
Chapter X

Game Quantification

by P H . G. KOLAITIS

Game quantification interacts with the model theory of infinitary logics, abstract
model theory, generalized recursion theory, and descriptive set theory. The aim of
this chapter is to examine these connections and give some applications of the
game quantifiers to the above areas of mathematical logic.

The chapter is divided into four sections. The first presents the basic notions and
the interpretation of infinite strings of quantifiers via two-person infinite games.
Section 2 deals with the interaction between game quantification and global
definability theory, the main theme being that certain second-order statements can
be reduced to formulas involving the game quantifiers which can, in turn, be
approximated by formulas of L o o ω . This section also includes a proof of Vaught's
covering theorem, as well as applications of game quantification to the model theory
oiLωιω and admissible fragments. In Section 3, we show that the game logics are
absolute and unbounded, and most of the model-theoretic properties of these
logics will then follow from this fact. Section 4, the final section, discusses the
interaction with local definability theory. Here we consider the basic relation of
the game quantifiers to inductive definability and higher recursion theory, and give
some of their uses in descriptive set theory.

1. Infinite Strings of Quantifiers

This section presents the main definitions and basic results about infinite strings of
quantifiers (60X061*162*2 •) where, for each / = 0, 1, 2, . . . , Q( is the
existential quantifier 3 or the universal quantifier V on a set A. The interpretation of
such strings is via two-person infinite games of perfect information. We first
describe the interpretation in an informal way and indicate the expressive power of
certain infinite strings. The precise definitions involve the notions of a winning
strategy and a winning quasistrategy. The Gale-Stewart theorem is then proven
and used to push negation through infinite strings in certain cases.

Throughout this section, A is a non-empty infinite set, A<ω = [Jneω An is the
set of all finite sequences from A, and Aω is the collection of all infinite sequences of
elements of A. We use variables x,y,z,... to denote elements of A, variables
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s, r, w,... to represent elements of A κ ω, and variables α, β,... to denote the members
of Aω. The empty sequence is denoted by ( ), while s^t denotes the concatenation
of two elements s,toϊA<ω. Finally, if α e Aω and « e ω , then α Γ n is the restriction of
α to n, that is, α Γ n = (α(0), α ( l ) , . . . , α(n - 1)) e An.

7.7. Iterating the Existential and the Universal
Quantifier Infinitely Often

1.1.1. The most natural infinite strings of quantifiers are obtained by iterating the
existential quantifier or the universal quantifier—or, alternatively, the existential
and the universal quantifier. If R c Aω is a non-empty set of infinite sequences from
A, then three infinite strings that result in this way are:

(1) (3x0 3x t 3x2 -)R(x0, x1 ? x 2 , . . . ) ,

(2) (Vx0 Vxx Vx2 -)R(xθ9 Xi, x 2 , . . •)>

(3) (3x0 Vy0 3*i V}^ 3x2

The first two strings, (1) and (2), respectively express existential and universal
quantification over the set Aω of infinite sequences from A. In order to interpret the
infinite string given in (3), we associate it with the following two-person game
G(3V, R) of perfect information:

A round of the game G(3V, R) is played by players I and II
alternatively choosing elements from A:

I x 0 Xi x 2

II

Player I wins the above round iϊ(x0, y0, xu yl9 x2, y2,.. .)sR,

otherwise Player II wins the round.

We say that Player I wins the game G(3V, R) if I has a systematic way to win
every round of the game. Similarly, we say that Player II wins the game G(3V, R) if
II has a systematic way to win every round of the game. Finally, we put

(3x 0 Vy0 3xx \fyx 3x 2 Vy2 -)R(xθ9 yθ9 xl9 yί9 x 2 , yl9 . •)

iff Player I wins the game G(3V, R).

In general, if Q = (Q o, Ql9 β 2 , . . . , Qi9...) is an arbitrary infinite string such
that each 6; is the existential or the universal quantifier, then the interpretation of
the statement

(Λ\ ((Λ v f) v f\ v ί~\ v \t?ί\ Y v v ^
V /̂ vV̂ O -^0 SCX ^XSLl Λ 2 * " " V̂ / -̂ i " " 'Λ*̂ Λ *Ό» A l ? -^2? * * ' A i ' * * */
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is entirely analogous to the preceding one for (3). More specifically, we associate
with Q and R a two-person infinite game G(Q, R) in a round of which, for each
i = 0, 1, 2 , . . . , an element xt in A is picked by Player I if Qf = 3 and by Player II
if Q. = V. At the end of the round, Player I wins the round if the infinite sequence
(x 0, xί9 x2, . . , x f , . .) is an element of R. Otherwise, Player II wins the round. We
say that Player I wins the game G(Q, R) if I has a systematic way to win every round
of it. Similarly, we say that Player II wins the game G(Q, R) if II has a systematic
way to win every round of it. As before, we put

( 6 0 * 0 6 1 * 1 6 2 * 2 QiXi -)R(Xo, Xι, x2,'-, Xi> 0

iff Player I wins the game G(β, R).

1.1.2 Remark. Often the infinite strings given in (1), (2), (3), and (4) are not applied
to arbitrary relations R c Aω, but rather to relations which are either open or
closed.

A relation R ^ Aω is open, if it can be written as the infinitary disjunction of
unitary relations; that is, if there are relations Rn c= A", ne ω, such that

R(XQ, Xl5 . . , Xπ-i, Xn, - - •) O V Rn(
x0> xl> •> Xn-l)'

neω

Similarly, we say that a relation R c Aω is closed if it can be written as the
infinitary conjunction of finitary relations that is, if there are relations Rn c An, for
each n e ω, such that

R(x0, x l 5 . . . , xn-!, xn,...) o /\ JRΠ(X0, xi, , xΛ-1).

This terminology is justified by the fact that a relation R is open (or closed) if it is
an open set (or, respectively, a closed set) in the product topology on Aω, where A is
equipped with the discrete topology.

If the infinite strings in (1), (2), and (3) are applied to relations on Aω which are
open or closed, they can then be identified with certain monotone quantifiers on
the set A<ω of finite sequences from A. In order to make this idea precise, we
introduce the following notions, which will be also used in Section 4 of this
chapter.

1.1.3 Definitions. A monotone quantifier Qona set A is a collection Q of subsets of A

such that:

(i) 6 is non-trivial; that is, 0 g Q
(ii) 6 has the monotonicity property, that is, if X e Q and X c γ9 then Y e Q.

Interchangeably, we write

6x#(x) iff ReQ iff {xε A: R(x)} GQ.
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The dual of a monotone quantifier Q is the collection Q, where

XGQ iff (A - X)ΦQ.

It is quite clear that Q is also a monotone quantifier and that (Q) = (λ

Under these definitions, the existential quantifier 3 on A is identified with the
collection of non-empty subsets of A, and we write

while the universal quantifier V on A is the singleton given by

v = μ}.

We obviously have that

3 = V and V = 3.

By iterating the existential and the universal quantifier on A infinitely often, we
obtain the following interesting quantifiers on the set A<ω of finite sequences from
A:

(5) The Suslin quantifier £f

^ = j * <= A<ω: (Vx0 Vx! Vx2 •) V ((*o> * i , *i, , x B - i ) e

(6) Tte classical quantifier si

si = | χ <Ξ /l< ω : (3x0 3 X l 3x2 •) /\ ((x0, x l 9 x 2 , . . . , x n _ x ) e

Here it is obvious that fs/ is the dual of the Suslin quantifier.

(7) The open game quantifier &,

\ / /YY V Y Λ, Y Λ, Λcz ΎΛ

V VV̂ O? ^0? X l 5 J l ' •> Xn-U yn- 1) E Λ )

(8) The closed game quantifier &

^ = |Λ-S^<»:(VXO3J;OVX13J;1 )

Λ((*o.>'o^i,JΊ. .^-i.3'--1)e^)j.
n )
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It will follow from results in Section 1.2 that the closed game quantifier is the
dual of the open game quantifier.

1.1.4 Remark. The Suslin quantifier 5^, the classical quantifier si, and the two-
game quantifiers can capture properties which are not, in general, expressible using
the infinitary logic Lωιω or even the logic L ^ . The following examples indicate the
expressive power of these quantifiers.

(i) The notion of well-foundedness can be expressed using the Suslin quantifier
Sf. Indeed, if R is a binary relation on a set A, then

R is well-founded iff (Vx0 Vxj Vx2 •) V (-ι(xπ + iRxn)).
n

It is well known, of course, that this property is not expressible in the infinitary
logic Lωιω.

(ii) If 31 is a structure which possesses a first-order definable coding machinery
of finite sequences, then the Suslin quantifier and the classical quantifier si can be
identified with monotone quantifiers on the universe A of the structure 21. For
example, this is the case with the structure N = <ω, + , > of natural numbers. On
this structure, the Suslin quantifier and the classical quantifier si can capture
second-order statements. This follows from the fact that on l\l every Π{ relation
R(z) can be written in the form

R(z)o(\fx0 Vxx Vx2 .)ί V

where ψ is a first-order formula and <x0, x l 5 . . . , xπ_ j ) is an element of ω coding
the sequence (x 0, x i 5 . . . , xΛ_i).

The above is a rather special property of the structure N of natural numbers. At
the other extreme, if U = <ωω u ω, ω, + , , Ap}9 where Ap(oc, ή) = α(n), is the
structure of real numbers, then the Suslin quantifier and the classical quantifier si
coincide respectively with the universal and the existential quantifier on the reals.
This is a consequence of the fact that we can code infinitely many reals by a real in a
first-order definable way.

(iii) The open game and the closed game quantifier have, in general, higher
expressive power than the Suslin and the classical quantifier si. If a structure 21
possesses a first-order coding machinery of finite sequences, then the relation of
satisfaction " 2t |= φ ", where φ is a sentence of the first-order logic of the vocabulary
of 21, can be shown to be expressible in terms of the open game or the closed game
quantifier, while this relation is not first-order definable on such structures. In
particular, on the structure U of the real numbers the game quantifiers properly
transcend the Suslin and the classical si quantifier.

The connections between local definability theory and game quantification will
be investigated in Section 4 of this chapter.

(iv) Consider a vocabularyτ consisting of two binary relation symbols < l 5 < 2

and the equality symbol = . Using the infinite string (Vx0 3y0 Vx1 3yι •) and
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countable disjunctions and conjunctions, we can write a statement φ(w, v, <ί9 < 2)
expressing that:

" < ί and < 2 are well-orderings

and

u is in the field of < l9 v is in the field of < 2

and

the order type \u\γ of u in < γ is less than or equal to the order type

\v\2 of v in < 2 . "

The crucial property \u\x < \v\2is then expressed as follows:

(Vx0 3y0 Vxx 3 ^ •) [7/\ (xn < ! ii) <-> Λ fo < 2

m, n

/ \ ( x m = XΛ <-• }>m = }>„) .
m,n J

The proof that this statement works can be obtained by induction on IM^.
Fromtheabove,iteasilyfollowsthatusingtheinfinitestring(Vx0 3y0 Vxi 3yx •)

and countable disjunctions and conjunctions, we can write a statement ψ(<)
asserting that

" < is a well-ordering of order type y + y for some ordinal y".

Malitz [1966] has shown, however, that this statement is not expressible by any
formula of the infinitary logic L ^ . Thus, game quantification can give rise to
infinitary logics which are different from the usual infinitary logics Lκλ. These new
infinitary logics will be introduced and studied in Section 3 of this chapter, while in
Section 2 we will pursue the relationship between game quantification and global
definability theory.

1.2. Winning Strategies and Winning Quasistrategies

Assume that Q = (Q o, Q1 ? Q 2 , . . . , Qh ...) is an infinite string such that for each
i = 0, 1, 2, . . . Qι is the existential or the universal quantifier on a set A. In the
preceding section the interpretation of the statement

(Q0X0Q1X1Q2X2 * 6;*i )K(*o> * i , * 2 , , xi> •)

was given in a rather informal way, since we defined the concept" Player I wins the
game G(Q, R)" by saying simply that "Player I has a systematic way to win every
round of the game G(β, R)" This definition is intuitive, but not very precise. We will
now give precise definitions of these concepts in a set-theoretic framework. It
actually turns out that we can give at least two interpretations for infinite strings of
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quantifiers which are equivalent in the presence of the full axiom of choice, but
which may nevertheless be different if only weaker choice principles are available.
For the sake of clarity, we give the definitions and then state the results only for the
infinite string (3, V, 3, V,..., 3, V,... )• However, these notions will generalize to
arbitrary strings Q = (Qo, Qί9 Q2,..., Qi9...) with only notational changes in the
definitions or the proofs.

1.2.1. Let R c Aω be a relation on the set of infinite sequences from A, and let
G(3V, R) be the two-person infinite game associated with the statement

(9) (3x0 Vy0 3xx Vyί 3x2 \/y2 • -)R(x0, y0, * i , J>i, Xi.yi^ •)•

A strategy σfor Player I in the game G(3V, R) is a function σ \ \Jneω A2" -• Aϊrom
the set of finite sequences of even length into A.

Intuitively, a strategy σ for I provides him with a next move. We say that I
follows the strategy σ in a round (x 0, y0, x1 ? yu x 2 , y2, •) of the game G(3V, R) if
x 0 = σ(( )) and xn = σ((x0, yθ9 Xi, ) Ί , . , xΛ-i, ^ - i ) λ for all w = 1, 2, 3 , . . . .
We call σ a winning strategy for I in the game G(3V, R) if I wins every round of the
game in which he follows σ.

In an analogous way, we define a strategy τ for Player II in G(3V, R) to be a
functionτ: I J n e ω A2n+ι -• A. P lay er IIfollowsτ in a round(x0, y0, x l 9 j / l 5 x2^} ;2? •)

ofthegameif^ = τ((x0, y0, Xi, yί9 - , x π -i, ^ - i , xπ))foralln = 0, 1, 2, . . . . We
say that τ is a winning strategy for II m G(3V, R) if II wins every round of the game in
which he follows τ.

Using the above notions, we rigorously interpret the statement given in (9)
as follows :

(10) (3x0 Vj/0 3xι Vyί 3x2 Vx2 -)R(x0, y0, xί9 yu x 2 , y2,. •)

iff Player I has a winning strategy for the game G(3V, R).

In practice, when we prove theorems about infinite strings of quantifiers, we
must often use the axiom of choice to exhibit a winning strategy for one of the players
in the game associated with the infinite string. There are situations, however, in
which one is working in a set theory where the full axiom of choice is not available.
In such cases, we can still prove the results about the infinite strings of quantifiers by
reformulating the interpretation of the infinite string given in (9). The idea here is to
replace the notion of a strategy by that of a quasistrategy, a quasistrategy being
essentially a multiple-valued strategy that provides the player with a non-empty
set of possible next moves instead of a single move.

A quasistrategy Σfor Player I in the game G(3V, R) is a set Σ c A<ω of finite
sequences from A such that:

(i) there is some x0 e A for which (x0) e Σ;

(ii) if ( x o ^ o ^ i ^ i ' . . . ,x w _i ,^ , ,- i )e2, then there is some xeA for which

(x 0, y0, xi, yί9 , *„-1, yn-1, x) e Σ;

(in) i f ( x 0 , y 0 , x u y w >χn-nyn-uχ)eΣ

?

thenforeveryyeA

fro, yo> xu yw-> χn-1, yn- u χ> y)e Σ
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Player I follows the quasistrategy Σ in a round (x 0, y0, xu yu x2, y2, •) of
G(3V, R) if every initial segment of the round is in Σ. Furthermore, we say that Σ is a
winning quasistrategy for I in the game G(3V, R) if I wins every round of the game in
which he follows Σ.

