact cardinals. Then

the two logics SeE{KuK2)tK2 and &D{KltK2)tK2 are equivalent.

3.5.7 Corollary* (Shelah). Letκ1 < κ2 be two strongly compact cardinals. Then the
logic <&D(κι,κ2),κ2

 n a s the joint embedding property, and therefore the amalgamation
property.
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3.5.8 Remark. In Chapter XIX, Theorem 1.1 states that, if S£ is a small logic with
s(ω) = λ(s the size function of if) which satisfies the joint embedding property,
then there are atmost 2λ many regular cardinals μ such that JS? not [μ]-compact.
Theorem 3.5.4 shows that this is best possible.

4. Definability

4.1. Preservation Theorems for Sum-like Operations

In model theory one frequently builds new models from a set of given models
and it is often very useful to know that the theory of the so-constructed model
only depends on the theories of the models it was built from. Examples are the
ultraproduct construction and various other product-like constructions, which
mostly go back to the seminal papers (Mostowski [1952], Los-Suszko [1957],
Feferman-Vaught [1959], and Frayne-Morel-Scott [1962]). The possibilities of
generalizations of the Los lemma to logics in general are rather limited, as we have
shown in Section 1. For simpler constructions, such as disjoint unions or ordered
sums, the preservation properties are usually proved with the use of back-and-
forth arguments, as they are generalized in Chapter XIX. The first to consider such
properties in the context of abstract model theory was S. Feferman in his papers
(Feferman [1972, 1974a, b, 1975]. The theme was then pursued in Shelah [1975],
Makowsky [1978], and Makowsky-Shelah [1979].

In the context of abstract model theory, in contrast to specific examples of
logics, only sum-like operations have played an independent role. They are also
used heavily in Chapters XII and XIII. For this reason we restrict our exposition
here to the description of sum-like operations as they are used in the following sub-
sections, and as we think they are of interest for future research. Recent trends in
theoretical computer science have shown that abstract model theory offers the
appropriate framework to state problems and theorems dealing with specification
of abstract data types (Goguen-Burstall [1983] and Mahr-Makowsky [1983a, b,
1984]), correctness of programs (Harel [1979, 1983], Makowsky [1980], and
Manders-Daley [1982]) and data base theory (Makowsky [1984]). Especially
sum-like operations on abstract data types have been recently investigated by
Bergstra-Tucker [1984] to show that some of the concepts in program correctness
are probably not stable enough to be transferred from one formalization to another.

4.1.1 Definitions, (i) (Pair of Two Structures). Let τ1 ? τ2 be two disjoint one-
sorted vocabularies and 2119 2l2 be τΓstructures, respectively. We define the
pair [211? 2ί2] to be the two-sorted τx u τ2-structure with universes Al9 A2

and their respective relations, functions, and constants. If the vocabularies
τl9τ2 are not disjoint, we make them disjoint by a name changer and write
nevertheless [τ l 5 τ 2].
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(ii) (Pair Preservation Property). If i f is a logic, we say that i f satisfies the

pair preservation property and write PPP(if), if whenever 9 l n , <2I12, 5I 2 1 ,

SΆ22 are structures such that Mn =^ %2 then [31 n , 2 l 2 1 ] = ^ [SI12, ^22]-

To verify that a given logic satisfies PPP(i?) it is often useful to use back-and-
forth type arguments, as described in Chapter II and more generally in Chapter
XIX. It should be possible to state a general theorem to the effect of when a back-
and-forth property implies the pair preservation property, but this does not seem
to be a very rewarding line of thought. For the traditional back-and-forth argu-
ments for infinitary logics this analysis has been carried out in Feferman [1972].

4.1.2 Examples, (i) Both £fωω and if ooω satisfy the pair preservation property,
(ii) S£ωχω does not satisfy the pair preservation property (Malitz [1971]).

S£κλ does satisfy the pair preservation property iff K is strongly inac-
cessible (Malitz [1971]).

(iii) i f ω ω (6 κ ) satisfies the pair preservation property by Wojciechowska
[1969].

(iv) For logics with second-order quantification, such as stationary logic
J£ωω(aa) we have to distinguish between the possibility that subsets
range over the union of the universes, or that we have also two sorts of
set variables. In the former case i f ωω(aa) does not satisfy the pair preserva-
tion property (cf. Example IV.6.1.2), in the latter case it does (Makowsky-
Shelah [1981]).

4.1.3 Definitions, (i) (Algebraic Operations). Let neω and τ l 5 τ 2 , . . . , τn, σ be
vocabularies. Let F: S t r ^ ) x x Str(τπ) -• Str(σ) be a function. We
say that F is an n-ary algebraic operation of type τ = [τ 1 ? τ 2 , . . . , τπ, σ], if
3lf, 93f are τΓstructures and 21, ^ 93. (i = 1,. . . , n) then

(ii) (if-Projective Operations). Let i f be a logic. An algebraic operation F of
type τ as above is an 5έ'-projective operation if the graph of F is an <£-
projective class.

(iii) (Preservation Property for Projective Operations). We say, a logic JS? has
the preservation property for projective operations and write PPPO(if), if
for every if-projective operation F of type τ, if 2lf, 93£ are τ rstructures and
% Ξ ^ 93, (i = 1,. . ., ή) then F ( 9 ί 1 ? . . . , SHn) =x F ( ® l s . . . , 93J.

4.1.4 Examples, (i) First-order logic satisfies the PPPO by Feferman [1974].
(ii) The PPPO follows from the uniform reduction property UR 2 defined

in Section 4.2.
(iii) The pair construction in Definition 4.1.1 is a first-order projective opera-

tion. Therefore PPP follows from PPPO for any regular logic,
(iv) Various other algebraic operations are studied in Gaifman [1967, 1974],

Isbell [1973], Hodges [1974, 1975, 1980], and H. Friedman [1979c].
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The preservation property for projective operations seems to be very rare. In
fact, it is only known to hold for first-order logic, or for logics with uniform
reduction (see Section 4.2). For many applications, however, we need much less. A
construction somewhere between disjoint unions and general projective opera-
tions is enough to obtain interesting theorems in abstract model theory. In the
spirit of this section, dealing with definability properties in logics, we give both an
implicit and an explicit definition.

4.1.5 Definitions, (i) (Tree-like Structure). Let τ t r e e be one-sorted and consist of one
unary function symbol f and one constant symbol c. A τtree-structure
2 = <T,/ c> is a tree-like structure, if the following hold.

(a) For every x e T,f(x) = x iff x = c, i.e.,/is cycle-free but for its only
fixed point c, the root of/

(b) /is onto.
(c) For every xeT there is an neω with/"(x) = c.

For x e ί w e denote by Tx the s e t / " \ x ) - {x}.
(ii) (Augmented Tree-like Structure). Let τ a u g be τ t r e e u {P}, where P is a

unary predicate symbol. A τaug-structure % = <T,/ c, P} is an augmented
tree-like structure, if X [ τ t r e e is a tree-like structure.

(iii) (Tree-like Sum, Implicit Version). Let τ be a vocabulary with a distin-
guished predicate symbol P and let 91, 95 two τ-structures. We now define
two structures over the vocabulary τ u d i s j o i n t τ t r e e , W' = Treej>(9l, 95),
i = 0, 1, the tree-like sum over P, in the following way:

(a) 9Γ I (τ t r e e u {P}) is an augmented tree-like structure. We write now
Niχ for Tx above.

(b) For every x e N* there is bijection εx: (£ -• Niχ where (£ is either 91 or
93. This bijection makes Nx naturally into a τ-structure which we
denote by 9VX.

(c) For each symbol R e τ let Rx be its interpretation in 9lx. We require
now that R = RN = [jxeN Rx.

(d) We require further that P = Pm be defined by: If x e P then 9VX ̂  91
and x φ P then 5 1 ^ 95.

(e) If / = 1 then c e P and if i = 0 then c φ P.

(iv) (Tree-like Sum, Explicit Version). To make the definition of the tree-like
sum 91* = Tree}>(91, 93) explicit we proceed as follows: We let the universe
of yiι consist of the set of finite sequences (ak: k < n} such that:

(a) ake A u B;
(b) if i = 0 then a0 e A, but if i = 1 then aoeB;
(c) Λ B

Next we define/, the interpretation off:

(d) For the empty sequence < > we p u t / « » = < >;

(e)



688 XVIII. Compactness, Embeddings and Definability

Finally, for every relation symbol R e τ we define its interpretation R by

(f) ((ak: k < n>, (bk\ k < n}) e R iff ak = bk for every k < n and

(v) (Tree Preservation Property). Let i f be a logic. We say that i f has the
tree preservation property and write TPP(if), if whenever 91, 33 are as
above, τ = τ0 u {P} and additionally 91 [ τ0 = % 95 [ τ0 then

Tree°(9l, 23) p τ 0 u τ t r e e Ξ ^ Treej,(9I, » ) f τ 0 u τ t r e e .

