Chapter VII
Finite Lattices

We completely characterize the finite ideals of & in this chapter as the set of all finite
lattices. It is not known whether all finite lattices have finite homogeneous lattice
tables, so we replace these tables with weakly homogeneous sequential lattice tables
which are possessed by all finite lattices. We extend the methods of Chap. VI, using
such tables to embed finite lattices as ideals of 2. This embedding theorem is used to
locate decidable fragments of Th(2); the V,-theory of & is decidable, but the V3-
theory of 2 is undecidable. Results from Appendices A.2 and B.2 are used in this
chapter.

1. Weakly Homogeneous Sequential Lattice Tables

We define the tables needed to characterize the finite ideals of 2, motivating the
definition by discussing the way in which the properties specified by the tables relate
to the proofs of various lemmas in Chap. VI. Throughout this chapter, fwill denote
a non-decreasing recursive function such that f(x) = 2 for all x e N. Recall that for
such an f, % = {ge¥: Vxe N(o(x) < f(x))}. Our forcing conditions will be f-
branching trees, i.e., trees T: ¥, — %}, and will be referred to as trees, dropping the
word f-branching.

The key lattice theoretic fact used in Chapter VI to embed finite distributive
lattices as ideals of 2 was that all such lattices have finite homogeneous lattice
tables. Since it is unknown whether all finite lattices have finite homogeneous lattice
tables, we use a weaker type of table to embed all finite lattices as ideals of 2. All
finite lattices have countable lattice tables, so we will have to find conditions to
replace finiteness and homogeneity for the tables. Lemma VI.1.4, which asserts that
the coding obtained from the table produces a usl homomorphism, will then have
the same proof in this new setting.

It is crucial to the proof of a computation lemma that each tree T used in the
construction have the property that for all strings cedom(T), S, = {neN:
T(o *n)] } 1s finite. This set S, however, must be generated from a lattice table which
will not be finite, in order to always be able to find interpolants for the greatest
lower bound preservation property. This apparent conflict is resolved by building
the table as the union of an increasing sequence of finite usl tables, with the
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interpolants needed for a given member of the union appearing in the next member
of the union. Specifically, we build a table @ = U{©;: ie N} such that for each
a, B€ O; the interpolants y4,71,. . .,yn. of Definition VI.3.4 appear in @, ;. This
condition will be sufficient to give a new proof of Proposition VI.3.6 which asserts
that whenever u; A u; = u, and there is an e-splitting mod k on T (where T is
sufficiently nice) then there is an e-splitting mod i or an e-splitting mod jon 7. Thus
for each tree T, we will be able to build an e-splitting subtree of T for some i or find a
subtree 7* < T such that for all g = T*, ¢7 is not total.

The homogeneity of lattice tables is important for the construction of e-splitting
trees, but it is not known whether all finite lattices have homogeneous lattice tables.
We thus must replace homogeneity with the notion of weak homogeneity, which is a
condition requiring the existence of an interpolant y, between i, = yo and ; = y,
in the definition of homogeneity (VI.3.8) and maps y; for i < 1 replacing s with the
same properties as i but applied to y; and y,., instead of f, and f;. As in the
preceding paragraph, the interpolant for f,, f; € ©; must appear in @; ;.

The above strategy, combined with a more delicate construction of e-splitting
trees, enables us to construct the desired initial segments. We now present the
properties which we require of our tables.

1.1 Definition. Let ¥ = (L, <, v, A) be afinite lattice, and let L = {u;:i < n}. Let
{©,: ie N} be a sequence of sets of n + 1-tuples of integers. Then {®;: ie N} is a
sequential lattice table for & if:
(i) Vie N(O; is a finite usl table for .&¥).
(11) VIEN(@, < @H- 1).
(1ii) Vi, jk <n(u; A uj=u—Vre NVa, feO(a =, f o
o5 s Ym€O 1@ =70 =91 =72 =i =jym = P)))

Since we are working with usl tables, Lemma VI.1.4 will hold. We restate this

lemma.