We define also the notions of quasistrategy for II and winning quasistrategy for
II in the game G(3V, R) in an analogous dual way.

We can now interpret the statement in (9) in an alternative way as follows:

(11) (3x0 V ô 3x! Vyx 3x2 Vy2 )R(xΌ, y0, xl9 yu x 2 , )>2, • •)

iff Player I has a winning quasistrategy in the game G(3V, R).

It is quite obvious that if Player I has a winning strategy in the game G(3V, R\
then I also has a winning quasistrategy in this game. If, in addition, the set A can be
well-ordered, then every winning quasistrategy for I in G(3V, R) gives rise to a
winning strategy for I in this game. We therefore see that, in the presence of the
axiom of choice, the two interpretations given by (10) and (11) of the statement in
(9) are equivalent. This equivalence, however, depends on the axiom of choice in an
essential way.

If we interpret the infinite string (3x0 Vy0 3*! V^ 3x2 Vy2 •) via quasistra-
tegies, then most theorems about this string can be proved using the axiom of
dependent choices. A weaker principle than the full axiom of choice, the axiom of
dependent choices states that, for every non-empty set B and for every binary
relation P c B x B on £,

(Vx e B)(3y e B)P(χ, y) =>(3f:ω^ fl)(Vn)P(/(w), fin + 1)).

Observe that we used the axiom of dependent choices implicitly, when we
asserted in Section 1.1.4 that the Suslin quantifier can express the notion of well-
foundedness. Indeed, this axiom is precisely the choice principle needed to show
that a relation is well-founded if and only if it has no infinite descending chains.

We will now investigate some simple properties of strategies and quasistrategies,
beginning with

1.2.2 Lemma. Let R ^ Aω be a relation on the set of infinite sequences from A. Then,

(i) It is not possible that both Players I and II have winning strategies in the game

(ii) (Assuming the axiom of dependent choices). It is not possible that both
Players I and II have winning quasistrategies in the game G(3V, R).

Proof Part (i) is obvious and requires no choice principles. To prove part (ii) we
will assume, towards a contradiction, that Player I has a winning quasistrategy Σ in
G(3V, R) and that II also has a winning quasistrategy T in this same game. Using
dependent choices, we can then produce a round (x 0, yo,xί9 yux2, yi, •) of the
game G(3V, R) every initial segment of which is in both Σ and T. But then the round
C*o> yo> xu )>!> *2 ? y2,. •) is in both R and ~iR. This is a contradiction. Q
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If R c Aω is a relation on the set of infinite sequences from A, and if G(3V, R)
is the game associated with the statement

(9) (3x0 Vy0 3xx Vyx 3x2 \/y2

then G(V3, i /?) is the game associated with the statement

(12) (Vx0 3y0 Vx! 3^x Vx2 3y2 •) π Λ ( x o j o , x l 9 y l 5 x 2 , y2,

It is clear from the definitions that a winning strategy (respectively, quasistra-
tegy) for II in the game G(3V, R) is a winning strategy (respectively quasistrategy)
for I in the game G(V3, ~Ί JR). We therefore have the following

1.2.3 Lemma. Let R <Ξ Λω be a relation on the set of infinite sequences from A. Then,

(i) Player II has a winning strategy (respectively quasistrategy) in G(3V, R) if
and only if Player I has a winning strategy (respectively quasistrategy) in
G(V3,-ι/?).

(ii) Player I has a winning strategy (respectively quasistrategy) in G(3V, R) if
and only if Player II has a winning strategy (respectively quasistrategy) in
G(V3,-ιiR). D

Assume now that R c Aω is a relation such that Player I or Player II has a
winning strategy (respectively a winning quasistrategy) in the game G(3V, R).
Combining this with Lemmas 1.2.2 and 1.2.3, we obtain the equivalence:

(13) -ι(3x0 V ô 3xx Vj/i )R(x0, y0, xί9 yl9...)

y0 Vx! 3yλ •) ~ΊR(X09 y0, Xi, yl9. λ

where the interpretation of the statements given in (9) and (12) is via winning
strategies as in (10) (respectively via winning quasistrategies as in (11)).

We say that the game G(3V, R) is determined if Player I or Player II has a
winning strategy in this game. We also say that G(3V, R) is weakly determined if
Player I or Player II has a winning quasistrategy in the game. The preceding facts
show that if the game G(3V, R) is determined or weakly determined, then to negate
the statement given in (9), we can push the negation through the infinite string
(3x0 \/y0 3xx

 ys/yί •) and apply it to the relation R. Although this manipulation is
always true for finite strings and all relations R, it is not true for infinite strings and
arbitrary relations R c Aω. Indeed using the axiom of choice, Gale and Stewart
[1953] showed that there is a relation R ^ 2ω such that the game G(3V, R) is not
determined. It turns out, however, that if the relation R is open or closed, then the
associated game G(3V, R) is determined.

1.2.4 Theorem (Gale-Stewart [1953]). Let R c Aω be a relation on the set of
infinite sequences from A which is either open or closed. Then,

(i) (Assuming the axiom of choice). Player I or Player II has a winning strategy
in the game G(3V, R);

(ii) Player I or Player II has a winning quasistrategy in the game G(3V, R).
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Proof. The first part of the theorem follows from the second by well-ordering the set
A. Moreover, in view of Lemma 1.2.3, it is enough to establish the result for the case
of a closed relation R c Aω. Therefore, assume that there are finitary relations
Rn c A2n+2, for each n = 0, 1, 2, . . . , such that

n(X0, 3>0,

We will show that Player I or Player II has a winning quasistrategy in the game
G(3V, R). The winning quasistrategy will be obtained by using an inductive analysis
for the set of "winning positions" for Player I in the open game G(V3, ~\R). More
precisely, consider the following monotone operator φ(u, S\ where u ranges over
the elements of A<ω and S over the subsets of A<ω:

φ(u, S) o(u has even length) & I if u = (x0, y0,... ,xn9 yn),

then V -i*m(xo, yo,.' ,Xm, yJ) v (Vx 3y)(u"(x, y) e S).
)

By induction on the ordinals define a sequence {φξ}ξ of subsets of A<ω, where

ueφ°o φ(u, 0),

ueφξo φ(u, (J φη\

and let φ00 = {Jξ(pξ. Intuitively, the set φ 0 0 consists of all "winning positions "for
Player I in the game G(V3, ~\R), since (using the axiom of dependent choices) we
can show that

(14) (xoJo ^ J π ) e ^

o(Vx n + j 3yn+1 Vxπ + 2 3yn + 2 •) V " ^ ^ o . ^o? , ̂ m? ym)-

In completing the proof of the theorem, we will not use the above equivalence,
but have included it in order to make the role of φ 0 0 transparent.

We claim now that if the empty sequence ( ) is not in φ0 0, then Player I has a
winning quasistrategy in the game G(3V, R\ while if ( )eφco, then Player II has a
winning quasistrategy in G(3V, R). Indeed, if ( )φφco, then it can be easily verified
that the set

Σ = {ueA<ω: (u has even length and u $ φ°°)

v (w has odd length and (Vy)(un(y) φ φ00)}
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is a winning quasistrategy for I in G(3V, R). On the other hand, if ( ) e ^°°, then for
w 6 p 0 0 , we first put | w \φ = least ordinal ξ such that u e φξ, and then let

T = {u 6 A < ω : for every veA<ωiϊv = (xθ9 yθ9...,xi9 y i 9 x i + ί 9 y i + ί )

is an initial segment of u of even length, then v e φ00

and

Kxo^oj ^ i^ ί ί lφ = 0 or

> | ( x 0 , y O 9 . . . 9 x i 9 y i 9 x i + l 9 yi+1)\φ}.

It is now quite easy to show that T is a winning quasistrategy for II in G(3V, R). ϋ

Combining the Gale-Stewart theorem with Lemmas 1.2.2 and 1.2.3 we have the
following:

1.2.5 Corollary. Let R c Aω be a relation which is open or closed. Then,

(i) (Assuming the axiom of choice). Player I does not have a winning strategy in
G(3V, R) if and only if Player II has a winning strategy in G(3V, R).

(ii) (Assuming the axiom of dependent choices). Player I does not have a winning
quasistrategy in G(3V, R) if and only if Player II has a winning quasistrategy

). D

The above corollary allows us to push the negation through the infinite string
Thus, if R ^ Aω is open or closed, then

(13) -ι(3x0 V-Vo 3*i V^i )R(xθ9 y0, xl9 yl9...)

o (Vx0 3yo Vxx 3^! •) -ΊR(X0, y0, xl9 yl9...).

D

1.2.6 Corollary. The closed game quantifier & is the dual of the open game quantifier

9. Ώ

As was mentioned in the introduction to this section, all the preceding results
extend to arbitrary infinite strings. In general, if Q = (Qθ9 Ql9..., Qi9...) is an
infinite string such that for each i = CU, 2, . . . Qt is the existential or the universal
quantifier on A9 then the dual string Qu is defined by

If a relation R c Aω is open or closed, then we have the equivalence

(15) - i ( β o * o δ i * i * * * Qixi'' ')R(xo, Xι, > Xi> - •)

Qixi'' )
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Proof of the above equivalence requires the full axiom of choice if the interpretation
is via winning strategies and the axiom of dependent choices if the interpretation is
via winning quasistrategies.

1.2.7. In view of the preceding results for the open and the closed games, it is
natural to ask whether or not there are other relations R c Aω for which the game
G(3V, R) is determined. We say that the game G(3V, R) is Borel if the relation R is a
Borel set in the product topology on Aω, where A discrete. Martin [1975] proved
that in ZFC every Borel game is determined. His proof actually established that in
ZF + axiom of dependent choices (DC) every Borel game is weakly determined;
that is, that, one of the two players has a winning quasistrategy in such a game. The
question of determinacy for games G(3V, R\ where R has higher complexity, is
independent of ZF and leads into strong set-theoretic hypotheses.

1.2.8 Remarks. We have two reasons in mind for making explicit the distinction
between winning quasistrategies and winning strategies. The first, is that it is often
important to know the weakest possible metatheory in which we can formulate and
prove results about infinite strings of quantifiers. This will be useful, in Section 3 of
this chapter for there we discuss the set-theoretic definability of the infinitary logics
built by using the game quantifiers. The second reason is the connection between
game quantification and descriptive set theory, a connection which will be briefly
pursued in Section 4. Much of the current research in descriptive set theory is
carried in ZF together with the axiom of dependent choices (DC) and the hypothesis
that certain infinite games are weakly determined.

From now on, we will distinguish explicitly between strategies and quasistra-
tegies in only a very few cases. Instead, we will use the statement "Player I wins the
game G(3V, R)" for both interpretations, i.e., depending on the context or on the
metatheory available, this means that Player I has a winning strategy or a winning
quasistrategy in the game G(3 V, R).

1.2.9. We should point out that finite strings of quantifiers at the beginning can
always be absorbed inside an infinite string. More precisely, for any relation R ς= Aω,
we have the equivalence

(16) (βθ*θ)(βl*l) (QnXMQn* lXn+l)(Qn+2Xn + 2) ' ' '}

R(χ0, x l 5 . . . , xn, xn+ι, xn+2> - - •)

" * QnXnQn+lXn+l ' ' ')R(X0> Xl> -> Xn> Xn+l? •)»

where β£ = 3 or Qt = V, for each i = 0, 1, 2 , . . . .
In general, if the relation R is arbitrary, the proof of the above equivalence

requires the axiom of choice, even though the interpretation may be via winning
quasistrategies. However, in the case where R is open or closed, no choice principles
are required in the proof, since there are canonical quasistrategies for such games.

We end this section with two simple propositions. These will provide a first
insight into the relationship between game quantification and second-order logic.
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If R c A<ω is a relation on the set of finite sequences from A, then R gives rise
to an open relation \J R and a c/osed relation /\Ron the set ^4ω of infinite sequences
from A, where

\/R = {oceAω: there is some neω such that (α [n)eR}

and

/\ # = {α e Aω: (α [ ή) e R for all n e ω}.

1.2.10 Proposition. Let R <Ξ A<ω be a relation on the set of finite sequences from A.
Then,

(Vx0 3y 0 V*! 3yί VxM 3 ^ •) Λ Λ ( χ o > ^o ?

 χ i , )>i, > x n ? ^«)

iff (3Γ)(Γ fs β winning quasistrategy for I m G(V3, /\ R) and
T ^ R).

Proof The result follows immediately from the observation that if T is a winning
quasistrategy for Player I in G(V3, /\ fl), then, using dependent choices, we see that
any sequence u = (x0, y0,..., xn, yn) in T can be extended to a round (xo,yo,...,
xn,yn, xn+ i,yn+i, . O of G(V3, Λ R) in which I follows T. D

The closed game quantifier can be expressed using second-order existential
quantification. This is the content of the next proposition, a result that we will use
repeatedly in the sequel.

1.2.11 Proposition. Let R c= A<ω be a relation on the set of finite sequences from A.
Then,

(Vx0 3y0 Vx! 3yx Vxπ 3yn •) /\ R(x0, y0, xl9 yϊ9...9 xn, yn)

iff

&(\fxo3yo)((xo,yo)eT1)

& (Vx0 Vyo VxM_! Vy^

-•(ΛίXo^O^ ^n-l^π

& (Vxπ 3yπ)(Tπ + 1(x0, )Ό»

Proo/ In view of Proposition 1.2.10, it is enough to consider a winning quasistrategy

T for I in the game G(V3, /\ R) and to put
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2. Projectίve Classes and the
Approximations of the Game Formulas

In this section we will study the interactions between game quantification and
global definability theory. The first basic result to be presented here is Svenonius'
theorem which establishes that on countable structures the relations definable by
the closed game quantifier coincide with the Σ} relations. Following this theorem,
we will show that the game quantifier formulas can be approximated by formulas
of the infinitary logic Lωιω. These two results make it possible to analyze certain
second-order statements, such as Σ} and Π} formulas, by the use of methods and
techniques from the model theory of L ω i ω . As an illustration of these ideas, we will
here outline a proof of Vaught's covering theorem. The section will end with
applications of the approximations of the game formulas to descriptive set theory
and to the model theory of Lωιω and admissible fragments.

2.1. Game Quantification and Projective Classes

Throughout this section we will be working with vocabularies which contain only
relation and constant symbols. If τ is such a vocabulary, then Lωco[τ] is the set of all
first-order formulas of vocabulary τ. As usual, L ω i ω is the infinitary logic which
allows for countable disjunctions and conjunctions, while Lω i ω[τ] is the set of all
formulas of Lωιω of vocabulary τ. If the vocabulary is either fixed or understood
from the context, then we will often write Lωω and L ω i ω instead of Lωω[τ] and

ί-ωiω[τ].
In what follows countable means of cardinality less than or equal to ω; that is,

the cardinality is either finite or denumerably infinite. Moreover, we write HF for
the set of hereditarily finite sets and HC for the set of hereditarily countable sets, so
that

HF = {x: ITc(x)\ < ω} and HC = {x: \Tc(x)\ < ω j .

All the vocabularies to be considered here are countable. If τ is such a countable
vocabulary, then we can identify the formulas of Lω i ω[τ] with set-theoretic objects,
so that if φ is in Lω i ω[τ], then Tc({φ}) c HC. In particular, we have that

Lωω[τ\ = Lω i ω[τ] n HF and Lω i ω[τ] = Lω i ω[τ] n HC.

