Appendix B
Lattice Tables and Representation Theorems

Lattice tables and usl tables of various kinds were an important part of the proofs of
Parts B and C which characterized various initial segments of 2. We now indicate
how to construct such tables. These tables are related to representations of lattices
as lattices of equivalence relations.

1. Finite Distributive Lattices

We construct lattice tables for finite distributive lattices. These tables are the ones
needed to obtain the results of Chap. VI

1.1 Definition. A lattice & = (L, <, v, A)isdistributiveif the following conditions
are satisfied for all a, b, ce L:

1) avbarc)y=(@vb)a@vo).

(ii) anbvecy=@nab)v(ano).

Given a finite distributive lattice . with & + 1 elements, we wish to construct a
homogeneous lattice table for . This table will consist of a set of k + 1-tuples of
integers < n. We recall some definitions from Chap. VI.

1.2 Definition. Let @ be a set of k + 1-tuples and let & be a lattice with k£ + 1
elements, { po,p1,...,Px}- Leta, fe @ and i, j, m < k be given. We say that o =; fif
ot = B je., if « and B agree on coordinate i. If p; v p; = p,, then we say that
a=;,fifa=;fand a =;p.If p; A p; = p,n, then we say that o =, ; f if thereis a
finite sequence 7o,...,7, of elements of @ such that a =y, =y, =7, =; -
SEih= ﬁ

1.3 Definition. Let n, ke Nand © < [0,n)* ! be given. Let ¥ = (L, <, v, Ad bea
lattice with elements { py, . . ., px} such that p, is the least element of . and p, is the
greatest element of . Then O is said to be a finite homogeneous lattice table for & if
the following conditions are satisfied:

(1) Vo, BeO(a =4 f).
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(i1) Vo, Be@(a =, f— o= p).

(i)  Vij<k(pi<pjeoVo,peO=;p—o=p).

(V) Vim < Kk(pi v p; = purVa OO =1, ;B2 =0 ).

V) Vijim <k(p; A pj=pnr Vo, feO@ =, fa =, p)).

(vi) For all oy, a4, o, B1 €O, if
(@) Vi< k(oo =00 = Bo =i f1)
then there is a function f: ® — @ such that for all j < 1 and a, f€®
(b) flo)) = B;

and
(©) Vi< k(e =i - fla) =i f(B)).

The existence of suitable lattice tables for finite distributive lattices will follow
from the existence of such tables for finite boolean algebras and a canonical
embedding of finite distributive lattices into finite boolean algebras.

1.4 Definition. A boolean algebra # = {B, <, v, A,’,0,1) is a distributive lattice
{B, £, v, Ay with least element 0 and greatest element 1 together with a total
function ': B — B which satisfies:

VxeB(x vx =1&x A x' =0).

A finite boolean algebra is completely characterized by its atoms and a finite
distributive lattice is completely characterized by its join irreducible elements. We
define these types of elements, and indicate how they are related.

1.5 Definition. Let Z = {B, <, v, A,’,0, 1) be a finite boolean algebra. An atom of
2 is an element ae B such that a # 0 and for all be B, if b < a then b = 0.

1.6 Definition. Let ¥ =<(L, <, v, A) be a finite distributive lattice. A join
irreducible element of ¥ is an element ae L such that a # 0 and for all b, ce L, if
b v ¢ =a then either b=a or ¢ = a.

We refer the reader to Birkhoff [1940] for the following facts about distributive
lattices and boolean algebras.

1.7 Theorem. Let # = {B, <, v, A,’,0,1) be a finite boolean algebra. Then every
non-zero element of B can be expressed in a unique way as a join of atoms of B.

1.8 Theorem. Let ¥ = (L, <, v, A) be a finite distributive lattice. Then there is a
finite boolean algebra # = (B, <, v, A,',0,1> and a lattice embedding g: L — B
preserving least and greatest elements.

The idea behind the proof of Theorem 1.8 is the following. A boolean algebra
with n atoms is isomorphic to 4, the set of all subsets of {0,1,...,n — 1} ordered
by inclusion. v and A are interpreted, respectively as U and N, and ' is interpreted
as complementation. The isomorphism maps the ith atom of the boolean algebra to
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{i — 1}. A distributive lattice . with n join irreducibles is isomorphic to a sublattice
&* of 4, which contains the least and greatest elements of 4,. This isomorphism
establishes a one-one correspondence between the atoms of %4, and the join
irreducibles of .#* with the property that the join irreducible of #* is the least
element of .#* which contains the atom to which it corresponds.

Theorems 1.7 and 1.8 can be used to relate lattice tables for boolean algebras to
lattice tables for distributive lattices.

1.9 Lemma. Let & be a finite distributive lattice with universe L and n join irreducible
elements, and assume that ¥ is a sublattice of the boolean algebra B with universe B
and n atoms. Let © be a finite homogeneous lattice table for  and let o, f € © and
i€ N be given such that o # ;. Then there is a p;e L such that o # ; p.

Proof. By 1.3(iv) and Theorem 1.7, we may assume that p;is an atom of . Let p;e L
be the join irreducible corresponding to p; as described in the paragraph following
Theorem 1.8. Then p; > p; so by 1.3(iii), « #;4. |

We now construct finite homogeneous lattice tables for finite boolean algebras.

1.10 Theorem. Let = (B, <, v, A,",0, 1) be a finite boolean algebra. Then 2 has
a finite homogeneous lattice table ©.

Proof. Let ay,...,a, be the atoms of 4. Let a, =0 and let a,,,...,a.—; be the
remaining elements of B, with a,._; = 1. Let @ be the set of all 2"-tuples o which
satisfy the following conditions:

1) =0,

Q) Vi<n@Pe{0,1}).

3) Ifn<j<2"and 4 = {a;,,...,a,} s the set of all atoms a of # such that
a < aj,and Ais ordered so that iy < i, < -+ < iy, then ol = Z{2"V~™:
oliml = 1},

It follows from (1) that 1.3(i) is satisfied. It follows from Theorem 1.7 and (3)
that 1.3(ii) is satisfied.

