Chapter X1
Bounding Minimal Degrees with Recursively
Enumerable Degrees

The constructions of minimal degrees which have been presented to this point have
been oracle constructions. Most of the theorems in Part C, however, were originally
proved using full approximation constructions. Although different constructions
have different features, the common thread in full approximation constructions is
that both the set of minimal degree and the trees on which this set lies are
simultaneously constructed through recursive approximations.

In this chapter, we prove that every non-zero recursively enumerable degree
bounds a minimal degree. The proof we give involves a full approximation
construction.

1. Trees Permitted by Recursively Enumerable Sets

Let C be a non-recursive, recursively enumerable set, and let 2: N — N be a one-one
recursive function enumerating C. Let C* = {h(x): x < s}. We construct a set
A <1 Cby recursive approximation. Thus we define a recursive sequence of strings
{os:5€e N} and let A(x) = limsay(x) for all xe N. (Recall that in oracle con-
structions, 4 was more simply defined by 4 = U{as:se N}.) C will control the
recursive approximation {a,:s€ N} by subjecting the construction of this approxi-
mation to the following constraint:

1) Vx,seN(C* T x=Cl x> ol x = A).

Condition (1) will guarantee that 4 <; C, as is shown in the following lemma.

1.1 Yates Permitting Lemma. Let {o: s€ N} be a recursive sequence of elements of
. Define A = N by A(x) = limgay(x) for all xe N. Assume that (1) holds. Then
A< C.

Proof. To compute A(x), search for the least se N such that C°l x+ 1=
Clx+1 and lh(x) > x. Since 4 is a one-one recursive function which
enumerates C, such an s can be found through the use of a C oracle. By (1),
A(x) = ag(x). [
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We will not worry, during the construction, about forcing the standard
requirements whose purpose is to guarantee that A4 is not recursive. Posner’s
Lemma will allow us to show that all such requirements are automatically satisfied.
Thus it will suffice to satisfy the following requirements for all e N:

P,: If &2 is total, then either @ is recursive or 4 < @2,

Such requirements were previously satisfied through the use of e-splitting trees, and
in this construction, we will also try to place 4 on an e-splitting tree for each ee N.
Suppose that a partial recursive tree 7 is given, and we attempt to construct an e-
splitting subtree 7* of T. Let ¢ be terminal on T¥, the approximation to 7* at stage
s. Since no appeal to an oracle of degree 0 is allowed, we cannot determine, at stage
s, whether or not there is an e-splitting of ¢ on 7. While such an e-splitting is being
sought, we are defining {o;: s€ N}, so if such an e-splitting is eventually found and
o = A, thenitis possible that the e-splitting has been found too late, as erecting it on
T* may violate (1); (1) has priority over all other requirements, so C must act to
prevent the erection of unsuitable e-splittings on 7*. We will show that if there are
infinitely many ¢ = 4 which have e-splitting extensions on T, then C will permit one
of these e-splittings to be erected on 7%, and so we will be able to prove a
computation lemma. Otherwise, we will find a ¢ = A4 such that ¢ = T and ¢ has no
e-splitting extensions on T; so if A = T then cbj 1S recursive.

We begin the construction of e-splitting trees with the above motivation in
mind. The trees are constructed by recursive approximation. The first step,
described in the next definition, tells us how to erect one new e-splitting on 7*. The
parameter « in this definition represents the approximation, at stage s, to the set of
minimal degree.

1.2 Definition. Let Tand T* be finite trees such that 7* = T. Lete,se Nand a € %
be given. Define the tree T+ = PSp,(T, T*, a, e, s) as follows: Let T* (&) = T*(&)
for all £e€% such that T*(¢)|. If T*(@)1, let T+ (@) = T(0) if T(®)|, and T+ ()]
otherwise. Assume that 7*(¢7)] and is terminal on T*. Search for the least
{00,01,xy€F2 x N (under some fixed recursive one-one correspondence of N
with &2 x N) such that:

) Vi< I(T*(¢ )co; < T).
3 VyeN(y < h(s)&y < lh() = 0o(y) = 0.1(p) = «(y)).
4 Vi< 1(lh(g;)) < s)&x < s.