4.1.6 Remarks, (i) The tree-like sum is not, in general, a projective operation, since
Definition 4.1.5(c) is not first-order definable. However, if the logic X is
such, that the structure <ω, < > is PC^-characterizable, then the tree-like
sum is an if-projective operation.

(ii) For regular logics i f the tree preservation property implies the pair
preservation property, since the pair can be constructed as a relativized
reduct of the tree sum.

(iii) If the distinguished predicate P in the tree-like sum is not unary, we can
still define a tree-like sum over P. We just replace/by a function 5: T -• Tn

and define sι to be s followed by a projection to the first coordinate. Then
we express Definition 4.1.5(i)(a) and (b) with 5 and (c) with sv

The construction of the tree-like sum over a predicate P can sometimes be
used to define the predicate P implicitly. The precise situation where this is possible
is given in the following lemma from Makowsky-Shelah [1979b]. The idea goes
back to S. Shelah.

4.1.7 Lemma. Let Jg be a logic, τ{ = τ 0 u d i s j o i n t {PJ (i = 1, 2) vocabularies, and
ψi e ϊ£\τ^\ be sentences having a model, but such that φλ A φ2 has no model. Then
there is a sentence ψ e ^[TQ u d i s j o i n t τ a u g] such that:

(i) Every τ0 u d i s j o i n t τtτee-structure 91 has at most one expansion 91* N ψ.
(ii) // %(i = 1, 2) are ^-structures and 9If 1= φ{ then Treej>(9Il9 9I2) \= ψ

provided we substitute P for P 1 ? P 2 , respectively.

Proof. Let ψ = ψ0 A φί A ψ2 with:

φ0 expresses Definition 4.1.5(i)(a) and (b);
φ1 is the if-formalization of "If x e P then $lx N φί "
φ2 is the first-order formalization of "If x φ P then 9lx \= φ2."

The latter two involve the appropriate substitutions and relativizations. Clearly
(ii) too, holds, by our construction of T r e e j , ^ , 9ί2). And (i) holds because φ x Λ φ2

has no model. D

We shall use Lemma 4.1.7 in Section 4.4 to prove some abstract theorems.
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4.2. Definability, Interpolation and Uniform Reduction

We first recall some definitions from Chapter II, Section 7.

4.2.1 Definitions, (i) A logic <£ has the interpolation property, and we write INT(if),
if any two disjoint classes of τ-structures, which are RPC in i£, can be
separated by some EC-class of j£?.

(ii) A logic <£ has the /^-interpolation property, and we write Δ-INT(if), if
any class K of τ-structures, such that K and its complement are RPC in
if, then K is an EC-class of i f

(iii) A logic i f has the weak Beth property, and we write WBETH(if), if every
strong implicit definition can be replaced by some explicit definition in S£.

(iv) A logic i f has the Beth property, and we write BETH(if), if every implicit
definition can be replaced by some explicit definition in S£.

(v) A logic i f has the projective weak Beth property, and we write
PWBETH(if), if every implicit definition which is RPC in if, can be
replaced by some explicit definition in 5£.

The following summarizes the relationship between these properties.

4.2.2 Theorem, (i) A logic <$? has the weak projective Beth property iff it has the
/^-interpolation property.

(ii) For a logic <£ the interpolation property implies, but is strictly stronger than,
the /^-interpolation property {and therefore the projective weak Beth prop-
erty). This is true even for compact logics.

(iii) For a logic <£ the interpolation property implies, but is strictly stronger than,
the Beth property. This is true even for compact logics.

(iv) For a logic <£? the /^-interpolation property implies, but is strictly stronger
than, the weak Beth property. In fact, the /^-interpolation property does not
imply the Beth property. This is true even for compact logics.

(v) For a logic !£ the Beth property implies, but is strictly stronger than, the
weak Beth property, in fact the Beth property does not imply the /^-inter-
polation property. This is even true for compact logics.

Proof The implications are all straightforward, (i) is Proposition 7.3.3 and (ii) is
7.2.7 in Chapter II. (iii) follows from (v). (iv) is Theorem 2.5 in Makowsky-Shelah
[1979b] and (v) is proven in Makowsky-Shelah [1976] and will appear in
Makowsky-Shelah [198?]. For compact logics (ii)—(v) follow from Theorems
4.6.12 and 4.6.13. D

4.2.3 Remark. For sublogics of ^ ω i ω of the form if'A with A primitive recursive
closed, the Δ-interpolation property implies the interpolation property and there-
fore the Beth property. This is due to H. Friedman and proved in Makowsky-
Shelah-Stavi [1976]. See also Chapter VIII, Theorem 6.3.1.
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Next we investigate the relationship between the weak Beth property and re-
cursive compactness. Of special interest here is that we need an additional assump-
tion, namely either that the logic is finitely generated or the pair preservation
property.

4.2.4 Definitions, (i) A logic i f is finitely generated, if it is a Lindstrόm logic over a
finite set of new quantifier symbols,

(ii) A logic <£ is recursively generated, if it is a Lindstrόm logic over a recursive
set of new quantifier symbols.

(iii) A logic i f is recursively compact, if i f is recursively generated and if
Σ is any recursive set of if-sentences such that every finite subset of Σ has a
model, so Σ has a model.

4.2.5 Remarks, (i) By Theorem 5.2.5 in Chapter II every logic, for which validity is
recursively enumerable, is recursively compact.

(ii) A logic 5£ is recursively compact iff no single sentence φ e i^[τ], with τ
containing a binary relation symbol denoted by <, characterizes the
structure <ω, < > up to isomorphism among (relativized) reducts of models
of φ. Cf. also Chapter II, Section 5.2.

4.2.6 Theorem, (i) (Lindstrδm). Assume a logic i f is finitely generated and has the
weak Beth property, then 5£ is recursively compact.

(ii) Assume a logic 3? is recursively generated and satisfies the weak Beth
property and the pair preservation property. Then <£ is recursively compact.

Proof. The proof of (i) is similar to the proof of Theorem 5.2.5 in Chapter II, cf.
also Chapter III, Remark 2.1.5 or Chapter XVII, Section 4.

To prove (ii) we assume for contradiction that there is a φeS£\τ\ as in the
remark (ii) above. Since 5£ is recursively generated we have at most 2ω many
theories over a countable vocabulary. Now consider the τ-structure

91 = (A, P\ Q, G>

where A = [jneω Pn(ω), Pn is the nth iteration of the power set operation, Pn

are unary predicates with Pn = Pn{ω), e is the natural membership relation, and
Q cz Pk where k is fixed and such that 1(k) is bigger than the number K of in-
equivalent theories in <£\τ\. Now consider the structure [91, 91] with universe of
the first sort Aγ and universe of the second sort A2 and let φ be the formula in 5£
which expresses:

(i) P° is standard ω. (Here we use φ.)
(ii) F is a partial map from Ax to A2, where F is a new function symbol,

(iii) F and F~x preserve e.
(iv) F is hereditary, i.e., if F is defined for x and y e x so F is defined for y.
(v) The domain of F is maximal with respect to (i)-(iv).

Clearly, φ defines F strongly implicitly. Since there are at most K = 2ω many
theories over τ, we can find two structures 9IX = <X, Pn, Qu e>, 9I2 =
<Λ, Pn, Q2,e}, such that 91 j = ^ 9 I 2 but Qx Φ Q2.
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= [9l l 99l 2]and93 2 = [9119 9IJ. Now we use PPP(J^) to conclude that
®i = <? ®2 Using the weak Beth property, let 9 e J^[τ] define F explicitly. So θ
defines on SBf a partial map F f with domain D t. Clearly Q1 a Du and since
S l =^95 2 , also gj c D2. But then we can show by induction on / < k that
δ i = Qi J contrary to our assumption. Note that, in this proof, we have only used a
finite subset of the vocabulary τ. D

The same proof actually only requires that the number of theories for a count-
ably vocabulary is smaller than 3(ω^κ). This can be achieved by assuming either
that the Lδwenheim number is smaller than 2(ω^κ) or directly, by assuming that
there are not too many different formulas for a given countable vocabulary. One
can vary the prove further for logics Jί? such that card(if [τ]) < 3(α) for countable
vocabulary τ. We state the corresponding results without proof:

4.2.7 Theorem, (i) Assume a logic J£ satisfies the weak Beth property and the pair
preservation property, and has a Lowenheim number /(if) < 3(ω^κ). Then
no single sentence φ e JS?[τ], with τ containing a binary relation symbol
denoted by <, characterizes the structure <ω, < ) up to isomorphism among
reducts of models ofφ. In other words, the well-ordering number wx{<£)for
single sentences of i f is ω.

(ii) Assume a logic !£ satisfies the weak Beth property and the pair preservation
property, and card(if [τ]) < 3(α) for countable vocabulary τ. Then no
single sentence φ e J£?[τ], with τ containing a binary relation symbol denoted
by <, characterizes the structure ζω + α, < ) up to isomorphism among
reducts of models of φ. In other words, the well-ordering number wx(^)for
single sentences of ££ is ω + α.

