
Chapter XI

Bounding Minimal Degrees with Recursively
Enumerable Degrees

The constructions of minimal degrees which have been presented to this point have
been oracle constructions. Most of the theorems in Part C, however, were originally
proved using full approximation constructions. Although different constructions
have different features, the common thread in full approximation constructions is
that both the set of minimal degree and the trees on which this set lies are
simultaneously constructed through recursive approximations.

In this chapter, we prove that every non-zero recursively enumerable degree
bounds a minimal degree. The proof we give involves a full approximation
construction.

1. Trees Permitted by Recursively Enumerable Sets

Let C be a non-recursive, recursively enumerable set, and let h: N -> TV be a one-one
recursive function enumerating C. Let Cs = {h(x):x ^ s}. We construct a set
A ^ τ C by recursive approximation. Thus we define a recursive sequence of strings
{ocs:seN} and let A(x) = limsαs(x) for all xeN. (Recall that in oracle con-
structions, A was more simply defined by A = \J{oLs:seN}.) C will control the
recursive approximation {ocs:seN} by subjecting the construction of this approxi-
mation to the following constraint:

(1) \/x,seN(Csΐ x= C\ x-+as t x ^ A).

Condition (1) will guarantee that A ^ Γ C , as is shown in the following lemma.

1.1 Yates Permitting Lemma. Let {αs: seN} be a recursive sequence of elements of
Sf2. Define A ^ N by A(x) = limsOLS(X) for all xeN. Assume that (1) holds. Then
A^TC.

Proof To compute A(x), search for the least seN such that Cs ϊ x + 1 =
C Γ x + 1 and lh(αs) > x. Since A is a one-one recursive function which
enumerates C, such an s can be found through the use of a C oracle. By (1),
A(x) = (xs(x). D
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We will not worry, during the construction, about forcing the standard
requirements whose purpose is to guarantee that A is not recursive. Posner's
Lemma will allow us to show that all such requirements are automatically satisfied.
Thus it will suffice to satisfy the following requirements for all eeN:

Pe: If Φ* is total, then either Φf is recursive or A ^ T Φ ^

Such requirements were previously satisfied through the use of ^-splitting trees, and
in this construction, we will also try to place A on an β-splitting tree for each ee TV.
Suppose that a partial recursive tree T is given, and we attempt to construct an e-
splitting subtree Γ* of T. Let σ be terminal on Γ*, the approximation to T* at stage
s. Since no appeal to an oracle of degree 0' is allowed, we cannot determine, at stage
s, whether or not there is an e-splitting of σ on T. While such an ^-splitting is being
sought, we are defining {αs: s e N}, so if such an ^-splitting is eventually found and
α c i , then it is possible that the e-splitting has been found too late, as erecting it on
Γ* may violate (1); (1) has priority over all other requirements, so C must act to
prevent the erection of unsuitable e-splittings on T*. We will show that if there are
infinitely many σ a A which have e-splitting extensions on T, then C will permit one
of these e-splittings to be erected on Γ*, and so we will be able to prove a
computation lemma. Otherwise, we will find a σ c A such that σ c Γand σ has no
e-splitting extensions on T; so if A c T then Φf is recursive.

We begin the construction of ^-splitting trees with the above motivation in
mind. The trees are constructed by recursive approximation. The first step,
described in the next definition, tells us how to erect one new e-splitting on T*. The
parameter α in this definition represents the approximation, at stage s, to the set of
minimal degree.

1.2 Definition. Let Γand Γ* be finite trees such that Γ* c T. Let e9 se Nand α e 6f2

be given. Define the tree T+ = PSp2(Γ, T*,aί,e,s) as follows: Let T + (ξ) = T*(ξ)
for all ξe^2 such that Γ*(ξ)|. If Γ*(0)|, let Γ+(0) = Γ(0) if 71(0)1, and Γ + ( 0 ) |
otherwise. Assume that T*(ξ~)l and is terminal on 71*. Search for the least
<σo,σ1,jc>ec9

ί?2 x N (under some fixed recursive one-one correspondence of N
with ^\ x N) such that:

(2) yfi

(3) VyeN(y < h(s)&y < lh(α) -> σo(y) =

(4) V/^ l(lh(σi)<:s)&x^s.