Let i, j < 2" be given. First assume that a; < a;. Let o, f € © be given such that
a=;p. For each 6e® and u <2", define I(o,u)={r: 1 <r<n&d=1&
a, < a,}. By (3), I(o,j) = I(B,j) so since a; < a;, we must have I(«, i) = I(f, i). Hence
o =, f. Conversely, assume that a; € a;. Then there is an atom g, of % such that
a, < a;but a, £ a;. Let o be the unique 2"-tuple in © such that o) = 1 and o = 0
for all » < n such that r # u, and let § be the unique 2"-tuple in @ such that g = 0
for all r < n. Then ot = Ul = A1 = 0 but «f! £ 0. Hence o =;f but « #;f, so
1.3(iii) holds.

Next let i, j, m < 2" be given. First assume that g; v a; = a,,. By Theorem 1.7,
{r<mia <a,}={r<n:ia <a}U{r<n:a <aj. Let a, fc O be given such
that « =, ;. By Definition 1.2, « =; and « =; . Hence I(a,i) = I(B,i) and
I(o,j) = I(B,)). Furthermore, I(a, i) U I, j) = Ko, m) and I(B, i) U K(B,j) = I(B, m).
Hence I(a, m) = I(B, m),so o =,, B. Nextlet a, f € O be given such thata =, §. Since
a; v aj = a,, a; < a, and a; < a,, so by 1.3(iii), « =;  and a =; . By Definition
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1.2, « =, ; . Conversely, assume that a, = g; v a; # a,,. Then there is an atom q,
of # such that a, < a,,<>a, £ a,. Let a be the unique 2"-tuple in O such that o) = 0
for all r < n, and let § be the unique 2"-tuple of @ such that g/ = 1 and p"! = 0 for
all r < n such that r # u. Then u is an element of exactly one of {I(, p), I(B,m)}. If
uel(p,p) then a=,p but a #,6, and if uel(f,m) then a =,p but « #,B.
Furthermore, « =, <o =;, ;. Hence a #,, f<=a =;,;f, so 1.3(iv) holds.

Let i, j, m < 2" be given. First assume that a; A a; = a,,. Then {r < n:a, < a,}
={r<n:a <a}N{r<n:a <aj}. Let a,f O be given such that « =, ; . By
Definition 1.2, there are y,,...,7,€© such that a=y, =;y;,=;7, =; -+ =;ys=p.
Since a; A a; = a,, a,, < a; and a,, < a;. Hence by 1.3(iii), ¢ = y0 = V1 =m¥2 =m
<o+ =,7s = B. Next let o, B @ be given such that o =, . Let y be the unique
element of @ such that for all r < n

v J1 if dM=1&a,<a orif pr=1&a <g;
Y= )
0 otherwise.

Since a; A a; = @y, y = =, f. Furthermore, y =;« and y =;f so by Definition
1.2, 0 =;,; B. Conversely, suppose that a, = a; A a; # a,,. Then there is an atom a,
of # such thata, < a,,<>a, € a,. Let a be the unique element of @ such that =0
for all r < nand let § be the unique element of @ such that f! = 1 and ! = 0 for
allr < nsuchthatr # u. Thenoa =, f <o #, f.Sincea, = a; A a;, we have already
shown that a =, < a =;,;. Hence a =, f<a #;,;f, so 1.3(v) holds.

Finally, let oy, oy, Bo, B1 € @ be given satisfying 1.3(via). For every a e ® and
r < n, define f(a)" as follows:

ﬁg] lf ﬁO Erﬁl
f(a)[r] = a['] lf o $ra0 Erﬁ() ;ér,Bl
1 —o? if o #,0 & Po #, B1 & oo #, fo.

Then for all a € 0, it follows from (3) that the n + 1-tuple f(«) defined above has a
unique extension to an element of @. Hence without loss of generality, we can treat f
as a map from @ into @. It is easily verified that 1.3(vib) and 1.3(vic) are
satisfied. [

1.11 Corollary. Let & = {L, <, v, A) be a finite distributive lattice. Then ¥ has a
finite homogeneous lattice table.

Proof. By Theorem 1.8, there is a finite boolean algebra # with universe B and a
lattice embedding g: L — B preserving least and greatest elements. Let B =
{ag,...,an_1} be ordered as in the proof of Theorem 1.10, and let J = {i < 2":
deeL(g(c) =a;)} = {ip <iy <--+ <i}. By Theorem 1.10, there is a finite
homogeneous lattice table © for 4. For each a e ©, define the r + 1-tuple o* by
a*ll = oli} for all j<r, and let ©* = {a*: ae®}. It follows from the cor-
respondence between atoms and join irreducibles in the proofs of Lemmas 1.9 and
1.10 that ©®* is a finite homogeneous lattice table for & |

The lattice tables we have been discussing are closely related to representations
of lattices as lattices of equivalence relations over sets as introduced by Whitman
[1946]. The finite set on which the equivalence relations are defined is the lattice
table @. The equivalence relations are just the relations =; corresponding to the
elements p; of the lattice being represented, and meets and joins are defined
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as in Definition 1.2. Whitman defined meets and joins dually to the way they were
defined in Definition 1.2, but since the dual of a lattice is a lattice, the two
definitions give rise to the same class of theorems. Jonsson [1953] proved the
representation theorem for distributive lattices without the homogeneity property.
The proof presented here is along the lines of that given by Thomason [1970a].

*1.12 Exercise. Let ¥ = (L, <, v, A) be a countable distributive lattice with least
element a, and greatest element a,. Foreachie N, let %, = (L, <, v, A) beafinite
sublattice of ¥ containing a, and a; such that ¥ = U{%;: ie N}. Given a lattice
table © for &, ,welet @ I i = {<d%, ..., a"P): 0e O}, where L; = {aq, ..., ay}-
A sequential table for £ has the form {0, ;: i,je N} where

1) Vi,je N(O;; is a finite homogeneous lattice table for £).
(i) VieNTjoeNVj = jo(@ir1,;1 1S O;)).
(1ii) Vie N({{a,j): a€ @, } is recursive).
Show that .# has a sequential table. (Hint: First show that given any finite boolean
algebra 4, there is a finite boolean algebra #* such that for all finite lattices %, all

embeddings /- ¥ <, # and all extensions #* of ¥ generated by one element, there
is an embedding f*: ¥* <, #* such that the following diagram commutes:

AN
flC» lC»f*
B— = R*
Fig. 1.1

(#* is obtained from 2 by splitting all the atoms of 4 in half, a recursive process.)
Use this sequence of boolean algebras and the proofs of Theorem 1.10 and
Corollary 1.11 to obtain the desired lattice table.)