4.2.8 Corollary. Let A be a countable admissible set with ωe A, or A = ωv Then
<£A does not satisfy the pair preservation property.

Proof Clearly <ω, < > is characterizable in 5£A and the interpolation property

holds. D

We now want to look at a property introduced in Feferman [1974b] and
further studied in Makowsky [1978], which is a generalization of both the inter-
polation property and some of the preservation properties.

4.2.9 Definition.Let i f be a logic and % be τΓstructures (/ = 1, 2) with τ the vo-
cabulary for [9115 9I 2]. We say that i f allows uniform reduction for pairs, or has the
uniform reduction property for pairs, anc write URP(if), if for every φ e i f [τ]
there exists a pair of finite sequences of formulas ψ{,..., φ^ and ψl,..., ψl2 with
ι/4ei f [τ j and a boolean function Be2"i+n2 such that for every τΓstructures
9It (i = 1, 2) [8I l 5 ST2] |= φ iff B(a\,..., < a\,..., a2

n2) = 1, where a[ is the
truth value of % |= ψl.
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4.2.10 Examples, (i) URP(J^) holds for

<£ = (£ωω by Feferman-Vaught [1959].

& = ^ωω(Qκ) by Wojciechowska [1969].

^ = ^0000 by Malitz [1971].

(ii) URP(if) does hold for <£ = 5£κλ iff K is strongly inaccessible, by Malitz

[1971].

We want to generalize URP to constructions different from the simple pair.

4.2.11 Definitions, (i) Let τ 0 , τ l 9 . . . , τπ be disjoint vocabularies and let

R c Str(τ0) x Str(τO x x Str(τπ)

be an n-ary relation on structures. A sentence φ e S£ [τπ] is said to be
invariant on the range of R, if for all 9I 0, 9119... i9 9lπ_ l9 9In, 9lή s u c h that
X(ΪC0, « ! , . . . , « , _ ! , « „ ) and R(SΆ0,SΆl9...9SΆn.uSΆn) SΆn N φ iff
Wn\=φ.

(ii) A n rc-tuple of s e q u e n c e s of s e n t e n c e s ψoiΨu - iΦn-i w ^

and \jj\ e JS?[τk] together with a boolean function

is called an UR n-tuple for φ on the domain of R if for all 2I 0, 9 1 1 5 . . . ,
9IΠ_1 ? 9lM we have that R(9I0, 3 ϊ l 9 . . . , 9I n_ 1 ? 2ϊn) implies that 9IM N= φ
iff B(a{,..., α^1? fli,..., αJJ,"^) = 1 where a] is defined as in Definition
4.2.9.

(iii) We say a logic JSf satisfies the uniform reduction property for (n + l)-αry
relations, and we write URw(JSf), if for every relation R a Str(τ0) x
Str(τ1) x x Str(τπ) which is PC in i f and for every φ e i^[τn] which
is invariant in the range of R, there is an UR tuple for φ on the domain of R.

4.2.12 Remarks, (i) Clearly UR2(«Sf) implies URP(if), since the construction of
the pair [9119 9I2] is a PC^-operation, i.e., its graph is a P C ^ relation,

(ii) Instead of the pair construct we could consider the cartesian product of
a fixed finite number n of structures 9lf and define similarly uniform reduc-
tion for n-fold cartesian products (URProdn(j^)). Again URn(JS?) implies

The following clarifies the relationship between PPP and various uniform
reduction properties.

4.2.13 Theorem. Let 5£ be a logic. Then

(i) URP(JSf) implies PPP(J2>),
(ii) UR2(JSP) implies PPPO(if).
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If additionally $£ has an dependence number o(j£?) = K and is (μ, ω)-compact, with
μ = sup{card(j5f[τ]):card(τ) < κ}9 then:

(iii) (Shelah [198?e]). PPP(J^) implies URP(J^); and
(iv) (Shelah [198 ?e]). PPPO(if) implies JJRn(&) for every n e ω.

Proof, (i) and (ii) are straightforward. To prove (iii) assume φ is a counterexample
to URP. So for every pair of sequences of formulas φ1 = (φ{,..., i/^) and
Ψ2 — (Ψ2u -> Ψn7)

 w i t n ΦkG ̂ Vτϊ\ a n d every boolean function B e 2nι+n2 there are
τΓstructures 91/ such that [31J, 3lJ] N φ, [9If, 2ί|] 1= ~ιφ, but

*(*(/)}, , ΛOU, «0)i , a(j)2

n2) = 1,

where a(j)i is the truth value of 91/ \= φl.

Claim 1. For every such pair of sequences of formulas φu φ2 there is a function
h:φ1vφ2-+2 such that

Σl = {φ} u {θ <-> ft(θ): Seφ1u φ2},

and

Σ°h - { - ι φ } u { θ ^ Λ ( θ ) : θ e ^ 1 u ^ 2 }

/zα̂ ^ boί/z models.

If not, for every /z as above either Σ^ or Σ£ is has no model. We then could
construct a boolean function B as follows: Put

Bh = Λ {9: W ) = 1} Λ Λ {-15: Λ(θ) = 0}.

Now we put

B = V' {Bh: Σl has a model}.

Subclaim. [3ϊ l 9 2ί 2] N φ # ^ = B(α},. . . , fln\, α ? , . . . , < ) = 1, where a[ is the
truth value of % 1= φ[.

To see this, assume [9119 9I2] t= φ. Now put ho{φ[) = a\. .Clearly, B = 1.
Conversely, if B = 1, there is Λ such that Σ/[ has a model. So, by our assumption,
Σ£ has no model. So [911? 9I2] \= φ.

Using Claim 1, we define H to be the set of functions h:φίκjφ2->2 such that
Σ^ and Σ£ have both models.

We define a filter Fo on H with filter basis t/ s = {heH:Se dom(Λ)} where
9 G JSf [ τ j u i f [τ 2 ] . Let F be an ultrafilter extending F o . Now we define a function
g: Se\τ{\ u JS?[τ2] -> 2 by flf(θ) = 0 iff {h e H: Λ(θ) = 0} e F. Clearly, we have:
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C l a i m 2 . For every pair of sequences φ u φ 2 there is a function heH such that

g [ dom(7z) = h.

Now we define Σ^ (i = 0, 1) like the Σj,'s. Using (μ, ω)-compactness and Claim
2 we get:

Claim 3. There are % (ί = 0, 1, j = 1, 2) such that [2ϊ\, 2Γ2] t= Σ<.

But the latter contradicts PPP(if), since, by the definition of Σ*, 8ϊ\ Ξ ^ S I } " 1 '

(i = 0,1).
The proof of (iv) is essentially the same. D

Uniform reduction is closely related to the interpolation property. Feferman
[1974] derived XJR1 from it and in Makowsky [1978] the converse was observed.

4.2.14 Theorem (Feferman, Makowsky). Let <£ be a logic with finite dependence.
Then URi(if) iff S£ has the interpolation property.

Proof, (i) Assume UR^JS?) and let K l 5 K2 <z Str(τ0) be two disjoint classes of τ 0-
structures which are PC in JSf. So there are vocabularies τf and sentences φt e«Sf [ τ j
such that Kt = Mod(^ f) f τ 0 . Since JSf has finite dependence all the vocabularies
can be assumed finite. We now define R a Str(τ0) x S t r ^ u τ 2) by K(9I, 95) iff
91 ^ 95 I τ 0 and 95 Is τx 6 Kj or 95 p τ 2 G K2. Clearly R is P C ^ using an additional
predicate for the isomorphism and the fact that τ 0 is finite.

Claim. Both ψu φ2

 a r e invariant in the range ofR.

This follows from the fact that Kt n K2 = 0 .
Now let &i be UR sentences for φ{, respectively. It is easy to check that 9 x A ~I θ 2

is the desired interpolating sentence.
(ii) Now assume that !£ has the interpolation property, R is a PC_^-relation

on Str(τ0) x S t r ^ ) and φ e i fCτJ is invariant on the range of R. Assume R is
defined by φ G i f [τ]. Now put

Kx = Mod(ι/f Λ φ) Is τ 0 and K2 = Mod(ι^ Λ π φ ) {τ0.

Claim. K : n K2 = 0 .

This follows from the fact that (/> is invariant on the range of R. So let 5 G J^[τ 0 ]
be an interpolating sentence. Therefore, whenever Λ(3I, S ) we have that
ϊ t N θ iff 95 N φ, in other words, θ is an UR sentence for φ. D

Note that in Feferman [1974b] uniform reduction is defined for P Q , and

Theorem 4.2.14(ii) is stated assuming some compactness properties.

4.2.15 Theorem, (i) For a logic ££ the following are equivalent:

(a) UR2(J2f).
(b) UR x ( i f) (or equivalently the interpolation property) together with

URP(J£?).

(c) URB(JS?) for n>2.
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(ii) For a compact logic J? the following are equivalent:

(a) UR2(J?).

(b) UR^JS?) (or equivalently the interpolation property) together with
PPP(JS^).