(5) <0O,ff!> ^-splits on x.

Note that if we are presented with T and Γ* as finite trees whose domains are
known, then the existence of such a triple can be determined uniformly and
recursively in e, x, and s. If no such triple exists, then T+(ζ)]. Otherwise, T+(ξ) = σf

where ξ = ξ-*L For all other strings δ, T+(δ)t

PSp2(Γ, T*, α, e, s) provides the basic building block for the construction of an
e-splitting tree Γ* = U{ΓS*: se N}. The tree Γ* is defined in terms of the sequence
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{αs: s e N}, with αs used to defined Γ*+ ί which, in turn, is used to determine αs +1. It
will also be necessary to specify the stage t at which the construction of Γ* begins.

1.3 Definition. Let T be a partial recursive tree with recursive approximation
{Ts: seN} of finite trees such that T=U{TS: seN} and {(σ,s}e^2 x N:
σGdom(Γs)} is recursive. Let A c N and eeN be given, and let {αs: ^GTV} be a
recursive sequence of strings such that A = lims αs. Assume that A cz T. Define
the tree Γ* = PSp 2 (7>, t, {αs: seN}) = U{ΓS*: 5 ^ ί} by Γ* = 0 and Γs*+1 =

Γs+1,Γs*,αs,6>,s + 1).

1.4 Remark. It is easily verified that for all seN, T* c Γs and Γs*+1 extends Γf,
where Γ* = PSp2(Γ,6>,/, {αs: seN}). Furthermore, Γ* is partial recursive, and
{(σ,s)e£f2 x N: σedom(T*)} is recursive.

We now prove a computation lemma for the splitting trees which have just been
defined.

1.5 Computation Lemma. Let The a partial recursive tree, and let e,teNbe given. Let
T* = PSp2(!Γ,e, t, {αs: seN}) where {αs: seN} is a recursive sequence of binary
strings with limit A c TV. Then:

(i) If Ac T* and Φf is total, then A=τΦf.
(ii) If A cz Tand there is a terminal string σ c Γ* such that σ a A,Φf is total and

(1) holds, then Φf is recursive.

Proof For all A c N, if Φf is total, then Φf ^TA. By the proof of Computation
Lemma V.2.6, since Γ* is an ^-splitting tree, for all branches A of 71*, A ^ Γ Φ ^
Hence (i) holds.

The verification of (ii) also refers to Computation Lemma V.2.6. By that lemma
and since A c T and Φf is total, it suffices to show that there is a T c Γ such that
τ cz A and there are no e-splittings of τ on T. We assume that no such τ exists, and
obtain a contradiction by showing that C is recursive.

Fix σ as in (ii). For each yeN, search for s(y) = seN, x(y) = xeN and
τ, σ0, σιe&2 such that (4) and (5) hold, σ c τ ςz σ. cz Ts for / ̂  1 (T is specified
through a recursive approximation {Γs: seN}), lh(τ) > _y, σ c Γ* and τ ί >> + 1 =
αs Γ y + 1. Such j , x, τ, σ0 and σx must exist by the assumption which has been
made, and can be found recursively. It suffices to show that for each yeN, h(t) > y
for all t ^ s(y) + 1. For then C(y) = Cs(y)+1(y), and since s is a recursive function,
we will then have a recursive computation of C, yielding the desired contradiction.
We may therefore assume that for some yeN, there is a least r > s(y) = s such that
h(r) ^ y. But then by (1), αr ί y + 1 = αs ί y + 1, so (2)-(5) hold for σ in place of
T*(ξ~) and r + 1 in place of s. Thus σ is not terminal on Γ*, yielding the desired
contradiction. D

The trees which were introduced in this section will be used in the next section to
construct a minimal degree below the degree of C. Other problems which will be
encountered during the construction will be discussed in the next section.

