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Chapter IX

Minimal Degrees and High/Low Hierarchies

The material presented in Part B dealt with constructions of initial segments of Q)
which were controlled by an oracle of degree 0 ( 2 ). We now introduce more powerful
techniques which permit constructions of initial segments of 2 which are controlled
by an oracle of degree 0'. The forcing approach is dropped, and partial trees are
used in order to carry out constructions more effectively.

The main results of this chapter are the construction of a minimal degree below
0' and the construction of a minimal degree below an arbitrary degree deGH!. A
stronger version of the latter theorem is used to show that the minimal degrees
below 0' form an automorphism base for ί^[0,0'].

I. Partial Recursive Trees

The constructions of this chapter will use partial trees in place of total trees. Most
definitions dealing with these new trees remain unchanged from their counterparts
for total trees. We will not repeat definitions unless there are changes to be made.

1.1 Definition. A partial f-Jree Γis a partial function Γ: 5^ -• <9/ which satisfies the
following conditions:

(i) Vσ, τ e S^f(σ c τ & Γ(τ)| -> Γ(σ)| & T{σ) c Γ(τ)).

(ii) Vσ, τ e Sff{σ | τ & T(σ)[ & Γ(τ)| -+ T(σ) | Γ(τ)).

(iii) Vσe^Vi </(lh(σ))(Γ(σ* 01 - Y/ </(lh(σ))(Γ(σ*7)l)).

Thus T is defined on an initial segment of £fs under the c ordering, and is defined
on all possible extensions of σ of length 1 + lh(σ) or no such extensions. If the
function T is partial recursive, then T is called a partial recursive f-tree.

Henceforth, the word tree will be used to denote a partial/-tree. We wish to
distinguish those σ e ίfs for which σ c T but σ has no extensions on T.

1.2 Definition. Let Γbe a tree, and let σ e Sfs be given. Then σ is terminal on T'ύσ c T
but for all τ cz &>f9 if τ ID σ then τ φ T.
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Every total/-tree is a partial/-tree. Hence all trees used in Part B of this book can
still be used. In particular lάf will be used, and we note again that it is a recursive
tree.

The next three types of trees will be built as subtrees Γ* of a given tree T. All the
subtrees will have the following properties in common.

(1) If T is partial recursive, then Γ* is partial recursive.

(2) An oracle of degree 0' can determine whether or not Γ* exists uniformly
from an index for T as a partial recursive function, and if Γ* exists, this
oracle can find an index for Γ* as a partial recursive function.

1.3 Definition. Let Γbe a tree and let σ e Sfs be given such that T(σ)[. Define the tree
PExt^Γ,σ), the subtree of Textending T(σ) by:

|Γ(σ*τ) if Γ(σ*τ)l
PExt r(7»(τ) = ,

f J lϊ otherwise.

1.4 Remark. PExtf(T,σ) is defined if and only if Γ(σ)|, a fact which can be
determined by an oracle of degree 0' uniformly from an index for T as a partial
recursive function. Hence (1) and (2) hold. Furthermore, if PExtj(7", σ) exists, then

ίΞ T.

The construction of a minimal degree is equivalent to embedding the lattice with
two elements u0 < ux as an initial segment of 2<. To this end, we define <e, 1,0>-
differentiating trees to insure that the degree corresponding to uγ is not recursive.

1.5 Definition. Let T be a tree, and let eeN be given. Define the tree Γ* by

Γ * = ί P E x t / ( Γ > °) i f 3 * < lh(Γ(0))(Γ(0)(x)j Φ Φe(x)[)

\pExtf(T, 1) otherwise.

1.6 Remark. Let Γ* be the subtree of Γspecified in Definition 1.5. Then Γ* satisfies
(1) and (2) and Γ* c T. Furthermore, Γ* is <e, 1, (^-differentiating.

1.7 Definition. Let PDifϊf(T,e) be the subtree Γ* of Tconstructed in Definition
1.5.

The last type of tree which we consider is an ^-splitting subtree. The property of
being ^-splitting, in isolation, is not sufficient. Rather, ^-splitting subtrees must be
maximal with respect to this property within the given trees.

1.8 Definition. Let Γand Γ* be binary trees such that Γ* c T, and fix eeN.Ψe say
that Γ* is an e-splitting subtree of Γif for all σ,ηe^2 such that Γ*(σ)| = T(η), either
T(η) is not terminal on Γ* and <Γ*(σ*0), Γ*(σ* 1)> is an e-splitting, or T(η) is
terminal on Γ* and there are no ^-splittings on PExt2(T, η).

With the above definition of e-splitting subtree, the proof of the Computation
Lemma (V.2.6) is easily modified to yield the following:

1.9 Computation Lemma. Let T be a tree and let eeN be given. Let Γ* be an e-
splitting subtree ofT. Then for all branches g ofT*9 ifΦ9

e is total then g ^ τ Φ9

e. {Note
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that for every σe^2

 s u c n that Γ*(σ) c g, there is an e-splitting ofT*(σ) on Γ*.) And
for allσe^2 andg c Tsuch that T*(σ) a g and T*(σ) is terminal on T*, ifΦg

e is total,
then Φ9

e is recursive.

We now construct e-splitting subtrees.

1.10 Lemma. Let The a binary tree andleteeNbe given. Then there is an e-splitting
subtree Γ* of T which satisfies (1) and (2).