(c) VRn(J?)forn>2.
(d) PPPO(if).

(iii) URP(J^) does not imply U R ^ i f ) , not even for compact logics.
(iv) UR^JS?) does not imply URP(J^f). (For compact logics this is open.)

Proof (i) (a) implies (b) by Theorem 4.2.14 and Remarks 4.2.12. (b) implies (c),
since URP allows us to reduce π-ary relations to binary relations, and (c) implies
(a) is trivial. To prove (ii) we combine (i) with Theorem 4.2.13.

To prove (iii) we observe that by Example 4.2.10(ii) ^ωω(Qκ) satisfies URP,
but, as shown in Counterexamples II.7.1.3, it does not have the interpolation
property. So the result follows from Theorem 4.2.14. For a compact counter-
example see Remark 4.2.17 below.

To prove (iv) we note that J ^ ω i ω satisfies the interpolation property, and there-
fore, by Theorem 4.2.14. UR^JSf^J holds. As noted in Example 4.2.10(ii)
URP(j£?ωiω) does not hold. D

The last proposition in this section gives us a connection between the tree
preservation property and uniform reduction, but it is only interesting for logics
which are not recursively generated, because the latter hypothesis together with
UR 2 implies recursive compactness, by Theorem 4.2.6(ii).

4.2.16 Proposition. Assume JS? is a logic in which <ω, e> is not characterizable by a
single sentence with additional predicates and sorts (in particular J? is not recursively
compact). Then UR 2(J^) implies T P P ( ^ ) .

Proof Clearly, we can use the PC-definition of <ω, e> to get a PC-definition of the
tree construction involved in the tree preservation property. See also Remark

D

4.2.17 Remark. In Section 4.6 we shall present an example of a logic 5£ which
satisfies the Beth property, the pair preservation property, is compact, but does
not satisfy the interpolation property.

4.3. The Finite Robinson Property

In Section 3.3 we have seen that the amalgamation property implies compactness
therefore (Corollary 3.3.5) that the Robinson property implies compactness. These
results depend on some assumptions on the dependence number of the logic. In
Chapter XIX the Robinson property is further investigated and instead of the
dependence number we have different smallness assumptions on the logic. Here
we want to study two weakened version of the Robinson property. They were
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studied first in Makowsky-Shelah [1979b], and the assumptions on the logics

also did not involve the dependence number.

4.3.1 Definition. Let i f be a logic.

(i) <£ satisfies the finite Robinson property (FROB), if given a complete set
Σ of j£?[τ]-sentences and two sentences φ1 ( φ 2 ) e ^ T τ i 3 C^[τ23) with
τχ n τ 2 = τ such that Σ u {φj has a τΓmodel then Σ u {φu φ2} has a
τ1 u τ2-model.

(ii) 5£ satisfies the weak finite Robinson property (WFROB), if given a complete
set Σ of i?[τ]-sentences and two sentences φ1 (φ2) e S£[τj (j£?[τ2]) with
τ x n τ 2 = τ such that Σ u {<pj has a τΓmodel then {φi9 φ2} has a τ x u τ 2-
model.

4.3.2 Proposition, (i) Both FROB and WFROB are consequences of the Robinson

property.
(ii) Clearly FROB implies WFROB.

(iii) The interpolation property implies WFROB.
(iv) // $£ is compact then the Robinson property is equivalent to both FROB,

WFROB and the interpolation property.

(v) WFROB does not imply FROB.

The proof of (i)-(iii) is left to the reader. For (iv) cf. Chapter II, Theorem 7.1.5.
For (v) we note that J£?ωiω has the interpolation property and therefore, by (iii)
above the WFROB. That J ^ ω i ω does not satisfy FROB is shown in Keisler
[1971a, p. 22].

Our next aim is to study when the pair preservation property suffices to make
FROB equivalent to the Robinson property. The answer is given in Theorem
4.3.8.

4.3.3 Definition, (i) We call a logic 5£ tiny, if for every vocabulary τ with card(τ)
smaller than the first uncountable measurable cardinal μ0

card(JS?[τ]) < μo

(ii) We call a logic JS? small, if for every vocabulary τ, which is a set, 5£[τ] is a
set. (Smallness was already introduced in Chapter II, Theorem 6.1.4).
Clearly, if a logic $£ is tiny, it is also small, provided measurable cardinals
exist. If no uncountable measurable cardinals exist, then tiny and small
coincide. There are logics with dependence number o(j5f) = ω which
are not small, and it is not dfficult to construct logics which are small
but have no dependence number. We leave this as an exercise to the
reader. The logic defined in Example 2.2.5(ii) is tiny, but has an dependence
number which is bigger than the first uncountable measurable cardinal.

(iii) If a logic <£ is small then there is function s on the cardinals such that for
every vocabulary τ of cardinality λ, λ < card(j£? [τ]) < s(λ). We call this
function the size function ofL. If i f is tiny then λ < μ0 implies s(λ) < μ0.
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(iv) Recall that a logic JS? is said to be ultimately compact, if JSf is (oo, Λ)-
compact for some cardinal A.

4.3.4 Theorem. If ££ has the Robinson property and is tiny then:

(i) i f is [ώ]-compact; and
(ii) <£ has the finite dependence property.

This differs from Corollary 3.3.5 inasmuch as here we do not require that 5£
has an dependence number, whereas in Corollary 3.3.5 we require that o(j£?)
exists and is smaller than the first uncountable measurable cardinal.

4.3.5 Theorem. If<£ has the pair preservation property, the finite Robinson property
and is tiny then:

(i) ϊ£ is [ω^-compact; and
(ii) !£ has the finite dependence property.

Proof. Clearly in both theorems (ii) follows from (i) by Theorem 2.2.1. To prove (i)
we proceed in parallel and point out the difference in the appropriate places.

Let Bί9 B2 be two infinite sets of different cardinality βί9 β2 smaller than the
first uncountable measurable cardinal μ0. Now we fix K > max{/Jl9 β2} but
K < μ0 and put 2IK = <§(κ:+), Pί9 P 2> where ξ>(κ+) is the complete expansion of
<κ+, G> and Pl9 P2 are unary predicates of cardinality βl9 β2, respectively. Let τκ

be the vocabulary of 9IK and Σ the complete <£[τκ]-theory of 5lκ. Assuming that j£?
is not [ω]-compact, we conclude, using the Rabin-Keisler theorem (1.2.3), that Σ
is categorical. Let JBf = [Stk, BJ for i = 1, 2 be τΓstructures with τγ n τ 2 = τκ.

Assumption: S i and 93 2

 a r e ^-equivalent (after appropriate name changing, so that

both are restructures).

We first finish the proof from the assumption. Let φ{ be the first-order formula
which says that "f is a bijection from Pt onto the universe of the second sort."
Clearly 33f N Σ u {φj, but Σ u {φl9 φ2} has no model.

To satisfy the assumption the two proofs differ. In the case of Theorem 4.3.5 we
use tinyness and an argument as in the proof of the existence of Hanf numbers
(Section II.6.1) to find βί9 β2 such that for τ = { = } B1 and B2 are JS?-equivalent.
Since τ is finite we may assume that βί9 β2 < μ0. Now we can use the pair preserva-
tion property to conclude that 931 and 952 are Jέf-equivalent (after appropriate
name changing).

In the case of Theorem 4.3.4 we fix a countable universal vocabulary τ ^ which
has countably many relation symbols for every arity. Using enough constants τc,
we can think of Σ as being written over the vocabulary τ^ u τc. Let Σ ^ be Σ {τ^.
Using tinyness we find, as in the case of Theorem 4.3.4, K, βγβ2 such that 95x and
332 are JSf[τ^j-equivalent.

Let τx and τ 2 be two disjoint copies of τc and put Σ f = Σ u {φj written over
τ^ u τ f . Clearly Σ ^ u Σ t has each a model, but Σ ^ u Σ ^ Σ 2 has not. D

The following is an improvement of Theorem 4.3.4.
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4.3.6 Theorem*, (i) The Robinson property implies the joint embedding property.
(ii) // a logic <£ is small and has the joint embedding property then <£ is ulti-

mately compact.
(iii) If a logic & is tiny and has the joint embedding property then J5? is [ω]-

compact.

Proof, (i) is proved in a similar way to Theorem 3.1.14. (ii) is Theorem 1.1 from
Chapter XIX and (iii) follows from (ii) and the fact that J£? was assumed to be
tiny. D

4.3.7 Examples, (i) If a logic <£ has a Lόwenheim number ^(JS?) then <£ is small,
(ii) In Chapter XIX, Theorem 1.1.1 it is shown that if <£ is small and satisfies

the joint embedding property then Jδf is ultimately compact,
(iii) If i f has an dependence number and satisfies the amalgamation property

then !£ is ultimately compact. This holds in particular, if 5£ satisfies the
Robinson property (Theorem 3.3.1).

Our next theorem shows that already the finite Robinson property implies
ultimate compactness.