1.2 Lemma. Let @ = N"*?! be a recursive usl table for the usl (L, <, v) where
L = {ug,...,u,}. Let g: N — N be given such that for all xe N, there is exactly one
a, € O for which g(x) = o™\ For all i < n, define g(x) = ol). Let G = {g;: i < n} and
G ={g:i<n}. Thenthemap y:{L, <, v) —-<G, <, V) defined by y(u;) = g; for
all i < nis a usl homomorphism.

As mentioned previously, we will require a weak homogeneity property of our
tables.

1.3 Definition. Let {@;: ie N} be a sequential lattice table for the lattice
L =(L,<, v, Ay where L = {ug,...,u,}. Then {@;: ie N} is weakly homo-
geneous if for all re N and ay, a5, o, B, € O,, if

(1) Vi<n(oag =01 — fo =)

then there is a §, € ©, ., and functions y;: @, —» 0, , for s = 0, 1 such that for all
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s < 1 and «, € O,, the following conditions hold:

(“) l//s(ao) = ﬂs& l/js(al) = ﬂs+ 1-
(lll) Vi< n(oc E,‘B d ‘//s(a) =i lps(ﬁ))

In Appendix B.2.9, we prove that every finite lattice has a weakly homogeneous
sequential lattice table {@;: ie N} for which the set of pairs {a,i>e N"*! x N such
that o € ©; is recursive, as is the function f: N - N where /(i) = |@;| for allie N. We
now fix a finite lattice & = (L, <, v, A) and such a table {@;: ie N} for ¥ with
the corresponding function f, and let L = {u,,...,u,}. These remain fixed
through the end of Sect. 3. We assume, without loss of generality, that for all ie N,

{a: ae @} = [0, f(i)).

1.4 Remark. Weakly homogeneous sequential representations were introduced by
Lerman [1971].

2. Uniform Trees

All the trees needed for the constructions of this chapter, with the exception of
e-splitting trees, are introduced in this section. Since the differences with Chap. VI.2
are slight, we leave most of the details to the reader. All trees are f~-branching trees,
where f'was previously defined by f(i) = |©;| for all ie N. We begin with the identity
tree.

2.1 Definition. The identity f-branching tree Id,: #; — %} is defined by Id [(¢) = o
for all g€ ;.

2.2 Remark. Id, is a recursive uniform tree.

Although the trees extending ¢ are defined in the same way as before, they do
not contain all branches of the original tree T which are compatible with . For
since fisnondecreasing, f-branching trees tend to have a larger number of branches
at higher levels than at lower levels. Thus extension trees must eliminate some
branches. It is exactly this property which will allow us to prove the interpolation
lemmas which will be needed.

2.3 Definition. Let T be a tree and let o € 4} be given. Define Ext (T, o), the subtree
of T extending T(c), by Ext (T, c)(t) = T(c * 1) for all te .

2.4 Remark. Ext (T, 0) = Tand if T'is uniform then Ext (T, 0) =, T. Furthermore,
for all h: N— N, if T is recursive in A then Ext (T, g) is recursive in A.

The construction of (e, i, j y-differentiating subtrees whenever u; £ u; remains
virtually unchanged from the one given in Lemma VI.2.13. We merely replace p-
branching trees with f-branching trees. We restate the relevant lemma, leaving its
proof to the reader.
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2.5 Lemma. Let T be a uniform tree and let ee N and i, j < n be given. Assume that
u; & u;. Then there is a tree T* =, T such that T* is {e,i, j)-differentiating.
Furthermore, for all h: N — N, if T is recursive in h then T* is recursive in h.

2.6 Definition. Let Diff (T, e, i, j) be the {e,i, j y-differentiating subtree of T
defined in Lemma 2.5.

There are f-branching counterparts of other types of trees defined in earlier
chapters. We leave the constructions of such trees to the reader.

2.7-2.8 Exercises

2.7 Let Tbeauniform f-branching tree and let ee N be given. Assume that for all
o€ and xe N there is a te % such that t 2 ¢ and @] (x)|. Show that T has a
recursive uniform e-total subtree Tot (7, e).

2.8 Let Tbeauniform f-branchingtreeandlet C = Nandh: N — N be given such
that T is recursive in 4 and 4 is recursive in C. Show that T has a C-pointed subtree
Pt, (T, C) which is recursive in C.