2. Finite Lattices

We construct lattice tables for finite lattices. These tables are the ones needed to
obtain the results of Chap. VIIL.

2.1 Definition. Let ©® = N**! be given, and let & = (L, <, v) be a finite usl. O is
said to be a usl table for & if there is an enumeration p,, ..., p, of the elements of L
such that:

@) Vo, fe O = p).
(i) Vo, BeO(a = - o = p).
(i) Vij<k(pi<pjeoVou,feOl=;p—>a=f).
(iv) Vi,jym < k(p; vV pj = pm Vo, feO(a =, ; f o =, ).
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We first show that every finite usl has a finite usl table.

2.2Lemma. Let ¥ = {L, <, v) be afinite usl with universe L = { p,, ...,p,} where
Do is the smallest element of L and p, is the greatest element of L. Then ¥ has a finite
usl table @ < [0,2k)**1.

Proof. @ is constructed through a process consisting of k + 1 steps.
Step 0. Place ape @ where oll = 0 for all i < k.
Step 5; 0 < s < k. Place a,,—, and a,,€ ® where

" {0 if i=0
a =
7 25 — 1 if i#0

and
0 if i=0
Wil =025 — 1 if pi <ps
2s otherwise.

Step k. Place oy, -, € @ where
0 if i=0
2k — 1 if i#0.

Note that if i # 0, « # fe©, and a =; 8, then {a, f} = {&zs_1, %5} fOr some s
such that 0 < s < k. The lemma now follows routinely. |

[i] —
k-1 =

The tables which are needed are lattice tables rather than usl tables. However, it
is not known whether every finite lattice % has a finite homogeneous lattice table.
Hence we construct an infinite homogeneous lattice table for .. In order to be able
to use this table in tree constructions of initial segments of &, we require that the
lattice tables be nicely approximated to by a sequence of usl tables.

2.3 Definition. Let ¥ =<(L,<, v, A> be a finite lattice with universe
L = {py,...,px} Where p, is the smallest element of L and p, is the greatest element
of L. Let {@;: ie N} be given such that for allie N, ©®; = N**'. Then {@,: ie N} is
said to be a sequential lattice table for & if the following conditions hold:

1) Vie N(O; is a finite usl table for ¥).

(i) VieN(O; < 0;,,).

(iii) Vi,jym < k(p; A pj=pnVreNVa,feO, (0=,
o, 1€ Orea@ = Jo = =572 =0 =57 = B

As in the previous section, the tables we need must satisfy a homogeneity
condition.

2.4 Definition. Let ¥ = {L,<, v, A) be a finite lattice with universe
L = {po,...,px} Where p, is the smallest element of L and py is the greatest element
of L Let {®;: ie N} be a sequential lattice table for #. Then {@;: ie N} is weakly
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homogeneous if for all re N and all oy, a4, B9, B, €O,, if
) Vi< k(o =iy = fo =i f2)

then there is a §; € @, ., and functions f;: @, —» 0, ., for s = 0, 1 such that for all
s<1landa, fe0,,

i) o) =Bs  Slar) = Bsss

and
(ii1) Vi< k(o= - fl0) = f(B))-

The sequential lattice table for £ is built by iterating a process described in
some lemmas below, which enable us to start with a usl table in the sequence and
place all necessary interpolants into the next usl table in the sequence.

2.5Lemma. Let ¥ = (L, <, v, A) be afinite lattice with universe L = { po, ..., px}
where p, is the least element of L and p, is the greatest element of L. Let © < [0, u]**?
be a usl table for L. Let o, pe © and i, j, m < k be given such that p; A p; = p,, and
o =,, B. Then there is a usl table ©* = [0,u + 41*** for & which extends @ and has
interpolants ,,7v,,73 € @F such that a =y, =y, =;y; =; .

Proof. If p; < p; or p; < p;, then we can set @* = @ and y; = y, = y; = f§ to prove
the lemma. Otherwise, let @* = ® U {y,, y,, 73} where for all n < k
ot if p.<pi
W= .
u—+1 otherwise,
e if pu<p

W=Lu+2 if p,<pi&p,Lp;
u+3 otherwise,

p if p,<p;
W=2u+2 if p,<p&p,Lp;
u+4  otherwise.

It is easily checked that « =;y, =;y, =73 =, once we note that since p; £ pj,
¥ =yl = 3 + 2. It is routine to check that @* is a usl table for £, [

A finite iteration of the process described in Lemma 2.5 will yield the following
corollary.

2.6 Corollary. Let £ be a finite lattice with universe L = { p, ..., p.},andlet ©,be a
finite usl table for . Then there is a finite usl table ©,, | 2 O, for ¥ such that
(l) Vi’j’mgk(pi/\pj:pm‘_)va’ﬁegr(azi/\jﬁ‘_’aEmﬂ))

where all congruence relations in (1) are considered relative to O, ;.

The next lemma provides the interpolants required for the weak homogeneity
property.
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2.7 Lemma. Let & = {L, <, v, A) be afinite lattice with universe L = {po, . ..,Di}
where pq is the least element of L and p, is the greatest element of L, and let
O < [0,u]**! be a finite usl table for L. Let oy, 0y, fo, €O be given such that
for all i <k, if ag =; 0y then By =; P,. Then there is a finite usl table ©* 2 © for
P, an element B, @* and maps f;: © — O* for s <1 such that fo(ao) = Po,
Jfoloy) = fi(ao) = B, f1(1) = By, and foralli < k,s < 1 and a, B O, if a =; p then
S(@) = fi(B).

Proof. Let p,, = V{p;: ap =;,}. By Definition 2.1(iv), oy =,, o;. We define 8, by
specifying U for all n < k as follows:

ﬂ["] _ BE)"] if py<Ppm
! u+1 otherwise.

The construction of ®* is accomplished in two steps.

Step j< 1. Let @ = {o,...,a,}. We define y/ = fi(x,) in a sequence of r + 1
substeps. At the first two substeps, we set yJ = Bo, 79 = y5 = B and 7| = f,.

Substep v = 2. Let ¢ be the least integer not yet used as a coordinate of an element of
0. Foreachn < k, let i(n) be the least i such that o; =, «,. We define 7/ by specifying
its nth coordinate for each n < k as follows:

o i if in)<v
v c otherwise.

