
Appendix B

Lattice Tables and Representation Theorems

Lattice tables and usl tables of various kinds were an important part of the proofs of
Parts B and C which characterized various initial segments of <&. We now indicate
how to construct such tables. These tables are related to representations of lattices
as lattices of equivalence relations.

L Finite Distributive Lattices

We construct lattice tables for finite distributive lattices. These tables are the ones
needed to obtain the results of Chap. VI.

1.1 Definition. A lattice if = <L, ^ , v, Λ> is distributive iϊ the following conditions
are satisfied for all a, b, ceL:

(i) a v (b A c) = {a v b) A (a v c).

(ii) a A (b v c) = (a A b) v (a A c).

Given a finite distributive lattice if with k + 1 elements, we wish to construct a
homogeneous lattice table for if. This table will consist of a set of k + 1-tuples of
integers < n. We recall some definitions from Chap. VI.

1.2 Definition. Let Θ be a set of k + 1-tuples and let i f be a lattice with k + 1
elements, {pθ9pι,... ,pk} Let α, β e Θ and i,j, m ^ k be given. We say that α = f β if

α[ΐ] = β[ΐ]? j e ? jf α a n c [ β agree o n coordinate i. If pt v /?; = pm, then we say that
α =ivjβiί(x =iβ and oc =jβ. If/?f Λ /?_,- =/>m, then we say that α =iAJβ\{there is a
finite sequence yo> ?7r of elements of 6) such that α = y0 =iϊi =j72 =i '' '

1.3 Definition. Let n,keNand Θ c [0,«)k + x be given. Let i f = <L, ^ , v, Λ> be a
lattice with elements {p0,... ,pk} such that/70 is the least element of i f and/?k is the
greatest element of if. Then Θ is said to be a finite homogeneous lattice table for S£ if
the following conditions are satisfied:

(i) Vα,j8eθ(α=o j8).
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(ii) VθL,βeΘ(θL=kβ^(x = β).

(iii) V/j ^ k(pt ^ pj <- Vα, β e Θ(μ = j β -• α Ξ f ]8)).

(iv) V/j, m ^ &(/?,- v pj =pm<-*Voc,βe <9(α =ivjβ^κx=m β)).

(v) V/j,m ^ fc(/?f Λ Pj = pm*-+\/cc,βeΘ(oc =iAJβ^(x =mβ)).

(vi) For all α0, αi,j80, /?i e 0 , if

(a) Vι<fc(αoΞ i α i ->j8o=/i8i)

then there is a functionf:Θ-+Θ such that for ally ^ 1 and a, βeΘ

and

The existence of suitable lattice tables for finite distributive lattices will follow
from the existence of such tables for finite boolean algebras and a canonical
embedding of finite distributive lattices into finite boolean algebras.

1.4 Definition. A boolean algebra & = (B, ^ , v, Λ ,', 0,1 > is a distributive lattice
(B, ^ , v, Λ> with least element 0 and greatest element 1 together with a total
function '\ B -> B which satisfies:

\/xeB(x v x' = 1 &x A x' = 0).

A finite boolean algebra is completely characterized by its atoms and a finite
distributive lattice is completely characterized by its join irreducible elements. We
define these types of elements, and indicate how they are related.

1.5 Definition. Let & = (B, < , v, Λ ,', 0,1 > be a finite boolean algebra. An atom of
& is an element aeB such that a Φ 0 and for all beB, if b < a then b = 0.

1.6 Definition. Let i f = <L, ^ , v, Λ> be a finite distributive lattice. A join
irreducible element of 5£ is an element aeL such that a φ 0 and for all b, ceL, if
b v c = a then either b = a or c = a.

We refer the reader to Birkhoff [1940] for the following facts about distributive
lattices and boolean algebras.

1.7 Theorem. Let & = (B, ^ , v, Λ ,', 0,1 > be a finite boolean algebra. Then every
non-zero element of B can be expressed in a unique way as a join of atoms of B.

1.8 Theorem. Let ϊ£ = <L, ^ , v, Λ> be a finite distributive lattice. Then there is a
finite boolean algebra & = (B, < , v, Λ ,', 0,1 > and a lattice embedding g: L -• B
preserving least and greatest elements.

The idea behind the proof of Theorem 1.8 is the following. A boolean algebra
with n atoms is isomorphic to &m the set of all subsets of {0,1,...,«— 1} ordered
by inclusion, v and Λ are interpreted, respectively as U and Π, and ' is interpreted
as complementation. The isomorphism maps the /th atom of the boolean algebra to
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{/ — 1}. A distributive lattice i f with n join irreducibles is isomorphic to a sublattice
if* of 08 n which contains the least and greatest elements of 01 n. This isomorphism
establishes a one-one correspondence between the atoms of 0&n and the join
irreducibles of if* with the property that the join irreducible of if* is the least
element of ^£^ which contains the atom to which it corresponds.

Theorems 1.7 and 1.8 can be used to relate lattice tables for boolean algebras to
lattice tables for distributive lattices.

1.9 Lemma. Let i f be a finite distributive lattice with universe L and n join irreducible
elements, and assume that $£ is a sublattice of the boolean algebra 0& with universe B
and n atoms. Let Θ be a finite homogeneous lattice table for $ and let α, βe Θ and
ieN be given such that ccφiβ. Then there is a p}eL such that oίφjβ.

Proof By 1.3(iv) and Theorem 1.7, we may assume that/?; is an atom of 0β. Let/?, e L
be the join irreducible corresponding to/?t as described in the paragraph following
Theorem 1.8. Then/?, ^ p t so by 1.3(iii), oc ψjβ. 0

We now construct finite homogeneous lattice tables for finite boolean algebras.

1.10 Theorem. Let 08 = (B, < , v , Λ ,', 0,1 > be a finite boolean algebra. Then 0& has
a finite homogeneous lattice table Θ.

Proof Let au...,an be the atoms of 0β. Let a0 = 0 and let an+ u..., a2n-1 be the
remaining elements of B, with α2»-1 = l Let Θ be the set of all 2"-tuples α which
satisfy the following conditions:

(1) α [01 = 0.

(2) Vϊ*£n(α [ i le{0,l}).

(3) If n <j < 2n and A = {aiι9..., airU)} is the set of all atoms a of 0& such that
a < a}, and A is ordered so that iγ < i2 < ' * < /r(J), then α ϋ l = Σ{2Hj)~m:
a [ W = 1}.

It follows from (1) that 1.3(i) is satisfied. It follows from Theorem 1.7 and (3)
that 1.3(ii) is satisfied.