&) {G¢,0,) e-splits on x.

Note that if we are presented with 7 and T* as finite trees whose domains are
known, then the existence of such a triple can be determined uniformly and
recursively in e, x, and s. If no such triple exists, then T+ (£)1. Otherwise, T* (&) = o;
where & = &7 xi. For all other strings 6, T (6)1.

PSp,(T, T*, a, e, s) provides the basic building block for the construction of an
e-splitting tree T* = U{T¥: se N}. The tree T* is defined in terms of the sequence
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{ag: s€ N}, with o used to defined T%, | which, in turn, is used to determine o, ;. It
will also be necessary to specify the stage ¢ at which the construction of 7* begins.

1.3 Definition. Let T be a partial recursive tree with recursive approximation
{T,: seN} of finite trees such that T = U{T,: se N} and {{g,s)€% X N:
oedom(Ty)} is recursive. Let 4 = N and ee N be given, and let {o;: se N} be a
recursive sequence of strings such that 4 = lim,a,. Assume that 4 < T. Define
the tree T* = PSpy(T,e,t,{o,: seN})=U{T*: s>1} by T¥=0 and T*,
PSpy(Ts+1, T*, a5,e,5 + 1).

1.4 Remark. It is easily verified that for all se N, T* = T, and T¥,, extends T%,
where T* = PSp,(T,e,t, {os: se N}). Furthermore, T* is partial recursive, and
{(o,5)e Y x N: cedom(T¥)} is recursive.

We now prove a computation lemma for the splitting trees which have just been
defined.

1.5 Computation Lemma. Let T be a partial recursive tree, andlet e, t € N be given. Let
T* = PSpy(T,e,t,{a,: se N}) where {as: s€ N} is a recursive sequence of binary
strings with limit A = N. Then:

() If A = T* and &2 is total, then A =1 P2.

(1) IfA = Tand there is a terminal stringo < T* such thato = A, 4 istotal and
(1) holds, then @2 is recursive.

Proof. For all 4 < N, if ¢4 is total, then & <1 4. By the proof of Computation
Lemma V.2.6, since T* is an e-splitting tree, for all branches 4 of T*, 4 < ®2.
Hence (i) holds.

The verification of (ii) also refers to Computation Lemma V.2.6. By that lemma
and since 4 = T and @7 is total, it suffices to show that there is a T = T such that
T = A and there are no e-splittings of T on 7. We assume that no such t exists, and
obtain a contradiction by showing that C is recursive.

Fix ¢ as in (ii). For each ye N, search for s(y) = seN, x(y) = xeN and
T,00,01 €% such that (4) and (5) hold, 6 = 1 = 0, = T, for i < 1 (T is specified
through a recursive approximation {7:se N}),lh(t) > y,o c T¥andtl y + 1 =
o Ty + 1. Such s,x,1,00 and g, must exist by the assumption which has been
made, and can be found recursively. It suffices to show that for each ye N, A(¢) > y
for all = s(y) + 1. For then C(y) = C*"*!(y), and since s is a recursive function,
we will then have a recursive computation of C, yielding the desired contradiction.
We may therefore assume that for some y € N, there is a least r > s(y) = s such that
h(r) < y.But then by (1), o, T y + 1 = o, [ y + 1, so (2)~(5) hold for ¢ in place of
T*(¢7)and r + 1 in place of s. Thus ¢ is not terminal on T*, yielding the desired
contradiction. [

The trees which were introduced in this section will be used in the next section to
construct a minimal degree below the degree of C. Other problems which will be
encountered during the construction will be discussed in the next section.

1.6 Remarks. Permitting in the form presented here was developed by Friedberg
[1957b] and Yates [1965]. A simultaneous construction of e-splitting trees
permitted by C and {a: se N} can be found in Yates [1970a], and another such
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construction in the style of Cooper [1973], [1974] which is carefully motivated and
presented appears in Epstein [1975].

1.7 Exercise. Let T be a partial recursive tree, let {o,: s€ N} be a recursive sequence
of binary strings with limit 4 = N, and let ee N be given. Construct a partial
recursive subtree T* = PTot,(T, e, {o: se N}) of T such that:

(i) For every branch B = T*, ®% is total.