If A is an admissible set (possibly with urelements) and τeA, then

LA\τ\ = L J T ] Π A

denotes the admissible fragment o/Looω[τ] associated with A, where L^ω is the
infinitary logic which allows for arbitrary disjunctions and conjunctions, but
which only allows for finite strings of quantifiers.
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2.1.1 Definitions. Let τ be a countable vocabulary containing only relation and
constant symbols.

(i) We say that a second-order formula φ is PC Δ [τ] (or simply PCΔ) if it is of the
form

where 1? is a countable set of relation symbols R = (Rί, R2,...) not in the vocabulary
τ and where, for each n e ω, we have that φn(R) is a formula of L ω ω [τ ' ] , with τ' =
τ u R.

(ii) We say that a second-order formula φ is Σ} over L ω i ω [ τ ] , and we write φ
is Σ}(Lω i ω[τ]) or simply Σ } ( L ω i J if it is of the form

3Rφ(R),

where R is a countable set of relation symbols not in τ and ψ(R) is a formula of
Lωιω{_τf']9 with τ' = τ u #.

(iii) If A is an admissible set and τeA, then we say that a formula <p is Σ} over
LA[τ\ and we write φ is Σj(L^[τ]) or simply Σ\(LA\ in case φ is of the form

where £ is a countable set of relation symbols not in τ such that RGA and (/<£) is a
formula of the admissible fragment LA[τ'\ with τ' = τ u Λ.

We now introduce the notions of a closed gameformula and an open gameformula,

which are obtained by applying the closed and the open game quantifier to formulas

of the first-order logic Lωω.

2.1.2 Definitions. Let τ be a vocabulary which is countable and contains only
relation and constant symbols.

(i) We say that Φ(z) is a closed game formula if it is of the form

(1) (Vx0 3y0 Vxt 3y1 •) /\ φtt(z, x0, y0,..., x n_ l 5 ^ - 0 ,
n<ω

where φπ is a formula of L ω ω [τ] in the displayed free variables, for each neω.
(ii) We say that Φ(z) is an open game formula if it is of the form

(2) (3XO V y 0 3Xι tyi •) V <Pn& X 0 , y o , . . - , * n - U ^ - l X
n<ω

where φπ is a formula of L ω ω [τ] in the displayed free variables, for each n e ω.
The Gale-Stewart theorem (1.2.4) implies that the negation of a closed game

formula is always logically equivalent to an open game formula, and vice-versa. It
actually turns out that there is a strong connection between PC Δ formulas and
closed game formulas. However, in order to analyze Σ}(Lω i ω) formulas we must
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consider the following generalization of the game formulas, a generalization

introduced by Vaught [1973b].
(iii) A closed Vaught formula Φ(z) is one of the form

(3) ( Λ
i o e I j o e l i i e l j i e l

/\ φhjo-U-iJn-ifr X θ 5 3,0, . . . , χn_ „ yn_ ,X
Π < CO

where / is a countable set and, for each 0'0?7o» > i«-i>h-1) 6 ^2"> w e have that
φiojo-in-ijn-ifc X Q ? y 0 , . . . , χw_ 1, ^ _ 2) is a formula of L ω i ω [τ] in the displayed
free variables.

(iv) An open Vaught formula Φ(z) is one of the form

(4) (

ioel joe I

φ yz, x 0 , y0, . . . , xπ_i, yn- \h

where / is a countable set and each φiojo'"ln'ιJn-ί(z, x 0 , y 0 , . . . , xn_!, yπ-i) is a
formula of L ω i ω [τ ] in the displayed free variables.

To simplify the already cumbersome notation, we will henceforth write

i, J for the sequence (iojo,..., iΛ-i,jΛ-i) in I2n

and

x, j ; for the sequence of variables (x 0, y0,..., xΛ_ l 5 yn-i)

so that

φljJ(z, x, y) denotes the formula

(v) We say that Φ(z) is a game formula if it is either an open or a closed game
formula. Similarly, a Vaught formula is one which is either an open or a closed
Vaught formula.

(vi) If Φ(z) is either a game formula or a Vaught formula and ΊϊA is an admissible
set, then we say that Φ(z) is in A just in case the family of formulas {φljJ(z, x, y):
(i, J) e /2", n < ω} is an element of A.

2.1.3. If 31 is a structure of vocabulary τ, then the interpretation of a Vaught
formula on 9ί is via a two-person infinite game in a round of which Player I and
Player II take turns and each chooses an element from the universe A of the
structure *Ά and an index from the set I. The definition of a winning strategy and a
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winning quasistrategy in this game is analogous to that given in Section 1.2. The
Gale-Stewart theorem extends to Vaught formulas by essentially the same proof, so
that the negation of a closed Vaught formula is logically equivalent to an open
Vaught formula, and vice-versa.

In general, game formulas cannot capture statements expressible by formulas of
the weak second-order logic Lw I I. On the other hand, the infinitary logic Lωiω is
stronger than Lw I I, so that if we hope to study Σ}(Lω i ω) formulas using some
infinitary logic, then we must consider a logic which is at least as strong as L w l l .
These comments provide a first justification for introducing the Vaught formulas.
We should also point out here that if / = ω and 51 = {A,.. .> is a structure of
vocabulary τ such that ω c A and 91 possesses a first-order coding machinery of
finite sequences, then the open and the closed Vaught formulas have no more
expressive power than the formulas obtained by applying the open and the closed
game quantifier to formulas of L ω i ω . Of course, over such structures the weak
second-order logic Lw l l is subsumed by the first-order logic Lωω.

We now proceed to investigate the connections between PC Δ and Σ}(Lω i ω)
formulas on the one hand and closed game and Vaught formulas on the other. All
the results refer to a fixed vocabulary τ which is countable and contains only
relation and constant symbols.

2.1.4 Proposition, (i) Any closed game formula is logically equivalent to a PC Δ

formula.
(ii) Any closed Vaught formula Φ(z) is logically equivalent to a Σ}(Lω i ω) formula.

Moreover, if A is an admissible set and Φ(z) is in A, then Φ(z) is logically
equivalent to a Σ\(LA) formula.

Proof The first part of this proposition follows immediately from Proposition 1.2.11.
On the other hand, the extension of this proposition to closed Vaught formulas
gives easily the second part. D

Svenonius [1965] established a partial converse to Proposition 2.1.4. More
specifically, he showed that over countable models the closed game formulas have
the same expressive power as the PC Δ formulas. Vaught [1973b] obtained a
generalization of this result by introducing the class of formulas which here we
call closed Vaught formulas and by showing that over countable structures they
are equivalent to the Σ}(Lω i ω) formulas. Before presenting these results, we will
introduce the following notation:

1=' φ means that the sentence φ is true in all countable structures.

Notice that if φ is a sentence of L ω i ω [ τ ] , then

\=r φ if N= φ,

because the Skolem-Lόwenheim theorem holds for the infinitary logic L ω i ω .
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2.1.5 Theorem, (i) (Svenonius [1965]). For any PC Δ formula 3R/\n<ω ψn(z, R),
there is a sequence of quantifier-free formulas φn(z, x, y) of Lωω[τ] such that if
Φ(z) is the closed game formula (Vx0 3y0 Vxx 3yx •) f\nφn(z, x, y% then

(a) t=lR/\ψH(z,R)^Φ(z)'9

(b) 1=' Φ(z) -> 3Λ /\ ^π(z, R); and hence

n<ω

(C) \='Φ(z)"3

Moreover, the quantifier-free formulas φn(z, x, y) can be obtained recursively
from n, R and the sequence {φn(z, R)}.

(ii) (Vaught [1973b]). For any Σ}(L ω i J formula 3R\j/(z, R\ there is a closed
Vaught formula Φ(z) which does not contain symbols from R and such that

(a) N3#(α)-Φ@;
(b) \=r Φ(z) -> lRψ(z, R); and hence

(c) \='Φ(z)^3Rφ(z,R).
Moreover, the formulas {φι>J(z, x, y): (ϊ,J)eI2n,n < ω}, which determine
Φ(z), can be chosen to be in L ω ω [τ] and to depend on 3Rψ(z, R) and ω in a
primitive recursive way. In particular, if A is an admissible set, ωeA and
3Rφ(z, R) is Σ\(LA), then the closed Vaught formula Φ(z) can be chosen in A.

Sketch of Proof In what follows we merely outline a proof of part (i) and give a hint
of the proof of part (ii) of the theorem.

If we add new constant symbols, it will suffice to prove the result for a PC Δ

sentence 3R f\n<ω ψn(R\ where φn(R) is a sentence of Lωω[τ u R~\, for each n e ω.
Moreover, using the Skolem normal form, we may assume without loss of generality
that the PC Δ sentence 3R f\n<ω ψn(R) is actually of the form

3R Λ ( V x ! Vx J(3yi 3ylt)χH(xl9..., x k n , y l 9 . . . , y l n , R ) ,
n<ω

where χn(xί,..., xkn, yl9...9 yln, R) is a quantifier-free formula of Lωω[τ u R~\, for
each neω.

To make the game-theoretic argument involved transparent, we will also
assume that we have only one quantifier-free formula χ(x, y, R) in the variables
x and y, so that the original PC Δ sentence is

3R(\/x)(3y)χ(x, y, R).

It is easy to show that for any quantifier-free formula θ(w, R) in L ω ω [τ u R]
one can find, recursively from θ, a quantifier-free formula θ*(w) in L ω ω [τ] such that

N 3Rθ(w,R)^θ*(w).
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Using the above fact, we let φn(xθ9 y0,... ,xn, yn)be a quantifier free formula

of L ω ω [ τ ] which is logically equivalent to

3Rf\χ(xm9ym9R)
m<n

and then consider the closed game sentence Φ:

3y0 Vxx 3y1 •) Λ ^ o * Jo , * i , yl9...,xn, ynl

We claim that this closed game sentence has the required properties, namely

(a) N 3R(Vx)(3y)χ(x, y, R) -> Φ; and
(b) K Φ

It is clear that if 91 is a structure of vocabulary τ such that

then the set

Σ = {u e A<ω: if (x 0, y0,..., xn, yn) c u, then

is a winning quasistrategy for Player I in the game associated with Φ.
Assume now that 21 is a countable structure such that 91 f= Φ. Consider a

round of the game associated with Φ in which Player II enumerates the universe A
of 91 and Player I answers using his winning quasistrategy; that is, the round looks
like:

II

I

α0 αx α2

b0 bγ b2

with A = {αθ9αί9α2, .}.

Since I follows his winning quasistrategy in this round, we have that

91 \= 3R Λ χ(aw, bm9 R)9 for all neω.

Let am, bm, for m < ω, be new constant symbols not in τ and consider the set of
quantifier-free sentences Γ, where

T = Diagram(9l) u {χ(aw, bm, R): m < ω}.
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T is finitely satisfiable; and, hence, by the compactness theorem it has a model.

Since each sentence χ(am, bm, R) is quantifier-free, this implies that there is a set R™

of relations on A such that

21, R* \= χ(aw, bm, R) for each m < ω.

However, the sequence {α0, au a2, .} exhausts the universe A of the structure 21,
and therefore we have

The main* argument remains the same in the general case where we have
infinitely many quantifier-free formulas χ π ( x l 9 . . . , xkn, yu ..., yln, R) for η < ω.
There are only minor combinatorial complications which can be handled by
enumerating the tuples x, y of variables in such a way that the variables occurring
at stage m of the enumeration have indices < m. This completes the proof of the
first part of the theorem.

In order to establish part (ii) of our result we show first that a Σ}(Lω i ω[τ])
formula Ψ(z) is equivalent to a PC Δ formula Ψ'(z) over an expanded vocabulary τ'
which contains τ and subsumes weak second-order logic. By applying part (i) of the
above, we can find a closed game formula Φ'(z) over τ' which is logically equivalent
to Ψ'(z) on countable structures. The closed game formula Φ'(z) over τ' can, in
turn, be translated to a closed Vaught formula Φ(z) over τ. In such a translation the
propositional part of the Vaught formula is used to capture the expanded
vocabulary.

We should point out that Harnik [1974] and Makkai [1977a] gave direct
proofs of part (ii) by associating an appropriate countable admissible fragment with
the Σ J(Lω i ω[τ]) formula Ψ(z). The proof is analogous to the one we gave for part (i)
with the model existence theorem for fragments used in place of the compactness
theorem. D

2.2. The Approximations of the Game and the
Vaught Formulas

In Section 1 we pointed out that game formulas can be used to capture statements
which are not expressible in L ^ . We will see here however that the Vaught
formulas in general and the game formulas in particular can be approximated by
formulas of L ^ . This result combined with Theorem 2.1.5 (the theorems of
Svenonius and of Vaught) makes it possible to analyze Σ}(Lω i ω) and Π | ( L ω i ω )
formulas via Lωiω formulas.

2.2.1 Definition (Vaught [1973a]). Assume that Φ(z) is a closed Vaught formula of
the form

*o Λ 3>Ό V v * i Λ 3 > Ί V •) Λ <PUJ& χ> y)
foe I j o e l Ί \ e l j \ e l / n
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Then, for any n < ω, any (i, /) = (io,jo,..., in- ujn- x) e J 2 n, and any ordinal
α, by induction on α simultaneously define a formula

<5^(z, x, y) = δF0-*"-"*-^, x θ 9 y O 9 . . . 9 x n . l 9 y^J

as follows:

°0 V2, *0> ^0? •> xn-li yn-l) 1 S

Ψ \Z, ^0? JO? J X m-1 ? Jm-lλ

(2) ^rΓ'-'^'ί^o.yo. -Vi.Vi) is

Vxn Λ 3Λ. V ̂  •" 'W"(z, ^ o , 3Ό. > * . , Vn)
ίne/ /πe/

(3) δla7(z9 x, y) is /\ δljjJ(z, x, y), if α is a limit ordinal.

We write δx(z) for the formula <5£ }(z), where ( ) is the empty sequence, and we
call (5α(z) the α-ί/z approximation of Φ(z). For each ordinal α, we let pα(z) be the
formula

(4) V X O A V ) O A " ' V X » - I Λ VJ«-I Λ
ϊoe/ jo el in-1 el jn-iel/

2.2.2. It is clear that for each ordinal α and each (i, J) e /2 w, where n < ω, the
formulas (5^7(z) and pα(z) are formulas of Laoω, Moreover, if α < ω l 5 then they are
actually formulas of LωiC0.

It is also quite easy to verify that the formulas δ^7(z) can be defined by a Σ-
recursion as a function of the Vaught formula Φ(z), the sequence i, /and the ordinal
α. Consequently, if X is an admissible set having ordinal o(A) and if the Vaught
formula Φ(z) is in A, then for every ordinal α < o(A\ the formulas (5α(z) and ρa(z)
are elements of A.

2.2.3. If Φ(z) is a closed game formula, then the approximations of Φ(z) are defined

in an analogous way, although they are actually of a simpler form. More specifically,

if Φ(z) is the closed game formula

y0 Vx! 3yx •) Λ <Pn& *o> )Ό> > *n-i> yn-i\
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then

(5) δn

0(z, xO9yO9...,xn-l9 yn-i) is /\ φjz, xθ9 y0, ,xm-i, ym-\\
m<n

(6) δn

a+1(z9 x 0 , yO9...9 xn-u yn-i) is Vxπ 3ynδ
n

a

+1(z, x 0 , yθ9...9 xn9 yn),

(7) δn

a(z, x 0 , yO9...9 x n _ l 5 yn-i) is /\ δn

β(z, x 0 , yθ9. ., x n - i , y«-i)

for α limit.