1.6 Remarks. Permitting in the form presented here was developed by Friedberg
[1957b] and Yates [1965]. A simultaneous construction of ^-splitting trees
permitted by C and {αs: seN} can be found in Yates [1970a], and another such
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construction in the style of Cooper [1973], [1974] which is carefully motivated and
presented appears in Epstein [1975].

1.7 Exercise. Let Γbe a partial recursive tree, let {αs: sε N} be a recursive sequence
of binary strings with limit A c TV, and let e e N be given. Construct a partial
recursive subtree Γ* = PTot2(7>, {αs: sεN}) of T such that:

(i) For every branch 5 c Γ * , Φf is total.
(ii) If A <=T,Aφ T*, and (1) holds, then there is a terminal string σ a A of T*,

a string τ such that σ c τ c Γand x e TV such that for all p c Γ, if τ c p then Φ£O)|.

2. Minimal Degrees and Recursively Enumerable Permitting

Fix C and /z as in Section 1. A set A of minimal degree is constructed such that
A^TC.

In order to make use of the Permitting Lemma, we cannot allow any appeal to
an oracle during the construction of A. Hence it will not be possible for us to decide
at stage s of the construction of A whether or not a string αs in the approximation to
A is terminal onT = U{Tt:teN}. Thus, at stage s, we may be forced to guess that αs

is terminal on T (because αs is terminal on Ts), in which case we cease the attempt to
construct A on T; but we may later discover, at stage t > s, that αs is not terminal on
Tt, and hence αs is not terminal on T. We must then resume our attempt to construct
A on T. When we return to the finite tree Tt which extends Ts, we must modify αt _ i
to obtain oct such that ocs^ oct, and this modification must be permitted by C. As we
cannot control C, we insure that this modification will be possible by imposing
constraints on {αr: s ^ r ^ t) which require that αr ^ αs unless we make the decision
never again to return to T. Such a decision will sometimes be made, and when this
happens, it will be due to certain priority considerations.

Since we can never know if we are deserting a tree forever, it will not be possible
to construct A on a sequence of trees. Rather, we choose a path through a tree of
trees on which we construct A. That path is the one of highest priority which we
follow infinitely often during the course of the construction, estates are assigned to
paths in order to facilitate the definition of priority of paths.

2.1 Definition. Let λeSf2 be given such that lh(A) = e + 1. The estate of λ is

The properties of the binary representation of natural numbers imply the
following facts about e-states. We leave the verification of these facts to the reader.

(1) λ, Φ λ2e^2&lh(λ1) = \h(λ2) = e + 1 ->£(A0 φ E(λ2).

(2) Vλotλuδotδ^ΉQhiλo) = lh(A0 = e + l&lh(δ0) = l h ^ ) = n

& e < n & E(λ0) < E(λλ) & λ0 cz δ0 & λ, cz δλ -> E(δ0) <

(3) V ^ , ^ A A e ^ 2 ( l h μ 0 ) - lh(A0 = e + l&lh(δ0)

&e< n&E(δ0) ^ EiδJ&λo czδo&λ1^δ1^ E(λ0)



216 XI. Bounding Minimal Degrees with Recursively Enumerable Degrees

The tree of trees is used as follows. For each δ e £f2 and 51 e TV, we will define TδtS