Proof. We proceed by induction on lh(σ) for α e ^ We begin by setting
Γ*(0) = 7χ0). Assume that T*(σ) has already been defined. Search for the least
(σo,σl9xyeSfl x N (under some fixed recursive one-one correspondence of
Sf\ x TV with TV) such that <Γ(σ0), 71[σi)> is an e-splitting of Γ*(σ) on x. Fovj < 1,
define

σ>) ί f <σo,σ1?x> exists

(j otherwise.

We note that Γ* has the desired properties. D

1.11 Definition. Let Γbe a binary tree and let e e TV be given. Define PSp2(Γ, e) to be
the e-splitting subtree Γ* of Γ constructed in Lemma 1.10.

The trees introduced in this section are put to use in the next section to construct
a minimal degree below 0'.

1.12 Remark. Partial recursive trees were first used by Sacks [1961] to construct a
minimal degree below 0'.

1.13-1.14 Exercises

1.13 Let T be a tree and let eeN be given. Show that there is a subtree
T* = PTotjCΓ, e) of Twhich satisfies (1) and (2) and: (i) For every branch g of T*,
Φ9

e is total, (ii) For every σe^ such that T(σ) is terminal on Γ*, there is an xe N
such that for all τ e ^ which extend σ, if T{τ)[ then ΦT

β

(τ)(x)\.

1.14 Let Γbe a tree and let ee Nand B c Nbe given. Show that there is a subtree
Γ* of T which satisfies (1) and (2) and: (i) For all τ e $ff, if τ is terminal on Γ* then
there is no g a Γsuch that τ c g. (ii) For every branch gofT*, if Φ9

e®
B is total, then

for some xeN, ΦfB(x) Φ g\x). (gf is {n: ΦJ(/i)|}.)

2. Minimal Degrees Below 0'

We continue with local existence theorems for minimal degrees by showing that
there is a minimal degree a < 0'. We then show that if c < 0', then we can construct
such a minimal degree a with a^tc .

We will construct a minimal degree < 0' through the use of a priority argument.
Priorities are needed to compensate for the fact that we are allowed to ask questions
only of an oracle of degree 0', as opposed to the oracle of degree 0 ( 2 ) which was
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available to us in the proof of Theorem V.2.11. The non-availability of an oracle of
degree 0 ( 2 ) will prevent us from determining whether a given tree Γhas a total e-
splitting subtree. Thus we will first try to build our set A of minimal degree on an e-
splitting subtree Γ* of Γ, but if we reach some σ ^ A such that σ is terminal on Γ*
(and so find that we cannot build A on Γ*), then we will leave Γ* and build A on a
subtree T* of T, all of whose branches extend σ. In the latter case, there will be no e-
splittings o n Γ # , s o Φ ^ will be recursive. Priorities are used to keep track of whether
we are trying to build A on Γ* or on Γ # , with Γ* having higher priority than T*.

The change of trees mentioned above must be carried out without interfering
with the construction of A recursively in 0'. Thus we construct A = U{αs: seN},
where {αs: seN} is a sequence of strings which is defined during the construction
through the use of an oracle of degree 0'. Any new tree T which is specified during
stage t > s of the construction will have the property that αs is on T; in fact, it will be
the case that αs c Γ(0). Thus A will be on all trees in the final sequence which is to be
used to satisfy all requirements.

2.1 Theorem. There is α minimal degree a < 0'.

Proof. By Theorem III.3.3, 0' is not a minimal degree, so it suffices to construct
a ^ 0'. We will construct a set A of degree a which satisfies the following
requirements:

Pe\ A φΦe.

Qe: If Φ^ is total, then either Φf is recursive or A ^ τ Φf.

We will use an oracle of degree 0' to construct a sequence of strings {αs: s e N}, a
function k: N-• N, and an array {T*: seN&i ^ k(s)} by induction on {s: seN}.
The function k will be used to specify the last tree being used at stage s to satisfy a
requirement. This tree, Ts

k(s) will also be the first tree to change from the sequence of
trees used at stage s — 1. The following induction hypotheses will be satisfied at the
end of stage s.

(1)

(2)

(3)

(4)

(5)

s ^

We

v/<
s >

' λ k(s)

N(Γ0 = Id 2).

: Λ ( i X Γ | + 1 c

1 -> V/ < k(s)

A = U{αs: s e N } will be the set of minimal degree.
The construction proceeds as follows:

Stage 0. Set k(0) = 0, T°o = Id2, and α0 = 0.

Stage s + 1. Let r(s + 1) be the greatest r ^ k(s) such that αs is not terminal on Ts

r.
(By (3), Ts

0 = Id2, so r(s + 1) must exist.) Define k(s + 1) = r(s + 1) + 1, and

Ts+i = Ts f o Γ a l l i</c(s+ i). By (2) and (4), we can fix ηse^2 such that
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7Vi)fas) = a- L e t K1=ipExt2(T%lί)9ηs) and let Γ s

+

+ 1=PDiff 2(Γ;+ 1,φ+1)).
Set α s +i = Γs

+

+1(0) and define

fzv1 if φ + υ<
kis+1) lPSp 2(7V \ r(s + 1)) if r(s + 1) =

It is easily verified by choice of r(s + 1) that Γ ^ + 1 } is well-defined.

This completes the construction. We leave it to the reader to verify the induction
hypotheses.

By (1), A is a subset oΐN. Furthermore, since the question "is β terminal on TV
can be answered by an oracle of degree 0' uniformly in β and an index for the partial
recursive tree T, it follows from Remarks 1.4 and 1.6 and Lemma 1.10 that A has
degree < 0'. The following lemma is the heart of the proof of the theorem.