We write <5α(z) for the formula δ°Λ(z) and call it the α-th approximation of the
closed game formula Φ(z).

Also, we put ρΛ(z) for the formula

(8) Λ KV*o Vy0 Vx,,-! V^-Oί^Xz, xo> y 0 ? , Xn-i, yn-i)
n<ω

-> (5"+i(z, x 0 , y 0 ? , xn-1, yn-i))l

If Φ(z) is an open Vaught formula (or an open game formula), then we define the
approximations

εί J(z, x, y) (respectively, εj(z, x, y))

of Φ(z) in a dual way, so that if

<%7(z, x, y) (respectively, δn

a(z, x, y))

are the approximations of the closed Vaύght formula (or the closed game formula)
which is logically equivalent to ~~ι Φ(z), then

εi'7(z, x, y) is logically equivalent to —i<5jf'-
7(z, x, y)

(respectively, ε"(z, x, y) is logically equivalent to ~ι (5"(z, x, j;)).

2.2.4 Example. Let < be a binary relation symbol in the vocabulary τ and let Φ
be the open game sentence which asserts that < is well-founded; that is to say, Φ is
the sentence

(Vx0 Vxt Vx2 •)( V -•(*..-1 < *»-2)).

Below we compute the approximations εα of Φ and find their meaning:
(i) if m < ω, then εm = ε° is the sentence

(Vx0 VXi-.-Vx^i)/ V ~Ί(xk-ί < x k - 2 ))
\k<m )



2. Projective Classes and the Approximations of the Game Formulas 387

(ii) εω = ε° is the sentence

V£m= V \
m<ω m<ω |_ \k<m

Notice that εω asserts that, for some m < ω, there is no descending chain with m
elements in <. Therefore, εω states that < is a well-founded relation of finite rank.

(iii) ε ω + 1 = ε° + 1 is the sentence

\m<ω \k<m / ]

This sentence asserts that, for every element x in the field of <, the set of
predecessors of x has finite rank. Therefore, ε ω + x is equivalent to the assertion that
< is a well-founded relation with rank < ω < ω + 1.

The pattern revealed in (i), (ii), and (iii) holds in general. Indeed, by induction
on α, we can show that for any ordinal α

εα asserts that " < is a well-founded relation of rank less than α".

It follows, therefore, that if 21 is a structure of cardinality < /c, then

iff 21 N V **•

Later on we will show that the above equivalence holds for arbitrary open games
or for open Vaught formulas. Before developing the general theory of the ap-
proximations, we will present the main properties of the finite approximations of
game formulas on saturated structures. Consequently, we now consider

2.2.5 Theorem. Let Φ(z) be the closed game formula

(Vx0 3y0 Vxx 3yx •) Λ Ψn& *b> )Ό» > χn-u yn-ι\
n<ω

and let 21 be a structure of vocabulary τ.

(i) //2I is ω-saturated, then

- Aδm(z)\,
m<ω /

(ii) //2I is recursively saturated and the sequence {φn(z, x, y): n < ω} is recur-

sive, then again

Λ δJd\
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Proof. We outline the argument for part (ii) since that part is the effective version of
part (i).

Let 91 be a recursively saturated structure and assume that the sequence
{φn(z, x, y): n < ω} is recursive. It is clear from the definition of the finite ap-
proximations that for any structure 91

91 \= Vz(Φ(z) -> δjz)) for all m < ω.

Thus, it remains to show that, under the above hypotheses,

1= Vz(
\m<ω

The main idea comes from the proof of the Gale-Stewart theorem in Section 1.
More specifically, as in Theorem 1.2.4, we consider the monotone operator φ(z, u, S),
where

φ(z, u,S)o(ueA<ω and u has even length)

& ( i f w = (xo»J>o> >*i !- i>)Ίι- i )>

t h e n ( V -I φk(z, xθ9 y0,... ,xk-i9 yk-i)
k<n

Let φa be the stages of the inductive definition generated by φ. That is,

φ° = {(z, u): φ(z, u, 0)}, and φ* = |(z, u): φ(z, u, [j φβ)i

From this, it is easy to show that, for any m < ω and any n < ω, we have

(1) ( z , x o , j ; o , . . . , V i , V i ) e f iff (z, x0, y0,..., xπ_ l5 y^

Since the sequence {φn(z, x, y): n < ω} is recursive, we can view φ(z, u, S) as a
Σί monotone inductive definition on HYP^,. But 9ί is recursively saturated and so
(̂HYPgj) = ω. Therefore, by Gandy's theorem, (see Barwise [1975]) the inductive

definition must close off at ω steps, so that we then have

(2) φ™= \Jφm.
m<ω

Assume now that 91, z |= f\m<ω δm{z). Then zφφm for all m < ω by the equi-
valence given in (1). Hence, z φ φ00 by (2). The proof of the Gale-Stewart theorem
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implies then that Player I has a winning quasistrategy in the closed game G(V3,
/\n<ωφn). Hence, 91, z \= Φ(z). U

2.2.6. In many respects, the idea behind the approximations has its origins in
classical descriptive set theory and the approximations of the operator s/ (see, for
example, Kuratowski [1966]). The finite approximations of closed game formulas
were introduced by Keisler [1965c], who established, among other results, the
first part of Theorem 2.2.5. Moschovakis [1969, 1971, 1974a] developed the
theory of positive elementary inductive definability on arbitrary structures 91 which
possess a first-order coding machinery of finite sequences. He obtained the basic
connection between inductive definability and game quantification and, in essence,
discovered the properties of the approximations δa of closed game formulas.

However, Moschovakis' results were of a local nature, since they dealt with an
arbitrary but fixed structure. In the abstracts Chang-Moschovakis [1968], Chang
[1968a], and the paper by Chang [1971b], the approximations of the game
formulas are used implicitly in the study of global definability. The approximations
of the Vaught formulas were introduced by Vaught [1973b] who established their
main properties and used them in the study of Σ}(Lω i ω) and Π}(Lω i ω) formulas.

2.2.7 Theorem (Vaught [1973b]). Let Φ(z) be a closed Vaught formula of the form

o Λ 3>Ό V vχi Λ ^ i V •) Λ Φ~3& *> y)
i o e l j o e / i\el j i e l

Then, we have

(i) for any ordinals α, β with α > β and for any j , j ,

N δϊJXz,x9y)^ψ(z9x9y);

(ii) for any ordinal α,

1= Φ(z) -> δΛ(z) and \= (δΛ(z) A pa(z)) -> Φ(z);

(iii) for any structure 91 of cardinality < K,

0) 9iμ=vz( V W ) ;

(2) Λ
L α<κ+

(3) 91 N Vz|~Φ(z)~ V (P*® Λ δ&))\
L α<κ+ J
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(iv) Moreover, ifM is an admissible set, o(M) > ω, Φ(z) is in M and 91 e M, then

911= Vzpo(M)(z)

if mί of Proof. Part (i) is proven by induction on the ordinal α. Part (ii) follows easily
from the definitions of the formulas <5α and pΛ. For example, if 91 is a structure such
that 91, z \= δΛ(z) Λ pα(z), then the set

Σ = {ue(A x /)<ω:(Vι;)((ι; - (*oΛ,)Wo ? • • • ^ - I Λ - I ^ - I J H - I )

& (l? C ||)) ^ 9 1 , Z, X0, y0,..., Xπ_l9 J n _! |= δ™)}

is a winning quasistrategy for Player I in the game associated with Φ(z). Hence,
91, z μ= Φ(z).

The proof of parts (iii) and (iv) requires the inductive analysis of the dual open
game and is similar to the proof of Theorem 2.2.5. In (iii), a cardinality argument
shows that the corresponding monotone operator closes offat some ordinal α < K +.
In (iv) this is proved using Gandy's theorem or directly using a boundedness
argument. D

The following result is an immediate consequence of Theorem 2.2.7 in which we
take K = ω in part (iii). It has interesting applications in descriptive set theory.

2.2.8 Corollary. Let Φ(z) be a closed Vaught formula. Then

(i) t='(Vz)(φ(z)~ /\δa(z)\
\ α<ωi /

(ii) N'(Vz)(φ(z)~ V VJ® A PJ®&) Π
\ α<ωi /

Theorem 2.2.7 is the main result on the approximations of the closed Vaught
and the closed game formulas. We can, of course, formulate and prove an analogous
"dual" result on the approximations of the open Vaught and the open game
formulas.

Burgess [1977] introduced a notion of approximations for formulas of abstract
logics and showed that if (L*, |= *) is an absolute logic, then the formulas of L* can
be approximated by formulas of Laoω. His proof makes use of Theorem 2.2.7, since
he shows first that any formula of L* can be approximated by formulas involving
game quantification and arbitrary disjunctions and conjunctions. More about
these results can be found in Chapter XVII of this volume.
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In what follows we will combine the Svenonius-Vaught result which is given in
Theorem 2.1.5 with the results on approximations in order to study properties of
the Σ}(Lω i ω) and the Π}(Lω i ω) formulas. We begin by proving a strong version of
the interpolation theorem for Lωω.

2.2.9 Theorem. Let Φ, Ψ be Σ}(Lωω) sentences and let δ%*, where m < ω, be the
finite approximations of the closed game sentence Ψ* which is equivalent to Ψ on
countable structures.

/ / N Φ - > Ί Ψ , then there is some m < ω such that \= Φ -• —ι<5**.

Proof. In order to derive a contradiction, we assume that |= Φ -• —i Ψ, but for all
m < ω, the sentence Φ Λ $%* has a model. Consider then the closed game sentence
Φ* which is equivalent to Φ on countable structures and let δf*, where n < ω, be its
finite approximations. Since 1= Φ-> Φ*, N Φ * - > / \ n < ω δf* and N <5**-> όZ*, for
m > m', the set

T = {δT Λ δT: n,m<ω}

is finitely satisfiable. Let 91 be a countable, recursively saturated model of T. Then
91 N (Λ»<ω O A 0\n<ω O . But by Theorem 2.2.5, we have

Φ* <-> Λ C and ?l 1= Ψ* ̂  /\

so that 911= Φ* Λ Ψ*. However, since 91 is countable, 911= (Φ <-> Φ*) Λ (Ψ <^ ψ*)
and hence

91 N Φ Λ Ψ. But this is a condiction of the hypothesis that

D

The next result was established by Vaught [1973b] and has turned out to have
many interesting consequences.

2.2.10 Vaught's Covering Theorem. Let Φ, Ψ be Σj(L ω i ω ) sentences and let δ^\
for α an ordinal, be the approximations of the closed Vaught sentence Ψ* which is
equivalent to Ψ on countable structures.

(i) // |= Φ -• Ί Ψ , then there is an ordinal β < ω1 such that *= Φ -> ~iδj*.
(ii) Moreover, if A is a countable admissible set, Φ and Ψ are Σ\(LA) and \= Φ -+

~ Ί Ψ , then there is some ordinal β < o(A) such that \= Φ —• ~iδj*.

Proof Here we give the proof for the case where Φ and Ψ are Σ \(Lωιω) sentences and,
at the same time, point out the modifications that are needed if Φ and Ψ are

Let Φ and Ψ be Σ}(Lω i ω) sentences such that |= Φ -• ~i Ψ and let Φ* and Ψ* be
the closed Vaught sentences which are respectively equivalent to Φ and Ψ on
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countable structures. The key idea is that if ~ι Ψ holds, then we can use the inductive
analysis of the open Vaught formula which is equivalent to ~Ί Ψ* in order to extract
a Σ}(LωiC0) sentence which pins down ordinals. But then the undefinability of well-
order in L ω i ω implies that all ordinals pinned down in this way are bounded by some
ordinal β < ωv From this, it will follow that \= Φ -• ~iδj*. We now provide some
of the technical details there are necessary to make this idea precise.

The closed Vaught sentence Ψ* is of the form

where / is a countable set and the ψu J(x, y) are formulas of L ω i ω . It is easy to see that
if $%*'u J are the approximations of Ψ* for α an ordinal and (i, ]) e I2n, then

(1)

Λ fvxn Λ 3y« V W f>i"J-'"(*(>, >Ό, • ,Xn, i'n)
β<oc \ inel jnel/

k<n

It is clear from the above equivalence that the approximations of Ψ* would have
the same meaning if, instead by induction on the ordinals, they were defined by
induction on the rank of an arbitrary well-ordering <. We will now consider new
relation symbols <, P*'7for (Ϊ, J )e/ 2 " , n < ω, and a new constant symbol c.

We claim that in the expanded vocabulary τ' = τ u {<, c} u {P~ι'J: (i, J) e I2n,
n < ω} we can find a sentence χ of L ω i ω [τ ' ] which asserts that < is a linear ordering
and that the relations PιJ satisfy the equivalence given in (1) above along <. More
precisely, we let χ be the conjunction of the following sentences of L ω i J Y ] :

(i) " < is a linear ordering with greatest element c";
(ϋ) P{ Kc);

(iii) the universal closure of the formula,

c Λ 3v \/ \pι'*n'ϊ'Jn(v x v x v )

"inel njnel)

k<n

for (i, j) G /2", n e ω.

It follows from the preceding comments that if a structure 91 is a model of χ and
u is an element of < ^ of rank α, then for any ϊ, J, we have

{(x, y): P%^\u, x, y)} = {(x, y):%x,y\= δY*'1-1}.
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We will show now that the sentence ( ~ Ί Ψ * ) Λ χ pins down ordinals. Indeed, we
claim that:

(2) if 21 is a structure of vocabulary τ' such that 911= (~ι Ψ*) Λ χ,
then < ̂  is a well-ordering of its field.

Otherwise,let21 \= ( Ί Ψ * ) Λ χandletc > % >*υ2 >*••• >mvn >mvn+ι >*•••
be an infinite descending chain in the field of < ®. Since 21 N χ, we can use then the
conjucts given in (ii) and (iii) of χ and the infinite descending chain above to define
a winning quasistrategy for Player I in the game associated with ψ*. Hence we
have that 211= Ψ*. But this is a contradiction.

In order to complete the proof of the theorem, we observe that since |= Φ -> ~Ί Ψ
and \=f Ψ <-> Ψ*, we must have that N Φ -> - ιψ*. It thus follows from (2) above
that we have

(3) if 21 is a structure of vocabulary τ' such that 21 N Φ Λ χ,
then < ® is a well-ordering of its field.

The undefinability of well-order in Lωχω now implies that there is an ordinal
β < ω1 such that if 211= Φ Λ χ,then < ̂  has rank less than β. As a consequence, the
sentence Φ Λ δJ* has no model and therefore \= Φ -• ~i δJ*.

If Φ and Ψ are Σ{(LA\ where A is a countable admissible set, then the result can
be proved by an entirely analogous argument using the effective versions of
Theorems 2.1.5 and 2.2.7, and the theorem for pinning down ordinals in admissible
fragments (for the latter result, see Barwise [1975] or Chapter VIII of this volume).
Notice also that if A = HF, then the result was proved in Theorem 2.2.9. D

Although Vaught's covering theorem is a generalization of Theorem 2.2.9, its
proof appears to be quite different from the one given for Theorem 2.2.9. Therefore,
it is natural to ask if Vaught's covering theorem can be proved by combining
compactness results with recursive saturation. Harnik [1974] gave such a proof (his
proof can be found also in Makkai [1977a]) using the Barwise compactness
theorem for a countable admissible fragment A and the existence of Σ^-saturated
models. For the definition and related results about Σ^-saturation, the reader
should also see Section 7, Chapter VIII of this volume.