4.3.8 Theorem (Shelah). Let $£ be a tiny logic which satisfies both the preservation
property for pairs and the finite Robinson property. Then

(i) !£ is ultimately compact. In fact, ifs is the size function ofX and 2λ ( ω ) < 2ω α + n

then 5£ is [oo, ω^-compact.
(ii) If additionally ϊ£ is countably generated or s(ω) < ωnfor some neω, then

<£ is compact and satisfies the uniform reduction properties URΠ(=£?).

For the proof we need a lemma. Parts (ii) and (iii) the author has learned from
S. Shelah, though others probably have observed them, too.

4.3.9 Lemma, (i) (Ulam). Let K be an infinite cardinal. / / S c κ ; + is stationary, S
may be decomposed into κ+ disjoint stationary subsets.

(ii) There is a family Sof2K+ many stationary subsets of K such that for any

SuS2€Sthe symmetric difference S1 A S2 is stationary as well.
(iii) There are 2K+ many stationary subsets of κ+ such that any finite boolean

combination of them is stationary as well.

Proof, (i) is standard, e.g., Theorem 3.2 in Chapter B.3 of the Handbook of Mathe-
matical Logic [Barwise, 1977].

To prove (ii) let {Sa: α < κ+} be the disjoint family of stationary sets from (i).
Let X aκ+,X Φ0. Define Tx = \JaeX S2a u {JaφX S 2 β + 1 . Clearly each Tx is
stationary and X # Y implies that Tx A Tγ is stationary.

The proof of (iii) is similar, but uses a combinatorial result from Engelking-
Karlowicz [1965]. D
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Proof of Theorem 4.3.8. Let K be as required. We can assume it is regular, by
Theorem 1.5.16. Assume $£ is not [κ]-compact, so by Theorem 1.5.16 again, i f
is not \κ + ]-compact, and, by induction, we can assume that K is such that 2s(ω) < 2*
Let Cκ = {β: βeκ + and d(β) = K). For every S a Cκ we define a structure
Wls = (κ+1 e> S>. By Lemma 4.3.9(ii) there are 2K+ many stationary sets in Cκ

with their symmetric diίTerence stationary, too. So, by our assumption on the size
function of if, and by Proposition 2.1.3, there are Sl9 S2 e Cκ, with SDΪSl =<? SDΪS2.
We put now 9ί = <κ+, ε, S l 9 S 2, S3, cf> with S3 = S1 A S2 and e, cf membership
and cofinality on κ+. Let 93 be the complete expansion of 91. We note that in 53
every ordinal of cofinality K or κ+ is cofinally characterized by the complete
if-theory of®. Using that i f has the pair preservation property, we conclude that
[93, 9WSl] ΞΞ^ [93, 9K5J. Let Σ be the complete theory of [93, 9WSl]. We want to
build a counterexample to FROB. For this purpose let F f (i = 1, 2) be new unary
function symbols and φt be the sentence which says that " F f is an isomorphism
between <κ:+, e, Sf> and SOΪS.. Clearly Σ u {φ^ is each satisfiable but it is not
difficult to show that Σ u {φu φ2} has no model. D

A complete proof may be found in Makowsky-Shelah [1979b].
A combination of the proofs of Theorem 4.3.8 and Proposition 4.3.2 gives us

the following theorem:

4.3.10 Theorem. Let <£ be a logic which is small and satisfies either the Robinson
property or the finite Robinson property together with the pair preservation property.
Then S£ is ultimately compact.

Combining Theorem 4.3.10 with the hypothesis A(co) from Section 1.5 we get:

4.3.11 Corollary (Makowsky-Shelah, Mundici). For a logic as in Theorem 4.3.10
we have:

(i) IfA(oo) holds then J? is compact.
(ii) // !£ is tiny and there are no uncountable measurable cardinals, then 1£ is

compact.

Proof. Assume A(oo\ so there are no uncountable measurable cardinals, by
Theorem 1.5.4(iii). Therefore, if a logic 5£ is small, then it is tiny and by Theorems
4.3.4 or 4.3.5 [ω]-compact. So Theorem 4.3.8 together with Theorem 1.5.7 give us
that S£ is compact. This proves both (i) and (ii). D

Let us end this section with an open problem.

4.3.12 Problem. Is there a countable logic, different from first-order logic, which
satisfies both the Robinson property and the uniform reduction property (as in
Theorem 4.3.8)?
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4.4. Constructing Counter Examples to the Beth Property

This last section is devoted to an abstract theorem (4.4.5) whose main use it is to
direct us in the construction of possible counterexamples to the Beth property.
For compact logics, it gives a sufficient condition, the tree preservation property,
for the Beth and the interpolation property to be equivalent. As the example in
Theorem 4.6.12 shows, the pair preservation property does not suffice. Experience
shows that in many cases where we do not have the interpolation property, we
actually can find a counterexample to the weak finite Robinson property. The
following theorem gives some indication on how to transform such a counter-
example into a counterexample of the Beth property.

4.4.1 Theorem, (i) Let ^ be a logic which satisfies the Beth property and the tree
preservation property. Then ££ also satisfies the weak finite Robinson
property.

(ii) If additionally to the tree preservation property <£ is compact, then 5£ has the
Beth property iff it has the interpolation property.

Stated in this form the theorem does not have many applications. But its proof
still gives directions on how to construct counterexamples to the Beth property,
provided the interpolation property fails. In Makowsky-Shelah [198 ?b] this
approach lead to a proof that Δ ί i ^ J does not have the Beth property. Another
way of making Theorem 4.4.1 more useful, is to define all the properties involved
for pairs of logics.

4.4.2 Definitions, (i) Let J^, <£2 be two logics such that JSfx < if2. We define

the various Robinson properties ROB, FROB, WFROB for the pair
J2\, J^ 2 and write ROB(J^, &2\ FROB(J^, JS?2), WFROB(J^, 5£2\
respectively. For ROB this looks explicitly as follows: If Σ is a complete
set of formulas in J?2(

τo)> Σ 1 ? Σ 2 are in J^CO, i?i(τ2), respectively,
τί n τ 2 = τ and Σ u Σt (i = 1,2) have models each, then Σ u Σi u Σ 2 has
a model. We leave it to the reader to state the corresponding properties
FROB, WFROB.

(ii) Similarly we define the various Beth and interpolation properties BETH,
WBETH, INT, Δ-INT for the pair &l9 22 and write B E T H ( ^ , ί?2),
WBETH(J2\, Se2\ I N T ( ^ 1 ? i f 2 ) , A-INT(J^ l 5 i? 2 ), respectively, if the
implicit definition or the formulas to be interpolated are in 5£x and the
explicit definition or the interplant is in f̂2.

(iii) Similarly we define the various preservation properties PPP, TPP for the
pair J2i, Jίf2 and write P P P ( J 2 \ , JS?2), TPP(if1 ? JS?2), if the given structures
are S£2 -equivalent and the resulting structures are S£γ -equivalent.

4.4.3 Examples, (i) While &ωω(Q0) does not have the interpolation property by
Counterexamples Π.7.1.3, I N T ( ^ ω ω ( β 0 ) , 3eωιω) does hold.
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(ii) The logics i f ω ω (β c f ( ω ) ) and ifω ω(aa) both do not satisfy the interpolation
property (Makowsky-Shelah [1981, Proposition 6.6] and Counter-
examples Π.7.1.3) but, as we shall see in Propsotion 4.6.7,

INT(ifωω(β<f'ω>), ifωω(aa))

does hold,

(iii) ΪNTi&^iQy), ifωω(aa)) does not hold, by Counterexamples Π.7.1.3.

4.4.4 Proposition. Let PROPERTY be any of the above defined definability prop-
erties, and let JS?10 < J ? n < if20 < JS?21 fee /o#jcs. 77w?« PROPERTY(JSfn, JSf20)
impfes P R O P E R T Y ^ 0 , i? 2 1).

Proof. Obvious.

With these definitions we can state a slightly stronger theorem.

4.4.5 Theorem, (i) Let JSfx < JS?2 < J8f3 fee ίΛree topics such that BETH(i^, if,)
TPP(if>, J^3) ΛoW. Tften WFROB(if1? if,)

(ii) //m addition JS?3 is compact, then INT(JSfi, ^3)

Proof. Let <pl5 φ 2 be two formulas of J ^ i ^ ) , respectively, with τf = τ 0 u d i s j o i n t {PJ,
which form a counterexample to WFROB(jSfl5 jSf3). Let 9ίt be τ rstructures such
that Sli p τ 0 Ξ ^ 3 2I2 {τ0. Without loss of generality we assume that both Pf's are
of the same arity. In case they are unary, we apply Lemma 4.1.7 directly, otherwise
we combine it with Remark 4.1.6. So we obtain a formula ψ e &γ(τ0 u τ t r e e u {P})
which defines P implicitly. So let S e ^2(

τo u τtree) be an explicit definition of P.
So we get Tree£(9l ls 9I2) 1= θ(c) but T r e e ? ^ ! , 9I2) 1= -ιθ(c) which contradicts

r i ? ί ϊ 2 ) p τ 0 u τ t r e e ^ 2 Tree?(9l1 ? 9I 2) p τ 0 u τ t r e e .

as were required by T P P ( ^ 2 , Jίf3). D

Stating definability and preservation properties for pairs of logics allows us to
sharpen results which were previously proven for absolute logics (and therefore
for Karp logics). The reader should also consult Chapter XVII.