3. Splitting Trees

The trees introduced in the last section were constructed almost exactly as were their
counterparts in Chap. VI. The splitting trees which are introduced in this section
must be constructed more carefully than were their counterparts in Chap. VI. It is
here that the failure of each @; to be a homogeneous lattice table needs to be
overcome.

Most of the definitions of Chap. VI carry over virtually unchanged to this
section. Obvious changes need to be made, e.g., changing %, to % and replacing
bounds of p with bounds of f(k) for some k € N, usually £ = lh(o) for the properly
chosen o. We leave the reformulation of these definitions to the reader.

The Computation Lemma for f-branching trees is the counterpart to VI.3.3. Its
proof is left to the reader, as it is a straightforward modification of the proof of the
Computation Lemma for p-branching trees (VI.3.3).

3.1 Computation Lemma. Let T be a uniform tree and let e N and i < n be given such
that T is an e-splitting tree for i. Let h: N — N be given such that T is recursive in h.
Then for every branch g of T, if ®% is total, then &9 < 1 g; ® hand g; < 1 ? @ h, where
g; is defined as in Lemma 1.2.

The proof that, given a sufficiently well-behaved tree T and e N, we can find
some i < nsuch that T has a recursive uniform e-splitting subtree for i depended on
the GLB Interpolation Lemma. This lemma was needed to show thatif u; A u; = u
and T is sufficiently well-behaved and has an e-splitting mod k, then T has an e-
splitting mod i or an e-splitting mod j. We now prove these results for f~branching
trees. It will be crucial to keep track of where the interpolants are.

3.2 GLB Interpolation Lemma. Let i, j,k < n and ¢,7,p€Y; be given such that
u; A u; =y, lh(e) >0, lh(r) =1h(p), and t=,p. Then there is a sequence
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T=10,T15--,Tm = p SUch that for all p < m, Ih(t,) = lh(z,) and o *1,€ %, and
To =Ty EjTZ =;" " Ejfm.

Proof. We proceed by induction on lh(t). The lemma is trivial for 1 = . Assume
that the lemma holds whenever lh(t) = s. Let i, j,k < n and g, 7, pe ¥ be given
satisfying the hypothesis of the lemma with lh(z) = s + 1. Fix ¢, r < f(s) such that
T=1 %q and p = p~ *r. By induction, there are interpolants t~ = pg, py,...,

py=p~, all of length s, such that po=;p; =;p, =, " =;p, and 6*p,e%;
for all p <v. By l.1(iii), there are ¢ = g, ...,q,, = r such that for all p < w,
g, <f(s+1) and g0 =:9: =;9, =; - =;q,. Since lh(s) >0, the sequence

Po*qo> P1%G0s---5Po*q0, Po*q1,---,Py*q, has the desired properties. |

We note that the condition that lh(g) > 0 is necessary in the GLB Interpolation
Lemma. For g, need not be < f(s), so the interpolants p, * g, need not lie in ;.
However, since g, < f(s + 1), o * p, * g, € ¥ as long as lh(c) > 0.

The GLB Interpolation Lemma is used to prove the following important
proposition. We note that its hypothesis differs from that of Proposition VI.3.6 in
that we place some restrictions on the location of the e-splitting mod k.

3.3 Proposition. Let T be a uniform tree, and let ec N, i, j, k < n and o € ¥} be given
such that u; A u; = u, and lh(o) > 0. Assume that there is an e-splitting mod k on
Ext,(T,0) = T*, and that

Voe S Vxe NIte F(DI"V(x)]).

Then either T has an e-splitting modi or T has an e-splitting mod .

Proof. Let {T*(z), T*(p))> be an e-splitting mod &k on x. Without loss of generality,
we may assume that lh(t) = lh(p). By the GLB Interpolation Lemma, we can fix a
sequence t = po, P1, - - -, Pm = p Of strings, all of the same length, such that for all
c<m,oxp.eY and thereis a de {i, j} for which p. =4 p.+,. Define 1 = 6 % po,
and assuming that ¢ < m and t, has been defined, let 7., , be the least ¢ (under
some fixed recursive one-one correspondence of & with N) such that
EDtr(o*p.— 0axp.ry;1) and @T9(x)|. Then there is a least ¢ < m such that
(T(t,), T(t.4 1)) e-splits on x. For some de {i, j},t. =,7.+:. Since T is uniform, we
have produced an e-splitting mod i or an e-splitting modj on 7. |

We note that we needed to have the e-splitting mod & in Proposition 3.3 lie on
Ext,(T,0) for some ge4; such that lh(c) >0 in order to apply the GLB
Interpolation Lemma. This restriction will cause no problems in building an e-
splitting subtree of T for some i < n because of the way that i is chosen.