2.3. Some Applications of Game Quantification

The results in Sections 2.1 and 2.2 have many interesting applications to the
model theory of L ω i ω and admissible fragments LA. It actually turns out that we
can derive the main theorems about compactness, abstract completeness, and
interpolation in L ω i ω or in LA from the Svenonius-Vaught theorem, the approxima-
tions and the covering theorem. Since these results are well known and are discussed
in Chapter VIII of the present volume, we will here restrict ourselves to merely
listing some of the applications and making occasional brief comments on the
proofs.
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2.3.1 Applications of the Svenonius-Vaught Theorem. Vaught [1973b] obtained a
proof of the Barwise compactness theorem using tools from the theory of game
quantification. His argument consists of the following two independent parts:

(i) Let A be an arbitrary admissible set such that ω e A and consider the class of
bounded open game formulas. These are game formulas for which the associated
game is bounded for Player II in the sense that his next move must belong to the
union of the moves played thus far. More precisely, a bounded open game formula
Φ(z) is of the form

[(3xo)(V)>o e z u xo)(3xί)(\/y1 e z u x 0 u y0 u x t ) •]

V φn(z, x0, J>0> > xn-u yn-iX
n<ω

where each φ"(z, x 0 , y0,..., xπ_ l 5 yn-ι) is a Δ o formula.
Vaught [1973b] showed that every admissible set A with ω e A reflects bounded

open game formulas. That is, if Φ(z) is such a formula and i , z t = Φ(z), then there is
a transitive set w such that zsweA and <w, e>, z |= Φ(z).

(ii) The proof of the Svenonius-Vaught theorem (2.1.5) can be easily adapted
to show that if A is in addition countable, then every strict-Π} formula is equivalent
on A to a bounded open game formula. It then follows from part (i) that if A is a
countable admissible set with ωe A, then A satisfies strict Π}-reflection, and hence
A is Σ1 -compact.

2.3.2 Applications of the Approximations, (i) Every Σ}(Lω i ω) class of countable
models is the intersection of ϋί Lωiω-elementary classes,

(ii) Every Σ2(Lω i ω) class of countable models is the union of Kj Lω i α Γele-
mentary classes.

These two results are rather direct consequences of Corollary 2.2.8. The first
result, in turn, implies that every analytic set of reals is the intersection of K t Borel
sets. On the other hand, the second result yields Scott's isomorphism theorem for
countable structures, since if 21 is countable, then the collection {93: 93 « 91} is a
Σ}(Lω i ω) class of countable models.

Other applications of the approximation theorem given in Section 2.2.7
include:

(iii) The Reduction Principle for Π}(Lω i ω) Classes of Countable Models. This

principle asserts that if JίJ, 3f2 are two Πj(L ω i ω ) classes of countable

models, then we can find two other Π}(LωiC0) classes J f Ί, JΓ'2 such that

jfi u Jf2 = Jf'i u X'l and X\ n J Γ 2 = 0 .
(iv) The Abstract Completeness Theorem. This result states that if A is a

countable admissible set, then the set of valid sentences in LA is Σί on A
uniformly.

2.3.3 Applications of the Covering Theorem. In this discussion, we will examine:

(i) The interpolation theorem for Lωιω and countable admissible fragments,
(ii) The undefinability of well-order in Lωιω and the theorem on pinning down

ordinals in countable admissible fragments.
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The interpolation theorem follows immediately from the covering theorem.
Actually, in addition we obtain some information about the interpolant. For the
undefinability of well-order, we will assume that φ(<) is a Σ}(Lω i ω) sentence such
that if 911= φ( <), then < * is a well-ordering. Then f= φ( <) -> ~ι (3x0 3xx •) /\n < ω

(xπ+1 < xn), hence there is an ordinal β < ωx such that t= φ{<) -• ~~\δβ9 where δx

are the approximations of (3x0 3xx •) f\n<ω(xn+1 < xn). It follows now im-
mediately from Sections 2.2.3 and 2.2.4 that iδβ asserts that the rank of < is less
than β.

The proof of the covering theorem we gave here makes use of the undefinability
of well-order. However, Harnik's [1974] proof of this result does not depend on it,
so that we can first prove the covering theorem and then establish the undefinability
of well-order. This is, for example, the approach taken by Makkai [1977a].

Further applications of this material can be found in Makkai [1973b, 1974b],
Vaught [1974], Harnik [1976] and Harnik-Makkai [1976].

2.4. On the Connection with Invariant
Descriptive Set Theory

We have here tried to develop the theory of game quantification in a more or less
self-contained way by using methods from the model theory of L ω i ω and admissible
fragments.

At this point we should mention that there is also a very interesting connection
between game quantification and invariant descriptive set theory. It is part of the
general interaction between infinitary logic and descriptive set theory, which arises
by identifying countable structures with elements of a product of topological spaces
of the form 2ω", ωω", or ωn. If φ is a sentence of some infinitary logic, then the
collection of all countable models of φ can be viewed as a subset of such a product
which is invariant under a certain action of the group ω ! of the permutations on ω,
or under a natural equivalence relation. Topological methods and results from
invariant descriptive set theory can then be used to derive theorems of infinitary
logic. In particular, some of the results we have presented here can be studied by
these methods. This direction has been pursued with much success by Vaught
[1974], Burgess-Miller [1975], Miller [1978] and others.

3. Model Theory for Game Logics

The aim of this section is to present an overview of the model theory for the infinitary
logics L^G and L^γ associated with game quantification. The main result is that
the logics L^G and L^v are absolute in the sense of Barwise [1972a]. Many model-
theoretic properties of L^G and L^v then follow from this result and from the fact
that both of these logics can express the notion of well-foundedness.
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3.1. The Infinitary Logics Lo o G and L^v

We will begin our discussion with

3.1.1 Definition. The infinitary logic (L^G, N=L O O G) i s determined by the class
^OOGM of L ̂ -formulas of vocabulary τ and the relation of satisfaction \=LooG

between sentences of L^x] and structures of vocabulary τ. If τ is a vocabulary,
then Lo o G[τ] is the smallest class which:

(i) contains all atomic formulas over the vocabulary τ
(ii) is closed under negation ~i

(iii) is closed under single existential 3 and single universal V quantification
(iv) if Φ is a set of formulas of L ^ T ] with only finitely many free variables in Φ,

then the conjunction f\ Φ and the disjunction \f Φ are also formulas of

^ O O G W ;

(v) if {φn(z, x 0 , y0,..., xn_u y^J: n < ω} are formulas of LaoG[τ'] in the
displayed free variables, then the expressions

(Vx0 3y0 \/x1 3y{ •) Λ <Pn& *o> )>o> • - » xn-u yn-ι)
n<o)

and

(3x0 \fy0 3xx Vyi •) V <Pn& xo,yo,...,xn-ι, yn-i)

are also formulas of L^G[T] with z as free variables.

The relation of satisfaction "91 I=LOOG *A" between sentences of LaoG[τ'] and
structures of vocabulary τ is defined inductively, using the game theoretic interpreta-
tion from Section 1 for the clause given in (v). It is understood that if the full axiom
of choice is available in the metatheory, then the interpretation is via winning
strategies. If one is working only with the axiom of dependent choices, then the
interpretation of the clause in (v) is given using winning quasistrategies.

If τ is a vocabulary and HC is the set of hereditarily countable sets, then we put

LωιG[τ\ = L ^ C τ ] n HC.

Notice that the open game and closed game formulas that we considered in
Section 2 are actually elements of L ω i G [τ ] .

3.1.2 Definition. The infinitary logic ( L ^ , 1=1^) ^s defined as follows:
If τ is a vocabulary, then the collection Lo o K[τ] is the smallest class of formulas

which satisfies the closure properties (i), (ii), (iii), and (iv) in the previous definition
and in addition is such that:

(v') if / is a non-empty set and for every nεω and every (i, J )eI 2 n φΪJ(z, x0,
y0,..., xn-15 yn-ι) is a formula of LaoV[τ~] in the displayed free variables,
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then the expressions

y
ioeJ Joe/ i'ie/

f \ φ U 7 ( z 9 x0, y 0 , .

and

i o e / j o e / l Ί e / j i e /

V<Pi J α x o , J Ό , ^,,-i,3'.-i)

are also formulas of L^^fτ] with z as free variables.

The relation of satisfaction "21 h=LooKιA" between sentences of L ^ ^ τ ] and
structures of vocabulary τ is defined inductively, again associating a game with the
formulas in (v')

We put

L f f l lV[τ] = LaoV[τ'] n HC

and observe that the open Vaught and closed Vaught formulas of Section 2 are
elements of L ω i K [τ] .

It is not hard to verify that the logic LωιV is stronger than the logic L ω i G . Indeed,
LωιV—and, of course, L^v—can express infinitary connectives which cannot be
captured by LωxG (nor by L^G for that matter).

Vaught [1974] pointed out that the weak second-order version of LωiV coin-
cides with LωiV, so that LωχV is invariant under passage to weak second-order logic,
while LωiG is not. However, as we have mentioned before, over countable models
possessing a first-order coding machinery of finite sequences, the infinitary logics
LωιG and LωιV have the same expressive power.

3.1.3. We now recall the definition of an absolute logic from Chapter XVII, a
definition which was originally given in Barwise [1972a].

Let T be a set theory at least as strong as the admissible set theory KP and let
(L, \= L) be an abstract logic. We say that the logic (L, N L) is absolute relative to T if:

(i) The relation "φ is a sentence of L[τ]" is a Σ[ predicate of φ and the

vocabulary τ; and
(ii) if φ is a sentence of L[τ] and 21 is a structure of vocabulary τ, then the

predicate "21 \=L φ" is a Δj predicate of 21, φ and τ.

A logic (L, N L) is strictly absolute if it is absolute relative to the admissible set

theory KP.
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One of the main results of Barwise [1972a] (see also Chapter XVII of the present
volume) asserts that if (L, t=L) is a strictly absolute logic, then L < Looω. However,
we showed in Section 1.1.4 that there is a formula of L ω i G which asserts that:

" < is a well-ordering of order type y + y for some ordinal y."

Since the above statement is not expressible in L ^ , we obtain the following

3.1.4 Theorem. The infinitary logics L ω i G , LωχV, L^G, L^v are not strictly absolute.

D

It is now natural to ask whether or not the game logics are absolute relative to
some true set theory. The answer to this question is provided by the following result
of Barwise [1972a].

3.1.5 Theorem. The infinitary logics L ω i G , LωιV, L^Q and L^v are all absolute
relative to the theory KP + Σ^-separation + Axiom of Dependent Choices.

Sketch of Proof. Once more the main idea comes from the inductive analysis of the
open games, which was given in the proof of the Gale-Stewart theorem. An
inspection of the proof given there reveals, first of all, that the Gale-Stewart
theorem is itself provable in KP + Σ x -separation + axiom of dependent choices.
To establish that satisfaction is absolute for, say, the infinitary logic L ω i G , we define
by induction on the construction of the LωiG[τ]-formulas a Σ 1 predicate P(τ, 91, ψ, i)
such that if 91 is a structure of vocabulary τ, then

P(τ, 91, φ, i) iff (i = 0 & 91 \= φ) v (i = 1 & 91 \£ φ).

This automatically takes care of the negations, while for the crucial clause
given in (v) of Definition 3.1.1 we use the Gale-Stewart theorem and Σί -separation.
More precisely, if φ is the sentence

(Vx 0 3y0 VXi 3yί ) Λ Ψn(x<» ^ ,xn-ι> yn-i\

then

P(τ, 9ί, φ, 0) <=> Player I has a winning quasistrategy in G( V3, /\ φn

and

P(τ, 91, φ, 1) o Player I has a winning quasistrategy in GJ 3V, \J ~\φ
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where φ°° is the smallest fixed point of the monotone operator φ(u, S) associated
with the open game G(3V, \/n<ω iψn)9 just as in the proof of the Gale-Stewart
theorem given in Section 1.2.4. D

3.2. Model-theoretic Properties of the
Logics L^G and L^v

The following model-theoretic properties of the infinitary logic L^v follow from its
absoluteness and the results in Chapter XVII of this volume.

3.2.1 Theorem, (i) The logic L^v has the downward Skolem-Lόwenheim property

to ω. That is, if a sentence φ o/Lo o ί /[τ] has a model, then it has a countable

model.
(ii) The logic L^y has the Karp property. That is to say, ι/2l, 23 are structures

of vocabulary τ which satisfy the same sentences ofLaoω[τ'], then they satisfy
the same sentences of LoΰV[τ']. D

Barwise [1972 a] showed that these properties are shared by any abstract logic
which is absolute. Moreover, Barwise [1972a] and Burgess [1977] established
certain negative results about logics which are absolute and unbounded. That is,
the collection of well-founded structures is a PC class. Since the infinitary logics
L ω i G , LωiV, L^Q and L^v can all express the notion of well-foundedness, we have

3.2.2 Theorem, (i) (Failure of the Abstract Completeness Theorem). The set of valid
sentences of the infinitary logic LωιG is a complete Tl1 set on HC. The same is
true for the validities of the infinitary logic LωiV.

(ii) The infinitary logics L ω i G and LωιV do not satisfy: the Craig interpolation
theorem, the A-ίnterpolatίon theorem, the Beth definability theorem, and the
weak Beth definability theorem. D

The reader is referred to Chapter II for the definitions of these notions and to
Chapter XVII for the proof of the above theorem.

3.2.3. The approximation theory for Vaught formulas, which was developed in
Section 2, can be easily extended to arbitrary formulas of L^v, the main result being
that with any sentence φ of L^y we can associate sentences δ% of Laoω, for α an
ordinal, such that

Green [1979] used these approximations to introduce consistency properties for
y and obtained a model existence theorem for game logics. As we mentioned in
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Corollary 2.2.8, Burgess [1977] extended the approximation theory to any absolute
logic. Finally, Harnik [1976], using the approximations and model theoretic
forcing, established certain strong preservation theorems for L^y which partially
compensate for the failure of interpolation.

We conclude this section by pointing out that certain sublogics and extensions
of the game logics L^G a n d L^v have also been studied. For example, Ellentuck
[1975], Burgess [1978b] and Green [1978] have investigated the Suslin logics
which can be described intuitively as the propositional part of L ^ , since they allow
for infinite alternations of the connectives /\ and \J, but not of the quantifiers V and
3. Burgess [1977] introduced the Borel-game logic L^g, an extension of L^v. In this
logic, the infinite strings of quantifiers and connectives are applied not only to
matrices which are open or closed, but also to matrices which can be coded by a
Borel set. Of course, it takes Martin's [1975] theorem on Borel determinacy to
show that negations can be pushed inside. The Borel-game logic is absolute relative
to ZF + axiom of dependent choices.