such that {δ: TδtS φ 0} is finite. TδtS will be a finite approximation to what we hope
will be a tree Tδ. We begin, for δ = 0, by setting Γ0 s = Id2, s (see Section 10.1). Given
TδtS9 we try to construct Tδ+ltS as an e-splitting tree for e = \h(δ), and if we are forced
to leave Tδ+ltS, there will be a terminal string σ <= A on Tδ*ίtS such that σ = TδtS(ξ).
We then set Tδ*0 = PExt2(Tδ, ξ) and try to build A on Tδ*0. As indicated earlier, if
we discover, at stage t > s, that σ is not terminal on Tδ*lΛ and Tδ*u extends Tδ*ίtS,
then we may choose to return to Tδ*1. In this case, Tδ*0 is cancelled, and we later
begin new attempts at building Tδ*0. If Tδ*0 is cancelled only finitely often, then
there will be a stage r such that Tδ*0 = \J{Tδ*OiS: s ^ r} is a well-defined tree.
Otherwise, there will be a A e £f2 such that lh(A) = lh(<5) + 1, λ has higher priority
than δ * 0, and we choose to follow Tλs at infinitely many stages of the construction.

At stage s of the construction, we define ys e 5ξ and choose to continue the
construction of the minimal degree at stage s along the sequence of trees {Tyy.
y c γs}. We will define Γ = lim sups ys as a path through the tree of trees, and will
show that for all y c r, Ty is cancelled at only finitely many stages. The minimal
degree requirements will then be forced by {Ty: y a Γ}.

A minimal degree permitted by C is now constructed.

2.2 Theorem. Let c Φ 0 be a recursively enumerable degree. Then there is a minimal
degree a ̂  c.

Proof. Let C and h be as in Section 1, and let c be the degree of C. We will construct
recursive sequences of elements of ̂ 2 {αs: seN} and {ys: seN}, together with a
recursive array of trees {7^: se N & lh(<5) ̂  lh(ys)}. Atstages, Tδ will be designated
either as the identity tree, an extension tree or a splitting tree, and TδtS will be the
recursive approximation to Tδ as specified either by Definition 1.3, X.I.6 or X.I.8.
A = lims αs will be the set of minimal degree, and Γ = lim sups ys will pick out the
path through the tree of trees on which A lies. Thus A a TΓ r ΛtS for all n e N and all
sufficiently large s. The following induction hypotheses will be satisfied at the end of
stage s:

(4) s > 0 -> Vx < h(s)(as-1(x)l -» α s(x)| = αs_ i(x)). (Thus we make sure that
(1) is satisfied, and so can apply the Permitting Lemma.)

(5) s > 0&h(s) > lh(α s_!) -> lh(αs) > lh(α s_!). (This condition will insure
that lims lh(αs) = oo and so that A c N.)

(6) V^6^2(lh((5) ^ \h(ys)&E(δ) > E(ys t \h(δ)) ->3σe#?

2 (σ is terminal on
Tδ,s & σ is terminal on TδtS-! & σ cz αs)). (Thus if δ has higher priority than
ys, then αs extends a terminal string of TδfS. This condition will allow us to
apply the Computation Lemma.)

(7) \/δe^2(\h(δ) ^ lh(ys)&E(δ) ^ E(ys t \h(δ)) -> αs c Γ ί fS). (This condition
allows us to return to higher priority trees later in the construction if we
desert them now, by insuring that all strings on trees of lower priority than
Tys extend αs. This is the consideration mentioned prior to Definition 2.1.)

(8) lh(ys) = s. (Thus lh(Γ) will be infinite.)

(9) Γ0,s = Id2 f S.
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(10) V(5e^(0 < lh(<5) ̂  lh(ys) -» TδtS <= Γό_ s). (The subtree condition.)

(11) V ^ G ^ 2 ( 0 < lh(<5) ^ \h(ys)&δ = δ~*l&s> 0&E(δ) ^ E(ys t lh(<5)) -+
^ , s = PSp2(7V5S, ^*,s-i»αs-i' lh(5~),J)). (Splitting subtrees are con-
structed in the high priority direction.)

(12) V(Se^2(0 < lh(<5) ̂  lh(yβ)&δ = δ~*0&E(δ) ^ E(ys t
3ί e5ζ(ΓΛtS = PExt2(7V,s, ξ)& Tδ->s(ξ) is terminal on TΛ-.ltS)). (Thus we
leave splitting trees via terminal strings for lower priority trees. The
Computation Lemma will show that if λ * 0 c Γ then some σ <^ A will
have no lh(A)-splittings on Tλ = Ό{Tλy. s ^ r) for some r.)