2.2 Lemma. Let e,seN be given such that k(s) = e and k(t) > e for all t > s. Then

(i) W > s(oit c Ts

e).

Furthermore, k(s + 1) = e + 1, and there is a βe^2 such that

(ii) Γe

+I(β) = as + U T=J>Ext2(Γe

+\β), and Γe\\ = P S p 2 ( 7 » .

If there is a u> s + 1 such that k(u) = e + 1, then

(iii) α u _! is terminal on Ts

e\\

and

(iv) W > u(k(t) > e + 1).

Proof. (It will follow from this lemma that \ims k(s) = oo.) Fix e and s as in the
hypothesis of the lemma. Since k(s) = e and k(t) > e for all t > s, (2), (4) and (5)
combine to show that α, is on T\ = Ts

e for all t ^ s, so (i) holds. By choice of 5,
^ + 1) > k(s) = e. But k(t + 1) < *:(/) + 1 for all /eTV. Hence A(j + 1) = e + 1.
Since k(s + 1) > £(», r(^ + 1) = k(s) so (ii) follows from the definition of Ts

e

+

+\.
Suppose that for some u > s + 1, k(u) = e + 1. Fix the least such u. By choice of s
and w, k(t) > e + 1 for all / e TV such that s + 1 < / < u, so by the construction, α u _!
must be terminal on Tu

e~\ = Ts

e\\. Hence (iii) holds. Furthermore, by the
definition of Tu

e+1 (note that r(u) < k(u - 1)), Tu

e + 1 = PExt2(Tu

e,β) where
Tu

e(β) = αM. It thus follows from (1) and (5) that for all t^u,at is terminal on T\ if
and only if α, is terminal on T\+ v By choice of s, r(t) ^ e for all / > s, so for such /,
k(t) = r(t) + 1 > e + 1. Thus (iv) holds. D

We now claim that

(6) VeeN3seN\/t^ s(k(t) > k(s) = e).

The claim is proved by induction on e and is clearly true for e = 0. Assume that (6)
holds for e = n. Since k(t + 1) ̂  &(/) + 1 for all / e N, there must be a greatest stage
s such that /φ) = n - 1. Applying Lemma 2.2 for « - 1 in place of e, we see that
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there is a stage u > s such that k(μ) = n and k(t) > n for all t > u\ hence
k{ϊ) ^ n + 1 for all t > u and k(u + 1) = n + 1, completing the induction.

We next verify that A is not recursive by showing that A satisfies Pe for all eeN.
Fix eeN. By (6), we can fix a stage s so that &(V) = e + 1 and for all t > s,
k(t) > e + 1. By the construction, αs c !Γ* + 1 <= PDiff2(Γ*,β) for some β e ^ . By
(5) and the choice of s,T*e+1 = Ts

e+1 for all t ^ s, hence 4̂ is a branch of
PDiff2(Γ^,j5). By Remark 1.6, v4 ̂  Φe.

We now complete the proof of the theorem by showing that Qe is satisfied for all
e e N. Fix e e N and suppose that Φ* is total. By (6), fix the stage s such that k(s) = e
and for all t > s, k{t) > e. By Lemma 2.2, k(s + 1) = e + 1. Furthermore, by
Lemma 2.2(ii), Γe

+

+\ = P S p 2 ( 7 » where T= P E x t 2 ( r / \ jS) and Γ*+1(j8) = α s + 1 .
If there is no u > s + 1 such that k{u) = e + 1, then by (5) and the choice of s, A is on
Ts

e\\, so by the Computation Lemma, A ^ τ Φf. If such a u exists, then it is unique
by Lemma 2.2(iv). By Lemma 2.2(iii), αu_χ must then be terminal on
Ts

e\\ = PSp2(Γ,e). Since α s + 1 Ώ Ts

e

+ί(β\ A c T. Hence again by the Computa-
tion Lemma, we see that Φf is recursive. D

Sacks' [1961] original construction of a minimal degree below 0' did not make
use of a 0' oracle. Rather, Sacks recursively approximated to A as a function lying
on each tree in a path through a tree of trees. We outline Sacks' proof in Exercise
2.7.

The proof of Theorem 2.1 can be modified so that if a set C of degree < 0' is
given, then the set A of minimal degree which is constructed also satisfies A ήtτC.
To accomplish this, we must satisfy the requirements {Re: eeN} where

Re- ΦC

eΦΛ.

We cannot hope to satisfy Re by fixing a witness x beforehand and forcing
Φc

e(x) Φ A(x). For if Φc

e(x)|, it may take a long time to discover this fact, and by the
time we discover that Φc

e{x)[, we may already have been forced to define A{x) in
order to insure that the degree of A is *ζ 0'. Instead, we fix a set D of degree 0', and
whenever Φc

e and A agree on a large enough interval [0, /], we try to code D into A
by setting Γ(σ*y) c A where D(ϊ) =j9 T is a tree fixed for e, and σ is chosen
recursively in C. For this strategy to succeed, the sequence {αs: seN} must be
defined so that the function h: N —• N defined by h(s) = lh(αs) is recursive in C. (We
will, in fact, let h be the identity function.) Thus we will be using the slowdown
procedure introduced in III.5.6, and we will appoint targets {βs: seN} such that αs

must be extended in the direction of /?s. We will then be able to argue that if Φc

e = A,
then D ̂ TC® A =TC, contradicting the choice of C.

