
Chapter VI

Finite Distributive Lattices

We continue our study of the finite ideals of 2 in this chapter by showing that every
finite distributive lattice is isomorphic to an ideal of Q>. This result is proved using
techniques extending those introduced in Chap. V. Different trees are used, and we
introduce tables which provide reduction procedures from the top degree of the
ideal; these tables are obtained from representations of distributive lattices. As an
application, we show that the set of minimal degrees forms an automorphism base
for 2.

Many of the applications which we obtain in later chapters from the complete
characterization of the countable ideals of 2 can be obtained from the fact that all
countable distributive lattices are isomorphic to ideals of 2. We use Exercise 4.17 of
this chapter to indicate how to obtain the characterization of distributive ideals of
2. This exercise allows the reader to proceed directly to Chap. VIII.2 from the end
of this chapter.

The results of Appendix B.I are needed for this chapter.

1. Usl Representations

Tables built from lattice representations provide the starting point for defining the
trees used in this chapter. We begin to motivate the use of such tables in this section.
Recall that <9£ is the set of all strings of integers < p.

The trees used in this chapter are/7-branching trees, i.e. trees T: <9£ -• £fp. We will
refer to /^-branching trees as trees during this section, dropping the words
p-branchίng.

Let if = <L, < , v , Λ> be a finite lattice, with L = {u0, ...,un}. We assume,
without loss of generality, that for all ij < n, if/ < j then Uj ̂  ut and u0 and un are,
respectively, the least and greatest elements of L. We wish to construct a function
gn:N -• N such that D L = <D[0, gn], ^ > is a lattice which is isomorphic to if under
the map φ: L -• D L given by φ(Ui) = & for all / ̂  n, where D[0, gn] = {g0, ...,&.}.
As in the construction of a minimal degree, we will define a sequence of trees
{TiiieN} and choose 0 π en{Γi : /e#} .

For all / ̂  n and z e N, we can view Q{ \ z as a string. Thus, for example, if

σ = 2 * 0 * 3 , we write σ c gt if ^(0) = 2, &(!) = () and gt(2) = 3. We will
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concentrate on the construction of gn, and will need a procedure by which to recover
each Qi from gn. The procedure which we use is derived from tables. Figure 1.1
pictures a lattice together with a table for this lattice. We refer to this table in
subsequent remarks.
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Suppose that we have specified that σ = 2*0*3c i ί / 2 . We begin a partial
diagram with columns for g0, gι and g2, list σ in the g2-column, and place dashes in
all other columns for all rows which have an entry (see the left-hand side of Fig. 1.2).
We now try to fill in the dashes so that each row of the diagram corresponds to a row
of the table (see the right-hand side of Fig. 1.2). Hence for the first row, the entry in
the g2-column is 2, so we use α2 to fill in the row. The g0-column now specifies that
0 * 0 * 0 c g o , and the g ̂ column specifies that 1*0*1 cz gίm
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Since u0 < uu gγ must uniquely determine g0. The procedure used for this
determination is similar to the determination of g0 and gx from g2. As an example,
suppose that we have specified that σ = 1 *0 c= gγ. We begin with the left-hand
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diagram of Fig. 1.3 with dashes in the unknown places, but note that the procedure
for filling in the diagram with tuples from the table is not unique; there are four
possibilities, all listed in Fig. 1.3. However, all the possibilities have 0 * 0 in the go-
column. Thus if 1 * 0 c= gl9 then 0 * 0 cz g0. This procedure can be used to have g1

uniquely determine g0. We note that the procedure can be reduced to a procedure
which handles each row of the diagram separately.

Since u0 is the smallest element of L, we will want g0 to be recursive. We achieve
this by requiring, for all tables, that all entries in the g0-column are the same.
Similarly, gn will be the greatest element of L, so should uniquely specify each g x. We
thus require, for all tables, that all entries in the gn-column are different. And in order
to guarantee that the recovery procedure described above will work, we require of
all tables, that ifut ^ u } and coordinatej of a tuple in the table is specified as having the
value m, then any two tuples in the table having the value m in coordinate j must have
the same value in coordinate i.