Let T be a uniform tree, and let ee N.and i < n be given so that the following
conditions hold:

1) Voe S Vi < n(u; 2 u; — 31, pe 5 (KExt (T, 0)(1), Ext (T, 0)(p))
is an e-splitting mod;)).

2) Vo,1€ % (0 =;1 - {T(0), T(1)) is not an e-splitting).

A3) Voe ¥ Vxe N3t c Ext, (T, o) (Di(x)]).
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Under these circumstances, we will want to build an e-splitting subtree T* <, T'for i
(see V1.3.2). The construction of such a tree proceeds level by level. At each level, we
iterate a certain basic procedure which, when completed, will guarantee that
{T*(c), T*(t)) is an e-splitting for the particular ¢ and t chosen with ¢ #;7.
Conditions (1) and (3) allow us to carry out this procedure, as we show in the next
lemma.

3.4 Lemma. Let T be a uniform tree, and let e € N and i < n be given so that (1) and (3)
hold. Let 6y,0,€%; and j < n be given such that lh(s,) = lh(s,), 0o =;0,, and
u; # ;. Then there are 1y,t, €Y} such that 1h(to) = lh(ty), 6o S 10, 61 S 74, and
{T(zp), T(z})) is an e-splitting mod j.

Proof. Exactly as in Lemma VI.3.7. [

We continue the discussion preceding Lemma 3.4. Lemma 3.4 allows us to find
an e-splitting mod j, { T(z,), T(z,))» which, if we were to extend the definition of 7*
by specifying that T(zy) = T*(o) and T(t,) = T*(r), would not cause outright
damage to the uniformity of T*. However, since the table which is being used need
not be homogeneous, we cannot always extend the definition of 7* as above and
still preserve its uniformity. Hence it is no longer sufficient to find an e-splitting
modj; we must find such an e-splitting which can be placed on 7* while allowing
the extension of T* to a uniform tree. If T satisfies (3), then we can convert our
original e-splitting into an extendible one through the use of the interpolant
provided by the weak homogeneity property of tables. The extendibility property
which is needed is presented in the following definition.

3.5 Definition. Let me N, p, g < f(m), and 1, pe ¥ be given such that Ih(z) = lh(p)
and foralli < m,if p =;gthent =, p. We say that (1, p) is m-extendible for  p, g) if
there is a map y: [0, f(m)) — {&:1h(f) =1h(7) &0, *E€ S} such that the
following conditions hold:

1) Y(p) =t and Y(q) = p.
(i) Vk < nVrt < fim)(r =t - Y(r) = Y(2)).

3.6 Remark. Let me N, u,v < f(m) and 1, 7., 7 * £ € &} be given such that {74, 7;)
is m-extendible for {u, v). Then {ty * £, 7, * &) is m-extendible for {u, v). Forif y is
the original extension map, and we define y*(p) = y(p) * £ for p < f(m), then  *
witnesses that (7o &, 1, % &) is m-extendible for {u,v).

The next lemma is used to pass from the point in the construction of e-splitting
trees where we have found an extendible e-splitting, to the definition of T* on the
part of the level on which we are working.