(ii)) If 4 = T, A & T*, and (1) holds, then there is a terminal string ¢ = A of T*,
astring tsuchthate = v « Tand xe Nsuch thatforall p = T,if t = p then ®?(x)1.

2. Minimal Degrees and Recursively Enumerable Permitting

Fix C and 4 as in Section 1. A set 4 of minimal degree is constructed such that
A<,C.

In order to make use of the Permitting Lemma, we cannot allow any appeal to
an oracle during the construction of 4. Hence it will not be possible for us to decide
at stage s of the construction of 4 whether or not a string «; in the approximation to
Aisterminalon T = U{T;: te N}. Thus, at stage s, we may be forced to guess that o
is terminal on T (because o, is terminal on T), in which case we cease the attempt to
construct 4 on T'; but we may later discover, at stage ¢ > s, that o is not terminal on
T, and hence a; is not terminal on 7. We must then resume our attempt to construct
A on T. When we return to the finite tree T, which extends T, we must modify o, _;
to obtain a, such that o, < «,, and this modification must be permitted by C. As we
cannot control C, we insure that this modification will be possible by imposing
constraints on {a,: s < r < t} which require that o, 2 o, unless we make the decision
never again to return to 7. Such a decision will sometimes be made, and when this
happens, it will be due to certain priority considerations.

Since we can never know if we are deserting a tree forever, it will not be possible
to construct 4 on a sequence of trees. Rather, we choose a path through a tree of
trees on which we construct 4. That path is the one of highest priority which we
follow infinitely often during the course of the construction. e-states are assigned to
paths in order to facilitate the definition of priority of paths.

2.1 Definition. Let 1€ % be given such that lh(1) = e + 1. The e-state of A is
E(Q) =X{2¢70: Al) = 1).

The properties of the binary representation of natural numbers imply the
following facts about e-states. We leave the verification of these facts to the reader.

1) A # M €S &IN(4) = 1h(4;) = e + 1 — E(4) # E(4y).

@) Yo, A1, 80, 01 € %(h(Ae) = Th(A;) = e + 1&1h(8o) = Ih(8,) = n + 1
&e <n&E(y) < E(y)&ho < 0 & Ay < 81 — E(3o) < E(S1)).

3) Yo, A1, 80, 81 € %(h(Ae) = Ih(A;) = e + 1 &h(8o) = Ih(8;) = n + 1
&e <n&E(B,) < E(3:)& Ao < 60& A1 < 81 — E(4o) < E(Ay)).
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The tree of trees is used as follows. For each § € % and s e N, we will define T
such that {5: T, # 0} is finite. T5 ; will be a finite approximation to what we hope
will be a tree Ts. We begin, for § = 0, by setting T, ; = Id, ( (see Section 10.1). Given
T}, We try to construct T,;  as an e-splitting tree for e = 1h(), and if we are forced
to leave T, ;, there will be a terminal string ¢ = 4 on T}, s such that ¢ = T (&).
We then set T, = PExt,(T}, &) and try to build 4 on Tj,,. As indicated earlier, if
we discover, at stage ¢ > s, that ¢ is not terminal on T}, , and T, , extends T,
then we may choose to return to T,,. In this case, Tj,, is cancelled, and we later
begin new attempts at building T3, . If T}, is cancelled only finitely often, then
there will be a stage r such that Tj,o = U{Ts,0,: s =r} is a well-defined tree.
Otherwise, there will be a 1€ % such that 1h(4) = 1h(d) + 1, A has higher priority
than ¢ * 0, and we choose to follow T, ; at infinitely many stages of the construction.

At stage s of the construction, we define y,€.% and choose to continue the
construction of the minimal degree at stage s along the sequence of trees {7, ;:
y S 7). We will define I' = lim sup; y, as a path through the tree of trees, and will
show that for all y = I', T, is cancelled at only finitely many stages. The minimal
degree requirements will then be forced by {T,: y = I'}.

A minimal degree permitted by C is now constructed.