2.3 Theorem. Let c e D f c given such that c < 0'. Then there is a minimal degree a < 0'
such that a ̂  c.

Proof. We indicate how to modify the proof of Theorem 2.1. Fix sets C and D of
degree c and 0' respectively. Let S = {{e, i}eN2: Φc

e{j)[ for ally ^ /}. Since S is
recursively enumerable in C, we can fix a one-one function/which is recursive in C
and enumerates S. Without loss of generality, we may assume that / has the
following property:

(7) Vs,t9e,i,j
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We will use an oracle of degree 0' to construct sequences of strings {αs: seN}
and {βs:seN} (the latter being the targets for the former), a function k:N^> N, and
an array of trees {Γ*: seN& i ̂  k(s)} by induction on {s: seN}. We will still have
(1), (3), (4) and (5) as induction hypotheses, together with:

(8) lh(αs) = s.

(9) α s c= βs cz Γkisy

A = U{αs: seN} will be the set of minimal degree.
The use of targets will introduce more cases into the construction. The choice of

k(s) will be determined as follows: We say that k requires attention at stage s + 1 if
there are ieN and j ^ 1 such that one of the following conditions holds:

(10) αs is terminal on T\.

(11) k < k{s)J{s) = (k- l,/>, D(i) =j9 Φc

k_ι f i + 1 = αs \ i + 1, and there

is a τe&2 such that lh(τ) = s and αs c Ts

k(τ *y). (In this case, we want to
define a new target in order to satisfy Rk-ι.)

(12) k = k(s), f(s) = <fc - 1, />, /)(/) =7, Φc

k_ί t / + 1 = αs t / + 1, and there
is a τe£f2 such that lh(τ) = s and β s c Ts

k(τ*y). (In this case, we already
have a target for the partial satisfaction of Rk-15 and we must continue
with our attempt to code D into ^ in order to satisfy Λfc-1 W e therefore
must extend the old target to a longer one.)

(13) k = k(s) and αs Φ βs. (In this case, we still have a target which has not yet
been reached, and we want to continue to head towards that target.)

(14) k = k(s) + 1. (In this case, we want to begin to tackle a new requirement.)

The construction proceeds as follows:

Stage 0. Set A (O) = 0, T°o = Id2, and α0 = β0 = 0

Stage s + 1. Fix the least k which requires attention at stage s + 1. (By (14), such a k
will exist.) Set k(s + 1) = k and T)+ι = T) for all j < k(s + 1). Adopt the
appropriate case below, according to the first of (10)—(14) which is true for k.

Case 7. (10) or (14) holds: By (3), Γs

0 = Id2, so k(s + 1) > 0. By (4) and (9), we can
fix ηse^2 such that T^^η,) ^ αs. Let Γ; + 1 = PExt2(Ts

k

+_\,ηs*0). Let α s + ί be the
string of length s such that α s + 1 c 7^+1(0), and let βs+ί = Γs^+1(0). Define

r s + 1 ( T V 1 if (10) holds
k [PSp 2(Γ;+ \ k - 1) if (10) does not hold (so (14) holds).

It is easily verified by choice of k = k(s + 1) that Ts

k

+ί is well-defined.

Case 2. (11) or (12) holds: Set Ts

k

+1 = Ts

k. Fix ieN, y < 1 and τ e ^ as in (11) or
(12). Let βs+1 = Ts

k(τ*j) and α s + 1 = βs+1 \ s + 1. By (8), α s + 1 is well-defined.
(Note that if (11) holds, then k < k(s) and βs + 1 may be incomparable with βs. And if
(12) holds, then βs+1 c βs and k = k{s).)
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Case 3. (13) holds: Set Γk

+1 = Γk and βs+1 = βs. Let αs + 1 = βs+ί t s + 1. By (8),
α s + 1 is well-defined.

This completes the construction. We leave it to the reader to verify the induction
hypotheses. In addition, we note the following fact:

(15) If Case 2 or Case 3 is followed at stage s + 1, then
1 } = Tk{s+ιy

By (1), A is a subset of TV. Furthermore, since/and D have degree ^ 0' and since
the question "is β terminal on 7 T ' can be answered by an oracle of degree 0'
uniformly in β and an index for T as a partial recursive tree, it follows from Remark
1.4 and Lemma 1.10 that A has degree ^ 0'. The following lemma replaces Lemma
2.2.

2.4 Lemma. Let e,seN be given such that k(s) = e and k(t) > e for all t > s. Then

(i) Vί > s(βt c Γe).

Furthermore, k(s + 1) = e + 1 and there is a ye^2 such that

(ii) Γe

+\γ) = βs+1, T=PExt2(Γe

+\y), and Γe

+

+\ = P S p 2 ( 7 » .

If there isau > s + 1 such that k(u) = e + 1, ί/z^ there is at most one such u at which
Case 1 is followed, and for this u,

(iii) αu_i is terminal on Ts

e\\.

We leave the proof of this lemma to the reader, since it is substantially the same
as the proof of Lemma 2.2. (9) must be used in place of (2), (15) must sometimes be
used together with (5), and r{s + 1) = k(s + 1) — 1 must be defined.

Claim (6) in the proof of Theorem 2.1 is replaced with the following lemma.