3.7 Extension Lemma. Let me N and {0,: q < f(m)} be given such that for all
q,r < f(m), 0,€ ¥ andlh(c,) = lh(c,) > m, and for allk < n,if g =,r theno, =, 0,.
Let u,v < f(m) and t,,1,€ % be given such that lh(z,) = lh(z,) and {z,,t,) is m-
extendible for {u,v). Then there exist {p,:q < f(m)} such that for all q,r < f(m),
pe€ 5, Ih(p,y) = 1h(p,), pu = 0, % Ty p, = 6, %1,y 0, S p,, and for allk < n, if g =, r
then p, =, p,.
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Proof. Let y: [0, f(m)) - {&: 1h(¢) = 1h(1,) &0, * (€ S} be the map whose
existence is guaranteed by Definition 3.5. Let 7, = y(g) and p, = o, * 1, for all
q < f(m). Since lh(c,) > mfor all ¢ < f(m), p,€ ¥ for all ¢ < f(m). The lemma now
follows from 3.5(i) and (ii). [

The remaining problem which we must solve is the problem of passing from an
e-splitting modj to one which is appropriately extendible. The next lemma will
allow us to carry out that step.

3.8 Extendibility Interpolation Lemma. Let me N, u,v < f(m), and 1,,7,€ % be
given such that lh(z,) = lh(z,) andforallk < n,ifu = vthenty =, 1,. Thenthereisa
Ty such that 0, xt,€%;, lh(ty) = lh(zg) and for each j <1, {tj,7j+1) is m-
extendible for {u,v).

Proof. We identify p < f(m) with the unique ae®,, such that o = p. Since
{@,:keN} is weakly homogeneous, for each x < lh(ty) there is a 1,(x) <
fim + 1 + x) and maps ¥ .: @,, > O, ., for s < 1 such that for all s <1 and
P-4 <flm), Y () = 14(x), Ysx(v) = 75+1(x), and for all k <n, if p=,q then
V(D) =1 ¥sx(g). 11 is now seen to have the desired properties. |

We can now convert arbitrary e-splittings mod; to e-splittings mod j which can
be used to build uniform trees.

3.9 Lemma. Let T be a uniform tree for which (3) holds. Let 6€%;, me N and
u,v < f(m) be given such that lh(c) =m. Let j<n be chosen so that u;=
V{u: u =, v}. Assume that there is an e-splitting { T*(z,), T*(t,)> mod, on x, where
T* = Ext (T, 0 *u). Then there is an e-splitting {T(c * u * £), T(o * v+ n)y mod j on x
such that {&,n) is m-extendible for {u,v).

Proof. The proof can be followed in Fig. 3.1. By the Extendibility Interpolation
Lemma, we can find t, such that 0,,,; * t; € 4, lh(r;) = lh(zy), and for all s < 1,
{Ts,Ts+1,y is m-extendible for (w,v). Since lh(o*u)=m+ 1 and o*xue},
o xuxt, €% .Since (3) holds for T, thereis a € #; such that @T@****1*9(x) | Hence
for some s< 1 which we now fix, (T(o*uxt,%0), T(c*uxts,;*3)> Iis

Fig. 3.1
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an e-splitting modj on x. Again since (3) holds for T, there is a A€.%; such that
@loxvsts+120s0(x)| - Hence either (T(c*u*t,%0*A), T(o*v*t134,%d%xA4)) or
(T(oxu*tg,,%6%A), T(c*v*15,, *0*A)) is an e-splitting mod j on x, and by
Remark 3.6, both {(t,%0* A, 7,41 *0*A) and {144, *0* A, 1,,*d* 1) are m-
extendible for (u,v)>. Hence the lemma will be satisfied for some choice of
Ee{t,#0* A, 7, 1*%0xA} and y =15, 5% A |

We now have all the pieces needed to construct an e-splitting subtree for i. We
construct such subtrees of uniform trees.

3.10 Lemma. Let T be a uniform tree, and let ec N and i < n be given so that (1)-(3)
hold. Then there is a tree T* =, T which is e-splitting for i. Furthermore, for all
h: N— N, if T is recursive in h then T* is recursive in h.

Proof. We proceed by induction on the levels of 7*. At stage s of the induction, we
define T*(o) for all g€ such that lh(s) = s. We begin, at stage 0, by setting
T*©@) = T(0).