2.2 Theorem. Let ¢ # 0 be a recursively enumerable degree. Then there is a minimal
degree a < c.

Proof. Let C and & be as in Section 1, and let ¢ be the degree of C. We will construct
recursive sequences of elements of % {a;: se N} and {y,: se N}, together with a
recursive array of trees { T ;: s€ N & 1h(d) < lh(y,)}. Atstage s, T will be designated
either as the identity tree, an extension tree or a splitting tree, and T ; will be the
recursive approximation to T} as specified either by Definition 1.3, X.1.6 or X.1.8.
A = lim, oy will be the set of minimal degree, and I' = lim sup, y, will pick out the
path through the tree of trees on which A lies. Thus 4 < Ty, for all ne N and all
sufficiently large s. The following induction hypotheses will be satisfied at the end of
stage s:

“) §>0-Vx < h(s)(os— 1 (x)] = ag(x)] = as—1(x)). (Thus we make sure that
(1) is satisfied, and so can apply the Permitting Lemma.)

&) s > 0& h(s) > lh(o;_ 1) = Th(eg) > Ih(es_ ;). (This condition will insure
that limglh(a,) = 0o and so that 4 = N.)

6) Vo e %(h(0) < lh(y,) & E() > E(ys I 1h()) » o€ S (o is terminal on
Tss&oisterminalon T ; & 0 < a)). (Thusif 6 has higher priority than
ys, then o, extends a terminal string of T ;. This condition will allow us to
apply the Computation Lemma.)

©) Yo e A(h(0) < Th(ys) & E(6) < E(ys I In(6)) - o, = T,). (This condition
allows us to return to higher priority trees later in the construction if we
desert them now, by insuring that all strings on trees of lower priority than
T, extend a,. This is the consideration mentioned prior to Definition 2.1.)

8) Ih(y,) = s. (Thus Ih(I") will be infinite.)
©) Ty, = Id, .
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(10) Vo e (0 < 1h(d) < lh(ys) = T < T;s- 5). (The subtree condition.)

(11) VoeS(0 <1h() <lh(y)& o= x1&s > 0& E(6) = E(ys | 1h(5)) -
Ts = PSpa(Ts- 5, T3 15 %1, 1h(67),5)). (Splitting subtrees are con-
structed in the high priority direction.)

(12) Voe%(0 < 1h(d) < lh(y) &6 =6~ x0& E(6) = E(y, I 1h(6)) —
3¢ e H(Ts,s = PExty(T5- 5, &) & Ts- (&) is terminal on Tj-,; ). (Thus we
leave splitting trees via terminal strings for lower priority trees. The

Computation Lemma will show that if 10 = I' then some ¢ = 4 will
have no lh(4)-splittings on T, = U{T, : s = r} for some r.)

The construction. proceeds as follows.
Stage 0. ag = 7o = @ and Tp o = Id, ;.

Stage s + 1. Let k(s) = min({A(s + 1), Ih(a)}) and let B, ; = o, I k(s). Thus we cut
o, back to as short a string as C will permit. We now proceed by substages {m:
0 < m < 25"} each of which is carried out in steps {n: 0 < n < s + 1}. At each
substage, we define a tree T ., with Ih(6) = s + 1, higher priority trees being
defined first. The steps in each substage lead up to the definition of T, , by
defining T, .+, for A = J, with trees for which 1 is shorter defined first.

Substage m. Fix §,,€ % such that 1h(5,,) = s + 1 and E(5,,)) = 2°"! —m — 1. Let
O =0m

Step n= 0 Let T9,8+1 = IdZ,s+1'

Stepn;0 <n<s+ 1. Let A, ,€% be given such that Ih(4,,,,) = nand 4, , < J,,. If

T,,, ,s+1 has already been defined, proceed to the next step. Otherwise, there are
three cases. Let 4 = 4, .

Case 1. 2= 2" =1 and oy, has not yet been defined. Let
T, if n<s+1
T%, ={ S
’ 0 if n=s+1
and
Tl,s+1 = PSpZ(Tﬂ.‘,s+ 1> T;lk,s’ s,y lh(i_)ﬂg + 1)

Case 2., = A~ 0 and oy,  has not yet been defined. In this case, we will be able to
fix & = &(m,n,s)e % such that fi 2 T;- 5+1(8) and T;- 1 ,(&) is terminal on
Ti-u1,5+1- Let T oy = PEXG(T;- 544, 8).