The construction, proceeds as follows.

Stage 0. α0 = y0 = 0 and Γ0,o - Id 2 f 0 .

+ 1. Let k(s) = min({A(.y + 1), lh(αs)}) and let βs+ x = αs ί k(s). Thus we cut
αs back to as short a string as C will permit. We now proceed by substages {m:
0 ^ m < 2S+1} each of which is carried out in steps {n: 0 ̂  « ̂  s + 1}. At each
substage, we define a tree Γa > s + 1 with lh((3) = s + 1, higher priority trees being
defined first. The steps in each substage lead up to the definition of TδtS+ί, by
defining Γ λ ? s + 1 for λ ̂  δ, with trees for which λ is shorter defined first.

Substage m. Fix δme^2 such that lh(<5m) = s + 1 and £(δm) = 2 s + 1 - m - 1. Let

w = 0. Let Γ 0 5 S + 1 = Id 2, s+i.
i 0 < n ̂  s + 1. Let λm,n e 5^ be given such that Vn(Xmr) = n and λOT>π ^ δm.\ϊ

Tχm π>s + i has already been defined, proceed to the next step. Otherwise, there are
three cases. Let λ = λm,n.

Case 1. λ = λ~~ * 1 and α s + 1 has not yet been defined. Let

{TKs if n < s + 1
Γ * s = [ 0 if /i = j + l

and

7Άf5+i = P S p 2 ( Γ A - f 5 + 1 , Γ * s , α β , l h μ - ) , j + 1).

= A~ * 0 and α s + x has not yet been defined. In this case, we will be able to
fix ξ = ξ(m,n,s)eSf2 such that βs+ί ^ Tλ-tS+ί(ξ) and Γ Λ ? s + 1 ( ξ ) is terminal on

Case 5. a s + 1 has been defined. Let

+ i if η = 0

[| otherwise.

If w = s + 1 and α s + 1 has not yet been defined, search for ηe6f2 such that
βs+i c ^,s+iWI If such an ?/ exists, fix such an η of shortest length with the
lexicographically least η preferred, and let α s +! = TδtS+ί(η) and ys+i = δm. Proceed
to substage m + 1 if m + 1 < 2 s + 1 and to stage s + 2 otherwise.
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This completes the construction. Note that {E(δ): \h(δ) = s + 1} = [0,2S + x) so
for each δe^2 such that \h(δ) = s + 1, there is a substage during which TδtS+ί is
defined. The following lemma will be used to show that αs+ ί and ys+ ί exist, and that
αs + i is compatible with all trees defined at stage s + 1.

2.3 Lemma. Let seN and δeSf2 be given such that lh(<5) < s + 1, and

(i) ys+ιi-E(ys + 1t\h(δ))

Then the following conditions hold:

(ϋ) βs+i is compatible with TδiS+ι (i.e., there is a ξe^2 such that either
β c TδιS+ι(ξ) or Tδ,s+ί(ξ) a β and Tδ>s+1(ξ) is terminal on TδtS+ι).

(iii) Ifδ = Φ, or if δ = δ~ *0 and Iσe^iβs + i <= σ c Tδ-tS + ί),
then 3σeSf2(βs+1 c σ c Γδ, s + 1)

Proof We proceed inductively, following the length and e-state oft). Note that since
Γa>ί = Id2,f for all t, (ii) and (iii) follow easily for δ = 0. Fix 5 and (5 as in the
hypothesis of the lemma, and let t = lh(<S). Let m be the first substage of stage s + 1
such that δ c <$m. By (i), 7 ^ + x is defined through Case 1 or Case 2 at step t, substage
m of stage s + 1 depending, respectively, on whether ^ = ̂ ~ * 1 or(5 = (5~*0.