4. Game Quantification and Local
Definability Theory

This section contains the connections between game quantification, generalized
recursion theory, and descriptive set theory. The first basic result asserts that on
structures with a first-order coding machinery, the (positive elementary) inductive
relations coincide with the ones that are explicitly definable using the open game
quantifier. This result is due to Moschovakis [1972] and constitutes an absolute
version of Svenonius' theorem (see Theorem 2.1.5). Aczel [1975] generalized this
result and showed that the Q-inductive relations on a structure can be characterized
using infinite strings (Qx0 QxγQx2 •)> where Q is an arbitrary monotone quantifier.
To present these theorems, we introduce infinite strings (Qx0Q^iQ^2 " ) a n d
interpret them via two-person infinite games. We will pursue the study of the Q-
inductive relations and state their characterizations in terms of functional recursion,
representability in stronger logics, and admissible sets with quantifiers. We will also
briefly indicate some of the tools of inductive definability which are used to derive
local versions of the global results given in Section 2. That done, we will discuss the
connections with non-monotone inductive definitions and the recursion-theoretic
difference between the open game and the closed game quantifier. The chapter will
end with some results and comments concerning the interactions of game quantifica-
tion with descriptive set theory.

Because of the limitations of space, most of the results in this section will be
given without proofs. However, we have included the definitions of the basic notions
as well as all the relevant references to the literature.
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4.1. Iterating a Monotone Quantifier Infinitely Often

4.1.1. Assume that β is a monotone quantifier on a set A that is, suppose that β is
a non-empty, proper subset of 0>(A) which is closed under supersets. In order to
iterate the quantifier β infinitely often, we must give meaning to the string

The following interpretation is due to Aczel [1975] and is motivated by the observa-
tion that, since β has the monotonicity property,

QxP(x) iff (3XeQ)(\fxeX)P(x\

so that intuitively we should have the equivalence

iff (3X0 e β)(Vx0 e XoyβXi e Q)^Xχ e * Ί ) R(xθ9 xl9...).

This suggests associating with β as well as with a relation R ^ Aω the following
two-person infinite game G(β, R) of perfect information:

A round of the game G(Q, R) is played by Players I and II who make alternate
moves in such a way that I picks a set Xt e β and II responds by picking an element
XiθXiJ = 0, 1,2,...

II x0 x1 x2 " feel/, all /el)

Player I wins the above round if (x 0, x l 5 x2,...) e Λ; otherwise, Player II wins
We say that Player I wms ί/ze gfαm^ G(β, i^) if I has a systematic way to win every
round of the game. This can be made precise by requiring that Player I have a
winning strategy for G(Q, R); that is, that there be a function σ: [jn<ω (Q x A)n

-• Q with the property that ( x 0 , xί,x2,...)eR for any round ( X o , x0, Xu x l 5

X 2 , x 2 , . . . ) of G(β, Λ) in which X o = σ(( )) and X i + 1 = σ(Xθ9 xθ9...9 Xi9 x£),
for every z e ω. Similarly, we say that Player II wins the game G(Q, R) if II has a
winning strategy τ : ( J π < ω ( β x A)n x Q-+ A with which he can win every round
of G(β, R). Finally, we put

')R(xo> Xi, *2> •)

iff Player I wins the game G(β, R).

The following proposition is a simple, but useful tool in manipulating infinite

strings of quantifiers. Its proof follows easily from the definitions and the axiom of

choice.
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4.1.2 Proposition. Let Qbeamonotone quantifier on A and let R ^ Aω. Then we have,

Qχ{QχoQχiQχ2 - - }K(χ, *o> xu xn ' )

iff (QXQXQβ*16*2 -)R(χ, xo,Xi,x2,.->). Q

The next theorem provides the basic connection between winning strategies for
Player I in the game G(β, R) and winning strategies for Player II in the dual game

G(β, ~Ί R) associated with the statement

(Qx0QxιQx2 - •) -ιΛ(xo, χi> χ 2 ? •), where of course ~ΊR = Aω - R.

4.1.3 Theorem. Let Qbea monotone quantifier on a set A and let R c Aω. Then the

following are equivalent:

(i) (Q*oQχiQx2 '' m)R(xo, Xu *2> •); that is to say, Player I wins the game

G(β, R)

(ii) Player II wins ίfie gfαm^ G(β, —|JR).

Proof. Let σ be a winning strategy for Player I in the game G(Q, R). We will in-

formally describe a winning strategy for Player II in the dual game G(Q, ~Ί R). The

argument uses the axiom of choice and the fact that if X e Q and Y e Q, then

X π Y Φ 0. Assume then that Player I starts a round of G(β, ~ι R) by playing a

set y0 G Q. If X o = σ(( )), then X o e β, and hence X o π Yo Φ 0 Now,

Player II answers Player I in G(β, ~Ί R) by picking an element
xosXor\ y0.

If/ plays Yx e β, then II responds by playing some element xx of the non-empty
set Xt n Yl9 where X t = σ(X0, x0) e β. If Player II continues in this way, then at
the end of time he has produced a round (Yo, x 0 , 71? x l 9 . . . ) of the game G(β, ~ΊR)
for which there is a round (Xθ9 x0, Xl9 x 1 ? . . . ) of G(β, R) played according to the
winning strategy σ for Player I in that game, hence (x 0, x l 5 . . . ) e R.

As to the other direction, we will assume that Player II wins the game G(β, ~ι R).
We will indicate how to define a winning strategy for I in the game G(β, R). The
idea is similar to the one presented earlier; namely, I plays in such a way that he
forces his opponent to produce a sequence (x 0, x l 5 x 2 , . . . ) which corresponds to

moves of II in G(β, —\R) played according to his winning strategy. More precisely,
I starts by playing the set

Xo = {x: there is a round of G(β, ~iR) of the form (Y, x,...)
in which Player II follows his winning strategy}.
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Notice that Xo e Q, since otherwise its complement (A — Xo) e Q and it is thus

a legitimate move for I in G(g, ~ΊR). But then the winning strategy of II in this
game produces an element of Xo n (A - Xo). This is a contradiction.

Suppose now that Player II responds with an element x o e l o . Then there is a

round of G(β, -ι#)oftheform(Y0, x 0,...) in which II follows his winning strategy.
The next move of I in G(Q, R) is the set

X1 = {x: there is a round of G(β, ~ΊR) of the form (Yo, x0, Y, x,...)
in which Player II follows his winning strategy}.

It is easy to see that XίeQ. Moreover, if II responds with an element x1eXu then

there is a round of G(Q, ~\R) of the form (Yo, x0, 7l9 x l 9 . . .) in which II plays
according to his winning strategy. In this way, at the end of time the two players in
G(Q, R) have produced a sequence (Xo, x0, Xί9 x l 5 X2, *2> •) s u c h that there is a

round (70, x0, Yt, x1? y2, x2> •) °f G(Q, πR) in which II follows his winning
strategy. D

The proof of the Gale-Stewart theorem (1.2.4) can be easily modified to
yield the determinacy of open or closed games associated with the infinite string
(QxoQxiQχ2 '' )• Thus, if Q is a monotone quantifier and R is a relation which is
either open or closed, then Player I or Player II wins the game G(β, R). By combin-
ing this fact with Theorem 4.1.3 we immediately obtain the following

4.1.4 Corollary. Let Qbe a monotone quantifier on A and let R c= Aω be a relation

which is either open or closed. Then

Player I does not win G(Q, R) iff Player I wins G(Q, ~iR)

and hence

(QxθQxlQx2 '") "I K(Xo, *1> *2> •)• 0

4.1.5. Thus far we have considered infinite strings obtained by iterating only one
monotone quantifier infinitely often. We might also consider a sequence Q =
{βJneω of arbitrary monotone quantifiers g n ,neω,ona set A and the correspond-
ing infinite string (Qo

χoQiχι Qn

χ

n --). If R ^ Aω is a collection of infinite
sequences from A, then the statement

l ' ' * QnXn '
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is interpreted via a game G(Q, R) which is suggested by the intuitive equivalence

( 6 θ * θ 6 l * l * ' Qn*n ' ' 0#(*O > *1> > *κ> •) ^

(3X0 e ρo)(Vxo e *o)(3X! e 6i)(V*i e X r)

• (3Xn e Qn)(Vxn eXn) . R(x09 x l 9 . . . , xπ).

The preceding results extend naturally to such arbitrary strings with only minor
modifications in the definitions and the proofs. In particular, if R c Aω is either
open or closed, then we can push the negation inside, so that we have

l(6θ*θ6l* l * QnXn ' ' )#(*0 > * ! , . . • , * „ , . . •)

> ( 6 θ * θ 6 l * l Qn*n ' 0 ~I^Oo> Xi, , Xn, •)

We should point out here that for the infinite string (Vx0 3y0 \/x13y1 •), the
interpretation of the statement (Vx0 3y0 Vxx 3yι -)R(x0, y0, x l 5 yu ...) given
above is equivalent to the one given in Section 1 of this chapter. Notice, however,
that a strategy for I in the sense of this section essentially coincides with a quasi-
strategy for I in the sense of Section 1, rather than with a strategy. This is because we
have identified the existential quantifier 3 on A with the collection {X c A:X Φ 0 } .

4.1.6. The infinite string (6*06*16*2 * ) c a n be viewed as defining a new
monotone quantifier 6* on the set Aω of infinite sequences from A. More specifically,
the quantifier Q* on Aω is the collection

ρ* = {X c Aω: (6*06*16*2 -)X(xo, *i> *2, .)}•

If the infinite string (6*06*16*2 •) is applied to relations R on Aω which are
open or closed, then it gives rise to two monotone quantifiers Q v and Q Λ on the
set A<ω of finite sequences from A.

The quantifier Qv on A<ω is the collection

c i 4 <ω. ( ρ X o ρ X l ρ χ 2 . . . ) \ j χ ( X θ 9 Xl,..., Xn_

while ί/î  quantifier QA on A<ω is defined by

6 Λ = | x c A<ω: (6*06*16*2 •) Λ ^ 0 , * i , - *«- i) j

The quantifiers 6 v and Q Λ can be expressed using the quantifier 6 * on Aω and
infinitary connectives. Indeed, if R ^ ^ < ω is a relation on the set of finite sequences
from A9 then we first introduce the relations \/ R and /\ R on the set of infinite
sequences, where

V R = \θLeAω:\/ R(ot [n)ϊ and f\R = \ae Aω: /\R(a [ή)l.
I n ) I n )
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It is now clear that

Q vsR(s) o Player I wins G(β, \/ R)<> Q*oc V Λ (α)

and

QAsR(s) o Player I wins G(β, /\ R) o Q*a /\ R(oc).

Since the quantifiers Q v and Q Λ give rise to games which are open or closed, we
can use Corollary 4.1.4 to find their dual quantifiers.

4.1.7 Corollary. Let Q be a monotone quantifier on A. Then:

(i) the dual of the quantifier Qv is the quantifier QA that is, (Q v ) u = QA

(ii) the dual of the quantifier QA is the quantifier Q v that is ( β Λ ) u = Qv. D

4.1.8. The Suslin and the classical srf quantifier are special cases of the quantifiers
Q v and QA. Indeed, it is obvious that Vv is the Suslin quantifier on the set A<ω,
while 3Λ is the classical quantifier si on A<ω. Notice also that VΛ and 3 V are
respectively the universal and the existential quantifier on the set A<ω of finite
sequences from A.

We now consider the quantifiers 3V and V3 on the set A2 = A x A, where

3\/ = {X ςzA2: (3x Vy)((x, y) e X)}

and

Of course, the quantifier V3 is the dual of 3V. Moreover,

(3V)V is the open game quantifier ^ on A<ω,

and

(V3)Λ is the closed game quantifier ^ on A<ω.

Observe that here we have tacitly identified the sequence ((x0, ^ 0 ) , (xi, yiX

(x2,yiX - •) i n (A x AT w i t h t h e sequence (x 0, y0, xl9 yl9 x 2 , y2, .) in Aω.

If Q is a monotone quantifier on A, then the next quantifier Q+ of Q is the

quantifier

Q+ = ( 6 β 3 V ) v ,

where QQ 3V = {X <= A*\ (QxQy 3z Vw)((x, y9 z9 w) e X)}. Therefore, ifR c A<ω,

then we have

Q+sR(s)o(Qx0Qy0 3z0 ^WoQx.Qy, 3zt Vŵ  •)

Y R(xθ9 y0, zθ9 w 0 , . . . , xn-!, yn-l9 zn-l9 wn-i)-
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It follows from the above that the dual quantifier of Q+ = (QQ 3V)V is the

quantifier (β β V3)Λ. Notice that the open game quantifier ^ is the next quantifier of

(3V). As we will see in the sequel, the next quantifier plays an important role in the

theory of inductive definability.

4.2. Game Quantification and Positive Elementary
Induction in a Quantifier

4.2.1. Let 91 = {A, Rί9..., Rn, c l 5 . . . , ck} be a structure and let β be a monotone
quantifier on the universe A of the structure. The first-order logic JS?a(β) of the
structure 91 has both first-order variables x, y, z , . . . and second-order variables

S, 7, t / , . . . , but the quantifiers V, 3, β, β range only over the first-order variables.
The "boldface" first-order logic &\Q) of the structure 91 is obtained from ^\Q)
by adding to the vocabulary a new constant symbol a for each element as A. If we
do not consider an additional quantifier β, then we have the logics ^ and JSfa

respectively.

If φ(xl9..., xn, S) is a formula of JSf ̂ (β) in which 5 is a w-ary relation symbol
with only positive occurrences, then φ(x, S) gives rise to a transfinite sequence
{/|}^eOrd of ft-ary relations on A, where

We put

ςeOrd

and call Iφ the set inductively defined by φ. It is easy to see that

xelφoφ(x, Iφ)

and

so that Iφ is the smallest fixed point of φ.
\{R is an m-ary relation on A, we say that R is Q-(positive) inductive in case there

is a formula φ(ΰ, ϋ, S) of «Sf ̂ (β) with 5 occurring positively and a finite sequence ά
of elements of A such that

R(y)o(a,y)elφ.
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We say that a relation R c Am is Q-(posίtίve) hyperelementary if both R and
v4m — R are g-inductive relations. We write

IND(2I, Q) = the collection of all β-(positive) inductive relations on 21,

and

HYP(2I, Q) = the collection of all β-(positive) hyperelementary
relations on 21.

If we do not consider an additional quantifier Q on A, then we have the notions
of the (positive) inductive and the (positive) hyperelementary relations on 21. In
this case we put

IND(2I) = all (positive) inductive relations on 21,

and

HYP(2I) = all (positive) hyperelementary relations on 21.

The theory of the inductive and the hyperelementary relations has been
developed in the monograph Moschovakis [1974a]. Here we will purposely restrict
ourselves to stating the results which are directly related to game quantification.

4.2.2. Henceforth, we will confine our attention to structures possessing a first-
order coding machinery offinite sequences. We say that a structure 21 = {A, Ru . . . ,
Rn9cl9..., ck) is acceptable if ω, < ω are first-order on 21 and there is a total, one-
to-one coding function < }:A<ω -> A such that the relation seq and the functions
Ih and q are first-order on 21, where

seq(x) o there are xu x2,..., xn such that x = <x l 9 x2,.. , *„>;

f 0, if -i seq(x)

[n, if seq(x) and x = <x l 5 x 2 , . . . , x π ) ;

and

f, ifx = <x 1 ? x 2 , . . . ,x M > and 1 < i < n,
C ' ° ( x ) l ]% otherwise.

Typical examples of acceptable structures are the structure of arithmetic
M = <ω, + , •>, the rationals Q = <β, + , •>, the structure of analysis R =
<ω u ωω, ω. + , , Ap) (where Ap(oc, ή) = OL(Π\ with aeωω and neω), and the
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structures V λ = <KA, e>, for each ordinal λ > ω, where Vλ is the collection of sets
of rank less than λ.