Let i,j < 2n be given. First assume that at ^ #,. Let α, βe Θ be given such that
α =jβ. For each σeΘ and u < 2", define I(σ,u) = {r: 1 ^ r ^ n&σίr] = 1 &
ar ^ au}. By (3), I(jxJ) = I(βj') so since α, ^ aj9 we must have /(α, /) = I(β, i). Hence
(x =iβ. Conversely, assume that a, ^ a^. Then there is an atom au of 0& such that
au ^ a{ but au ^ as. Let α be the unique 2"-tuple in Θ such that α[u] = 1 and α[r] = 0
for all r ^ n such that r Φu, and let β be the unique 2"-tuple in Θ such that βίr] = 0
for all r ^ n. Then αϋΊ = j8ϋΊ = β[i] = 0 but α m Φ 0. Hence α Ξjjβ but α # fj8, so
1.3(iii) holds.

Next let i,j, m < 2n be given. First assume that a{ v a} = αm. By Theorem 1.7,
{r ^ «: ύiΓ < flM} = {r < »: flΓ ^ fl, } U {r ^ Λ: flr < «_,-}. Let α, jSeΘbe given such
that (x=ivjβ. By Definition 1.2, α Ξ,-/? and oc=jβ. Hence /(α,/) = /()8,0 and
I(aJ) = I(β,j). Furthermore, /(α, /) U /(αj) = /(α, m) and 7(j8, i) U I(βJ) = I(β, m).
Hence /(α, m) = 7(j8, m), so α = m β. Next let α, j8 e 6) be given such that α = w j8. Since
0. v α7 = am, a,- < αm and α, < Λm, so by 1.3(iii), α = f)8 and α = 7 )8. By Definition
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1.2, α = ί v j / ? . Conversely, assume that ap = at v a} Φ am. Then there is an atom au

of 3 such that au^amoau^ ap. Let α be the unique 2"-tuple in Θ such that α[r l = 0
for all r < Λ, and let β be the unique 2"-tuple of Θ such that β[u] = 1 and βlr] = 0 for
all r ^ « such that r # w. Then u is an element of exactly one of {/(/?,/?), I(β, m)}. If
uel(β9p) then oc=mβ but α # p j 3 , and if uel(β,m) then α =pjβ but α # m β .
Furthermore, α =pβooc =iwjβ. Hence a φmβooί =ivjβ, so 1.3(iv) holds.

Let i,7, m < 2M be given. First assume that af Λ a} = am. Then {r < n: ar ^ tfw}
= {r < «: αr < αf} (Ί {r ^ «: αr ^ α }̂. Let a,βeΘ be given such that α =iAJβ By
D e f i n i t i o n 1.2, t h e r e a r e y0,. ..,yseΘ s u c h t h a t oc = yo =iy1=jy2 =i - = jys = β.

Since at A a} = am, am < αf and «m ^ aP Hence by 1.3(iii), cc = y0 =myi =my2 =m

• =mys = β. Next let α, βe<9 be given such that α =TOj8. Let y be the unique
element of Θ such that for all r < n

f 1 if α w = 1 &« r < a{ or if jS[r] = 1 &ar

(0 otherwise.

Since αf Λ cij = am, y =moι =mβ. Furthermore, γ = f α and 7 =,-/? so by Definition
1.2, OL =iAJβ. Conversely, suppose that ap = a^ A cij Φ am. Then there is an atom au

of 3$ such that au^amoau^ ap. Let α be the unique element of Θ such that αIr] = 0
for Mr ^n and let ]8 be the unique element of Θ such that β1"1 = 1 and β[r] = 0 for
all r ^ n such that r Φ u. Then oL=mβooiφpβ. Since ap = at A aj9 we have already
shown that α =pβ<xx =iAjβ. Hence α =mβ<xx # i Λ J jβ , so 1.3(v) holds.

Finally, let 0L0,0L1,β0,β1eΘ be given satisfying 1.3(via). For every aeΘ and
r ^ «, define/(α)[r] as follows:

if ]8o=ri8i

if ^φrOLo^rβoΦrβl
- α W if (XoΦr

Then for all α G 6), it follows from (3) that the n + 1-tuple/(α) defined above has a
unique extension to an element of Θ. Hence without loss of generality, we can treat/
as a map from Θ into Θ. It is easily verified that 1.3(vib) and 1.3(vic) are
satisfied. 0

1.11 Corollary. Let <£ = <L, ^ , v, Λ> be a finite distributive lattice. Then $£ has a
finite homogeneous lattice table.

Proof. By Theorem 1.8, there is a finite boolean algebra g& with universe B and a
lattice embedding g: L -> B preserving least and greatest elements. Let B =
{a0,.. .,a2n-i} be ordered as in the proof of Theorem 1.10, and let J = {i < 2n:
3ceL(g(c) = Gi)} = {i0 < iί < ••• < ir}. By Theorem 1.10, there is a finite
homogeneous lattice table Θ for 0&. For each αe<9, define the r + 1-tuple α* by

α*UΊ = α[i;] for a l l y ^ r , and let <9* = {α*: αe<9}. It follows from the cor-
respondence between atoms and join irreducibles in the proofs of Lemmas 1.9 and
1.10 that 6)* is a finite homogeneous lattice table for if. 0

The lattice tables we have been discussing are closely related to representations
of lattices as lattices of equivalence relations over sets as introduced by Whitman
[1946]. The finite set on which the equivalence relations are defined is the lattice
table Θ. The equivalence relations are just the relations = f corresponding to the
elements pt of the lattice being represented, and meets and joins are defined
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as in Definition 1.2. Whitman defined meets and joins dually to the way they were
defined in Definition 1.2, but since the dual of a lattice is a lattice, the two
definitions give rise to the same class of theorems. Jonsson [1953] proved the
representation theorem for distributive lattices without the homogeneity property.
The proof presented here is along the lines of that given by Thomason [1970a].

*1.12 Exercise. Let $£ = <L, ^ , v, Λ> be a countable distributive lattice with least
element a0 and greatest element ax. For each / e N, let S£{• = <L, , ^ , v, Λ > be a finite
sublattice of $£ containing a0 and ax such that 5£ = \J{^: ieN}. Given a lattice
table Θ for £fi+ u we let θ\i= {<α [ 0 ],..., α[n(l)]> : α e Θ } , where Lt = {a0,..., an(i)).
A sequential table for $£ has the form {<9,-,_,•: iJeN} where

(i) ViJeN(Θij is a finite homogeneous lattice table for iff).

(ii) VieN3joeNVj>Jo(θi+1J t i e β£ J).

(iii) VϊeΛf({<α,y>: α e θ g } is recursive).

Show that i f has a sequential table. (Hint: First show that given any finite boolean
algebra <%, there is a finite boolean algebra ^ * such that for all finite lattices ££, all
embeddings/: i f d> J 1 and all extensions if* of i f generated by one element, there
is an embedding/*: ^ * c^ ̂ * such that the following diagram commutes:

se =—><£*

Fig. 1.1

(J** is obtained from Jf by splitting all the atoms of Si in half, a recursive process.)
Use this sequence of boolean algebras and the proofs of Theorem 1.10 and
Corollary 1.11 to obtain the desired lattice table.)