2.5 Lemma. VeeN3seN\/t ^ s(k(t) ^ k(s) > e). Furthermore, if e > 0, then

Proof The lemma is proved by induction on e and is clearly true for e = 0. Assume
that the lemma holds for e = n — 1. Since k(t + 1) ̂  k(ή + 1 for all t e N, it follows
by induction that there must be a greatest stage s such that k(s) = n — 1. Applying
Lemma 2.4 for n — 1 in place of e, we see that there is a stage u > s such that
k(u) = n and for all t > u, Ίϊk(t) = n then Case 2 or Case 3 is followed at stage t. Fix
such a stage u.

Assume that U = {t ^ u: k(t) = n) is infinite, for the sake of obtaining a
contradiction. By (5) and (15), we note that T\ = T" for all t ^ u. If the complement
of U is infinite, then there are infinitely many t > u such that t e U and t + iφU. For
such t, k(t) > n and so, by (11), we must follow Case 2 at stage t + 1. And if U is
cofinite, then there is a stage w such that for all t ^ w, ί e U. Case 3 can only be
followed at finitely many successive stages of U (since βt + ι = βt if Case 3 is followed
at stage t + 1). Hence in either case, since £/ is infinite, Case 2 must be followed at
infinitely many stages t e U. Hence Φc

n_ x = A. If te t/andα, Φ βt, then by (12), there
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will be a least stage t* > t such that α,* = βt and for all v such that t ^ υ ̂  t*, i? e U
and Case 2 or Case 3 is followed at stage v. Thus for every teU,βt a A. We obtain
the desired contradiction by showing how to compute D{x) for all sufficiently large
x recursively from an A © C oracle: Since Λ © C = Γ C, we conclude that 0' < c. To
compute D(x), find a stage t such that/(ί) = <« — l,x>. Such a stage must exist
since Φ^_x =^4. (We neglect the finite number of integers x for which the
corresponding t is < u.) Note that t is obtained from x through the use of a C oracle.
We now search for τ e5^ such that lh(τ) = t and T"(τ *j) ^ A for somey e {0,1}. By
(9) and the choice of w, such a τ must exist. Then Γ"(τ *7) = j8f cz A so x e Z) <-»7 = 1.
Note that τ and 7 are found through the use of an A oracle, so D ^TAQ> C =rC,
yielding the desired contradiction.

We conclude that {t\k(t) = n) is finite. Hence the set of stages t at which (11) or
(12) holds for ί — 1 in place of s and n in place of k is finite. There are three
possibilities. Either {ieN: 3veN(f(v) = <w, /»} is finite, in which case Φc

n_ γ is not
total; or Φc

n_1 is total and {ieN: Φ^_ : \i+l=A\i+\}is finite, in which case
there is an xe N such that Φ^_ x(x)| Φ A(x)\ or there is an me TV such that for all
i ^ m and veN, iff(υ) = <w, /> and D(i) =j and Φc

n_ ί \ i + 1 = <xv I i + 1, then
there is no τeSf2 such that lh(τ) = v and av a Ts

n(τ *y). This last case is impossible,
since by (8), lh(αΓ) = v and ocv a A a Ts

n, so such τ and 7 must exist. We therefore
conclude that Φ<^_ί φ A. 0

It follows from Lemma 2.5 that A ^ τ C, so A is not recursive. The fact that yl
has minimal degree follows substantially as in the proof of Theorem 2.1. We leave
the details to the reader. 0

The constructions given in this section can be modified to prove similar results
below degrees in Hι. We discuss such generalizations in the next section.

2.6 Remarks. Theorem 2.1 was proved by Sacks [1961] using a recursive
approximation construction instead of the 0' oracle construction which we gave.
The 0' oracle construction is much simpler, and was introduced by Shoenfield
[1966] where Theorem 2.3 was first proved. Our proof follows along the lines of
Shoenfield [1971].

2.7-2.11 Exercises

2.7 Show that there is a minimal degree a < 0' such that a^GL^

2.8 Give a proof of Theorem 2.1 which does not make use of an oracle of degree 0'
in the construction. (Hint: Note that each tree Γused in the proof of Theorem 2.1
can be expressed as the union of a recursive sequence of finite trees {7"s: seN} and
that this recursive sequence can be defined in a uniform way from an index for the
tree. Construct A = lims αs and note that by the Limit Lemma, the degree of A is
^ 0'. We index trees by elements of «Sζ, To = Id2, Γ σ , 0 = PSp2(Γσ, lh(σ)), and
whenever ocs=Tσ(ηs) is terminal on Ts

σ

+J but not on Ts

σ

+1, we define
Tσtί = PExt2(Tσ,ηs). Priorities of trees are determined by the lexicographical
ordering of the strings indexing the trees. At stage s + 1, we choose a path through
this tree of trees by following the highest priority path which allows us to make
progress towards the satisfaction of the requirements, in order. Thus we choose to
follow Γσs|t i instead of TσJe0 only if we are forced to do so by having chosen a string
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which is terminal on Ts

σ*Q. We later modify the path when some α, previously
chosen which looked terminal on Tx

a is no longer terminal on Ts

σ

+1. α s + 1 is chosen
along this path. We now either use Posner's Lemma to satisfy Pe, or weave trees to
satisfy these requirements into the construction. Posner's Lemma is discussed in the
next exercise.)

2.9 (Posner's Lemma). Show that if we just satisfy the requirements {Qe: e e N}9

then {Pe: eeN} will also be satisfied. (See the hint to Exercise V.2.15.)

2.10 Let D be a set of degree 0', and let / be a function of degree ^ 0' such that for
all n e N, ΦD

f{n) is total and has degree cn. Show that {cn :neN} has a minimal upper
bound ^ 0'.