Many of the results in this section are true under a much weaker hypothesis,
namely that the structure 21 under consideration has an inductive pairing function.
Such a function is, of course, a total, one-to-one function < >: A x A -» A with an
inductive graph. Examples of such structures include the structures λ = <λ, < >
and Lλ = <LA, < > for any infinite ordinal λ, all models of Peano arithmetic, and
any structure of the form 21 = <̂ 4, e> where A is a transitive set closed under pairs.

Every acceptable structure has the property that the weak second-order logic
ifwll on 21 can be subsumed by the first-order logic ^ of the structure 21.

If we want to avoid the assumption of acceptability, then we must consider a
larger class of inductive definitions, namely the inductive* and the β-inductive*
relations of Barwise [1975, 1978b], or pass from an arbitrary structure 21 =
{A, Rl9..., Rm9cl9..., ck} to the expanded structure 2Ϊ* = (A u A<ωuω,A,
ω9Rl9...9 Rm9 <ω9 Ap9 cl9..., c f c >, w h e r e Ap((al9..., an\ i) = a{.

If 21 is an acceptable structure and T is a quantifier on the set A<ω of finite
sequences from A, then T can be identified with a quantifier on A, which we also
denote by T and which is defined as follows:

T = {X c= A: {(xu . . . , xn) e A<ω: < χ l 9 . . . , xn} e X} e 7},

with < >: A<ω -• A a fixed coding function as in the definition of acceptability.
In particular, the quantifiers Q v , Q Λ , Q+ and (β + ) u can all be viewed, and

indeed will so be viewed from here on, as quantifiers on the universe A of the
structure 21. Thus, for example, the open game quantifier on A <ω is identified with
the quantifier

on A, while the closed game quantifier # on A<ω becomes the quantifier

on A. For the remainder of this section, if 21 is an acceptable structure, then
< >: A<ω -> A will always denote a total, one-to-one function such that the as-
sociated coding and decoding relations and functions seq, /ft, q are first-order on 21.

The next theorem provides the basic connection between inductive definability
and game quantification. We credit this result to Moschovakis [1974a], [1972] for
the inductive relations and to Aczel [1975] for the β-inductive relations.
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4.2.3 Theorem. Let 91 = {A, Ru . . . , Rm, c 1 ? . . . , ck} be an acceptable structure
and let Q be a monotone quantifier on A. Then,

(i) a relation R on A is Q-(positίve) inductive if and only if there is a formula
φ(u, z) of the "boldface" logic ££\Q) of the structure 91 such that
R(z) oQ + uφ(u, z); that is,

V φ((v0, w 0 , x 0 , y0,..., υn-l9 wπ__l5 x π _ . l 5 yn-γ\ z);
n

(ii) in particular, a relation R on A is (positive) inductive if and only if there is a
formula φ of the "boldface" logic £fm of the structure 91 such that

R(z) o &uφ(u, z) o

(3x0 Vjo 3xx Vyx •) V ^ « x o ? yo, ", xn-u yn-i>, z).
n

Hint of Proof The inductive analysis of open games given in the proof of the Gale-
Stewart theorem (1.2.4) can be used to show that if (R(z) oQ + uφ(u, z)\ then the
relation R is β-inductive. For the other direction, one has to show first that if
ψ(z, S) is a formula of £fm(Q) in which S occurs positively, then there is a quantifier-
free formula θ(v, w, x, y, z) such that

ψ(z, S) o (Qvo)(Qwo)(3xo)0/yo) (Qvm)(QwJ(3xJ(VyJ(VO

[θ{v, vv, x, y, z) v S(t)l

Using the equivalence above and the coding machinery on 91, it is not hard to
verify that the smallest fixed point Iψ of the formula φ(z, S) is explicitly definable by
the next quantifier Q+ applied to a formula φ(u, z) of &m(Q). Ώ

4.2.4. The above identification of the inductive relations with the ones definable by
open game formulas is an absolute version of Svenonius' theorem (2.1.5), and has
many applications in either direction. In particular, results from inductive defin-
ability have implications for game quantification and vice-versa. For example, we
can use the proof of Theorem 4.2.3 to discover the main properties of the approxima-
tions of the open game formulas. Indeed, if Φ(z) is an open game formula and φ(z, S)
is a positive in S formula of <£* such that 911= (Vz)(Φ(z) <-• Iφ(z)\ then the ap-
proximations ε^ of Φ are equivalent on 91 to the stages lΛ

φ of φ. In the other direction,
Moschovakis [1974a] used Theorem 4.2.3 to show the existence of universal
inductive relations on acceptable structures. As a consequence, on every acceptable
structure there are inductive relations which are not hyperelementary. Moreover,
on such structures the relation of satisfaction " 911= φ ", where φ is a sentence of
<£^, is hyperelementary; but it is not, of course, first-order.

The tools of inductive definability can be used to obtain local versions of such
global results as Vaught's covering theorem (See Section 2.2.10), the separation and
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reduction principles and others. One of the main tools is the stage comparison
theorem of Moschovakis [1974a] which asserts, intuitively, that we can compare
the stages of an inductive definition in an inductive way. Its consequences include
the following theorem, a theorem which is true for an arbitrary structure 21.

4.2.5 Theorem. Let 21 = (A, Ru . . . , Rn, cx, . . . , ck} be a structure and let Qbe a
monotone quantifier on A. Then the class IND(2I, Q) of the Q-inductive relations has
the pre-well-ordering property. That is, if P £ An is a Q-ίnductive relation, then there
is a map σ: P ^+λ, where λ some ordinal, such that the relations < J and <* are
Q-inductive, where

x <ϊyo(xsP)&(yφP v σ(x) < σ(y))

and

x<ϊyo(xeP)&(yφPvσ(x)<σ(y)). D

If P is a Q-inductive relation and σ: P-2!^λ is a map such that the relations
< * and < * are Q-inductive, then we say that σ is a Q-inductive norm on P. The
existence of Q-inductive norms easily implies the reduction principle for the Q-
inductive relations and the separation principle for the complements of the
Q-inductive relations.

With any structure 21 we associate the ordinal κm, where

K® = sup{rank(<): < is a hyperelementary pre-well-ordering on A}.

If Q is a monotone quantifier on the universe A of the structure 21, then we consider
also the ordinal

Km(Q) = sup{rank(<):
< is a β-hyperelementary pre-well-ordering on A}.

The stage comparison theorem also yields the following useful boundedness
principle.

4.2.6 Theorem. Let 21 = (A, Rί9..., Rn, cu . . . , ck} be a structure and let Qbe a

monotone quantifier on A. Assume further that P is a Q-inductive relation and

σ: P 2IL£> λ is a Q-inductive norm. Then

(i) λ < κ*{Q);
(ii) for each ξ < λthe set Pξ = {xe P: σ(x) < ξ} is Q-hy per elementary;

(iii) P is Q-hyperelementary if and only if λ < κmQ). D

The above result can be thought of as a local version of the approximation
theorem (2.2.7) and the undefinability of well-order. Actually, Moschovakis
[1974a] showed that it implies a covering theorem for the Q-inductive relations on
any structure.
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4.2.7 The Covering Theorem. Let P be a Q-inductive relation on a structure 21 and
let σ: P -^-^ λ be a Q-inductίve norm. IfR is the complement of a Q-inductive relation
and R ^ P, then there is an ordinal ξ < κm(Q) such that

# c pξ = {χeP:σ(x) < ξ}.

In particular, R is contained in a Q-hy per elementary subset of P. D

In order to gain more insight into the relations definable by the game quantifiers
on an acceptable structure, we next state various characterizations of the Q-
inductive relations in terms of Spector classes, functional recursion, representability
in stronger logics, and, finally, admissible sets with quantifiers.

4.2.8. Let Γ be a class of relations on A and let Q be a monotone quantifier on A.
We say that Γ is closed under Q if, whenever a relation P ςi An+1 is in Γ, then the
relation R c A" is also in Γ, where R(x) o (Qy)P(y, x).

The class Γ has the pre-well-orderίng property if, for each relation P in Γ, there is
a mapping σ: P -^^ λ, where λ an ordinal, such that the relations < * and < * are
inΓ.

Assume that 91 = {A, Ri9..., Rn, cί9..., ck) is an acceptable structure and Γ
is a collection of relations on A. We call Γ a Spector class on 21 if:

(i) Γ contains all first-order relations on A with parameters from A and is
closed under u, n, V, 3;

(ii) Γ has the pre-well-ordering property; and
(iii) Γ is A-parametrized. That is to say, for each n e ω, there is a (n + l)-ary

relation Un in Γ with the property that a relation R c An is in Γ if and only
if there is some a e A such that R = {xsAn: (a, x) e U"}.

It actually turns out that the collections IND(2l) andIND(Sί, Q) of the inductive
and the Q-inductive relations are both Spector classes. The notion of a Spector class
was introduced by Moschovakis [1974a] and provides a framework for developing
abstract recursion theory. The following is a theorem of Moschovakis [1974a] and
Aczel [1975]. On the one hand, it summarizes the main closure and structural
properties of the inductive and the Q-inductive relations while, on the other, it yields
a minimality characterization for these classes of relations.

4.2.9 Theorem. Let 21 = <4, Rl9..., Rn, cu ..., ck} be an acceptable structure and

let Qbe a monotone quantifier on A.

(i) The collection IND(2I, Q) of the Q-inductive relations on A is the smallest

Spector class on 21 closed under Q and Q.
(ii) In particular, the collection IND(2I) of the inductive relations on A is the

smallest Spector class on 21.
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We state one further result about Spector classes, a result which shows that
these classes possess interesting closure properties and are related to game quant-
ification.

4.2.10 Theorem. Let 31 be an acceptable structure, Q a monotone quantifier on A and
Γ a Spector class on 31. Then

(i) Γ is closed under the quantifier Q if and only ifY is closed under the quantifier
Qv. In particular,

(ii) Γ is closed under Q and Q if and only ifT is closed under the next quantifier

Q+.
(iii) Every Spector class is closed under the open game quantifier $. D

4.2.11. Let A be a set such that ω c A and let 0>$Fk be the collection of all /c-ary
partial functions from A to ω. A functional on Ais a partial mapping

Φ: A1 x 0>^ki x x &2Fkm -• ω,

which is monotone. That is, if Φ(x, g1,..., gm) = w and gί ^ hί9..., gm £ hm, then
Φ(x, h±..., hm) = w.

If Φ = ( Φ l 9 . . . , Φs) is a finite sequence of functional on the universe of a
structure 31, then we can define the notion of a recursive in Φ m-ary partial function
from A to ω. This is done by first associating with Φ the smallest class of functionals
having certain closure properties and containing Φ, and then iterating the operative
functionals in that class. The detailed definitions of functional recursion can be
found in Kechris-Moschovakis [1977].

A relation P on A is semi-recursive in Φ if it is the domain of a recursive in Φ
partial function. We say that P is recursive in Φ if its characteristic function χP is
recursive in Φ. We put

ENV[Φ] = the collection of all semirecursive in Φ relations

and

SEC[Φ] = the collection of all recursive in Φ relations.

These classes of relations are called, respectively, the envelope ofΦ and the section
ofΦ.

Any monotone quantifier Q on A gives rise to a functional F ^ which embodies

existential quantification with respect to Q and Q. This functional is defined by

0, if(βx)(p(x) = 0),

1, otherwise,
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where p varies over the partial functions from A to ω. Here j abbreviates " is defined ",
while I stands for "is undefined". If Q is the existential quantifier 3, then we write
E # for Ff so that

0, if(3x)(p(x) = 0\

E*(p)=\l if(Vx)(p(x)J#0),

j , otherwise.

It is not hard to show that positive elementary induction in the quantifier Q
coincides with recursion in the functionals E#, F^.

4.2.12 Theorem. Let 91 be an acceptable structure and Q a monotone quantifier on A,

then,

(i) A relation is Q-inductive if and only if it is semirecursive in E # , F ^ and hence

IND(9ί, Q) = ENV[E*, F£].

(ii) A relation is Q-hy per elementary if and only if it is recursive m E # , ¥Q and

hence

HYP(9I, β) = SEC[E#, F£].

In particular, we have

IND(9I) = ENV[E#] and HYP(5l) = SEC[E#]. D

4.2.13. Assume that 91 = (A, Rί,..., Rn, c l 5 . . . , ck} is a structure and T is a
system of axioms and rules of inference in a logic if which has a constant a for each
element as A. We say that a relation P on A is weakly representable in T if there is a
formula φ of ££ such that

P(fli, . . . , α B ) o T h φ(a 1 ? . . . , aπ).

We say that P is strongly representable in T if both P and ~ιP are weakly
representable. Aczel [1970, 1977] characterized the inductive and the Q-inductive
relations on an acceptable structure in terms of representability in certain systems.
If 91 is a given structure, then the infinitary system T°°(2Γ) consists of the following
axioms and rules of inference:

(i) All standard first-order axioms and rules of inference for the "boldface"
first-order logic <£*.

(ii) All atomic and negated atomic sentences of 5£% which are true in 91.
(iii) A-rule: From φ(a) for all aeA, infer (Vx)φ(x).
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If Q is a monotone quantifier on A, then the infinitary system T°°(2ί, Q) has, in
addition to (i), (ii), and (iii), the following rules:

(iv) Q-rule: From φ(a) for all aeX, with X e Q, infer (Qx)φ(x).

(v) Q-rw/β: From φ(a) for all aeX, with l e g , infer (Qx)φ(x).

Notice that the V-rule is the same as the /4-rule, while the 3-rule is an axiom of
first-order logic, namely from φ(a), for some a, infer 3xφ{x).

4.2.14 Theorem. Let 21 be an acceptable structure and Q a monotone quantifier on A.

(i) A relation P on A is weakly representable in T°°(2I, Q) if and only if it is
Q-inductive.

(ii) A relation P on A is strongly representable in T°°(2l, Q) if and only if it is
Q-hy per elementary.

In particular, the inductive relations are exactly the weakly representable ones in
T°°(2I) and the hyper elementary relations are the strongly representable ones in

Q

Notice that if 91 is a countable, acceptable structure, then Svenonius theorem
(2.1.5), when combined with Theorems 4.2.3 and 4.2.14, yields a completeness result
about the infinitary system T°°(2I), namely that if a formula φ(Xί9..., Xn) of S£^
is universally valid, then T°°(3I) V- φ(Xί9..., Xn). This completeness theorem also
has a direct proof which uses the omitting types theorem. In this case, Theorems
4.2.3 and 4.2.14 can be used to give an alternative proof of Svenonius' theorem.
On the structure of arithmetic N = <ω, + , •> these results become the classical
representability characterization of the Πj relations in ω-logic.

Finally, we mention the characterizations of the β-inductive relations in terms
of admissible sets with quantifiers. For simplicity, we restrict our attention to
acceptable structures of the form 91 = (A, e [ A, Rί9..., Rn, cί9..., ck} where A
is a transitive set.

If A and M are transitive sets, AeM, and Q is a quantifier on A, then we can

define what it means for M to be a Q*, Q*-admissible set. The crucial additional

axioms are the schemata of Q and Q-collection, where

Q-collection: (Qx e A)(3y)φ -»(3w)(Qx e A)(3y e w)φ,

Q-collection: (Qx € A)(3y)φ -> (3w)(Qx e A)(3y e w)φ,

with φ a Δ 0 (β, Q) formula. The detailed definitions are given in Moschovakis
[1974a] and Barwise [1978b], while the next theorem comes from Barwise-
Gandy-Moschovakis [1971] and Moschovakis [1974a].