This completes the construction. Let @* = @ U {y/: j < 1& v < r}. It follows
easily from the construction that for all i < k, s <1 and «, f€O, if « =; then
fi(@) =; fi(B). It is routine to check that @* is a usl table for &, |

A finite iteration of the process described in Lemma 2.7 will yield the following
corollary.

2.8 Corollary. Let £ be a finite lattice with universe L = {py,...,py},andlet ©, be a
finite usl table for &. Then there is a finite usl table O, , , 2 O, for ¥ such that for all
%o, A1, Po, B2 € O,, if 2.4(1) holds then there is a B, € O, ., and functions f;: @, — O,
for s < 1 such that 2.4(i1) and (iii) hold for all s < 1 and o, f€ O, (the congruence
relations in 2.4(i1) and (iii) are considered relative to O, ).

Corollaries 2.6 and 2.8 contain the information needed to build weakly
homogeneous sequential lattice tables.

2.9 Theorem. Let & be a finite lattice. Then ¥ has a weakly homogeneous sequential
lattice table.

Proof. By Lemma 2.2, there is a finite usl table @, for #. Assume by induction that
0, has been defined and possesses all the required properties. Let ©F, | be the O, ..,
of Corollary 2.6, and let O, ., be obtained from Corollary 2.8 applied to %, | in
place of @,. Then @, has all the desired properties. [

2.10 Remark. The constructions of this section can be carried out in a uniformly
effective manner, so that the sequence {®,: re N} can be chosen to be a recursive
sequence of canonically finite sets.
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2.11 Remarks. Lemma 2.5 was proved by Jonsson [1953]. The remaining results of
this section were proved by Lerman [1971]. The proofs we present are based on
ideas of Jonsson [1953] and Thomason [1970a]. The formulation of Lemma 2.7
and its proof are due to Lachlan and Lebeuf [1976] who simplified the original
proof.

3. Countable Uppersemilattices

We construct tables for countable usls. These are the tables needed to prove the
results of Chap. VIII.

We begin with some facts about countable usls. Given a countable usl %, we will
describe an approximation to % by finite usls. The approximation which we
describe can also be used to construct a recursive countable universal usl (a
countable usl % is universal if every countable usl can be embedded into %).

3.1 Definition. Let {¥;: ie N} be a sequence of usls such that for each ie N,
Y =<(L,<;, vy and ¥, = ¥, < ---. We define the usl & = U{¥: ieN} =
(L, <, v)byletting L =U{L;: ie N}, defining a < b for a, be L if for some ie N,
a,be L;and a <;b, and defining a v b to be the element ce L such thata v;b = ¢
where i is the least element of N such that a,beL;.

3.2 Remark. Let % be as in Definition 3.1 and assume that each L; is finite and has a
least element. Then each %, is a lattice since every finite usl with least element is a
lattice; define a A b to be V{c: c <a&c < b}.

3.3 Remark. Let ¥ = (L, <, v) be a usl, and let ¥* = {L*, <, v) be a finite
subusl of &. Fixae L — L*andlet #* = (L™, <, v) be the smallest subusl of ¥
such that L*U{a} = L*. Then L™ is finite since each element b of L* can be
obtained as a finite join, b = V{d: de M} where M < L*U {a}.

The preceding remarks can be used to obtain nice approximations to infinite
usls.

3.4Remark. Let ¥ = (L, <, v) beacountable usl with least element. Then there is
asequence {.%;: ie N} of finite lattices such that for each ie N, % is a subusl of %, , ;
and ¥ = U{¥;: ieN}.

In order to construct suitable lattice tables for countable usls, we must express
the countable usl & = (L, <, v)as ¥ = U{%;:ie N} asin Remark 3.4, where for
each ie N, &, = (L;, <,, Vi, A;y. We must then find a nice way to extend a lattice
table for %, to a lattice table for %, for each ie N. This will be the aim of the
lemmas of this section.

A sequential lattice table for .%; will be expandable to one for %, ; only if all
tables in the sequence are admissible extensions of the previous tables.

3.5 Definition. Let ® < [0,n]**! and @* = [0,m]**! be finite usl tables for the
finite lattice £. We say that @* extends @ if @ = ©*. If @* extends O, then @* is an
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admissible extension of @ (write @ =,0%) if
1) YoeO*IPeO@VyeOVi< k(e =;7 > a =; ).

Condition 3.5(i) says that any new k + 1-tuple in @* is associated with an »n-
tuple § in @ which it duplicates on some coordinates, and no other duplication of
coordinates of elements of @ is possible except the coordinates duplicated from f.

The next definition is needed to relate usl tables for %, to usl tables for %, ;.

3.6 Definition. Let %, and ¥, be finite lattices such that %, = #;, and let
O < [0,n]**! and @* < [0,m]’* ! be finite usl tables for %, and &, respectively.
We assume that the table ©* is organized in such a way that if %, has universe L; and
Ly ={po,...,pj},then Ly = {po,...,p:}. O is said to be the restriction of O* to ¥,
(write @ = O* %) if O = {ae[0,n]*"': IBcO*Vi< k(o =;p)}. OF is an
expansion of @ if @ is the restriction of @* to %,. Given € @*, we write | %, for
the k + 1-tuple ae[0,n]**! such that « =, for all i < k.

Admissible extensions will play an important role in our construction. We first
check that the extensions of Sect. 2 are admissible.

3.7 Lemma. The extension of Lemma 2.5 is admissible.

Proof. In the notation of Lemma 2.5, we must find a f§ as in Definition 3.5(i) for each
oe{yy,y2, 73} Fory; and y,, we can choose f§ to be the « of Lemma 2.5. And for y3,
we can choose f to be the f of Lemma 2.5. [

3.8 Lemma. The extension of Lemma 2.7 is admissible.

Proof. In the notation of Lemma 2.7, we must find a ff as in Definition 3.5(i) for each
ae{y:j<1&v <r}. Ify) = B, then we can choose f3 to be the f, of Lemma 2.7.
Otherwise, we proceed by induction as in Lemma 2.7. Fix jand v. If j = 0, then we
can choose f§ to be the , of Lemma 2.7. By Lemma 2.7, we note that o =,, > so
B =iB2=p; < pn.. Hence if j = 1, we can choose f§ to be the 5, of Lemma 2.7. 1

The next four lemmas deal with properties of admissible extensions and the
existence of admissible extensions under various hypotheses.