Stage s + 1. Let {{fmy Gms Tmp: M < mg} list all (n, q, 7> € F 5 x [0, f(s))* such that
lh(n) =s and g #;r. For m <mg, let {,e% be the string such that
T(¢,) = T*(,,)- We perform a subinduction on {m: m < my}, defining, at stepm, a
sequence {p}':j < f(s)} such that 0, ; * p]'€ ¥, for all j < f(s) and which satisfies:

“4) lh(p5) = lh(pT) = -~ - =1h(pT_ )

) Y <SWm>0-pr 2 pr,

(O] Vg, r <f(s)Vk < n(g =xr— pj =kp)).

@) m>0-T(Cu-1*py ) T(Cm-1*py.,_)) is an e-splitting.

We begin, for m = 0, setting p{ = j for all j < f(s).

Substage m + 1. Let u;  be the greatest element of L such that g,, =, r,,. Such a
k., must exist, as is seen immediately from the Least Upper Bound Property for usl
tables (Definition VI.1.2(iv)). By (1), there is an e-splitting mod k, on
Ext (T, py) S Ext;(T,&m * gm)- Hence by Lemma 3.9, there are 1,,, 7,,, such that
Os+1%Tg, 0541 % T, €57, Ty, 2 Py 5 T, 2 Py a0 (T * 1,,), T(Em * 7,,)) Isane-
splitting mod k,, for which <{t,, , 1> is s-extendible for {g,,, 7,,). By (4) and (6), the
hypotheses for the Extension Lemma are satisfied, so the Extension Lemma
produces {p7"': j < f(s)} satisfying (4)«(6) with m + 1 in place of m. Since

+1 __ +1 __ 3 o
P | =1q, and pi' "t =1, , (7) is also satisfied.

Once the subinduction is completed, we define 7*(n * q) = T({ * p°) for all
ne % such that lh(n) = s and all g < f(s), where ¢ is defined by T(&) = T*(z).

Since the subinduction satisfies (4)-(6) and by the definition of T*, we note that
T* is a uniform tree. Since the subinduction satisfies (5) and (7), T* is an e-splitting
tree for i. (Note that this is the only place where (2) is used.) Furthermore, if 7 is
recursive in A, then the construction of T* can be carried out recursively in 4. |

3.11 Definition. Let 7 be a uniform tree and let ee N and i < n be given so that
(1)-(3) are satisfied. Then Lemma 3.10 constructs T* <, T such that T* is an e-
splitting tree for i. We give that tree 7* a name, Sp (T, e, ).
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The final result of this section shows that if 7'is a uniform tree which satisfies (3)
and ee N, then there is some i < » such that T has an e-splitting subtree for i.

3.12 Lemma. Let T be a uniform tree for which (3) holds, and let e € N be given. Then
thereisani < nandatree T* =, T such that T* is e-splitting for i. Furthermore, for
all h: N — N, if T is recursive in h then T* is recursive in h.

Proof. For each oe%;, let %, = {u,e L: there are no e-splittings mod k on
Ext (T, 0)}. Note thatif ¢ < 7 then %, < %.. Since L is finite, we can fix g € & such
that %, = %.forallt 2 o. Letu; = A%,. By Proposition 3.3, u; € %,, hence (1) and
(2) hold for Ext,(T, o). Hence by Lemma 3.10, Sp,(Ext (T, 0), e, i) is the desired
tree. [

3.13 Remark. The results of this section are due to Lerman [1971].

4. Finite Ideals of 9

We will now characterize the finite ideals of 2. This characterization will be used to
locate natural decidable and undecidable classes of sentences of Th(2).

The development of trees used to force certain requirements in this chapter
parallels the development of similar trees in Chap. VI; we replaced the p-branching
trees of Chap. VI with f-branching trees, and proved counterparts of all the lemmas
used in the proof of Theorem VI.4.2. Thus a proof similar to that given in Chap. VI
will produce the following result.

4.1 Theorem. Let ¥ be a finite lattice. Then & <* 9.

Theorem 4.1 allows us to characterize the finite ideals of 2. For an ideal of 2
must be a usl with least element, and since every finite usl with least element is a
lattice (the greatest lower bound of two elements is defined to be the least upper
bound of all elements of the usl which are less that or equal to both of the given
elements), all finite ideals of 2 are finite lattices. We thus conclude from Theorem
4.1 that:

4.2 Corollary. The class of isomorphism types of finite ideals of < is the class of all
finite lattices.

Let 2 = (P, <) beany finite poset, and let Z* = (P*, <) be a poset extending
2 such that P* = PU {d} whered > pforallpe P. If 2is an initial segment of a usl,
then 2 * is a usl. Hence the finite initial segments of & are characterized as follows:

4.3 Corollary. The class of isomorphism types of finite posets which are initial
segments of 9 is exactly the class of posets which are initial segments of finite lattices.