2. Finite Lattices

We construct lattice tables for finite lattices. These tables are the ones needed to
obtain the results of Chap. VII.

2.1 Definition. Let Θ c Nk +1 be given, and let if = <L, ^ , v> be a finite usl. Θ is
said to be a usl table for ̂ £ if there is an enumeration p0, ...,pk of the elements of L
such that:

(i) Vα,/?G6>(αΞθj8)

(ii) Va,jSe<9(aΞΞfcβ->a = β).

(iii) V/j ^ k(Pι ^Pj~V(x,βeΘ(oL ^jβ^a^iβ)).

(iv) Wj, m ^ k(pi v /?, = /?m *-• Va, )8 6 <9(a =ivjβ<^κx=m β)).
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We first show that every finite usl has a finite usl table.

2.2 Lemma. Let i f = <L, ^ , v> be a finite usl with universe L = {p0,... ,pk} where
p0 is the smallest element ofL andpk is the greatest element ofL. Then i f has a finite
usl table Θ^[_0,2k)k+ι.

Proof Θ is constructed through a process consisting of k + 1 steps.

Step 0. Place ocoeΘ where αg1 = 0 for all i ^ k.

Step s; 0 < s < k. Place OL2S-I a n d α 2 s e β where

fO if ι = 0
/y[»] — J

2s~ι \2s-l if i / 0

and

if z = 0

l if Pi^Ps

otherwise.

Step k. Place a2k-1 e Θ where

ί if / = 0

2 k - 1 " l 2 ) t - l if / / 0 .
m

α 2 k

Note that ΊΐiΦO, OLΦ βeθ, and α = f j8, then {α,jS} = {α2 s-1,α2 s} for some j
such that 0 < s < k. The lemma now follows routinely. D

The tables which are needed are lattice tables rather than usl tables. However, it
is not known whether every finite lattice if has a finite homogeneous lattice table.
Hence we construct an infinite homogeneous lattice table for if. In order to be able
to use this table in tree constructions of initial segments of Q), we require that the
lattice tables be nicely approximated to by a sequence of usl tables.

2.3 Definition. Let J£ = (L, ^ , v , Λ> be a finite lattice with universe
£ = {Po, J A ) where p0 is the smallest element of L and/?fc is the greatest element
ofL. Let {Θi'.iεN} be given such that for all ieN, 0 ; c Nk+1. Then {(9,: ieN} is
said to be a sequential lattice table for 5£ if the following conditions hold:

(i) VieN(Θi is a finite usl table for S£).

(ii) V/eMβ.-czβi+i).

(iii) Vij,m ^ *;(# Λ PJ =pm++VreNV<x,βeθr(μ =mβ^

3yo, . . . ,y s e0 r + 1 (a = yo = t 7 i = 7 y 2 =i " =j7s = β)))

As in the previous section, the tables we need must satisfy a homogeneity
condition.

2.4 Definition. Let 5£ = <L, <, v, Λ> be a finite lattice with universe
L = {Ab »A) where/7O is the smallest element of L and/?fc is the greatest element
of L Let {Θi\ ieN} be a sequential lattice table for ^£. Then {Θf: ZGΛ/"} is weakly
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homogeneous if for all r eN and all α0,0Lί9βo, β2 e Θr, if

(i) Vi^k(0L0=i*i-+β0=iβ2)

then there is a β1 e Θr+1 and functions f: Θr -> Θr+ i for 5 = 0,1 such that for all
J ^ 1 and α, βeΘr,

(ii)

and

(iii)

The sequential lattice table for S£ is built by iterating a process described in
some lemmas below, which enable us to start with a usl table in the sequence and
place all necessary interpolants into the next usl table in the sequence.

2.5 Lemma. Let i f = <L, ^ , v, Λ> be a finite lattice with universe L = {p0,... ,pk}
wherepQ is the least element ofL andpk is the greatest element ofL. Let Θ c [0, u]k +1

be a usl table for <£. Let α, β e Θ and i, j,m ^ k be given such that pt Λ p-} = pm and
α =m β. Then there is a usl table 0 * <Ξ [0, u + A~]k+ι for <£ which extends Θ and has
interpolants 71,72?73e<9* s u c n ί n a ί α = i 7 i =jΊi = ΐ 7 3 =jβ

Proof lΐpi ^ Pj or pj ^ ph then we can set Θ* = Θ and yί = y2 = 73 = β to prove
the lemma. Otherwise, let Θ* = ΘU {71,72,73} where for all n ̂  k

It is easily checked that cc=iyι =jγ2 =iy3 =jβ once we note that since p{ £pj9

yψ = yψ = u + 2. It is routine to check that 6)* is a usl table for if. 1]

A finite iteration of the process described in Lemma 2.5 will yield the following
corollary.

2.6 Corollary. Let <£ be a finite lattice with universe L = {po,...,pk}, and let Θr be a
finite usl table for if. Then there is a finite usl table Θr+ι ^ Θrfor i f such that

(i) V/J,m < k(Pi A Pj=pm~Voc,βeΘr(oι =iAJβ^(x =mβ))

where all congruence relations in (i) are considered relative to Θr+ι.

The next lemma provides the interpolants required for the weak homogeneity

property.
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2.7 Lemma. Let <£ = <L, ^ , v, Λ> be a finite lattice with universe L = {p0,... ,pk}
where p0 is the least element of L and pk is the greatest element of L, and let
Θ c [0,w]fc + 1 be a finite usl table for if. Let (xθ90Lί9βθ9β2^θ be given such that
for all i < k9 ifoco Ξ 4 αi then β0 =iβ2- Then there is a finite usl table Θ* Ώ Θ for
if, an element βίeΘήi and maps fs: Θ -> (9* for s < 1 such that / 0 (α 0 ) = βo,
/o(«i) =/i(α 0 ) - βi,fi(*i) = βi, and for alii ^ k, s ^ \ and a, βeΘ, if a =vβthen

Proof Letpm = V{/?;: α0 Ξ f αi} . By Definition 2.1(iv), α0 =m0Lι. We define j8j_ by
specifying βι"] for all « *ζ k as follows:

[u + 1 otherwise.

The construction of Θ* is accomplished in two steps.

Step j < 1. Let Θ = {α0,..., αr}. We define yj

v = fj((xv) in a sequence of r + 1
substeps. At the first two substeps, we set y°0 = β0, γ° = y* = β1 and y\ = β2.

Substep v^2. Let c be the least integer not yet used as a coordinate of an element of
Θ. For each n ^ k, let i(ή) be the least i such that αf = „ OLV. We define y£ by specifying
its nth coordinate for each n ^ k as follows:

otherwise.