3.9 Transitivity Lemma. Let % be a finite lattice and let ©,, O, and O , be finite usl
tables for & such that ©; . , is an admissible extension of ©, for i < 1. Then ©, is an
admissible extension of @,.

Proof.Fixae®, — @,.Ifa e @, thena fasin 3.5(i) exists since @, is an admissible
extension of @,. Otherwise, a€ @, — @,. Hence there is a f* € @, which satisfies
3.5(i) for @, in place of @ and @, in place of ®*. If f*e€ ®, then the proof is
complete. Otherwise, since @, is an admissible extension of ©,, it follows from
Definition 3.5 for @, in place of @ and @, in place of O@* that there is a f§
corresponding to o = f* which satisfies 3.5(i). This f satisfies 3.5(1)) for the
original a. |

3.10 Corollary. The extensions of Corollary 2.6 and Corollary 2.8 are admissible.

Proof. Immediate from Lemmas 3.7, 3.8 and 3.9. I
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In order to build sequential lattice tables, we must satisfy both the weak
homogeneity and infemum preserving conditions. We name extensions which
satisfy these properties.

3.11 Definition. Let . be a finite lattice and let ® and @* be finite usl tables for ¥
such that @* extends ©@. @* is said to be a type I extension of @ if @* is an
admissible extension of ® and the conclusions of Corollaries 2.6 and 2.8 hold for ©
in place of @, and @* in place of @, . ;. (In other words, @* is a suitable successor
for © as an element of a weakly homogeneous sequential lattice table for .%Z.)

3.12 Corollary. Let ¥ be a finite lattice and let © be a finite usl table for ¥. Then @
has a type 1 extension.

Proof. Starting with @, extend it to ©® using Corollary 2.6 and then extend @* to
®* using Corollary 2.8. By Corollary 3.10 and the Transitivity Lemma, ©* is a type
1 extension of ©. |

We now investigate the interaction between restrictions and admissibility.

3.13 Restriction Lemma. Let ¥ be a finite lattice and let © and O* be finite usl
tables for ¥ such that @* is an admissible extension of @. Let ¥* be a subusl of .
Then O* | ¥* is an admissible extension of © I ¥£*, i.e., the following diagram
commutes.

(0] S O*
] Lt
O L*¥———0* L*

Fig. 3.1

Proof. Given ae®@* | £* — @ £*, find «™ €@ such that a = a™ [ £*. Let
B* €@ correspond to a* as in 3.5(i). Then g = ¥ [ #* corresponds to « as in
3.5(1). 1

The remaining lemmas which allow us to combine tables, allow us to do so only
if the tables are sufficiently disjoint. We introduce notation for various disjointness
conditions.

3.14 Definition. Let j, ke N be given such that j < k, and let ¥, ¥* < N**! and
© < N’*! be finite usl tables. We say that ¥ =, 0 if

@) YaePVBeOVi<jlo=f—i=0).
We say that ¥* and O are disjoint above ¥ if
(i1) Vae P*VpeOVi<jlo=;—-Iye¥P(a=;y =:p)).

Different tables for the same lattice can be combined as follows.

3.15 Joint Embedding Lemma. Let £ be a finite lattice, and let @ and ©* be finite usl
tables for ¥ such that © =, O*. Then @ U O* is a usl table for ¥ which is an
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admissible extension of both © and ©%, i.e., the following diagram commutes:

2,
L=
0*——— 0 U 6*

Fig. 3.2

Proof. Straightforward. |

It will sometimes be necessary to amalgamate two extensions of a given usl
table. The following lemma will enable us to carry out such amalgamations.

3.16 Amalgamation Lemma. Let % be a finite lattice and let ©, ©* and O™ be finite
usl tables for & such that @* extends © and ©* is an admissible extension of ©.
Assume that ©* and ©* are disjoint above @. Then @* U O~ is a usl table for & and
the following diagram commutes:

n
N
'

in

o* (Chi

o*ue”

Fig. 3.3

Furthermore, if ©~ is an admissible extension of © then @* U O~ is an admissible
extension of ©*.

Proof. We first show that @* U ® ™ is a usl table for .%. 2.1(i) is easily verified and
2.1(ii) follows immediately from 3.14(ii). Let & = (L, <, v, Ayandletp;, p;e Lbe
given such thatp; < p;. Leta, fe @* U @ be given such that o =; 5. Since © < O*
and @ = ©*, we may assume without loss of generality that a e @* and fe © ", else
2.1(iii) will follow immediately. By 3.14(ii), there is a ye @ such that a =;y =, .
Since ye ®*NO™* and O®* and O are usl tables for £, a =,y =; B. Conversely, let
Pi,,€O*UOT be given such that p; £ p;. Since @* is a usl table for %, 2.1(iii)
implies that there are o, f€ @* such that « =; f but o #; . Since O* = O*U O™,
2.1(iii) holds for @*U®™.

Let p;,pj,pm€ L be given such that p; v p; = p,. Let , fe ©*U O™ be given
such that« =, f. By the previous paragraph, o =; fanda =; fsoa =, ; f. Nextlet
a,y€O@*U O™ be given such that « =;7 and o = ;7. If ¢,y @* or a,7€ O then
o =, 7since @* and @ are usl tables for . Hence we may assume thatxe @* — @
andye ®* — @. Since ©* is an admissible extension of @, there is a € @ satisfying
3.5(i). Hence « =; fand o =; 8. Since f € ©* and O* is a usl table for £, « =, f. But
y=;0=;fandy=;a=;fand fc @ < O and O~ is a usl table for ¥, s0y =, .
Hence o =, =,,y. Conversely, if p;,p;, p,€ L are given such that p; v p; # pp,
then there are o, fe @* such that a =, ; f<>a #,, . Since O* = O*U O " we see
that 2.1(iv) holds, so @* U@ is a usl table for Z.
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We now show that ®* U © * is an admissible extension of @*. Let xe @*U O *
be given. If x e ©®*, then we can choose § = a to verify 3.5(1). So we may assume that
o e O@*. Since O* is an admissible extension of @, there is a e @ such that for all
ye@andi< k,0=;y<a=;f Let e @* and i < k be given such that o =; . By
3.14(ii), there is a y€ O such that o =;y, hence f =;a =;y. Thus fc® = O will
witness the fact that @* U @* is an admissible extension of @ ™.