Other trees can be mixed into the construction of initial segments described in
this chapter, thus producing initial segments of & of a given finite isomorphism type
which possess various other properties. Some such properties are discussed in the
exercises, as are relativizations of Theorem 4.1.
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We now use Theorem 4.1 to identify decidable and undecidable classes of
sentences of Th(2). We begin with a decidability result.

4.4 Theorem. The Y ,-theory of 9 is decidable.

Proof. Let & be the language of the predicate calculus with one binary symbol, <.
A specification is a conjunction of atomic formulas and negations of atomic
formulas in this language. Let yi(zo, . . ., z,) be a specification. Set S, = {ay, ..., a}
and define a binary relation < on S, by g; < g; if z; < z; is a conjunct of ¥, and
a; & a;if z; £ z;is a conjunct of . The specification y is said to be consistent if there
is a poset (S, <*) such that the structure {S,, <) is embeddable into (S, <*),
ie., for all ay,a;, €Sy, if ap < a, then ay <*a, and if ay € a; then g, £*a;. A
consistent specification is called a partial diagram. The specification y is said to be
complete if for all ay,a, €S,, either ay < a, or ay £ a;. A consistent complete
specification is called a diagram. The diagram ¥ is said to be a us/ diagram if every
pair of elements of S, has a least upper bound. The usl diagram y(zo, . . . , z;) is said
to be generated by the diagram 0(z,, ..., z,) if r < k, {S,, <) is embeddable into
{Sy, <), and for all ie N such that r < i < k there is a subset I = [0, r] such that
a; = V{a;: jeI} where the V operation is defined in the usl {S;, <).
The following facts are easily verified.

0)) Given variables z,...,z, we can uniformly and effectively list all
diagrams whose variables are contained in {zo,...,z,}.

) Given a diagram ¥/(z,, . . ., z,), we can uniformly and effectively list all usl
diagrams 6(z,, . . ., z,+,) Which are generated by ¥. (Each such usl diagram
is a subusl of the free usl with n + 1 generators.)

3 Given a partial diagram y(z,, . . ., z,), we can uniformly and effectively list
all diagrams 6(z,, ..., z,) which extend .

Fix an V,-sentence o = Vx3y(&(X,y)) of ¥ where x = <{xq,...,x,» and
7=V Ymy. Let {{;:i <r} be a list of all diagrams in variables among
{x0,...,X,}- Then ¢ is true if and only if the following sentence is true:

/\ (V% 39(i(%) = &(X, 7))
i=0
Hence by (1), it suffices to decide the truth of sentences of the form
Vx 3p(y(x) — E(x, p)) where = y; for some i < r. Fix such a sentence, o;.
Let {0;: i < s} be a list of all usl diagrams which are generated by y, and let 9, be
such a diagram whose variables lie in the set {xq, ..., X,, Zo, . . ., z}. Then o, is true
if and only if the following sentence is true:

/\ (VEVZ3F(0:(, 2) - &(%, 7))

i=0
where Z = (zy, ..., z;». Hence by (2), is suffices to decide the truth of all sentences
of the form VxVzZ3y(6(x,z) — &(x,y)) where 0 = 0; for some i <s. Fix such a
sentence, g;.
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Write £(X, 7) in disjunctive normal form. Then

t
&xp) =\ & p)
i=0
where each ¢; is a specification. Since we can uniformly and effectively decide, given
&, whether or not ¢; is consistent, we may assume without loss of generality that
each &; is consistent. Let {n;: i <u} be a list of all diagrams in the variables
{X0s- s Xns Yor -+ »Vms Z0s - - - » Zx} Which extend ¢&; for some i < u. Then o, is true if
and only if the following sentence is true:

VXVZIPO(X,2) — \/ 1%, 7, 2)).

i=0

Hence by (3) and (1), it suffices to decide the truth over & of all sentences of the form

VX 3IP0(x) - \/ (1%, 7))
i=0
where 6 is a usl diagram and each 5; is a diagram extending 0. Fix such a
sentence, o*.