4.2.15 Theorem. Let 21 = {A, e [ A, Ru . . . , Rn, cu . . . , ck> be an acceptable
structure such that A is a transitive set and let Qbe a quantifier on A. Put

SΆ*(Q) = f | {M: 9 I G M and M isaQ*, Q*-admissible set}.
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Then 9I # (β) is a Q*, Q*-admissible set, o(9I#(β)) = κm{Q) and moreover, for any

relation P on A

(i) P is Q-inductive if and only ifP is Σ^Q, Q) on 9I # (β)
(ii) P is Q-hyperelementary if and only ifPe 91 * (β). D

At this point, we will collect all the characterizations of the Q-inductive relations
into one result which we now present

4.2.16 Theorem. Let 91 be an acceptable structure and Q a monotone quantifier on A.
IfP c An is a relation on A, then the following are equivalent:

(i) P is explicitly definable by the next quantifier Q+ that is, there is a formula

φ(u,z)of<e*(Q) such that (iz)(P(z)oQ + uφ(u,z)).

(ii) P is Q-inductive.

(iii) P is in the smallest Spector class on 91 closed under Q and Q.
(iv) P is semi-recursive m E # , F g .
(v) P is weakly representable in T°°(9I, Q).

(vi) P is Σ^Q, Q) on the smallest Q*, Q#-admissible set having 91 as element,
provided that the universe A of the structure 91 is transitive and e [ A is
among the relations of*Ά. ϋ

The local results given above suggest certain generalizations of the global
results in Section 2. The approximation theory extends to formulas involving the
next quantifier; that is to say, it extends to expressions of the form Q + uφ(u, z) and
(Q + )uuφ(u, z), where Q is an arbitrary monotone quantifier. However, in general,
Svenonius' theorem does not hold for an arbitrary quantifier Q—in fact, it is
actually false if Q is the open game quantifier ^. An interesting problem is to find
natural monotone quantifiers Q for which Theorem 2.1.5 goes through. This,
of course, is equivalent to the completeness theorem for the infinitary system
T°°(9ί, Q).

43. Non-monotone Induction and Recursion in the
Game Quantifiers

4.3.1. A second-order relation on a set A is a relation φ{xu . . . , xn, S) with argu-
ments elements xu ..., xn of A and subsets S of a cartesian product Am for some
m < ω. If φ(xι,..., xn, S) is a second-order relation on A and S c An, then we
iterate φ and, by induction on the ordinals, define a sequence of π-ary relations
{φξ}ξ on A, where

xe φξo[xe \Jφλ v φ(χ, (J φη\
\ η<ξ I \ n<ξ I
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We put

and call φ 0 0 the set inductively defined by φ.

Notice that if φ is a monotone relation, then (xeφξo φ(x, {jη<ξ φη)) This was
indeed the case for the second-order relations determined by positive formulas in
Section 4.1. Here we consider second-order relations which in general are non-
monotone.

If 31 is a structure and 3F is a collection of second-order relations on A, then we
call a (first-order) relation P on A ^-(non-monotone) inductive in case there is a
second-order relation φ(ΰ, v, S) in J^ and a sequence a of elements of A such that

P(y)o(ά,y)eφco.

Let 21 be an acceptable structure, let ̂  be the open game quantifier on A

V «χo>

and let P(x, S) be a second-order relation on A. We say that F(x, S) is ̂  on 91 if
there is a formula φ(u, x, S) of Jaf̂  such that

P(3c, S) <=> %uφ(u, x, S).

We write

^ ! = the collection of all ̂ x second-order relations on 21.

Theorem 4.2.3 has a relativized second-order version which shows that the ^
relations are exactly the second-order (positive) inductive relations on 21. We will
state now a characterization of the ^ -(non-monotone) inductive relations on 21.
To do this, however, we need some notions from admissible set theory.

Let M and N be two admissible sets such that M c N. We say that M is N-
stable if M is a Σ x -elementary submodel of N, i.e. if for every Σ j formula φ(x ί,..., xn)
a n d e v e r y al9 ...,ansM

<M, e> N φ ^ i , . . . , an) o <N, e> 1= φ ( α l 5 . . . , an).

We say that an admissible set M is $ ̂ -reflecting if, for any formula φ(w, z) of set
theory and any sequence a = (au . . . , an) of parameters from M, we have

<M, e> 1= ̂ uφ(u, a) => there is some admissible set w e M
such that <w, e> t=
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Observe that by Svenonius' theorem (2.1.5) we have that a countable admissible
set is yx -reflecting if and only if it is Π]-reflecting.

4.3.2 Theorem. An admissible set M is $ ^reflecting if and only if M is M+ stable,
where M+ is the smallest admissible set having M as element. D

This result is credited to Richter-Aczel [1974] for countable admissible sets.
Richter-Aczel [1974] and Moschovakis [1974b] characterized the non-monotone
inductions in the open game quantifier using ^ γ -reflecting admissible sets.

4.3.3 Theorem. Let 21 = (A, e Γ A, Ru . . . , Rn, c l 5 . . . , ck} be an acceptable
structure such that A is a transitive set. A relation P on A is $ ^(non-monotone)
inductive if and only ifP is Σ x on the smallest admissible set which is <$ ̂ -reflecting and
contains 21 as an element. D

This theorem is an absolute version of the following:

4.3.4 Corollary. Let Π\ be the class ofU[ second-order relations on the structure of
arithmetic N = <ω, + , •>. Then a relation P on ω is Π{-(non-monotone) inductive
if and only if P is Σ x on the smallest U\-reflecting admissible set. D

We next examine the non-monotone inductions in the closed game quantifier

Λ « X o , y o , . , x n - i , Λ - i > e ;
n

on an acceptable structure 21.

We say that a second-order relation P(x, S) is ^ x on 21 if there is a formula
φ(w, 3c, S) of ^ such that

P(x, S) o %uφ(u, x, S).

We put

(^ί = all ^ : second-order relations on 21.

Harrington-Moschovakis [1974] obtained the following characterization of the

non-monotone inductive relations in the quantifier ^.

4.3.5 Theorem. Let 2ί be an acceptable structure. Then a relation P on A is &\-
(non-monotone) inductive if and only if it is $-(positive) inductive, and hence

= IND(2I, ^ ) = ENV[E # , Ff ]. D
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4.3.6 Corollary. Let 91 = (A, G [ A, Rl9..., Rn, c 1 ? . . . , ck} be an acceptable

structure such that A is a transitive set. A relation PonA is § ^inductive if and only if

P is Σi on the smallest ^ # , Ή*-admissible set with 91 as an element. D

4.3.7. In the light of the preceding theorems, it is natural to ask how do the classes

^ r I N D and ^ - I N D compare. The main theorem of Aanderaa [1974] and the
pre-well-ordering property for the second-order (positive) inductive relations
(which is the relativized version of Theorem 4.2.5) immediately imply that

^ - I N D s # r I N D .

In other words, every (^ι -inductive relation is &ί -inductive, but the converse is

not true. Moreover, the closure ordinals of the ^ -inductive relations is much
bigger than the closure ordinal of the ^-inductive relations.

These results show that inductive definability provides ways to distinguish
between the open game quantifier and the closed game quantifier. Such distinctions
usually do not occur in model theory where a quantifier and its dual are treated on
an equal basis, and the properties of the dual are obtained from the ones of the
quantifier by involution.

Notice that the functionals F | and Ff do not differentiate the open game
quantifier from the closed game quantifier, since it is easy to see that on any
acceptable structure

ENV[E#, Fj] = IND(9I, 0) = ENV[E#, Ff ].

The recursion-theoretic difference between the quantifiers 9 and ^ is captured
by the functional FQ, which was introduced by Kolaitis [1980] and which, in

general, distinguishes the quantifier Q from its dual Q. The functional ¥Q is defined
by

(0, if(βx)(p(x) = 0)

FQ (p) = I 1, if p is total & (βx)(p(x) 4 Φ 0),
[ j , otherwise

where p varies over the partial functions from A to ω.

4.3.8 Theorem. Let 21 = <Λ, Ru ..., Rn, cx,..., ck) be an acceptable structure.

Then

ENV[E#, F ; ] £ ENV[E#, F | ] .

Moreover

ENV[E#, F ; ] £ Sfj-IND £ # r I N D = ENV[E#, F~]. D
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4.4. Game Quantification and Descriptive Set Theory

4.4.1. As mentioned in Section 4.1.6, the infinite string (3x0 \/y0 3xχ V)^ •) gives
rise to a monotone quantifier (3V)* on the set Aω of infinite sequences from A,
where

(3V)* = {X <= Aω: (3x0 Vy0 3x, Vyx )X(x0, yθ9 xl9 yl9...)}.

If A = ω, then the quantifier (3V)* is usually denoted by O 1 or simply by O and
is called the game quantifier on ωω, while if A = R = ωω, then (3V)* is the game
quantifier D2 on the set Rω of infinite sequences of reals. The properties of the
quantifier O have been studied in depth by descriptive set theorists. We refer the
reader to the book Moschovakis [1980] for a systematic treatment of O and its uses
in definability theory. Here we will restrict ourselves to stating a sample of the
results on the game quantifiersO and O 2, results which are related to topics covered
earlier in this chapter.

Assume that Γ is a collection of relations on integers and reals; that is, if P e Γ,
then P is a relation of the form P(xl9..., xπ, α l 5 . . . , αm), where xf e ω for 1 < i < n
and (Xj e ωω for 1 < j < m. If we quantify every relation in Γ by O, we then obtain
the class

OΓ = {OαP(x, α, β): P(χl9..., χn9 α, βl9..., βj is a relation in Γ}.

In a similar way, we can define the class O 2 Γ for a collection Γ of relations on
integers, reals and infinite sequences of reals.

Some of the deeper results in descriptive set theory depend on transfer theorems
which, in effect, assert that, under certain assumptions, properties of a class Γ transfer
to the class OΓ or to the class O 2Γ. In proving such transfer theorems, we usually
need certain determmacy theorems or hypotheses about the class Γ.

We say that a relation P on Aω is determined if Player I or Player II wins the
game G(3V, P) associated with P. Of course, for such relations P we have that

-1(3*0 V ô 3xχ V^! )JP(xo> y0, xl9 yl9...)

o ( V x 0 3y0 V*! 3yί •) -ΊP(X0, y0, xί9 yu •)•

We say that determinacy holds for a class Γ of relations on Aω, and we write
Det(Γ), if every relation in Γ is determined.

Martin [1975] established that every Borel set of reals is determined, or
equivalently Det(Δj). This is an optimal result in ZFC, since it is well known that
Det(Σ}) is not provable in ZFC. Much of the current research in descriptive set
theory is carried on under the assumption that certain definable sets of reals are
determined. The hypothesis of projective determinacy (PD) asserts that every
projective set of reals is determined. The projective sets are the subsets of the reals
which are definable by first-order formulas with parameters over the structure
U = <ωω u ω, ω, + , , Ap} of analysis. They are further classified as Σ^ or Π^ sets
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depending on the number of alternations of quantifiers in the defining formula
starting respectively with an existential or a universal quantifier. If no parameters
are allowed, then we have the "lightface" classes of Σ^1 and Π* sets of reals.

We next state a transfer theorem for the pre-well-ordering property, a result that
is due to Moschovakis, and then discuss some of its applications in descriptive set
theory.

4.4.2 Theorem. Let Γ be a class of relations on integers and reals which contains all
recursive relations and is closed under finite unions, finite intersections, and sub-
stitutions by recursive functions. 7/Γ has the pre-well-ordering property and Det(Γ)
holds, then the class OΓ also has the pre-well-ordering property. D

In order to give concrete applications of this transfer theorem, we first need the
following definition. We say that a relation P(xl9..., xn, α l 5 . . . , αm) on integers
and reals is Σ£ if there is a recursive relation R such that

P(x, α 1 ? . . . , α m )

, / ! , . . . , lk9 o^Zfc),..., αM(/k)),

where all the quantifiers vary over the integers, and if α e ωω and k e ω, then α(/c) =
<α(0),..., α(/c - 1)>.

It is quite easy to verify that for each k > 1 the class of all Σ£ relations is closed
under finite unions, finite intersections, recursive substitutions, and has the pre-
well-ordering property. Martin's Borel determinacy and the transfer theorem of
this section (4.4.2) now immediately imply the following:

4.4.3 Corollary. The class OΣ£ has the pre-well-ordering property, where k > 1.
Moreover, each OΣ£ is a Spector class. Π

The classical normal form for the Π{ relations on the integers and Theorem 2.1.5,

in effect, state that

OΣ? = Π}.

Solovay has obtained the characterization of the class OΣ2 in terms of non-
monotone inductive definitions and this we present in

4.4.4 Theorem. Let N = <ω, +,>}bethe structure of arithmetic and let Σ\ be the
collection ofallΣ{ second-order relations on ω. Then a relation P of integers and reals
in OΣ2 if and only if it is Σ\-(non-monotone) inductive; that is to say,

OΣ°2 = Σl-IND. D

In another direction, we first notice that
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for any n = 0, 1, 2,... . Moreover, using the hypothesis of projective determinacy
(PD), it is easy to see that

for any n = 1, 2 , . . . .
The computations given above when combined with the transfer theorem (4.4.2)

give the next result, a result which was first proved directly by Martin and Mos-
chovakis.

4.4.5 Theorem. Assuming projective determinacy (PD), the classes Π\n+ί and
Σ\n + 2 have the pre-well-ordering property for all n = 0, 1, 2, . . . . In fact, Π ^ + i
and Σ\n + 2 are Spector classes for all n = 0, 1, 2 , . . . . D

This result is part of the periodicity picture for the projective sets, assuming
projective determinacy. For more on the periodicity phenomena as well as on
transfer theorems involving much stronger properties, we again refer the reader to
Moschovakis [1980].

Recently work has been done on the game quantifier D2 on the set Rω of
infinite sequences of reals. This includes transfer theorems of the type we have
described here as well as a very useful characterization of the Σ\ in L(U) sets of reals.

The inner model L(R) is the smallest model of ZF which contains the structure
R = <ωω u ω, ω, +, , Ap} of analysis and all the ordinals as elements. If P is a
relation on integers and reals, we say that P is Σ\ in L(R) if there is a formula
φ(x, a, X) of the first-order language ^ u of the structure R such that

P(x, a) o (in L(R) we have that R \= (3X)φ(x, a, X))

where, of course, the existential quantifier (3X) ranges over subsets of reals.
In the terminology of Sections 1 and 2 of this chapter, the Σj in L(R) sets of reals

are exactly the sets of reals definable in the sense of L(R) by Σ{ second-order
formulas of the structure R of analysis.

We will end this chapter with a theorem of Martin and Steel. This result can be
found in Martin-Moschovakis-Steel [1982].

4.4.6 Theorem. A relation P on integers and reals is Σ\ in L(R) if and only if it is
O2Π{ that is to say, if and only if there is a Π{ relation S such that

P(x, α)o(3jB 0 Vy0 3βi V7l )S(5c, α, (β0, γθ9 βl9 γl9...»,

where the quantifiers in the infinite string range over the reals. D

The above result provides a representation of the Σ\ in L(R) sets of reals in
terms of the game quantifier O 2 applied to a very simple matrix. This representa-
tion, together with appropriate transfer theorems and determinacy hypotheses,
makes it possible to obtain important structural properties for the class Σ\ in L(R).
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