Assume first that <5 = <5~*1. By Case 1 of the construction, TδtS+1 =
PSp 2(ΓΛ- f S + i, Γ* s,α«lh(δ-), J + 1). Furthermore,&+ 1 = αs t A(j + 1), Γ* s '= Γ,,s

if lh(<5) ̂  s, and Γ* s = 0 if \h(δ) = s+l; hence by Definition 1.2, if ' β s + 1 is
compatible with Γ | s then jS s+1 will be compatible with TδtS+1. This latter fact is
clear if lh(^) = s + 1, and follows inductively from (6) and (7) if lh(^) ^ s since αs is
compatible with TδtS. Hence (ii) follows, (iii) is vacuous in this case.

Assume that δ = δ~ *0. By induction on e-states, βs+ί is compatible with
7V*i,s+i There can be no σ e ^ such that βs+ι c σ cz Tδ-tS+ί, else applying (iii)
repeatedly by induction, we conclude that ys+1 ^λ~ *l and hence that
E(ys + 1\\h(δ))> E(δ). Hence we can fix ξ as in Case 2. Thus TδfS+ι =
VExt2(Tδ-tS+l9ξ) where Γδ-, s + 1(ξ) is terminal on Tδ-*Us+ι and Tδ-tS+ι(ξ) ά βs+i.
By induction on \h(δ),βs+1 is compatible with Tδ-jS + ί and hence with Γ δ s + 1 .
Furthermore, if 3σe^2(βs+i <= σ c Γδ- s + 1 ) , then since β s + 1 3 ^-, s+i(ξ)»
σ ^ TδtS+ί. Hence (iii) follows. D

Lemma 2.3 is used to show that α s + ! and ys+1 are defined during some substage
of stage s + 1. Let 00 = 0 and 0j+! = 0JHt0 for ally e N. Assume that ocs+ι and ys+1

are not defined before substage 2s +1 - 1 of stage s+ 1. It suffices to show that ocs+i

and y s + 1 are then defined at substage m = 2 s + 1 - 1 of stage s + 1. Note that
<5m = 0 s + x and that βs+ x c αs. By the definition of Γ 0 > s + ! = Id 2, s+1, Γ0 > s + x extends
ΓβfS and n o d e Γ 0 S is terminal on Γ 0 > s + i . By (7) and (9), βs+1 cz T0fS+ι so
3σey2(βs+1 en σ a TQiS+1). Since α s + 1 and ys+ι are not defined before substage
2 5 + 1 — 1, Lemma 2.3(iii) can be applied repeatedly by induction to show that
3σe6f2(βs+ι c σ cz TOs + ltS+ί). Fix such a σ and fix ηs^ such that

σ= TOs+uS+1(η). α s + 1 a n d ys+1 a r e n o w def ined d u r i n g s tep 5 + 1 , C a s e 2 of
s u b s t a g e 2 s + 1 - 1.
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The induction hypotheses are now verified. (4) and (5) follow from the
definition of βs+1 and since βs + 1 a α s + 1 .

Fix δe5?2 such that \h(δ) ^ lh(y s + 1) and E{δ) > E(ys+1 \ lh(<5)). Fix v e ^ of
greatest length such that v ̂  δ and v ̂ ys+1. Since E{δ) > E(ys+1 ϊ lh((5)), v * 1 ^ δ
andv*0 ^ ys+i By2.3(ii),thereisaσe^suchthatσ c Γv* l j S and either βs+ί a σ,
or σ is terminal on Tv^ltS and σ c αs. Fix such a σ. By Definition 1.2, any proper
extension σ * o f σ o n Γ v , 1 ) S + 1 extends βs+1. Hence either there is a σ* e ̂  such that
β s+i <= σ* <= Γ v , 1 ) S + 1 , o r σ ^ β s + 1 and σ is terminal on ΓV ! ) ! l j S + 1. There cannot be a
σ*e&?