Case 3. a ., has been defined. Let

Us+1 lf n= @
1 otherwise.

T).,s+ 1(’1) = {

If n=1s5+1 and a,,; has not yet been defined, search for ne % such that
Bs+1 < Tss+1(n)|. If such an # exists, fix such an # of shortest length with the
lexicographically least 5 preferred, and let ot; 4y = T554,(n) and y,1 | = J,,- Proceed
to substage m + 1 if m + 1 < 2°7! and to stage s + 2 otherwise.
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This completes the construction. Note that {E(6): 1h(d) = s + 1} = [0,2°" ') so
for each 6 e % such that 1h(d) = s + 1, there is a substage during which T ., is
defined. The following lemma will be used to show that a, ., ; and y, , exist, and that
o4+ 1S compatible with all trees defined at stage s + 1.

2.3 Lemma. Let se N and 6€ % be given such that 1h(6) < s + 1, and

) s+ 1l < E(ys+1 T 1h(9)) < E(9).
Then the following conditions hold:

(i1) Bs+1 is compatible with T; .., (i.e., there is a E€S5 such that either
BES Tss1(8) or Tssi1(E) = B and Tsy1(E) is terminal on T, 1).

(iii) Ifo=0,0rif6=0"%0and o€ %5(Ps+1 =0 < Ts- 541),
then o€ % (Bs+1 =0 < Ts44 1)

Proof. We proceed inductively, following the length and e-state of 6. Note that since
To, = 1d,, for all ¢, (ii) and (iii) follow easily for § = @. Fix s and § as in the
hypothesis of the lemma, and let ¢ = 1h(6). Let m be the first substage of stage s + 1
suchthaté < J,,. By (i), T+ is defined through Case 1 or Case 2 at step ¢, substage
m of stage s + 1 depending, respectively, on whether =6~ %1 or § =6~ *0.

Assume first that 6 =6~ 1. By Case 1 of the construction, Tj..q =
PSpy(Ts- 541, T %, 10(67), s + 1). Furthermore, sy = o I A(s + 1), T¥ = T4
if 1h(d) <s, and T% = 0 if 1h(6) = s + 1; hence by Definition 1.2, if B, is
compatible with 7% then f,., will be compatible with T}, . This latter fact is
clearif In(6) = s + 1 and follows inductively from (6) and (7) if Ih(d) < s since o is
compatible with T .. Hence (ii) follows. (iii) is vacuous in this case.

Assume that 6 = 6~ 0. By induction on e-states, f;.; is compatible with
Ts-,1.5+1. There can be no o €% such that f;,; < 0 « Ts- 5., else applying (iii)
repeatedly by induction, we conclude that y,.; 24~ *1 and hence that
E(ys+, ! 1h(d)) > E(6). Hence we can fix & as in Case 2. Thus Tjs,; =
PEXty(T;- s+ 1, &) where T~ 14(&) is terminal on T-,y s+ and Ts- 54 1(8) S Bs1-
By induction on 1h(J), B+, is compatible with T;- ;. ; and hence with Tj ;.
Furthermore, if Joe%(Bs+; =0 < Ts-5+1), then since f,g 2 Ts- o1 1(8),
o < Ts¢4+1. Hence (iii) follows. [

Lemma 2.3 is used to show that o ; and 7, are defined during some substage
of stage s + 1. Let 0o = @ and 0, ; = 0;,, for all je N. Assume that o, and 7y, ,
are not defined before substage 2°*! — 1 of stage s + 1. It suffices to show that o,
and y,,, are then defined at substage m = 2°*! — 1 of stage s + 1. Note that
Om = 0541 and that fi;,; < . By the definition of Ty ;. = Id; 511, T s+ extends
To,s and no g < Ty is terminal on Ty 4. By (7) and (9), fs+1 < Tps+1 SO
Joe % (Ps+1 < 0 < Tpe+1)- Since o4y and y,, are not defined before substage
25*1 — 1, Lemma 2.3(iii) can be applied repeatedly by induction to show that
JoeSH(Ps+1coc Ty, ,s+1)- Fix such a ¢ and fix ned% such that
o="To,,,s+1(n). s+ and y,,,; are now defined during step s + 1, Case 2 of
substage 2°*! — 1.
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The induction hypotheses are now verified. (4) and (5) follow from the
definition of ., and since f,1; < g4 1.