2.11 (Shore). Give an oracle proof of Theorem 2.3 which does not employ the
slowdown technique. (Hint: Use partial narrow trees in the following way to satisfy
Re. We assume that To is the final tree in the sequence used to satisfy all
requirements of higher priority than Re. We begin by letting Γ° = Nar(Γ) and
Γ° = Nar(Γ°), and building A on Γ° until (and if) at stage s0, <e,0> appears in
rng(/) and Φc

e Γ 1 = αSo _ i ί 1. When this happens, we say that Re requires attention
at stage s0, and we define αSo c 7\ where 7\ = To - T°o if OeZ) and Tγ = T°o - Γ°
ifOφD. We continue this process with <e, 1 > etc. Show that Re requires attention at
only finitely many stages, else D ^TA®C =TC. Thus all requirements can be
satisfied.)

3. Minimal Degrees Below Degrees in GHj

Let ^ be a class determined by the generalized high/low hierarchy. We place ^eJi
if every degree in ^ bounds a minimal degree. We consider the question "is ^ e ̂ # ? "
for various classes (€. If ^ lies near the bottom of the hierarchy, then ^φJί. For
example, if Ή = GL 2 — {0}, then by Theorem VIII. 1.9, there is a degree ce^ 7 such
that ^ [0 , c] ^ Q (the ordering of the rational numbers in the interval [0,1]), so c
cannot bound a minimal degree. By Exercise VIII. 1.13, GL2 — GLιφJί. By
IV.2.10(vi) and (ix), GLj - {0}, GL 3 - GL 2 φjf. (The techniques introduced in
Chaps. XI and XII will also show that 1^ - {0}φJί.) The main result of this
section is a positive result, namely, G H ^ J . An extension of this result along the
lines of Theorem 2.3 can be used to show that the minimal degrees < 0' form an
automorphism base for ^[0,0 ' ] .

The proofs of this section will combine the use of the Recursion Theorem with
the proofs of Sect. 2. Suppose that b e GH! is given, and fix a set B of degree b. We
will construct A = U{αs: seS} for some set Se{JV}U{[0,w]: neN}, using Φf to
define A. Thus A will be obtained as ΦB

g(i) for some recursive function g. By the
Recursion Theorem, we will be able to assume that for some ieN, Φf = ΦB

m, and
the minimal degree will be constructed using ΦB for such an /.

It will be necessary for us to specify trees through particular recursive
approximations to the trees. Fix a recursive enumeration {Zk: keN} of all partial
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recursive binary trees. Thus for each k e TV, Zk is a partial recursive binary tree, the
relation Zk{ξ) = σ is a partial recursive relation on N x Sf \, and for every partial
recursive tree Γ, T= Zk for some k e N. Furthermore, we assume that any
algorithm for computing a partial recursive tree can be recursively identified with a
tree Zk which it computes.

The non-availability of an oracle of degree 0' prevents us from determining,
given ( j e ^ and a partial recursive tree T*, whether σ is terminal on T*. This
question arises when we are building an ^-splitting subtree Γ* of T, and are trying to
determine whether we can continue to build the set A of minimal degree on T*. We
thus replace this question with one which asks whether we will ever find a σ c ^
such that σ a T and there are no e-splittings of σ on T. This question can be
answered by an oracle of degree (b u 0')' = b' since b e GH 1 ? so we can approximate
to this answer recursively in B. This recursive approximation is given by what we
call a predictorfunction and determines whether or not we will try to extend σ on T*.
If the predictor function later changes its mind, then we may have to begin a new
attempt to build an e-splitting subtree of T. But since such changes of mind can
occur only finitely often, we will eventually determine a tree which can be used to
satisfy Qe.

3.1 Definition. Given a partial recursive function A, define A* = {<e, k}:
3ξ, σε^iσ a h&Zk(ξ) = σ& there is no e-splitting of σ on Zk)}.

3.2 Remark. h^eΣ^hQφ') uniformly in A. Hence if A = ΦB and B ε G H l 9 then
h * ^ ( b u 0')' = b'. As B is fixed, an index for A* as a set recursive in B' can be found
as a recursive function of e. By the Limit Lemma, there is a function A + : N3 -> {0,1}
which is recursive in B such that for all e.keN, h*(e,k) = limsh*(e,k,s), and an
index for A + = ΦB

g(e) can be found uniformly from e.

We use Remark 3.2 to prove the following theorem.

3.3 Theorem. Let b e GH! be given. Then there is a minimal degree a such that a ^ b.

Proof. Fix b E GH! and let B e b be given. Fix e e N and let A = ΦB

e. Let A* and A + be
as in Definition 3.1 and Remark 3.2 respectively.

We will use a B oracle to construct a sequence of strings {αs: seS} where
Se{7V}U{[0,«]: neN}, a function k: S-> N, and an array of trees {T*:
seS&j^k(s)} by induction on {s: seN}. The construction will produce a
recursive function g: N^> N such that ΦB

{e) = Ae = U{αs: seS}. The recursion
theorem will then provide us with an e e N such that ΦB = ΦB

(e) and for such an e, it
will have to be the case that S = N. Thus for this e, Ae will be a set of minimal
degree.

The subtree operations which will be used, taking ^-splitting subtrees and
extension subtrees, have the property that given an index for Γas a partial recursive
tree, we can recursively find an index for the subtree so defined. Hence without
explicitly defining the function, we will assume during the construction that we have
a function t: {{j\s}: seS&j ^ k(s)} -• N which is partial recursive in B such that
t(j, s) provides an index for Ts. as a partial recursive function.