The last sentence of the lemma follows as in the above paragraph by
interchanging ©®* and @*. 1

The preceding lemmas provide some of the building blocks for obtaining usl
tables. We will introduce other building blocks which require that we modify
certain tables isomorphically. These tables are needed to extend certain diagrams to
commuting diagrams.

3.17 Definition. Let @, ¥, N**! be finite usl tables. We say that © and ¥ are
isomorphic (write @ ~ V) if there are permutations {p;: i < k} of N such that
¥ = {{(po(my),...,p(my)>: {myg,...,m e @}. We then write the isomorphism
map as p = {py,...,Prr, and write ¥ = p(O).

We now show that isomorphisms preserve admissible extensions.

3.18 Admissibility Preservation Lemma. Let ¥, ¥+ and ©* be finite usl tables such
that the diagram of Fig. 3.4 commutes, where p = { po,...,pry. Then ¥ =, ¥*.

Fig. 3.4

Proof. Let e ¥* be given. Since ¥+ is an admissible extension of ¥, there is an
o€ ¥ such that for all ye ¥ and i < k, if p(B) =,y then p(f) =; «. Since Fig. 3.4isa
commuting diagram, it must be the case that for all ye ¥, y =; p(p) if and only if
y =; B. Hence for all ye ¥ and i < k, if § =,y then f =, i, ¥ =, P*. |

In order to apply the Joint Embedding Lemma to @ and @7, we require that
O =, 0%, If this is not the case, we use the next lemma to find @* ~ @* such that
©* =, 0 and apply the Joint Embedding Lemma to © and @*.

3.19 =, Modification Lemma. Let ¥ and M be finite lattices such that ¥ < M. Let
O and OF be finite usl tables for & and M respectively. Then there is a finite usl table
O* for M such that OF ~ O* =, 6.

Proof. Since @ and @7 are finite, there are j, k € N and finite sets, S, T < N such that
© < S¥*! and ©@* < T'*!. Hence there is a permutation ¢ of N such that
g(T)NS =0. For 1 <i<k, let p;=q. Fix ae® and Be@*. Then there is a
permutation p, of N such that po(f'”)) = «f®. Let p = {po,...,p» and let
O* = p(07%). It is easily verified that @ =,0* ~ @%. |

In order to apply the Amalgamation Lemma to ¥* | £ 2 ¥ I & and @*
above @, werequire that ¥ * | ¥ and @* are disjoint above @. If this is not the case,
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we use the next lemma to define ¥* ~ ¥* such that ¥* [ ¥ and @* are disjoint
above @, and apply the Amalgamation Lemma to ¥* I ¥ and ©@*.

3.20 Disjointness Modification Lemma. Let ¥ and . be finite lattices such that
P < M. Let ¥ and P* be finite usl tables for M and let O and O* be finite usl tables
for & as in the solid part of the diagram of Fig. 3.5. Then there is a finite usl table
Y~ ¥* for M such that ¥ = V" and O* and ¥~ are disjoint above V.
Furthermore, if W* is an admissible extension of ¥, then ¥+ can be chosen to be an
admissible extension of V.

Y— ¥t y—= 0
+L/.___—)j'* l>l<
Pre——-v e

Fig. 3.5

Proof. The lemma asserts that we can extend the solid part of Fig. 3.5 to the full
diagram so that the diagram commutes and disjointness and admissibility
properties are established.

Since ¥, ¥* and @* are finite, there are finite sets R, S, T < N and j, ke N such
that R SNT, O* < S*!, ¥ < R**! and ¥* < T*"'. For each i <k, fix a
permutation p; of N which satisfies the following conditions: If € ¥* and there is
an o€ ¥ such that o =; B, then p,(f1") = p; and if no such « exists, p (S e N — S.
If k < i<}, let p; be the identity permutation of N. Let p = {po,...,p;> and let
Y+ =p(P*). Then ¥+ ~ ¥* ¥* and @* aredisjoint above ¥, and ¥ = ¥ *. Also,
if ¥ <, ¥*, then by the Admissibility Preservation Lemma (3.18), ¥ =, ¥*. 1

The next two lemmas are applied to build a sequential lattice table for .#; which
can be extended to a sequential lattice table for any finite .# 2 %,

3.21 Lemma. Let ¥ and M be finite lattices such that ¥ < M. Let @ < N**' be a
finite usl table for £, and let ©F be a finite usl table for M . Then there are finite usl
tables ©* and O* for ¥ and M respectively such that the following diagram
commutes:

O —= % ! O* ¥
2] —0"
Fig. 3.6

Proof. Fix ¥, M, © and @7 as in the hypothesis of the lemma. By the =,
Modification Lemma (3.19), there is a finite usl table ®* for .# such that
©% ~ @* =, 0. By the Restriction Lemma (3.13), @* I £ is a finite usl table for
Z. Note that ©* [ ¥ =, ©. Hence by the Joint Embedding Lemma (3.15), we can
set @7 = OUO* I £ to make Fig. 3.6 a commuting diagram. |
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3.22 Lemma. Let & and M be finite lattices such that & < M. Let O and O* be finite
usl tables for &, and let ¥ and W* be finite usl tables for 4 as in the solid part of the
diagram of Fig. 3.7. Then there are usl tables ©* for & and W™ for ./ such that Fig.
3.7 is a commuting diagram.

‘{’ ! Yy SIN O}
/ | lgu
|
Yy | S ok
~
S~ | <.
~ \Ai i
Pr-——roPt Y- — =507
Fig. 3.7

Proof. By the Disjointness Modification Lemma (3.20), there is a finite usl table ¥ *
for . such that ¥* ~ ¥* @* and ¥* are disjoint above ¥, and Y™ is an
admissible extension of ¥. By the Restriction Lemma (3.13) and the Transitivity
Lemma (3.9), the following diagram commutes:

b4 ! Y& S 5,0
lP*‘/ Eu\@*

Fig. 3.8

The lemma now follows from the Amalgamation Lemma (3.16), with
OT=*UY" 1 ¥ 1

The final two lemmas of this section are isomorphism pullback lemmas which
allow us to show that certain induction hypotheses specified in the construction of a
sequential lattice table are satisfied.