4.4.6 Proposition (Barwise). If ^ is a logic which satisfies WFROB(J^, JSf^J, then

it has Lowenheim number ω.

Proof Since i f c i? o o ω, i f is a Karp logic. Therefore, if i f properly extends first-
order logic, there is a sentence φ e i f [ τ j such that the relativized reducts of its
models are all countably infinite, by Lemma 2.1.2 of Chapter 3. Assume, for
contradiction that there is a sentence φ e i f [ τ 2 ] with τx n τ 2 = { = }, which has
only uncountable models. Let Σ be the £'ooω theory of infinite sets. So Σ, φ, φ form
a counterexample to WFROB(if, i f ^ J . D
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4.4.7 Corollary. Let & be a logic which satisfies BETH(if, JSP^J. Then it satisfies

(i) WFROB(if,JSζO fJ.
(ii) The Lόwenheim number lx(^) of !£ is ω.

Proof, (i) follows from Theorem 4.4.5 and Proposition 4.2.16, and (ii) follows from
(i) together with Proposition 4.4.6. D

We end this section with some more concrete examples:

4.4.8 Examples, (i) The logic J^ω ω(βi) from Chapters II or VII satisfies the tree
preservation property, as one proves easily with a back-and-forth argu-
ment. By Counterexample IL7.1.3 it does not satisfy the interpolation
property and therefore, since it is countably compact, not the weak finite
Robinson property. So Theorem 4.4.5 gives us that it does not satisfy the
Beth property.

(ii) The logic &ωω(Qcΐ{ω)) is compact and does not satisfy the interpolation
property by Counterexample Π.7.1.3. It is not too difficult to check that
TPP holds for this logic. So again by Theorem 4.4.5, the Beth property
fails.

(iii) The logic j£?ωω(aa) from Chapter IV does not satisfy the Beth property by
Makowsky-Shelah [1981]. This is shown using the ideas in the proof of
Theorem 4.4.5, though by Example 4.1.2(iv) ^ ω ω ( a a ) does not satisfy even
the pair preservation property. To carry through the proof one has only to
verify that it holds for specific structures.

(iv) We cannot replace TPP by PPP in Theorem 4.4.5, as the example in
Section 4.6 shows.

4.5. Definability and Existence of Models with
Automorphisms

The aim of this section is to explore further the consequences of the assumption
that a logic i f satisfies both PPP(J^) and ROB(if). As stated in Problem 4.3.12,
it is an open problem whether such logics exist which properly extend first-order
logic. The results below may give us directions in solving that problem. Our main
theorem is

4.5.1 Theorem (Shelah). Let & be a small logic which has the pair preservation
property and the Robinson property. Then every infinite τ-structure 91 has 5£-
extensions with arbitrarily large τ-automorphism groups.

For first-order logic this is a corollary to the celebrated theorem by Ehrenfeucht
and Mostowski concerning indiscernibles. The reader may consult Chang-Keisler
[1973, Chapter 3.3] for a detailed exposition. In the proof of Theorem 4.5.1 we
discern various possibilities of defining abstract model theoretic properties
centering around the existence of various automorphisms. Let us explore these
first:
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4.5.2 Definition. Let J2\ c if, be logics.

(i) We say that the pair of logics jS?l9 if2 has the homogeneity property (homo-
geneity property for finite vocabularies), if for every τ-structure (τ finite)
9K and cuc2sM such that <9W, c^) = ^ 2 <9K, c2> there is model
(%c*,c2} of Th<^1«SK, c l 5 c 2 » and a τ-automorphism # of 91 such
that g(c") = c2. If JSf\ = if2 we just say that S£γ has the homogeneity
property (homogeneity property for finite vocabularies).

(ii) We say that the pair of logics &u <£2 has the local homogeneity property,
if for every τ-structure SCR and c1,c2eM such that <9Jί, cxy = ^ 2 <$R, c2>
and every φeTh^ 1 «9J l , c l 9 c 2 » there is model <9l, c*, c2> N= φ and a
τ-automorphsim # of 9ϊ such that g(cN

x) = c 2 . If i ^ = i^2 we just say that
5£x has the local homogeneity property.

(iii) We say that <£ has the (local) automorphism property, if for every τ-
structure SDΪ and infinite subset P c: M, the theory (every sentence φ of
the theory) T h ^ « , P » has a model <ϊl, P> which has an automorphism
gf of 91 such that ^ {P Φ Id.

4.5.3 Remarks, (i) If i f is compact, then the local homogeneity property and the
homogeneity property coincide. The same holds for the automorphism
property. We shall be mainly interested in the compact case. The local case
may be of independent interest for further developments,

(ii) If a logic does not satisfy the Beth property, one may construct its Beth
closure in the natural way. Unlike the Δ-closure, studied in Chapter II
and Chapter XVII, the Beth closure cannot easily be proven to preserve
compactness. In Shelah [1983, Manuscript] the properties of the Beth
closure were studied extensively. It turns out that stronger forms of the
homogeneity property yield a sufficient condition for the Beth closure
to preserve compactness. In Theorem 4.6.12 an example of a compact logic
satisfying PPP and the Beth property is presented, whose proof relies on
this idea.

4.5.4 Proposition* (Makowsky). (i) Let i f be a logic which has the automorphism
property. Then i f satisfies REXT(if) and therefore is [ώ]-compact.

(ii) Let i f be a logic which has the local automorphism property. Then 1£ has
well-ordering number wγ(S£) = ω. In particular, if <£ is recursively gen-
erated then $£ is also recursively compact.

Proof (i) We show that REXT(if), which is equivalent to [ω]-compactness by
Theorem 3.2.1. Let <9Jl, PM> be a τ-structure with P 6 τ and PM infinite. Let τ t be a
vocabulary, extending τ, giving every element in PM & different name and let ($Jlι be
the corresponding expansion. Clearly <SDl1, P

M> still satisfies the hypothesis of the
automorphism property. So let (91, PN} be a ^[τj-extension of <9Ml9 P

M> with
the required automorphism. Clearly, PM §; PN.

(ii) Here we just use that the standard model of arithmetic is rigid. For the

latter remark we apply Remarks 4.2.5. D

In general the homogeneity property does not imply compactness.
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4.5.5 Example. Let K be a compact cardinal. The pair of logics «Sfκω, J5fκκ has the
homogeneity property. To see this one uses an ultralimit construction as in
Hodges-Shelah [1981]. Clearly, for λ < K, these logics are not [A]-compact.

However, for compact logics we have:

4.5.6 Proposition. // Ĵ f is a small and compact logic, which has the homogeneity
property, then JS? has the automorphism property.

Proof. Let <$R, P> be a structure with P infinite. Using compactness there are
if-extensions <9t, P> with P of arbitrary large cardinality. Using smallness we can
find such an extension with cuc2eP,c1 φ c2 satisfying the same if-type. Now
we apply the homogeneity property. D

Now we are in a position to prove the existence of models with many auto-
morphisms.

4.5.7 Proposition. Let ££ be a compact logic with the automorphism property. Then
every 5£-theory with infinite models has models with arbitrarily large automorphism
groups.

Proof. Let Σ be an i f theory and 91 be an infinite model of Σ. We want to define by
induction vocabularies τα and theories Σα which are sets such that, if 91 \= Σα,
then 91 {τ \= Σ and that 9ί [ τ has at least card(α) many different automorphisms.

For α = 0 we proceed as follows. Since 5£ is small the complete if-theory
Σ o of 91 is a set. Again using smallness together with compactness we can find a
model 33 and b,b' eB satisfying the same type. So there is a model 9Jl0 with a non-
trivial automorphism Fo. Now we put Σ x to be the complete if-theory of <ΪR0, F o>.
Clearly, this also works for a successor. For α limit we put Σα = {Jβ<0[ Σβ. To
show that Σα has a model we use compactness in the form of Proposition 1.1.1. D

4.5.8 Example (Shelah). We define a quantifier binding four variables and acting
on two formulas (i.e., of type <2, 2 » in the following way: Let 91 be a τ-structure.

91 \= QιhooXuvwx(φ(u, v, z), φ(w, x, z))[ά]

if <4£, Rφ} and <^J, R^) are partially ordered structures, where the order satisfies
the axioms of a boolean algebra and

By A\ we denote the set {b s A: 911= φ[b, b, a]} and by R"φ the relation

and similarly for φ.

4.5.9 Theorem (Shelah [1983d]). Assume GCH. Then the logic ifω ω(β i b°o 1) is
compact.



4. Definability 705

4.5.10 Proposition. There is a sentence Ψ r i g i d e ifω ω(β i b o t ) 1) such that:
(i) Every model o/Ψ r i g i d is rigid, i.e., has no non-trivial automorphisms.