We will also define an indicator function

i: {(j,s>:seS&j<k(s)}^ {0,1}.
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i(J,s) will be 0 exactly when Ts

j+1 is defined to be a splitting subtree of Ts

y The
function / is closely related to h+ in that h + plays the role of a predictor function;
h + (j, t(J, s)9 s) predicts whether or not to expect Tj+1 to be a splitting subtree of Tj
on which Ae is an infinite branch. The use of the recursion theorem will provide us
with an e e N such that the predictor function and the indicator function agree for
all sufficiently large s.

The following induction hypotheses will be satisfied at the end of stage s.

(1) s ^ 1 -• α s _! c αs.

(2) αs ci Γm.

(3) Γo = Id 2.

(4) vj<^χη+ 1cη).

(5) s> 1 -> V/ < fc(j)(ΓJ - rr'&iU - U ) = lU - 1,J - 1)).

(6) V/ < Λ ( J ) ( I U *) = 0<->3^ E5S(ΓJ+ ! <Ξ PSp 2 (PExt 2 (η, η), 7)

The construction proceeds as follows.

Stagέ? 0. Set k(0) = 0, T°o = Id2, and α0 = 0.

Stage s + 1. For all 7 < k(s), let fyj. be defined by Tsfη^ = αs and let Ys. =
S ) (2) d (4) i f ll Λ( hFSp2(PExt2(Ts

j,η
s

j)J). By (2) and (4), η) must exist for all 7 ̂  Λ(J). (Note that
7*. = Z m for some m e N and that such an m can be found recursively from t(j, s).)

Use the B oracle to execute a search, uniformly in e, for A: ̂  Ar(5") and r > s such
that

(7) αs is not terminal on Ts

k

(8) Vj<k(iU9s) = h + U,t(J,s),r));

and either

(9) h + (k, t(k, s), r) = 0 & αs is not terminal on Y{ & if k < k(s) then i(k, s) = 1,

or

(10) h + (k,t(k,s),r)=l&iϊk< k(s) then i(k,s) = 0.

((8)—(10) require that the predictor function h+ and the indicator function / agree on
arguments < k and either disagree on k or the indicator function is not defined on
k. The clause of (9) which requires that αs not be terminal on Ys

k is there to rule out a
blatant inaccuracy in the prediction made by h +.) If no such k and r are found, then
the construction terminates at stage s + 1. Otherwise, let <&, r> be the first such pair
found under some fixed recursive one-one correspondence of N with N2. Let
k(s + 1) = k + 1, let Γj+1 = T) for ally < k, and let i(j\ s + 1) = i(J, s) for ally < k.

+ 1 ( + 1 )

= |PDiff2(7s

k,/:) if (9) holds

|pDiff 2(Γ;+ S it) if (10) holds,fc(s+1) | p D i f f 2 ( Γ ;
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and

[ if (9) holds

if (10) holds.

Set α s + ! = Ts

k+l υ(0). We leave it to the reader to verify that (l)-(6) hold for s + 1 in
place of s if the construction does not terminate at stage s + 1.

This completes the construction. Since the construction is recursive in B
uniformly in e, it produces a recursive function g such that for all eeN,Ae = ΦB

(e).
Hence by the Recursion Theorem, there is an ee N such that Ae = ΦB

{e) = ΦB = h.
Fix such an e for the remainder of the proof, and let A = Ae. The following two
lemmas allow us to conclude that the construction never terminates.

3.4 Lemma. Let seN be given such that the construction does not terminate at any
stage u ^ s. Let k ^ k(s) be given such that both h*(j, t(j, s)) = i(j, s)for all] < k and
ifk > 0, then αs is not terminal onTs

k_v Then αs is not terminal on Ts

k. Furthermore, if
h*(k, t(k, s)) = 0 then αs is not terminal on Ys

k.

Proof If k = 0, then by (3), Γo = Ids

2, so by (2) and (4), αs is not terminal on Ts

k.
Assume that k > 0. If i(k - l,s)= 1, then Ts

k = PExt2(Ts

k_ί9η)foτ s o m e ^ e ^ . By
(2) and (4), αs cz T{ c Ts

k_1 so by Definition 1.3, αs cannot be terminal on T*k. If
i(k - l,s) = 0, then by hypothesis, h*(k - 1, t(k - l,s)) = i(k - l,s) = 0. Since
αs cz Ts

k_1, if follows from Definition 3.1 that there must be a k — 1-splitting of αs

onTs

k_v Hence αs cannot be terminal on Ts

k. Iϊh*(k, t(k, s)) = 0, then since αs cz Ts

k,
it follows from Definition 3.1 that there must be a ^-splitting of αs on Ts

k. Hence αs

cannot be terminal on Ys

k. D

3.5 Lemma. For all seN, the construction does not terminate at stage s.

Proof Note that the construction cannot terminate at stage 0. Given seN, fix the
greatest k ^ k(s) such that h*(j, t(j, s)) = i(j, s) for ally < k. Fix r e N such that for
all u ^ r and j < k, h*(j, t(j, s)) = h + (j, t(j, s), u). By Lemma 3.4, (7) and (8) hold.
Thus by choice of k and r, if h + (k,t(k,s),r) = 0 then (9) holds and if
h + (k,t(k,s),r) = 1 then (10) holds. Hence the construction will not terminate at
stage s + 1. D

The next lemma is used to show that all requirements are satisfied.