It is possible to satisfy the three conditions mentioned above with a table
consisting of only one tuple. However, referring to the lattice of Fig. 1.1, this would
allow us to recover gx and g2 from g0, contrary to our desire to have each g x occupy a
different degree. We thus want our tables to have the flexibility to allow us to satisfy
diagonalization requirements of the form Φ9

e

ι Φ g} whenever u} ^ ut. Thus if Uj ̂  uh

we cannot allow the above procedure to uniquely determine g } from gt. This will be
the only constraint which we need to impose on tables to allow the satisfaction of
diagonalization requirements. More precisely, we require, of all tables, that if
Uj ̂  uh then there are two tuples in the table which have the same value in the gΓ

column but different values in the g^column. As an example for the lattice in Fig. 1.1,
suppose that we have specified that σ = 1 * 0 cz gγ and have computed Φσ

e(0)l = 2.
Then g2 can be specified by any of the four possibilities in Fig. 1.3. The first two
specifications of g2 will not satisfy this requirement, but if we specify that

τ = 3*0czg 2 , then the recovery procedure from τ will specify that σ cz gu and
Φσ

e(0) = 2 Φ 1 = 0 2 ( O ) .

We will be dealing with usls, so will also need a procedure for recovering
suprema. This procedure differs from the recovery procedure for the ordering only
when the lattice S£ has incomparable elements. We thus introduce, in Fig. 1.4, a new
lattice together with a table for this lattice. We will use this lattice as an example, to
describe the recovery procedure for suprema.
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Since uγ v u2 = u3, we must be able to recover g3 from gx and g2. Suppose that
we have specified that 0 * 1 *0 <= ό^andO* 1 * 1 cz g2. We proceed, in Fig. 1.5, as we
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did in Fig. 1.2, except that we begin by specifying both the gγ- and g2-columns, and
placing dashes in the other columns. For each row on the left-hand side of Fig. 1.5,
we search through our table for a tuple which agrees with the given information,
and fill in the rows as in the right-hand side of Fig. 1.5. For this example, there is
only one way to complete the diagram, and the g3-column of the result is 0 * 3 * 1
hence 0 * 3 * 1 a g3. In order for this procedure to work in general, we require, of all
tables, that ifut v u-} = uk and the gt andg } values of a tuple in the table are specified,
then any other tuple of the table which has the same gt andg} values as the original tuple
must also have the same gk value as the original tuple.
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The supremum example given above may be misleading as, in general, there
may be many possible ways to complete rows by following the procedure. We
introduce another example in Fig. 1.6 in order to demonstrate what can happen in a
more complicated setting. We will also use this example to give the reader practice
with the recovery procedures.
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We refer the reader to Fig. 1.7 for the following example. Suppose that we
specify that 1 * 1 cz gγ and 0 * 1 cz g2. We fill in the dashes using rows of the table,
and find that there are four possibilities. However 1 * 3 appears in the g3-column for
every possibility, so we have specified that 1*3 a g3. Hence in this case, gι and g2

have uniquely determined g3.
The reader may find it helpful to practice with the following specifications. We

refer to the table in Fig. 1.6.
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Suppose that we specify that 3*1 c # 3 . Find the string σ of length 2 such that
σ c #2 How many possibilities are there for strings τ of length 2 such that τ <= # 4 ?

Suppose that we specify that 1 *0 cz qγ and 2*1 c g4. Find the string σ of
length 2 such that σ c g5. How many possibilities are there for strings τ of length 2
such that τ <= g3Ί

The tables we will use will also need to satisfy certain properties connected to the
preservation of greatest lower bounds and extensions of maps. These properties will
be motivated and discussed in Sect. 3 when the need for them arises. The existence of
tables with such properties will be a corollary of certain representation theorems for
lattices which are proved in Appendix B.