(ii) Ψ r i g i d has models of every infinite cardinality.

Proof. Let P be a ternary predicate symbol. Define Ψ r i g i d to be the conjunction of
the following formulas:

φ, = VzQiho°ιxyx'y'(P(x, y, z), P(x\ y\ z))

and

ψ2 = Vzz'(z Φ z' -> ^Q}hθQλxyx'y\P(x, y, z), P(x\ / , z'))

To prove (i) let 21 be a model of Ψ r i g i d , a e A and let h be an automorphism of 31.
Clearly, (Aa

R, Ra

P} is a boolean algebra by φv Since h is an automorphism, so is
(Aψ\ R$a)} and they are isomorphic. So, by ψ29 h(a) = a.

To prove (ii), let λ an infinite cardinal and {93f = <£,-, < f >: i < λ} a family of
λ many pairwise non-isomorphic boolean algebras of cardinality λ each. Without
loss of generality Bt = λ. We define a model 91 = {A, PA} of Ψ r i g i d as follows:
We put A = λ and P^4 = {(i, α, 6)e A3: a <ib}. Clearly, 911= Ψ r i g i d . Note that
(ii) does not follow from the compactness of J2Lω(βlb°o1). On the other hand (ii)
does not require GCH, as the proof of compactness. D

4.5.11 Corollary (GCH). The logic J^ω ω(β i b o° ι) is compact but does not satisfy the
homogeneity property.

Proof. By Theorem 4.5.9 the logic is compact. Assume, for contradiction, the
homogeneity property. So by Propositions 4.5.6 and 4.5.7 we get models with
arbitrarily large automorphism groups, contradicting Proposition 4.5.10. D

4.5.12 Proposition (GCH). There is a compact logic <£ which does not have the
automorphism property.

Proof. This follows from Proposition 4.5.10 and Corollary 4.5.11. D

4.5.13 Theorem (Shelah). Let <£ be a logic.

(i) lf<£ satisfies PPP(j£?) and ROB(if), then $£ has the homogeneity property.
(ii) //if satisfies PPP(J^) and FROB(^), then i f has the homogeneity property

for finite vocabularies.
(iii) // i f satisfies PPP(if) and INT(if), then & has the local homogeneity

property.

Proof. We prove only (i), the others being similar. Let 50Ϊ and c l 5 c2 e M be as in the
hypothesis of the homogeneity property.

Let 9ϊt', el, c'2 be disjoint copies. Put 91 - [9K, 9W']. Put

T = TM<9t, cl9 c2, ci» = TM<9i, cl9 c2,
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The equality holds because of PPP(J2?). Let cl9 c 2 be constant symbols with inter-
pretations cu c2 and c be a constant symbol with interpretation c\ or c'2, respec-
tively. Let F be a new function symbol. Let ψ&ί = 1, 2) be the sentence which says
that F is a τ-isomorphism (modulo name changing) mapping the first sort into the
second sort which maps c, into c. If τ is infinite, we need a set of sentences Ψ f

defined similarly.
Clearly, T u {^} has a model. So by ROB(if) or, if τ is finite, by WROB(^),

T u {ψl9 φ2} has a model [SR^ Sft'J which gives as the required automorphism
in ?«! D

4.5.14 Remarks, (i) In Proposition 4.5.13 above the three cases coincide for
compact logics.

(ii) If we assume that the logics are tiny, the hypotheses in the cases 4.5.13(i)
and (ii) imply that the logics are [ω]-compact and ultimately compact.
Assuming that 5£ has an dependence number o(i?) which is smaller than
the first uncountable measurable cardinal, the hypothesis in Theorem
4.5.13(i) actually implies compactness. In Theorem 4.5.13(ii) we need for
this, that the logic 5£ has size function s(ω) < ωn for some neω (cf.
Theorem 4.3.8 and Corollary 3.3.5).

4.5.15 Corollary. Let <£ be a logic with dependence number o(i?) smaller than the
first uncountable measurable cardinal (or, alternatively, with size function s(ω) < ωn

for some n e ω). If Ί£ satisfies PPP(j£?) and ROB(if), then <£ has the automorphism
property.

Proof We use Remark 4.5.14(ii) above and Proposition 4.5.13. D

This corollary, together with Theorem 4.5.7 gives us a proof of Theorem 4.5.1.

4.6. Some More Examples: Stationary Logic and
Its Friends

In this last section we want to discuss, mostly without proofs, some more examples
and consistency results, which all come from Shelah [198 ?e] and Mekler-Shelah
[1983, 198?]. They are all concerned with preservation and definability properties
of compact or (ω, ω)-compact logics. Our first example concerns extensions of
^ωω(Qi)- Let us recall some facts:

4.6.1 Proposition. The logic ^ωω(Qχ) has the following properties:

(i) J^ω ω(βι) is (ω, ω)-compact, but not (ω 1 ? ω)-compact.
(ii) ^ωω(Qι) does satisfy the pair preservation property.

(iii) £?ωω(Qι) does not satisfy the /^-interpolation property, and therefore neither
the interpolation property.
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there is
It remains open whether J^ω ω(βi) satisfies the weak Beth property. However,

ϊre is the following consistency result proved in Mekler-Shelah [198?].

4.6.2 Theorem (Shelah). Every model TO of ZFC has a generic extension TO[G] in
which ^ωω{Qi) satisfies the weak Beth property.

For the stronger definability properties there is a consistency result in the other
direction. We want to state, that it is consistent with ZFC, that no "reasonable"
extension of ^ωω{Q\) satisfies both P P P and the interpolation property (or
equivalently the uniform reduction property UR 2). For this we need a definition:

4.6.3 Definition (Definable Logics), (i) A logic Jίf is definable, if the relations
"φe&[τY ( > is a <£[τ]-formula") and "TO N φ" ("TO is a model of
φ") are definable by a formula of set theory without parameters.

(ii) A logic i f is λ-definable, for λ a cardinal, if the relations "<peJSf[τ]"
O is a JSP[τ]-formula") and "TO \= φ" ("TO is a model of φ") are definable
by a formula of set theory with a parameter A a λ.

4.6.4 Remark. In Chapter XVII absolute logics were introduced. This notion is not
quite comparable with the above definition. For a logic to be absolute definability
with parameters is allowed, but definability is restricted to A1 -definability.

4.6.5 Examples, (i) Logics of the form ^ωω((£\&n are definable, provided the
quantifiers are set presentable in the sense of Definition 1.5.8.

(ii) The logics 5£κλ are definable,
(iii) Not all logics are definable without parameters. Especially some of the

fragments <£A c S£ωχiO are not definable, but they are ωί-definable with
parameter A a ωv If A is a countable admissible fragment which has a
code in ω then ^A is even ω-definable.

(iv) The logic 5£Fω from Section 1.6 is definable, provided the ultrafilter F is
definable. The definability of this filter may very well depend on the
set-theoretic assumptions under consideration.

4.6.6 Theorem (Shelah). For every model TO of ZFC that there is generic extension

TO[G] such that no definable logic <£ extending ^ωω(Qi) satisfies both PPP(^)
and the interpolation property (or, equivalently, the uniform reduction property

UR 2 ) in TO[G].

It was widely believed that the Δ-closure of i?ω ω(Qi) i s a rather untackable
logic. That this need not be the case is shown by the next consistency result from
Mekler-Shelah [198?]. Let us first recall some facts about the logic i?ω ω(aa)
from Section IV.4 and Counterexample Π.7.1.3.
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4.6.7 Proposition, (i) The logic ifωcΰ(aa) is (ω, ω)-compact, r.e.for validity, but does
not satisfy the interpolation property.

(ϋ) ^ωω(Qi) is a sublogίc o/ί?ω ω(aa).
(iii) INT(J4 ω (βi) , JZ^ίaa)) does πoί Λo/d.

Inspired by Theorem 4.6.2 we can state the following problem:

4.6.8 Problem. (Shelah). Does every model $R of ZFC have a generic extension
SW[G] in which Δ - I N T ^ ^ ρ j , i?ω ω(aa)) holds?

In Mekler-Shelah [1983] a positive answer is given for Δ-Interpolation on

finitely determinate structures. In contrast to this it is shown in Counterexample

Π.7.1.3 that INTCJ^CρO, J^ωω(aa)) does not hold.

The next example involves the logic i?ω ω(β c f ( ω ))

4.6.9 Proposition, (i) The logic i?ω ω(β c f ( ω )) is compact, r.e.for validity, but does not

satisfy the interpolation property.

(ϋ) ^>ω«2 c f ( ω )) & a sublogic o/ifω ω(aa).