This completes the construction. Let Θ* = Θ U {yj

v: j ^ \&v ^r}. It follows
easily from the construction that for all i ^ k, s ^ 1 and oc, βeΘ, if oc =iβ then
/s(α) Ξf/S(j8). It is routine to check that (9* is a usl table for if. D

A finite iteration of the process described in Lemma 2.7 will yield the following
corollary.

2.8 Corollary. Let ϊ£ be a finite lattice with universe L = {p0,... 9pk}9 and let Θr be a
finite usl table for S£. Then there is a finite usl table Θr+i Ώ Θrfor ϊ£ such that for all
ffoj α i ' βo> βi £ Θr9 if2A(ϊ) holds then there is a β1eΘr+1 andfunctions fs: Θr-+ Θr+1

for s ^ 1 such that 2.4(ii) and (iii) hold for all s ^ 1 and α, βe Θr (the congruence
relations in 2.4(ii) and (iii) are considered relative to (9 r + 1 ).

Corollaries 2.6 and 2.8 contain the information needed to build weakly
homogeneous sequential lattice tables.

2.9 Theorem. Let <£ be a finite lattice. Then <£ has a weakly homogeneous sequential
lattice table.

Proof. By Lemma 2.2, there is a finite usl table Θo for ^£. Assume by induction that
Θr has been defined and possesses all the required properties. Let Θ*+ x be the Θr+1

of Corollary 2.6, and let Θr+1 be obtained from Corollary 2.8 applied to (9*+ 1 in
place of Θr. Then Θr+1 has all the desired properties. D

2.10 Remark. The constructions of this section can be carried out in a uniformly
effective manner, so that the sequence {Θr: reN} can be chosen to be a recursive
sequence of canonically finite sets.
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2.11 Remarks. Lemma 2.5 was proved by Jonsson [1953]. The remaining results of
this section were proved by Lerman [1971]. The proofs we present are based on
ideas of Jonsson [1953] and Thomason [1970a]. The formulation of Lemma 2.7
and its proof are due to Lachlan and Lebeuf [1976] who simplified the original
proof.

3. Countable Uppersemilattices

We construct tables for countable usls. These are the tables needed to prove the
results of Chap. VIII.

We begin with some facts about countable usls. Given a countable usl %, we will
describe an approximation to % by finite usls. The approximation which we
describe can also be used to construct a recursive countable universal usl (a
countable usl % is universal if every countable usl can be embedded into ύll).

3.1 Definition. Let {S£ x\ ieN} be a sequence of usls such that for each ieN,
Se x = <Li? ^ i 5 v;> and i? 0 <= = î <= ' ' * We define the usl & = U{J^: ieN} =
<L, ^ , v> by letting L = U{L;: ieN}, defining a ^ bfor a, beL'ύ for some ieN,
a, be Li and a ^ , 6, and defining a v b to be the element ceL such that a v, 6 = c
where i is the least element of N such that a,beLf.

3.2 Remark. Let <£ be as in Definition 3.1 and assume that each Lt is finite and has a
least element. Then each ^ is a lattice since every finite usl with least element is a
lattice; define a A b to be V{c: c ^ a&c ^ b}.

3.3 Remark. Let $£ = <L, ^ , v> be a usl, and let if* = <L*, ^ , v> be a finite
subuslofif. Fix aeL- L* and let i f + = <L + , ^ , v> be the smallest subusl of i f
such that L* U {a} c L +. Then L+ is finite since each element b of L + can be
obtained as a finite join, b = V{d: deM} where M c L* U {α}.

The preceding remarks can be used to obtain nice approximations to infinite
usls.

3.4 Remark. Let i f = <L, ^ , v> be a countable usl with least element. Then there is
a sequence {^ :ieN} of finite lattices such that for each ieN, ^ is a subusl of J^ i + x

andJSf =

In order to construct suitable lattice tables for countable usls, we must express
the countable usl JS? = <L, <, v> as i f = U{J^ :ieN} as in Remark 3.4, where for
each ieN, J^ = <Lt, ^ I 5 vf, Λf>. We must then find a nice way to extend a lattice
table for ^ to a lattice table for J£i + 1 for each ieN. This will be the aim of the
lemmas of this section.

A sequential lattice table for i ^ will be expandable to one for J?i + ί only if all
tables in the sequence are admissible extensions of the previous tables.

3.5 Definition. Let Θ c [0 ,Λ]* + 1 and Θ* c [0,m]Λ + 1 be finite usl tables for the
finite lattice ^£. We say that <9* extends Θ if Θ c <9*. If <9* extends 6), then (9* is an
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admissible extension of Θ (write Θ <Ξα(9*) if

(i) Vαe0*3j8e0Vye©V/< k(oc = iy^oc

Condition 3.5(i) says that any new k + 1-tuple in 0 * is associated with an n-
tuple β in Θ which it duplicates on some coordinates, and no other duplication of
coordinates of elements of Θ is possible except the coordinates duplicated from β.

The next definition is needed to relate usl tables for S£-x to usl tables for J£i+ί.

3.6 Definition. Let j£?0 and J2\ be finite lattices such that JS?O ^ «#Ί, and let
Θ c [0,rt] f c + 1 and Θ* c [ 0 , m ] j + 1 be finite usl tables for j ^ 0 and jSfx respectively.
We assume that the table (9* is organized in such a way that if j£?f has universe Lt and
Li = {/?θ5 .,/>,•}, then Lo = {p0,.. .,pk}. Θ is said to be the restriction of (9* to J2?o

(write β = β*rjSP0) i f β = {αe[0,/i] k + 1 : 3βeθ*\/i^k(μ=iβ)}. 6>* is an
expansion of (9 if (9 is the restriction of Θ* to j£?0. Given /? e 0*, we write j8 Γ if0 f° r

the k + 1-tuple αe[0,/ι]* + 1 such that (x=iβ for all z ̂  k.

Admissible extensions will play an important role in our construction. We first
check that the extensions of Sect. 2 are admissible.

3.7 Lemma. The extension of Lemma 2.5 is admissible.

Proof. In the notation of Lemma 2.5, we must find a β as in Definition 3.5(i) for each
αe {yu y2,73}. For yx and y2, we can choose β to be the α of Lemma 2.5. And for y3,
we can choose β to be the β of Lemma 2.5. D

3.8 Lemma. The extension of Lemma 2.7 is admissible.

Proof In the notation of Lemma 2.7, we must find a β as in Definition 3.5(i) for each
α e {yi'Jr < 1 & ̂  < r} If yj = /}1? then we can choose β to be the β0 of Lemma 2.7.
Otherwise, we proceed by induction as in Lemma 2.7. Fix7 and v. Ifj = 0, then we
can choose β to be the β0 of Lemma 2.7. By Lemma 2.7, we note that β0 =mβ2 so
βi = i βi ^Pi ^ Pm Hence if/ = 1, we can choose β to be the β2 of Lemma 2.7. D

The next four lemmas deal with properties of admissible extensions and the
existence of admissible extensions under various hypotheses.