We now digress to consider a related question. Suppose that we are given finite
posets Z = (P, <py = (M, <y = A and an isomorphic copy 7 of # which is a
subposet of 2, and suppose that <p defines usl structure on P. We ask when it is
possible to extend J to ¥ =(V,<y) S Z so that the following diagram
commutes:

P - M

]

.
!
T — Y

Fig. 4.1

Since every usl can be extended to a usl with least element by adjoining such a
least element if it is not present, it follows from Theorem 4.1 that the following
condition is necessary:

©) Yae M — PYbe P(a £ u b).
Since 2 has usl structure, the following condition is also necessary:
(%) YmeMVp,qe P(p Sym&q<ym—p Vpqg <ym).
By Theorem I1.4.11, conditions (4) and (5) are also sufficient conditions for the
existence of ¥~ such that Fig. 4.1 commutes.
We now conclude that the sentence ¢* is true if and only if there is an i < u such

that (4) and (5) hold for the diagram 0 replacing £ and the diagram #; replacing
M. 1
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When we pass from the V,-theory of 2 to the V;-theory of &, we pass from
decidability to undecidability. This fact is a corollary of the following result which is
proved in Appendix A.2.9.

4.5 Theorem. The 3,-theory of finite lattices in the language of the predicate calculus
with just one binary relation symbol is strongly undecidable. (A set Z of sentences is
strongly undecidable if there is no recursive set R of sentences such that
VNZ < R < Z,where Vis the set of all logically valid sentences, a non-recursive set.)

4.6 Corollary. The V3-theory of 9 is undecidable.

Proof. Let ¢ be an 3, sentence in the language of the predicate calculus with just one
binary relation symbol, <, adjoined. Let i/(x) be the formula which asserts that the
elements < x form a lattice, and let ¢, be the formula which restricts all variables
appearing in ¢ to elements < x. Let 0, be the sentence

Vx(Y(x) = 61(x)).

Let 2 be the set of all 3, sentences of our language which are true for all finite
lattices,and let R = {g: 6, istruein @}. By Theorem4.1, VN X = R < X,s0 Risnot
recursive. Hence the set of sentences {0,: ¢ is an 3, sentence of our language} is a

recursive class of V3 sentences of our language whose truth in 2 is not uniformly
decidable. [

4.7 Remarks. Theorem 4.1, Corollary 4.2 and Corollary 4.3 were proved by Lerman
[1971]. Theorem 4.4 is due independently to Shore [1978] and Lerman. Corollary
4.6 was proved by Schmerl.

4.8-4.17 Exercises
4.8 Let aeD be given, and let . be a finite lattice. Show that ¥ <, * 9[a, o).

4.9 Let % be a finite lattice. Show that there is an isomorphism y: ¥ <, * & such
that for all ae L, y(@)'® = 0¥ and ¥(a)¢ GL,.

4.10 Let % be a finite lattice. Show that there are 2™ distinct embeddings
L S*D.

4.11 Let % be afinite lattice, and let d e D be given. Show that there is an #-cover
a of 0 such that a® =au 0® =du 0®,

4.12 Let # bea finite lattice and let c € D be given. Show that there isan #-cover a
of ¢ such that a'® = ¢!® and a¢ GL,(c).

4.13 Let .# be a finite lattice and let de D be given. Show that d has 2%° distinct
P-covers.

4.14 Let & be a finite lattice, and let ¢,deD be given. Show that there is an
#-cover a of ¢ such that a® =auc?® =duc?.

4.15 Let deD be given. Show that V, NTh(Z2[d, o)) is decidable but that
V3N Th(Z[d, o)) is undecidable.
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4.16 Let % be a finite lattice, and let I be a countable ideal of 2. Show that I has
2% distinct #-covers.

4.17 Let1be acountable ideal of 2. Show that ¥V, N Th(Z[1, 00)) is decidable, but
that V3 N Th(Z2[1, o)) is undecidable.