3.6 Lemma. For allneN there is an seN such that for all u^ s, k(u) > n, Tu

n= Ts

n,
and if n > 0 then i(n — 1, u) = h*(n — I, t(n — l,s)).

Proof By Lemma 3.5, the construction never terminates. Hence at any stage s + 1,
if A: is given as in the construction then k(s + 1) > k ^ 0. Thus the lemma follows
for n = 0.

Fix n > 0 and assume by induction that the lemma holds for all m < n. Fix r e N
so that for all u ^ r andy < n, Tu. = T},h

 + (j, t(j, ύ), ύ) = h*(j, t(j, u)), k(u) > n - 1,
and i(j — 1, ύ) = h*(j — 1, t(J — \,r)) if j > 0. If there is no u > r such that
k{u) = n, then by (5), (8), and Lemma 3.5, the lemma is true for n. Hence we may
assume that we have fixed s > r such that k(s) = n. Since k(s —X)^n, the k of stage
s is k(s) - l = n - l < k ( s - l ) . Hence by (9) and (10), h*(n - l,t(n - l , r)) φ

i(n-\,s - 1). At stage s, we set i(n - \,s) = h*(n - l,t(n - l , r)) . By (5) and
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t h e choice of r, i(n - \,u) = h*(n - \,t(n - l,r)) = h + (n - \,t{n - \,u),v) for
all u,v^s, hence by (9) and (10), k{u) > n for all u > s. By (5), Tn = Γn and
i(n — 1, w) = i(n — \,s) for all u ^ s. By (8) and since k{u) > n for all u > s,
we m u s t h a v e i{n — 1, u) = h + {n — 1, t(n — l,u),v) = h*{n — 1, t{n — 1, u)) =
h*{n — 1, t(n — 1, s)) for all u,v > s. D

We conclude from Lemma 3.6 that Γn = lims Γ*, i(n) = limsi(n,s), and
ί(«) = lims ΐ(n, s) are well-defined for all neN.

The construction guarantees that A ^ 7 5. We now show that A has minimal
degree. Fix neN. Since A is a branch of Γ π + 1 = PDiff2(Γ,«) for some partial
recursive tree T, we conclude from Remark 1.6 that A Φ Φn for all neN, so A is not
recursive. First assume that i(n) = 1. By Lemma 3.6, /z*(/z, t(n)) = 1. Since Λ = A, it
follows from Definition 3.1 that there is a σ c i such that σ a Tn and σ has no w-
splittings on Tn. By (2), (4) and Lemma 3.6, A a Tn. It thus follows from the
Computation Lemma that Φ^ is recursive. Finally, assume that i(n) = 0. By Lemma
3.6, h*(n,t(n)) = 0. Since h = A, it follows from Definition 3.1 that Tn+ί ^-splits
along A, i.e., for every σe^2 such that Tn+Ϊ(σ) a A, <Γn + 1 (σ*0), Γπ + 1 (σ* l)>
form an ^-splitting of Tn + ί(σ). Again by the Computation Lemma (Lemma 1.9),
^ 4 ^ τ Φn- Thus A is a set of minimal degree. D

By Corollary IV.3.6, if a is a minimal degree then a e G L 2 . By Theorem
IV.l.lO(ii), GH! n GL 2 = 0. We can thus strengthen the conclusion of Theorem 3.3
as follows.

3.7 Corollary. Let beGHi be given. Then there is a minimal degree a < b.

Shore has noted that there is a version of Theorem 2.3 which can be proved
below any degree in GHj. Thus we can construct the minimal degree a of Theorem
3.3 with a ^ c if c' ^ b' and c Jk b. This result can then be used to show that the
minimal degrees below 0' form an automorphism base for ^[0,0 ' ] . This result was
first proved by Posner. Posner, in fact, showed that the minimal degrees below 0'
generate ^ [ 0 , 0 ' ] . These results are covered in the exercises.

3.8 Remarks. Theorem 3.3 was proved by Jockusch [1977]. Cooper [1973] had
earlier proved a weaker result, showing that every b e Hi bounds a minimal degree.
Cooper's methods were more difficult than those introduced by Jockusch.

3.9-3.11 Exercises

3.9 Let beGH! and c < b be given. Show that there is a minimal degree a < b
such that a <£ c. {Hint: Combine the proofs of Theorems 2.3 and 3.3.)

3.10 Let b e GH t and c e D be given such that b ^ c and c' ^ b'. Show that there is
a minimal degree a < b such that a ^ c. {Hint: If c έ̂ b, then we cannot determine
whether Φc

e{x)[ by appealing to the B oracle, where C is a set of degree c. We use the
fact that c' ^ b' to get 5-recursive approximations to both C and Wc

e = {xeN:
Vj ^ x3σ a C{Φσ

e{y)[)}, uniformly in e. We use these approximations to code B
into A as in the proof of Theorem 2.3 (or alternatively, as in Exercise 2.11). This
coding is performed when the approximation to C provides a suitable computation
on index e for argument x, and the approximation to Wc

e tells us that xe Wc

e. Thus
the approximation to Wc

e allows us to code for e infinitely often only if Φc

e
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is total. In this case, we show that Φc

e(x) φ A(x) for some x else we can compute B
from A © C = r C.)

3.11 Use Exercise 3.10 to show that the minimal degrees form an automorphism
base for ^[0,0 ' ] . (Hint: Use the fact that Hj is an automorphism base for ^[0,0'].)