3.9 Transitivity Lemma. Let i f be a finite lattice and let Θo, Θu and Θ2 be finite usl
tables for <£ such that Θi + 1 is an admissible extension of Θ, for i ^ 1. Then Θ2 is an
admissible extension of Θo.

Proof. Fix aeΘ2 — Θo. If αe Θl5 then a β as in 3.5(i) exists since Θx is an admissible
extension of Θo- Otherwise, αe Θ2 — Θγ. Hence there is a β* e Θγ which satisfies
3.5(i) for Θγ in place of Θ and Θ2 in place of 0*. If β*eΘ0 then the proof is
complete. Otherwise, since Θx is an admissible extension of Θo, it follows from
Definition 3.5 for Θo in place of Θ and <9i in place of 0 * that there is a β
corresponding to α = β* which satisfies 3.5(i). This β satisfies 3.5(i) for the
original α. II

3.10 Corollary. The extensions of Corollary 2.6 and Corollary 2.8 are admissible.

Proof Immediate from Lemmas 3.7, 3.8 and 3.9. D
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In order to build sequential lattice tables, we must satisfy both the weak
homogeneity and infemum preserving conditions. We name extensions which
satisfy these properties.

3.11 Definition. Let i^ be a finite lattice and let Θ and Θ* be finite usl tables for S£
such that (9* extends Θ. Θ* is said to be a type 1 extension of Θ if (9* is an
admissible extension of Θ and the conclusions of Corollaries 2.6 and 2.8 hold for Θ
in place of Θr and Θ* in place of Θr+1. (In other words, (9* is a suitable successor
for Θ as an element of a weakly homogeneous sequential lattice table for if.)

3.12 Corollary. Let S£ be a finite lattice and let Θ be a finite usl table for ϊ£. Then Θ
has a type 1 extension.

Proof Starting with Θ, extend it to Θ+ using Corollary 2.6 and then extend Θ+ to
(9* using Corollary 2.8. By Corollary 3.10 and the Transitivity Lemma, (9* is a type
1 extension of Θ. I

We now investigate the interaction between restrictions and admissibility.

3.13 Restriction Lemma. Let !£ be a finite lattice and let Θ and Θ* be finite usl
tables for $£ such that Θ* is an admissible extension of Θ. Let S£* be a subusl of 5£.
Then (9* X if* is an admissible extension of Θ X J?*, i.e., the following diagram
commutes.

Θ ^ >θ*

Θ X ϊ£* E Γ ^ * 9 * r ^ *

Fig. 3.1

Proof. Given αe<9* X if* - Θ X &*, find a+ eΘ such that α = α + X if*. Let
β+ eΘ correspond to α + as in 3.5(i). Then β = β+ X if* corresponds to α as in
3.5(i). 0

The remaining lemmas which allow us to combine tables, allow us to do so only
if the tables are sufficiently disjoint. We introduce notation for various disjointness
conditions.

3.14 Definition. Let j , keNbe given such that j < k, and let Ψ, Ψ* c Nk + 1 and
Θ c Nj+ί be finite usl tables. We say that Ψ =0 Θ if

(i)

We say that Ψ* and Θ are disjoint above Ψ if

(ii) Vα E Ψ* Vβ G Θ V/ < / α = t β -+ 3y e Ψ(<x = t y = f β)).

Different tables for the same lattice can be combined as follows.

3.15 Joint Embedding Lemma. Let S£ be a finite lattice, and let Θ and Θ* be finite usl
tables for <£ such that Θ ΞΞO<9*. Then Θ U Θ* is a usl table for $£ which is an
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admissible extension of both Θ and (9*, i.e., the following diagram commutes:

Θ

Proof. Straightforward. D

It will sometimes be necessary to amalgamate two extensions of a given usl
table. The following lemma will enable us to carry out such amalgamations.

3.16 Amalgamation Lemma. Let i f be a finite lattice and let Θ,Θ* and Θ + be finite
usl tables for !£ such that Θ+ extends Θ and Θ* is an admissible extension of Θ.
Assume that Θ + and (9* are disjoint above Θ. Then Θ* U Θ + is a usl table for J£ and
the following diagram commutes:

Θ
£„• \£

<9* <9 +

£ \ S £-

<9*U<9 +

Fig. 3.3

Furthermore, if Θ+ is an admissible extension of Θ then Θ* U Θ+ is an admissible
extension of Θ*.

Proof. We first show that Θ * U Θ + is a usl table for t£. 2.1(i) is easily verified and
2.1(ii) follows immediately from 3.14(ii). Let if = <L, ^ , v, Λ> a n d l e t ^ ^ e L b e
given such that/?, ̂  pj. Let α, β e ( 9 * U ( 9 + b e given such that a=jβ. Since Θ £ (9*
and Θ c Θ +, we may assume without loss of generality that α e Θ* and β e Θ +, else
2.1(iii) will follow immediately. By 3.14(ii), there is a yeΘ such that oc =jy =jβ.
Since y e Θ* Π (9 + and 6>* and Θ + are usl tables for if, α = t γ = t β. Conversely, let
pbPjeΘ*UΘ+ be given such that/?; ^pj. Since Θ* is a usl table for if, 2.1(iii)
implies that there are α, )8e6)* such that α = ̂ β but α # t β . Since Θ * c 0 * U 6 ) + ,
2.1 (hi) holds for <9*U<9 + .

Let phPj,pm e L be given such that /?, v /?, = /?nr Let a,βeΘ*UΘ+ be given
such that a=mβ. By the previous paragraph, oc=iβ and a =jβsooc =ivjβ. Next let
α j e 6 ) * U 6 ) + be given such that α = fy and 0L=jy. If α,7e(9* o r α , y e Θ + then
α = Wί 7 since (9* and (9 + are usl tables for ̂ £. Hence we may assume that α e (9* — Θ
and 7 E (9 + — Θ. Since (9* is an admissible extension of (9, there is a /J e Θ satisfying
3.5(i). Hence α =, β and oc=jβ. Since /? e Θ* and Θ* is a usl table for ̂ <x=m β. But
7 = f α Ξ , ^ a n d 7 =j(x =jβandβeΘ^ Θ+ a n d Θ + is a usl table for if, so 7 =mβ.
Hence α =mβ =my. Conversely, if phphpmeL are given such that p{ v p} φpm,
then there are ιx,βeΘ* such that α =ivjβ<=>(x ψmβ. Since 0 * ^ Θ*U6) + we see
that 2.1(iv) holds, so β * U Θ+ is a usl table for ^.
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We now show that Θ* U Θ + is an admissible extension of Θ +. Let αe6> s | ίUΘ +

be given. If α e Θ +, then we can choose β = α to verify 3.5(i). So we may assume that
αe(9*. Since (9* is an admissible extension of 6), there is a β e 6) such that for all
y 6 0 and i ^ k, α = j y oα = {β. Let (5eΘ + and / < k be given such that a =ιδ. By
3.14(ii), there is a ye6) such that α = f y, hence β = £ a = ιy. Thus βeΘ ^ Θ+ will
witness the fact that 6>*UΘ+ is an admissible extension of <9 + .