3.23 First Pullback Lemma. Let ¥ and M be finite lattices such that ¥ < M. Let
¥ < N'*1 bea finite usl table for M, and let ©, @* = N**1 be finite usl tables for £
as in the solid part of Fig. 3.9. Then there is a finite usl table ¥* for ./ such that Fig.
3.9 is a commuting diagram.

'4 ' Lyt ¥ = 2]
:I pJ";
Pr—— D PE P — = — > O*
Fig. 3.9

Proof. Letp = { pq, . ..,pry- Define g = {qo, ..., q;> by q; = p;if i < k, and let ¢; be
the identity permutation of Nif k < i < j. Then g is an isomorphism between ¥ and
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q(?) = P* and forallae ¥, p(a | &) = q(x) I £. 1t will therefore follow that Fig.
3.9 is a commuting diagram once we show that ¥* [ & <, ©*.
Let f*e®* be given. Then there is a 87 €® such that p(*) = B*. Since
Y1 ¥ <c,0, there is an at e ¥ I & such that for all y*e¥ I & and i <k, if
* =,y then Bt =;a". Fixae¥suchthata™ = a [ &£ Suppose that y*e P* | &
and i < k are given such that y* =, f*. Then thereisaye ¥ such thatg(y) I & = y*.
Since each p; is a permutation and Fig. 3.9 is a commuting diagram, y [ & =, 57.
By choice of a, y =;a. Hence q(y) I & =,q(a) I £ We thus see that for all
y*eP*l L and i<k, if y* =;f*then q(o) I &£ =, f*, so P* L =,0* |

3.24 Second Pullback Lemma. Let ¥ and M/ be finite lattices such that ¥ = M. Let
T and IT'* be finite usl tables for M and let ©, @ and ©" be finite usl tables for £ such
that the solid part of Fig. 3.10 commutes.

r ' L I't®

Then there is a finite usl table I'" for M such that Fig. 3.10 is a commuting diagram.

Proof. Let p = { py, ..., pry be the isomorphism map such that p(@') = @". Fix j,
ke N such that ® = N**! and I’ = N'*'. Let ¢; = p; for i < k, and let ¢; be the
identity permutation of Nif k < i <j. Setq = {qo,-.-.,q;>,andlet I'" = g(I'*). By
the Transitivity Lemma (3.9), 'l # <,0" and I' I ¥ <, ©’. Hence pi(all) = ol
forallael and i < k. Since g; is a permutation of N for all i < jand g(o!') = ol for
all i such that k£ < i <, it follows from the Admissibility Preservation Lemma
(3.18) that I =, I'". It now follows easily from the definition of ¢ and the proof of
Theorem 3.23 that Fig. 3.10 is a commuting diagram and I'"' | ¥ =,0". |

We now define the type of usl table which is needed to obtain the results of
Chap. VIIL Fix a countable usl £ together with a sequence {.%;: ie N} of finite
lattices which approximates to % as in Remark 3.4.

3.25 Definition. Let .# be a finite lattice. A sequence {O;: ie N} is a spasmodic
weakly homogeneous sequential lattice table for ./ if there is a subsequence {© ,):
ie N} of the above sequence such that {©,;: ie N} is a weakly homogeneous
sequential lattice table for .# and

® Vi,je N(J(i) <J <fli+ 1) > 0, = O ).
3.26 Definition. An array {0, ;: i,j = 0} is a uniform sequential lattice table for

{Z:ie N} if there is a function A: N — N such that the following two conditions
hold:
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1) Vie N({®;;: j = h(i)} is a recursive spasmodic weakly homogeneous
sequential lattice table for %).

(ii) VieNY)j 2 h(i + 1)(Oi+y ;1 £ <€ 0,)).

We now construct a uniform sequential lattice table for {%;: ie N}.
3.27 Theorem. {&;: ie N} has a uniform sequential lattice table.

Proof. We must construct a function #: N — N and an array {©, ;: ie N&j > h(i)}
satisfying 3.26(i) and (ii). We will also need, for each i e N, a function f; as in 3.25(i).

Let {¥¥:ie N} bearecursive list of all finite usl tables for finite lattices such that
foreachie N, {j: ¥} = ¥} isinfinite. Such a list must exist since we can recursively
identify whether a given finite set of k-tuples is a usl table for some lattice.
Furthermore, given ¥¥, we can recursively specify the lattice £ ¥ such that ¥} is a
usl table for £¥.

Let {{I';,T¥,A;>: ie N} be a recursive list of all triples of finite usl tables for
lattices such that if I'; is a usl table for the lattice .#;, then I'¥ is a usl table for .#;
which is an admissible extension of I';, and A; is a usl table for a lattice A; = #; and
is an admissible extension of I'; I 4. As in the preceding paragraph, such a list must
exist, and we may assume without loss of generality that for each ieN,
{Jj: KT, T}, 4;) = I3, TF, A} is infinite.

The construction will proceed by induction on {i: ie N}. At the end of stage i of
the induction, we will have constructed {@,; k <i&j > h(i)} satisfying the
following induction hypotheses:

(1) Vj = h(i)(O; ;+ is an admissible extension of @, ;).
?2) i>0-Vj>=h(i)O;-,;is an admissible extension of @; ;[ ¥;_,).

3) If ¥ is any finite usl table for a finite lattice # = &, then there arej > h(i)
and ¥* ~ ¥ such that @, ; is an admissible extension of ¥* I .

@) For allj > A(i) and all finite usl tables I" and I'* for .# = %, such that I'*is
an admissible extension of I and @, ; is an admissible extension of I' [ &,
there is a k > j and an isomorphic copy I'" of I'* such that the following
diagram commutes:

F——-r—>r f ,Z_g_"__>@,~,j

F* \ =a Sa

' ———"I" 1 %——=—0,
Fig. 3.11

Stage i. We proceed by substages, {r: re N}.

Substage 0. We wish to define A(i), fi(0) and O, . If i =0, let h(i) = f(0) = 0
and let @, , be any finite usl table for %,. The existence of @, , follows from
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Lemma 2.2. Suppose thati > 0. Let ¥ be any finite usl table for .Z,. By (3), thereisa
k > h(i — 1) and a usl table ¥* ~ ¥ such that ®;_, , is an admissible extension of
Y* | %, _,. Fix the least such k, set A(i) = fi(0) = k, and let @, ,;, = ¥*. (Note that
(2) will hold in this case.)