2 such that β s + 1 c σ* c ΓV ! ( ( l j S + 1; else the repeated use of 2.3(iii) (as in the
proof that ys + i | ) will imply that ys+1 ^ v* 1, a contradiction. Hence σ ^ βs + 1

and σ is terminal on TδtS+1. Since βs+ x c= α s + 1 5 (6) now follows for s + 1 in place
of s.

(8) and (9) follow easily for s + 1 in place of s.
(10) is immediate for s + 1 in place of s whenever E(δ) ^ E(ys+1 Γ \h(δ)) since

Case 1 or Case 2 is then used to define Tδ,s+ί. Suppose that E(δ) < E(ys + 1 ΐ lh(<5)).
Fix vG£f2 of greatest length such that v ̂  (S and v c y s + 1 . Since E(δ) <
E(ys+1 I lh((5)), v * 0 c ί a n d v * l g y s + 1, Since v c ys+u E(v) = E(ys+1 \ lh(v)), so
by (10), α s + 1 c Γ7s + 1,s + 1 c Γ v s + 1 . Since v*0<=<$ and v * l g ? s + 1 , £'(v*0)<
E(ys + 1 ίlh(v*0)) so by Case 3 of the construction, TδtS + ί(η)l<>η = 0 and
Tδ,s+1(Φ) = α s + 1 so either TδtS+ί = Tδ-,S+Iovδ~ = vandΓ δ , s + 1 c Γ δ - S + 1 . Hence
(10) follows for s + 1 in place of s.

We now verify (7). Fix δe^2 such that lh(<5) < lh(y s + 1) and
E(δ)^E(ys+ί\\h(δ)). If E(δ) = E(ys+ίtlh(δ)), then since α s + 1 c Γ y. + l f β + 1 ,

αs+1 <= Γ δ ? s + ! by (10). And if E(δ) < E(ys+1 \ lh(<5)), then Case 3 is used to define
TδίS+ί. Hence (7) follows for s + 1 in place of s.

(11) follows immediately from Definition 1.2 and Case 1 of the construction.
And (12) follows immediately from Definition 1.2 and Case 2 of the construction
and the proof of Lemma 2.3. Hence all the induction hypotheses are valid at the end
of stage s + 1.

LetΓ = limsupsys, i.e.,Γ ί x + 1 = y if for infinitely many s e N, ys ί x + 1 = y
and for all δ e 5^ such that \h(δ) = x + 1 and E(δ) > E(y), there is an s e N such that
for all / ̂  s, yt Γ x + 1 φ δ. By induction, Γ must exist, since once Γ t x = y is
defined, there are infinitely many seNsuch that ys ί x = γ, and by (8), for each such
s > lh(y), either 7 * 0 ̂  ys or y * 1 c ys. Hence Γ ί x + 1 must also be defined. By
(5), limslh(αs) = 00, so by (4), lim sα s = A c TV must exist. Furthermore, by (4) and
the Permitting Lemma, A ^ τ C.

The next lemma is used to show that A is a set of minimal degree.

2.4 Lemma. Let δe^2be given such that E(δ) ^ E(Γ Γ lh(<5)). 77jeft //zere w « stage s
such that for all t > s, TδΛ + 1 extends TδΛ. Furthermore, if lh((5) > 0, then if
δ = δ " * 1, limf Γίff = PSp2(limί Tδ-tt,lh(δ-j,s, {αf: /ETV}) andifδ = δ~*0, then
lim, Γδ>ί = PExt2(limί TV,, ξ)/or ^ m e (̂ G5ζ 5wc/z that lim, Γδ?ί((^) w terminal on