The last sentence of the lemma follows as in the above paragraph by
interchanging Θ* and Θ +. D

The preceding lemmas provide some of the building blocks for obtaining usl
tables. We will introduce other building blocks which require that we modify
certain tables isomorphically. These tables are needed to extend certain diagrams to
commuting diagrams.

3.17 Definition. Let (9, Ψ, Nk + 1 be finite usl tables. We say that Θ and Ψ are
isomorphic (write Θ ~ Ψ) if there are permutations {/?,: / ̂  k} of N such that
Ψ = {</?o(rao), iPkiWk)} <^o> ?

 mk> e <9}. We then write the isomorphism
map as p = </>0,... ,/?fc>, and write ίP = /?(6>).

We now show that isomorphisms preserve admissible extensions.

3.18 Admissibility Preservation Lemma. Let Ψ, Ψ+ and Θ* be finite usl tables such
that the diagram of Fig. 3.4 commutes, where p = (p0,... ,pk}. Then Ψ ^a ψ*.

Ψ

ψ+ 4_ ψ*

Fig. 3.4

Proof Let βeΨ* be given. Since Ψ+ is an admissible extension of Ψ, there is an
α e Ψ such that for all y e Ψ and / ̂  k, ifp(β) =, y then/?(^) = f α. Since Fig. 3.4 is a
commuting diagram, it must be the case that for all y e Ψ, y = ip(β) if and only if
y=iβ. Hence for all ye Ψ and i *ζ k, if β =ty then β = ί α , i.e., Ψ <^aΨ*. D

In order to apply the Joint Embedding Lemma to Θ and 6) # , we require that
6 ) Ξ 0 Θ # . I f this is not the case, we use the next lemma to find Θ* ~ Θ * such that
Θ* =0Θ and apply the Joint Embedding Lemma to Θ and Θ*.

3.19 = o Modification Lemma. Let i f andJί be finite lattices such that $£ c Jl. Let
Θ and Θ * be finite usl tables for <£ and Jί respectively. Then there is a finite usl table
Θ* for Jί such that Θ* - <9* ΞΞO<9.

Proof. Since Θ and Θ * are finite, there arej, ^eΛ^ and finite sets, S,T ^ N such that
Θ ^ Sk + 1 and Θ# ^Tj+1. Hence there is a permutation q of N such that
^(Γ)Π5 = 0. For 1 < / < it, let /?, = #. Fix αe<9 and βe<9 # . Then there is a
permutation /?0 of N such that Po(βιO]) = α [ 0 ]. Let p = (p0,... ,pk} and let
6)* =/?(Θ#). It is easily verified that Θ Ξ O < 9 * ~ 6>#. 0

In order to apply the Amalgamation Lemma to Ψ+ ί i f 3 ψ ί if and <9*
above 0 , we require that ?P + Γ i f and Θ* are disjoint above <9. If this is not the case,
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we use the next lemma to define Ψ* ~ Ψ+ such that ψ* \ i f and Θ* are disjoint
above Θ, and apply the Amalgamation Lemma to Ψ* ί if and Θ*.

3.20 Disjointness Modification Lemma. Let i f and Jί be finite lattices such that
ϊ£ <Ξ Jί. Let Ψ and Ψ* be finite us! tables for Jί and let Θ and (9* be finite usl tables
for ££ as in the solid part of the diagram of Fig. 3.5. Then there is a finite usl table
ψ+ ~ψ* for Jί such that Ψ c ψ+ and Θ* and Ψ+ are disjoint above Ψ.
Furthermore, ίfψ* is an admissible extension ofΨ, then Ψ+ can be chosen to be an
admissible extension of Ψ.

ψ—!—>ψ r ^—=—>Θ

Fig. 3.5

Proof The lemma asserts that we can extend the solid part of Fig. 3.5 to the full
diagram so that the diagram commutes and disjointness and admissibility
properties are established.

Since Ψ, Ψ* and (9* are finite, there are finite sets R,S,T^N andy, k e N such
that R c SΠ T, Θ* c Sj+1, Ψ c Rk + 1 and Ψ* c Tk+ί. For each / < k, fix a
permutation/?; of N which satisfies the following conditions: If βe Ψ* and there is
an α 6 Ψ such that a=iβ, then A ( £ [ I ] ) - β m and if no such α exists, p0i]) eN- S.
If k < i ^j, let pt be the identity permutation of N. Let /? = </>0,... ,/?;) and let
ψ+ =p(ψ*).ThenΨ+ ~ ψ*9 Ψ+ and 6)* are disjoint above ψ, and ^ c «F + .Also,
if !P ^ α <F*, then by the Admissibility Preservation Lemma (3.18), Ψ ^a Ψ + . 0

The next two lemmas are applied to build a sequential lattice table for ^ which
can be extended to a sequential lattice table for any finite M 3 ^.

3.21 Lemma. Let $£ and Jί be finite lattices such that ^ ^ Jί. Let Θ c Nk+1 be a
finite usl table for J£, and let Θ* be a finite usl table for Jί. Then there are finite usl
tables Θ+ and Θ* for ^£ and Jί respectively such that the following diagram
commutes:

Θ*<—=—>e*—t—>Θ* r se

I -
Θ -τa—>Θ +

Fig. 3.6

Proof. Fix ^£, Jί, Θ and Θ* as in the hypothesis of the lemma. By the = 0

Modification Lemma (3.19), there is a finite usl table Θ* for M such that
Θ* ~• Θ* =o Θ. By the Restriction Lemma (3.13), 6>* ί i f is a finite usl table for
^£. Note that (9* Γ ̂ £ =0Θ. Hence by the Joint Embedding Lemma (3.15), we can
set Θ+ = Θ U 0 * Γ ̂ £ to make Fig. 3.6 a commuting diagram. D
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3.22 Lemma. Let i f andJί be finite lattices such that <£ c Jί. Let Θ and Θ* be finite
usl tables for if, and let Ψ and Ψ* be finite usl tables for Jί as in the solid part of the
diagram of Fig. 3.7. Then there are usl tables Θ + for i f and Ψ + for Jί such that Fig.
3.7 is a commuting diagram.

Θ

Fig. 3.7

Proof By the Disjointness Modification Lemma (3.20), there is a finite usl table Ψ +

for Jί such that Ψ+ ~ ψ*9 (9* and ψ + are disjoint above Ψ, and Ψ+ is an
admissible extension of Ψ. By the Restriction Lemma (3.13) and the Transitivity
Lemma (3.9), the following diagram commutes:

+ Ψ f i f

*ψ+ r se
Fig. 3.8

The lemma now follows from the Amalgamation Lemma (3.16), with

The final two lemmas of this section are isomorphism pullback lemmas which
allow us to show that certain induction hypotheses specified in the construction of a
sequential lattice table are satisfied.