Fix 6 e % such that 1h(0) < lh(ys+ ;) and E(0) > E(ys+, | 1h(d)). Fix ve % of
greatest length such that v = d and v < 9, . Since E(§) > E(ys+1 I Ih(d)),v+1 <= ¢
andv*0 < y,4 . By 2.3(ii), thereisa 0 € &% such that ¢ = T, and either ;. < o,
or ¢ is terminal on 7, c and ¢ < a,. Fix such a ¢. By Definition 1.2, any proper
extension ¢* of ¢ on T, ¢+ extends f, ;. Hence either there is a 6* € & such that
Bs+1 < 0* <= T,,15+1,0r0 S P4y and gisterminal on T, ¢+ ;. There cannot be a
o*e % such that ., < 6* = T,,; s+1; else the repeated use of 2.3(iii) (as in the
proof that y,,]) will imply that y;,; 2 v* 1, a contradiction. Hence ¢ = S,
and ¢ is terminal on T ;. Since f;1 1 < o541, (6) now follows for s + 1 in place
of s.

(8) and (9) follow easily for s + 1 in place of s.

(10) is immediate for s + 1 in place of s whenever E(6) = E(y,4, | 1h()) since
Case 1 or Case 2 is then used to define T ;. ;. Suppose that £(5) < E(y+, I 1h(5)).
Fix ve% of greatest length such that v= 6 and v<y,,,. Since E(S) <
E(ys+1 M 1h(5)),vx0 = dandvx1 < y.,,.Sincev < y54 1, E(v) = E(ys+, I 1h(v)), so
by (10), as+1 <= Ty, ,5+1 S Tys+1- Since v¥0<= 6 and vx1 <y, E(v*0) <
E(ys+1 ' Ih(vx0)) so by Case 3 of the construction, Tj, ()l <n =0 and
Tss+1(0) = a4y soeither Tsgy = Ts- g1y 0rd6” =vand Tseiy S Ts- 5+, Hence
(10) follows for s + 1 in place of s.

We now verify (7). Fix 6e% such that 1h(6)<Ilh(y;+,) and
E(0) < E(ys+1 ! 1h(5)). If E(S6) = E(ys+1 I 1h(d)), then since os+y = T, ,, s+1>
os+1 < Ts55+1 by (10). And if E(6) < E(ys+1 | 1h(d)), then Case 3 is used to define
Tss+1. Hence (7) follows for s + 1 in place of s.

(11) follows immediately from Definition 1.2 and Case 1 of the construction.
And (12) follows immediately from Definition 1.2 and Case 2 of the construction
and the proof of Lemma 2.3. Hence all the induction hypotheses are valid at the end
of stage s + 1.

LetI' = limsup,y,,i.e., I' I x + 1 = yifforinfinitely many se N,y I x + 1 =y
and for all § € & such that 1h(6) = x + 1 and E(6) > E(y), there is an s e N such that
forall t =5, 9, I x + 1 # 6. By induction, I' must exist, since once I' [ x =y is
defined, there are infinitely many se N such that y, [ x = 7, and by (8), for each such
s > Ih(y), either yx0 = y; or y* 1 = 7y,. Hence I' I x + 1 must also be defined. By
(5), limg1lh(a,) = o0, so by (4), limya, = 4 = N must exist. Furthermore, by (4) and
the Permitting Lemma, 4 <1 C.

The next lemma is used to show that A4 is a set of minimal degree.