Proof We proceed by induction on lh(<5). If lh((5) = 0, then (5 = 0 and the lemma
follows from (9). Assume that the lemma holds for all δ such that lh(^) < n where
n > 0. Fix δ G^2 such that lh(<5) = n and E(δ) ^ E(Γ t \h(δ)). By the definition
of Γ, there is a least seN such that for all t ^ s, lh(yf) ^ lh(5) and
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E(yt r lh(<5)) ̂  E(Γ t lh(<5)). If δ = δ~ * 1, then TδJ is defined by Case 1 for all t > s,
so Tδt + ι extends Tδt for all t > s, and by (11), induction, and Definition 1.3,
l i m ί Γ ^ - P S p 2 ( l i m ί h , ί , lh(5"), J, {α,: teN}). And if δ = δ~ *0, then TδΛ is
defined by Case 2 for all t > s. By (12), for each such t, there is a σ(0 = Γό-fί(ξ(0)
such that TδJ = PExt2(Tδ-jt,ξ(ή) and σ(0 is terminal on Tδ-*u. Since
£(<Γ * 1) > E(δ~ *0) ^ £(yt ί lh(<5)), it follows from (6) that σ(r) = σ(0 for all
r,t > s. The lemma now follows by induction. 0

By Lemma 2.4, for all δ e Sf2 such that E(δ) ^ £(Γ t lh(<5)), Γ* = lim, Tδtt exists,
and there is an s(δ)eN such that 7^ = U{Tδy. t^ s(δ)}. By (7), if δ c Γ, then

Fix eeiVand ^ e 5 ^ such that lh((5) = e + 1. If δ = δ~ * 1, then by Lemma 2.4,
Γδ = PSp2(7V,e, /, {αs: ^GTV}) for some teN, so Γd is an e-splitting tree. By the
Computation Lemma, if Φf is total, then A =τΦf. If δ = δ~ *0 and Φ^ is total,
then by Lemma 2.4, Tδ = PExt2(Tδ-, ξ) for some ξ e «9| such that 7^ - (ξ) is terminal
on 7V*! = PSp2(7T

(3-,e, ί, {αs:5e7V}) for some teN. So by the Computation
Lemma, Φf is recursive.

We complete the proof of the theorem by showing that A is not recursive.

2.5 Posner's Lemma. A is not recursive.

Proof. We obtain a contradiction under the assumption that A is recursive. Given
B c TV, we define a function 0β partial recursive in B uniformly in B as follows:

B {B(x) if 3σaB(σφA&\h(σ)> x)
Θ (x) = \

l\ otherwise.

Since A is recursive, there is an e e N such that for all B c N,θB = ΦB

e. Fix such an e.
Fix (5e^2 such that δ c / and lh(δ) = β + 1.

Assume first that <5 = δ~ * 1. Then by Lemma 2.4, (Tδ(0\ Tδ(\)} ^-splits Tδ(0)
and ^ =) 7X0) or A ZD Γ,(l). Hence for some xeTV, ^e

T<5(0)(x)l and Φjό ( 1 )(x)l, so
Φ^(x)l. But Φ*(x) = θA(x) and θA(x)T for all xeN,<i contradiction.

Assume that δ = δ~ *0. By Lemma 2.4 and the proof of the Computation
Lemma, there is a σ c A for which σ c Tδ~ and there are no ^-splittings ofσonTδ-.
L e t σ = ^ - ( O Then Tδ-(ξ* 0 ) | and ^ - ( ξ * 1)| since σ^A cz Γ^-. Fix the 7 < 1
such that Tδ-(ξ *j) c ^ . Then Tδ-(ξ *7*0) | and ^ - ( ξ *y * 1)|. Fix ^eTVsuch that
Tδ-(ξ*j*k) φ A, and fix the least x < lh(Tδ-(ξ*0)) such that Tδ-(ξ*0)(x)l Φ
Tδ-(ξ*\)(x)l. By the definition of 0β, (Tδ-(ξ*j*k), Tδ-(ξ*(l -j))} e-splits
7^(ξ) on x, a contradiction. D

This completes the proof of the theorem. 0

2.6 Remarks. Theorem 2.2 was proved by Yates [1970a]. A different proof can be
found in Epstein [1975]. Posner's Lemma appears in Epstein and Posner [1978],

2.7 Exercise. Use Theorem III.7.4 and Theorem 2.2 to show that there is a minimal
degree