3.23 First Pullback Lemma. Let <£ and Jί be finite lattices such that i f ς l . Let
Ψ c Nj+1 be a finite usl table for Jί, and let <9, Θ* c Nk+ * be finite usl tables for <£
as in the solid part of Fig. 3.9. Then there is a finite usl table Ψ* for Jί such that Fig.
3.9 is a commuting diagram.

Ψ L_
_t

I
φ*--Γ

Fig. 3.9

>Ψ\ <£-

,(9*

Proof Let/? = (p0,... ,pk}. Define q = (q0,..., qj} by q x = pt if/ < fe, and let qt be
the identity permutation of TV if k < i < j . Then q is an isomorphism between Ψ and
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q{ψ) = ψ*9 and for all oce Ψ,p(oc \ S£) = q(oc) \ <£. It will therefore follow that Fig.
3.9 is a commuting diagram once we show that ψ* ϊ i f ^ f l<9*.

Let β*eΘ* be given. Then there is a β + e<9 such that p(β+) = β*. Since
Ψ Γ & ^a Θ, there is an α + e Ψ Γ 5£ such that for all y + e Ψ t £? and / ̂  k, if
β+ = t y

+ t h e n £ + = f a
 + . Fix αe Ψ such that α + = α Γ if. Suppose that y* e <F* Γ ^

and / ̂  A: are given such that y* = {β*. Then there isayeΨ such that #(y) Γ if = y*.
Since each/7j is a permutation and Fig. 3.9 is a commuting diagram, γ ί i f =iβ +.
By choice of α, y =,α. Hence q{y) t ^ =tq{<x) \ if. We thus see that for all
y*eΨ* r i f a n d / < Λ, if y* Ξ . JS* then ^(α) Γ ̂ =iβ*, so 'P* Γ if ^ Ω Θ * . 0

3.24 Second Fullback Lemma. Let ££ and Jtbe finite lattices such that ϊ£ c M. Let
Γ and Γ * be finite usl tables for Jί and letΘ,Θ' and Θ" be finite usl tables for <£ such
that the solid part of Fig. 3 JO commutes.

Γ" T • Γ" \ & _

Fig. 3.10

Then there is a finite usl table Γ" for Jί such that Fig. 3.10 is a commuting diagram.

Proof Let/? = </?0,... ,pk} be the isomorphism map such that/?(<9') = Θ". Fix j ,
keN such that Θ £ Nk + 1 and Γ c Nj+1. Let qt = pt for / < k, and let qt be the
identity permutation of TV if k < i <y. Set q = (q0,..., ^ > , and let Γ" = q(Γ*). By
the Transitivity Lemma (3.9), Γ \ <£ <^aΘ" and Γ [ <£ c α Θ ' . Hence/7t(α[l]) = α[l]

for all α e Γ and / ̂  k. Since qt is a permutation of TV for all / =ξ j and q((x[i]) = α[i] for
all / such that k < i ^ 7, it follows from the Admissibility Preservation Lemma
(3.18) that Γ c fl Γ". It now follows easily from the definition of q and the proof of
Theorem 3.23 that Fig. 3.10 is a commuting diagram and Γ" ί ^£ ^aΘ''- 0

We now define the type of usl table which is needed to obtain the results of
Chap. VIII. Fix a countable usl ^£ together with a sequence {J^: ieN} of finite
lattices which approximates to ^£ as in Remark 3.4.

3.25 Definition. Let Jί be a finite lattice. A sequence {<9t: ieN} is a spasmodic
weakly homogeneous sequential lattice table for Jί if there is a subsequence {Θf{i):
ieN} of the above sequence such that {Θf{i): ieN} is a weakly homogeneous
sequential lattice table for M and

(i) ViJeN(f(i) <y </(/ + 1) - © = β / ( i )).

3.26 Definition. An array {Θij . ij^ 0} is a uniform sequential lattice table for
{i^: /GTV} if there is a function h: N -• TV such that the following two conditions
hold:
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(i) VieN({θitj: j ^ h(i)} is a recursive spasmodic weakly homogeneous
sequential lattice table for j£^ ).

(ii) VzeTVV/ ^ h{i

We now construct a uniform sequential lattice table for {j^ : ieN}.

3.27 Theorem. {J^ : /eN} Atfs α uniform sequential lattice table.

Proof. We must construct a function h: N-> Nand an array {<9fj: ieN&j ^ /z(z)}
satisfying 3.26(i) and (ii). We will also need, for each ieN, a, function/ as in 3.25(i).

Let {Ψf: / e N} be a recursive list of all finite usl tables for finite lattices such that
for each ie N, {j: Ψf =; Ψf} is infinite. Such a list must exist since we can recursively
identify whether a given finite set of ^-tuples is a usl table for some lattice.
Furthermore, given ψf, we can recursively specify the lattice S£f such that Ψf is a
usl table for S£f.

Let {<Γ/5 Γf, Λ> ^Λ^} be a recursive list of all triples of finite usl tables for
lattices such that if Γ, is a usl table for the lattice Jίi, then Γf is a usl table for Mx

which is an admissible extension of Γt, and A-x is a usl table for a lattice JVI C ̂  and
is an admissible extension of Γt ί Jί{. As in the preceding paragraph, such a list must
exist, and we may assume without loss of generality that for each ieN,
{j: (Γj,Γf,Aj} = (ΓhΓf,A^} is infinite.

The construction will proceed by induction on {/: ie N}. At the end of stage / of
the induction, we will have constructed {ΘkJ:k ^ i&j ̂  h(ί)} satisfying the
following induction hypotheses:

(1) V/ ̂  h(i)(ΘiJ+ι is an admissible extension of <9ίtJ ).

(2) / > 0 -> V/ ̂  h(i)(Θi-ι,j is a n admissible extension of 6) t J ί i ^ _ j).

(3) If Ψ is any finite usl table for a finite lattice Ji ^ i ^ , then there arey > h(ι)
and Ψ* ~ Ψ such that Θij is an admissible extension of Ψ* ί i ^ .

(4) For ally ^ //(/) and all finite usl tables Γ and Γ* for Jl ^ ££i such that Γ* is
an admissible extension of Γ and <9I?J is an admissible extension of Γ ί S£ x,
there is a A: > y and an isomorphic copy Γ+ of Γ* such that the following
diagram commutes:

Γ + "

Fig. 3.11

>Γ+ t

Stage i. We proceed by substages, {r: reN}.