Proof. From Section II.2.4, and Makowsky-Shelah [1981] we know (i). To see (ii)
we axiomatize the class of orderings of cofinality ω by the ifωω(aa)-sentence which
says that the ordering has no last element, but that almost every countable set P
is unbounded. D

The next theorem shows that j£?ωω(aa) behaves more like second-order logic,
than originally suspected, since it provides interpolating formulas for the logic

cSζoω(βcf (ω)). Note that for Hanf number calculations J2?ωω(aa) is as strong as the
logic which allows unrestricted quantification over countable sets, as shown in
Kaufmann-Shelah [198?].

4.6.10 Theorem (Shelah). INT(i?ω ω(βc f<ω )), i?ωω(aa)).

The proof may be found in Mekler-Shelah [198?].

4.6.11 A Generalization. The pair of logics in Theorem 4.6.10 can be generalized
to higher cardinals. For J^ ω ω (β c f ( ω ) ) this gives us the logics J?ωω(Q%λ) which re-
quires the ordering to be of infinite cofinality less or equal to λ. As shown in
Makowsky-Shelah [1981] this logic is still compact, but does not satisfy the
interpolation property. For j£?ωω(aa) we have to define a logic J^ωω(aaλ) for an
appropriate filter Dλ. A detailed exposition may be found in Mekler-Shelah
[198?]. What is important here, is a theorem of Shelah which states that the pair
^ωω(Qc< x) a n d ^ωω(a aλ) satisfies a strong form of the homogeneity property, as
defined in Section 4.5. As mentioned in Section 4.5, such homogeneity properties
can be used to prove that the Beth closure preserves PPP and compactness.

Using this line of thought Shelah proved the following theorem:
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4.6.12 Theorem (Shelah). The Beth closure & of the logic ^ ω ω ( β < 2 - ) is a compact
logic which satisfies:

(i) PPP(JS?) (and therefore, by compactness, URP);
(ii) has the Beth property; but

(iii) does not satisfy the interpolation property (and therefore, by compactness,
none of the Robinson properties).

This shows, that in Theorem 4.4.5 the tree preservation property cannot be
weakened to the pair preservation property. For otherwise, since the logic is
compact, the Beth property would imply the interpolation property. It also shows
that the uniform reduction property for pairs does not imply even the uniform
reduction property UR 1 ? which, by Theorem 4.2.12 is equivalent to the inter-
polation property.

This example is also the first example so far, which exhibits a compact logic
satisfying the Beth property. Note that it is easy to construct compact logics, which
satisfy the weak Beth property or the Δ-interpolation property by the construction
of the Δ-closure or weak Beth closure, as described in Proposition II.7.2.5 and, in
more detail, Makowsky-Shelah-Stavi [1976].

Also the Δ-closure of S£ωω(ff<2«>) has remarkable properties:

4.6.13 Theorem* (Shelah). The Δ-closure of &<JLQ?ii<») does not have the Beth
property.

A proof will appear in Makowsky-Shelah [198 ?b].
The following is open:

4.6.14 Problem. Is there a logic JS? which satisfies both the Beth property and Δ-
interpolation, is compact but does not satisfy the interpolation property? In
particular, is the iterated Beth and Δ-closure of J ^ ω ( β c | 2

ω ) compact, and if yes,
does it satisfy the interpolation property?

4.7. Which Definability Property ?

The first definability property proven for <£ωω was the Beth property (Beth [1953]).
The interpolation property was introduced in Craig [1957b], and is sometimes also
called Craig's interpolation property. Its main application was to give a simplified
proof of the Beth property. Another proof of the Beth property for J£?ωω was given
in Robinson [1956a] where the Robinson property, or rather the finite Robinson
property, was introduced. The choice of these properties was not really questioned
in this period. The weak Beth property was first discussed in Friedman [1973].
Friedman suggested also first that it was the weak Beth property which really
mattered in the context of logics different from first-order logic. The first thorough
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discussion of definability properties for logics in general is in Feferman [1974a, b,
1975].

Feferman focuses the attention on the Δ-interpolation, pointing out its equiva-
lence to the weak projective Beth property. His paper had great impact and the
Δ-closure was studied extensively in Barwise [1974], Makowsky-Shelah-Stavi
[1976], Hutchinson [1976], Vaananen [1977a, 1979a, 1983], Paulos [1976]
and Makowsky-Shelah [198?]. From this it emerged that the Δ-closure may well
be a "better" definability property than all the others studied so far. This is
especially so, since the Δ-closure of a logic if preserves compactness and the re-
cursive enumerability of the validities of its finitely generated sublogics.

It was also in Feferman [1974a, b] and in Feferman [1972] that preservation
properties were first discussed in the general setting. URπ(JSf) was introduced to
unify known preservation theorems and interpolation theorems. In Makowsky
[1978] the equivalence of UR^if) and the interpolation property was established.
From this one was led to think that the next "reasonable" strengthening of the Δ-
interpolation property would be uniform reduction UR2(=^) Note that the equiva-
lence of non-uniform and uniform reduction for pairs PPP and URP for compact
logics, due to Shelah, appears here for the first time.

The finite Robinson property was first discussed in the general setting in
Makowsky-Shelah [1976] and the Robinson property in Mundici [1979a].
Mundici suggested that the Robinson property is a "natural" property of logics,
since it is equivalent, for finitely generated logics, to compactness and the interpola-
tion property. But, as it emerges in this chapter, it seems to us that it is the Robinson
property together with PPP which has more merits: In the case of compact logics
they are together again equivalent to UR2(i?) or to the preservation property for
projective operations PPPO.

It should be pointed out here that this comparison of definability properties
has still a severe drawback: The lack of an abundance of examples. There are,
by now, many compact, and therefore many compact and Δ-closed logics, mostly
constructed by Shelah. But there are no interesting examples satisfying any
strengthening of the interpolation property, such as uniform reduction or the
Robinson property.
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Table 1. Transfer of Compactness Properties

From

cf(κ)

+
K

K

To

K

K

ω

Condition

K singular

K regular

K < μ0

μ0 first uncountable
measurable cardinal

Reference

1.1.6

1.3.11(0
1.5.4
1.3.11(ii)
1.5.4

1.5.2

Table 2. The Compactness Spectrum

Form

Comp(if) is initial
segment

Comp(J2?) contains final
segment

First element
measurable

Gaps in spectrum

Condition

A(co)

Vopenka's principle

Reference

1.5-7(i)

1.5.16(iv)

1.5.2

1.6

Table :

From

K

K

K

). Transfer of Dependence Properties

To

ω

ω

Finite dependence

structure

Condition

compactness

[ω]-compactness
K < μ0

μ0 first uncountable
measurable cardinal

[ω] -compactness

Reference

5.1.3 in Chapter II

2.2.1

2.4.3
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Table 4. Compactness and Extensions

REXT(J^)

3.2.1

[ω]-compactness

Compactness

3.1.11

Joint embedding property

trivial

no uncountable

measurable cardinals

3.2.5

trivial

no uncountable

measurable cardinals

1.5.2

EXT(J$?)

3.2.4

[A]-compactness
for some λ
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Table 5. Amalgamation, Joint Embeddings, and Compactness

713

Compactness

3.1.11

Joint embedding property

tiny, 4.3.6

Sopen

Amalgamation

Am(/c, &)

for every K > λ

o(L) < λ
3.4.10

[oo, λ] -compact

λ < μ 0 , 1.5.2

[ω]-compactness

Am(A,

3.4.9

(λ, A)-compact



714 XVIII. Compactness, Embeddings and Definability

Table 6. Compactness, Definability, and Automorphisms
(for logics with finite dependence)

Compactness and
interpolation and URP

4.3.8

countably

generated logics

4.5.13(0//

ROB and URP

Homogeniety
property

4.5.6 \
compactness

4.5.6
and
3.3.5

Automorphism
property

4.5.4 N

trivial

does not hold

4.5.12 (GC)

REXT

trivial

FROB and compactness

ROB

Interpolation and compactness

3.3.5

Amalgamation

Compactness

Joint embeddings

[ω]-compactness
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Table 7. Definability Properties

715

with

o(J5f) < μ0

and
PPP

4.3.10

ROB and P P P

open
CO

ROB

1
open

FROB

—Λ :

no

4.3.2(v)

WFROB

^ \

with T
4.4.5

^v. countably

K. ^ v . generated

mpactness^-v ^ ^
4.2.13 \ > L

<• - - -

U R Λ , n > 2

no

4.2.15(iv)

UR,

open '

χ

4.2.14

Interpolation

PP^\^

Γ

no 4.2.2

Beth property

no

4.2.2

weak Beth property

4.2.15(1)

no
>

4.2.15(iv)

\

\

\

no 4.2.2

<.
no 4.2.2

U R P

Interpc
and

elation

URP

PPP

\

\

Δ-Interpolation
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Table 8. Definability for Compact Logics

4.3.2

4.2.15 -

ROB and PPP

υRn,n>2

PPPO

Interpolation and PPP

4.3.2

4.2.14-

ROB

FROB

WFROB

Interpolation

UR t

4.2.14

open,*'

^ ' '4 .6 .12

4.6.12

4.6.13

Δ-Interpolation

weak Beth