2.4 Lemma. Let § € % be given such that E(5) = E(I" | 1h(5)). Then there is a stage s
such that for all t > s, Ts,,, extends-Ts,. Furthermore, if 1h(6) >0, then if
=0 =1, lim, T5, = PSp,(lim, T;- ;,1h(67),s, {a,: te N}) and if 6 = 6~ 0, then
lim, T, = PExt,(lim, T;- ,, &) for some &S5 such that lim, T;- (&) is terminal on
limt Té‘*l,t-

Proof. We proceed by induction on 1h(d). If 1h(6) = 0, then é = @ and the lemma
follows from (9). Assume that the lemma holds for all ¢ such that 1h(d) < n where
n > 0. Fix de% such that 1h(6) = n and E(6) = E(I' | 1h(5)). By the definition
of I, there is a least se N such that for all 7r>s, lh(y)>1h(5) and
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E(y, I 1h(6)) < E(T" I 1h(5)). If § = 6 * 1, then T, is defined by Case 1 for all > s,
so Ts,4, extends Tj, for all > s, and by (11), induction, and Definition 1.3,
lim, T, = PSp,(lim, T- ,, 1h(67),s,{o,: teN}). And if 6 =0~ %0, then T;, is
defined by Case 2 for all ¢ > s. By (12), for each such ¢, there is a a(¢) = T;- (&(2))
such that T;, = PExty(Ts-,,¢&(?)) and o(f) is terminal on Tj-,., Since
E(0~ x1) > E(6~ %0) > E(y, I 1h(9)), it follows from (6) that a(r) = o(¢) for all
r,t > s. The lemma now follows by induction. [

By Lemma 2.4, for all § € % such that E(6) = E(I' | 1h()), T5 = lim, T}, exists,
and there is an s(5)e N such that T; = U{T};,: t = s(6)}. By (7), if 6 = I', then
Ac T,

Fix ee N and 6 €% such that 1h(é) = e + 1. If 6 = 6~ = 1, then by Lemma 2.4,
Ts = PSp,(T;s-,e,t, {os: se N}) for some te N, so T is an e-splitting tree. By the
Computation Lemma, if 2 is total, then 4 =, ®2. If § = 6~ 0 and @4 is total,
then by Lemma 2.4, T; = PExt,(T;-, &) for some & € % such that T- (&) is terminal
on Tjs-,; = PSpy(Ts-,e,t,{a:5€ N}) for some teN. So by the Computation
Lemma, &4 is recursive.

We complete the proof of the theorem by showing that A4 is not recursive.

2.5 Posner’s Lemma. A is not recursive.

Proof. We obtain a contradiction under the assumption that A is recursive. Given
B = N, we define a function 6® partial recursive in B uniformly in B as follows:

5 {B(x) if 30 = B(o & A&lh(o) > x)
0°(x) = .
1 otherwise.

Since A4 is recursive, there is an e € N such that for all B < N, 6% = ¢%. Fix such ane.
Fix € % such that 6 = I and 1h(d) =e + 1.

Assume first that § = 6~ * 1. Then by Lemma 2.4, {T(0), T5(1))> e-splits T5(f)
and 4 o T50) or 4 o Ts(1). Hence for some xe N, ®7¢%(x)| and ¢ (x)], so
@4(x)|. But @4(x) = 04(x) and 04(x)? for all xe N, a contradiction.

Assume that 6 = 6~ 0. By Lemma 2.4 and the proof of the Computation
Lemma, thereisa o < A4 for which ¢ = T}- and there are no e-splittings of ¢ on Tj-.
Let 6 = T5-(&). Then T5-(£%0)| and T5-(Ex1)| sinceo = 4 = Ts-. Fixthej < 1
such that T5-(¢*j) = A. Then Ts-(E*j*0)] and Ts-(€ =j* 1)]. Fix k € N such that
Ts-(Exjxk) & A, and fix the least x < Ih(T;-(& *0)) such that Tj-(&=0)(x)] #
Ts-(¢x1)(x)|. By the definition of 08, (T;-(Exj*k), T5-(£*(1 —j))> e-splits
T5-(&) on x, a contradiction. |

This completes the proof of the theorem. |

2.6 Remarks. Theorem 2.2 was proved by Yates [1970a]. A different proof can be
found in Epstein [1975]. Posner’s Lemma appears in Epstein and Posner [1978].

2.7 Exercise. Use Theorem II1.7.4 and Theorem 2.2 to show that there is a minimal
degree aeL,.