Substage 0. We wish to define h(i), f(0) and ΘiMi). If i = 0, let λ(i) =/(0) = 0
and let Θo,o be any finite usl table for if0. The existence of θo,o follows from
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Lemma 2.2. Suppose that / > 0. Let Ψ be any finite usl table for i? f. By (3), there is a
k > h(i - 1) and a usl table ψ* ~ Ψ such that Θt- 1>k is an admissible extension of
Ψ* \ J^ _ j . Fix the least such £, set λ(z) = / (0) = k, and let ΘiMi) = Ψ*. (Note that
(2) will hold in this case.)

The ability to complete Substage 0 depended on the satisfaction of (3) for / — 1
in place of /. Thus we want the construction of a sequential table for S^i-ι to
guarantee the ability to admissibly extend restrictions of tables for j£?f. In order to
make the construction more uniform and thus allow for more applications, we want
this to be done before we determine J^ . Hence the sequential table for S£[-ι
considers tables for all possible finite Jί 3 J^ -i

Substage r + 1. We assume that ΘiJi{r) has been defined. We wish to define/(r + 1)
and tables (9,d for allj such that/(r) < j ^ f^r + 1). This definition is broken down
into a sequence of three steps. In the first step, we try to insure that <9 t, / [ ( r + 1 )

contains all the interpolants needed by ΘiJi{r) so that it can be a successor of 0itfi{r)

in a weakly homogeneous sequential lattice table for S£i% In the second and third
steps, we insure that all instances of (3) and (4) are satisfied.

Step 1. Let Θfr be a type 1 extension of ΘiJi{r). By Corollary 3.12, such an extension
exists and is, by definition, admissible.

Step 2. Let Ψ* be a usl table for the lattice Jί*. If J^ φ Jί*, set Θ*r = Θfr. Assume
that S£i c M*. (The reader can follow the remainder of this step in Fig. 3.12.) By
Lemma 3.21, there are finite usl tables Ψ+ - ψ* for Jl* and Θ.+ for jS?f such that
Θf

+

r is an admissible extension of both Ψf t S£{ and Θ*r. By the Transitivity Lemma
(3.9), Θ^r is an admissible extension of 6>I?/ι(r). If / = 0, set Θfr = Θfr and
/ c # = r + l . If / > 0, then by (2), Θi-1JΛr) is an admissible extension of
ΘiJi{r) Γ iff-1". Hence by (4), there is a usl table Θfr for S£ x such that Θfr - 0.+ , Θ?r

is an admissible extension of ΘiJi{φ and there is a k * > f^r) such that Θt _! >fc # is an
admissible extension of both (9,_ x / ( r) and 6># t J^ - 1 . Fix the least such k* and fix

Fig. 3.12

3. Let fi(r + 1) = ̂ # , Θ f J = Θ f f / i ( Γ ) for all j such that /f(r) <j <k*, and
Θiji(r+ D = 6)f

#

r unless Λr = Θi><; for some7 ^fi(r). Thus it remains to consider the
case where Λr = Θitj for some 7 ^ / ( r ) . (The reader should follow the progress of
this case in Fig. 3.13.) By the Transitivity Lemma (3.9), Θ*r is an admissible
extension of Γr I <£x. By Lemma 3.22, there is a usl table T* ^ Γ* such that T* is an
admissible extension of Γr9 and a usl table Θ'ir for j ^ such that Θ'ir is an admissible
extension of both Γf ί j ^ and 0*.. By the Transitivity Lemma (3.9), Θ'ir is an
admissible extension of ΘUj. If / = 0, set / ( r + 1) = r + 1 and <91>+i = 0JΓ.
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Suppose that / > 0. By (2), <9, _ : j is an admissible extension of Θ t j ί if/ - 1 . We now
apply (4) inductively to obtain an isomorphic copy Θ'ir of Θ'ir such that Θir is an
admissible extension of Θitj, and a k > j\(r) such that <9 t-1 / c is an admissible
extension of both Θi-Xj and Θ"r ί J^ _ i. Fix the least such k and let/^r + 1) = k.
Set <9IS = ΘiJi{r) for all s such that/(r) <s <k and let Θik = Θ"ir.

Fig. 3.13

The construction is now complete. Note that Fig. 3.12 describes the situation at
the end of Step 2 regardless of the procedure followed to define Θ*r\ and Fig. 3.13
describes the situation at the end of Step 3 regardless of the procedure followed to
define ΘiJi(r+1). Hence (1) and (2) follow from Figs. 3.12 and 3.13 and the
Transitivity Lemma (3.9).

Let Ψ be any finite usl table for a finite lattice Jί ^ 5£{. Then Ψ = Ψ* for some
r > h(i). Hence by Fig. 3.12, ψ* ~ Ψ? and Ψ? \ J^ c f l 0.+ ~ Θ*r. By the First
Pullback Lemma (3.23), there is a usl table Ψ* for Jί such that Ψ* ~ Ψ+ and
Ψ* ί ί* <^a®?r' By Fig. 3.13, Θ*r ^ e 0 | > r , so by the Transitivity Lemma (3.9),
Ψ* \ ^i^aΘ\r. By Fig. 3.13, Θ'Ur~ θ{r. We again apply the First Pullback
Lemma (3.23) to conclude that there is a finite usl table Ψ" for Jί such that
Ψ" - Ψ# and Ψ" r S£ x <^a®'ir = ΘiJi{r+l). Since Ψ" - ψf, (3) is now seen to hold.

Let/ e TV be given, and let Γ and Γ* be finite usl tables for Jί ^ ^ such that Γ* is
an admissible extension of Γ and Θij is an admissible extension of Γ Γ J2/. Then
there is an r e TV such that/Xr) ^ 7 and <Γr, Γ*, /Lr> = <Γ, Γ*, Θfj). Fix such an r.
By Fig. 3.13 and the Transitivity Lemma (3.9), the following diagram commutes:

Fig. 3.14

(4) now follows from the Second Pullback Lemma (3.24).
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We note that the construction of {<9I?j: / ̂  k&j ^ h(i)} can be carried out
recursively. Furthermore, there is an isomorphic copy of Θ*r embedded into
ΘiJi(r+1). Hence {Θij: ieN&j ^ h(i)} is a uniform sequential lattice table. D

3.28 Remark. Let J2? = {S£-χ•: ie N} and Jί = {Jί-X: i e N} be countable usls such that
5£{ = Mi for all / < n, and for ally e N, both 5£^ and Jίj are finite. Let { β t J : iJeN}
and {Ψij: iJeN} be the uniform sequential tables constructed in Theorem 3.27 for
if and Jί respectively. Then <9IsJ = Ψitj for all / < n and jeN.

3.29 Remark. Let {^: isN} be an approximation to the usl i f with least element
such that each S£ x is finite and {J^ :ieN} is recursive in a set of degree a. Then there
is a uniform sequential usl table {Θij\ iJsN} and a function h: N2 -• JV which is
recursive in a set of degree a such that for all iJeN, h(ij) is an index for <9I7 as a
canonically finite set.

Theorem 3.27 was proved by Lachlan and Lebeuf [1976].