The ability to complete Substage 0 depended on the satisfaction of (3) for i — 1
in place of i. Thus we want the construction of a sequential table for %,_; to
guarantee the ability to admissibly extend restrictions of tables for .#,. In order to
make the construction more uniform and thus allow for more applications, we want
this to be done before we determine %;. Hence the sequential table for %;_,
considers tables for all possible finite # 2 %;_ ;.

Substager + 1. We assume that O, ,,, has been defined. We wish to define fi(r + 1
and tables O, ;for all j such that fi(r) < j < fi(r + 1). This definition is broken down
into a sequence of three steps. In the first step, we try to insure that @; /i,
contains all the interpolants needed by ©; ,,, so that it can be a successor of ©;
in a weakly homogeneous sequential lattice table for #,. In the second and third
steps, we insure that all instances of (3) and (4) are satisfied.

Step 1. Let ©F be a type 1 extension of @; ;. By Corollary 3.12, such an extension
exists and is, by definition, admissible.

Step 2. Let ¥} be a usl table for the lattice .4} If &, & M}, set O], = OF,. Assume
that % < . *. (The reader can follow the remainder of this step in Fig. 3.12.) By
Lemma 3.21, there are finite usl tables ¥ ~ ¥* for ./ * and @, for &, such that
O/ isan adm1551ble extension of both lI’+ I %, and oF. By the Tran51t1v1ty Lemma
(3 9) O, is an admissible extension of O s, If i=0, set 07 =0/, and
k* =r+1. If i>0, then by (2), @,y is an admissible extension of
O sun | & (. Hence by (4), there is a usl table ©7, for &, such that 07, ~ @fr, e’
is an admissible extension of @, ), and thereisa k# > f,(r) such that @, 1e# 1san
admissible extension of both ©;_, [, and @ " I %_,. Fix the least such £ * and fix
@ #

t =
O in————Oisn L1 —50i1 1)

Fig. 3.12

Step 3. Let fi(r + 1) =k*, 0, ;= O, ,, for all j such that fi(r) <j < k*, and
O+ = @fr unless 4, = @; ; for some j < fi(r). Thus it remains to consider the
case where A, = @, ; for some j < fi(r). (The reader should follow the progress of
this case in Fig. 3.13.) By the Transitivity Lemma (3.9), @# is an admissible
extensionof I', [ %,. By Lemma 3.22, thereis a usl table I'* ~ I X suchthat I'* isan
admissible extension of I',, and a usl table @; , for %, such that @’ is an admlss1ble
extension of both I'¥ I & and @/, By the Trans1t1v1ty Lemma (3.9), ©;, is an
admissible extension of O, If i=0,set f(r+1)=r+1and O,,,, =0,
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Suppose thati > 0. By (2), ©;_, ;is an admissible extension of ©; ; I £,_,. We now
apply (4) inductively to obtain an isomorphic copy @;, of @;, such that @/, is an
admissible extension of @;;, and a k > fi(r) such that O, . 1s an adm1351b1e
extension of both @ jand @], I #,_,. Fix the least such k and let fi(r + 1) =
Set @;, = O, ,, for all s such that fr)<s<kandlet O, =0,

Cu Ca

"o
ir ~ ir iLJir+1)

01 Lo —=45 0,1,

Fig. 3.13

The construction is now complete. Note that Fig. 3.12 describes the situation at
the end of Step 2 regardless of the procedure followed to define ©7 ; and Fig. 3.13
describes the situation at the end of Step 3 regardless of the procedure followed to
define O; ;,,+,, Hence (1) and (2) follow from Figs. 3.12 and 3.13 and the
Transitivity Lemma (3.9).

Let ¥ be any finite usl table for a finite lattice # = %,. Then ¥ = ¥* for some
r > h(i). Hence by Fig. 3.12, ¥* ~ ¥ and ¥, | £, c,0;, ~ O]. By the First
Pullback Lemma (3.23), there is a usl table ¥* for M such that 208 ¥ and
'I’# P % <.0. By Fig. 3.13, O], <,0;,, so by the Transitivity Lemma (3.9),

*1 4 <.0;, By Fig. 3.13, @’, ©;.. We again apply the First Pullback
Lemma (3.23) to conclude that there is a finite usl table ¥ for .# such that
V' ~P*and V' 4,0}, = 0,4+ Since P’ ~ ¥¥, (3) is now seen to hold.

Letje N be given, and let I and I'* be finite usl tables for .# = &, such that I'*is
an admissible extension of I' and @, ; is an admissible extension of I' [ .%,. Then
there is an re N such that fi(r) = jand {I',,I'*, A,) = I, I'*,0; ;). Fix such an r.
By Fig. 3.13 and the Transitivity Lemma (3.9), the following diagram commutes:

F,——r—+rr f Z—i—)@,d

I e——r———Ir7’1 $—=—0,,
@i,fi(r’r 1)

Fig. 3.14

(4) now follows from the Second Pullback Lemma (3.24).
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We note that the construction of {@;;: i < k&j > h(i)} can be carried out
recursively. Furthermore, there is an isomorphic copy of @¥ embedded into
O; s +1)- Hence {0, ;: ie N&j > h(i)} is a uniform sequential lattice table. [

3.28 Remark. Let & = {¥;:ie N} and 4 = {./;: i€ N} be countable usls such that
& = JM;foralli < n,andforall je N, both ¥, and .#; are finite. Let {©, ;: i,je N}
and {¥; ;:i,je N} be the uniform sequential tables constructed in Theorem 3.27 for
& and ./ respectively. Then @, ;= ¥, ; for all i < n and je N.

3.29 Remark. Let {%;: ie N} be an approximation to the usl .# with least element
such that each % is finite and {%;: ie N} is recursive in a set of degree a. Then there
is a uniform sequential usl table {@, ;: i,je N} and a function 2: N* - N which is
recursive in a set of degree a such that for all i, je N, (i, /) is an index for @, ;as a
canonically finite set.

Theorem 3.27 was proved by Lachlan and Lebeuf [1976].