We treat the rows of a table as tuples of integers. In order to more easily talk
about the agreement of rows on various columns, we introduce the following
notation.

1.1 Definition. LetΘ <^ Nn + 1 be given. (Thus Θ is a set of n + 1-tuples of integers.)
Let α, β e Θ be given such that α = (a0, . . .,#„> and β = <60, . . . ,£„>, and fϊxj ^ n.
We say α =jβ if cij = by We use <xlj] to denote aj9 the jth coordinate of a.

We collect some of the properties which must be possessed by a table in the next
definition.

1.2 Definition. Let i f = <L, < , v , Λ> be a finite lattice, and let Θ c 7Vn+ x be given.
(9 is said to be a ws/ table for i f if there is an enumeration uo,...,un of the elements
of L such that:

(i) (Recursiveness property) Vα, β e <9(α = 0 /?).

(ii) (wπ computes everything) Vα, β e <9(α = „ β -• α = j8).
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(iii) (Order preservation and one-oneness) V/j ^ n(u{ ^ u} <->

(iv) (Least upper bound property) V/,y, k ^ n(it v Uj = uk <->
=jβ~x =kβ)).

The properties of usl tables allow for the construction of homomorphisms

into 9.

1.3 Definition. Let ££ = <L, <, v> and J^* = <L*, <*, v*> be usls. A homo-
morphism from if into if* is a map ψ.L^L* such that:

Va,b,ceL(av b = c^ φ(a) v*^(6) = ^(c)).

Since, in any usl, a ^ b^-^a v b = b, it follows from Definition 1.3 that for all
a, beL,a ^ & —• ι//(#) ^ * ιA(£) Note that if φ is a usl homomorphism which is one-
one and onto, then φ is an isomorphism.

Tables for lattices are used as follows. Let <L, ^ , v , Λ ) b e a lattice and let
Θ c Nn+1 be a usl table for this lattice. Given a function g = gn as described earlier
and xGTV, there will be a unique α x e 0 such that α^1 = gn(x). We define gt{x) = αjj1

for all / ̂  «. Our next lemma shows that this definition of {gj guarantees that the
map φ: L -> D L is a usl homomorphism. Additional conditions which will be
required of tables will enable us to show later that φ is an isomorphism onto an
initial segment of 3> when gn is appropriately chosen.

1.4 Homomorphism Lemma. Let Θ ^ Nn+1 be a recursive usl table for the usl
<L, ^ , v> where L = {w0,..., un}. Let g:N ^ N be given such that for all xeN,
there is exactly one ax e Θ for which g(x) = α^"1. For all i ^ n, define g^x) = αjj1. Let
G = {gff:/< Λ} αwd G = {&:/ ^ «}. Γ/ze« ίAe wop ιA:<^5 <> v>-^ <G, < , u >
defined by φ(Ui) = gj /or #// /"^ « w f̂ usl homomorphism.

Proof Fix /,y, k ^ n such that wf v u} = wk. We first show that gk ^ Γ gff © ^ . Given
JC G TV, search for α G 6) such that α[i] = gt{x) and α ϋ ] = g/x). Such an α can be found
recursively in gi®gj since Θ is recursive. By Definition 1.2(iv), for all βeΘ, if
β=iθί and )8 = _,-α then )8 Ξ k α , so α[/c] = )8[kl. Hence gfk(x) = α[/c]. We next show that
9i ^τ9k a n d gj ^τ9k^° that gt ®gj^τ gk. Since wf < uk and M̂  ̂  uk, it follows from
Definition 1.2(iii) that for all α,βeΘ if α Ξfcjβ then oc=iβ and oc=jβ. Hence for
every αe6) such that α[k] = 0k(x), α[i] = gt(x) and α ϋ l = ^/x). Since Θ is recursive,
we have given a procedure which computes gt and ^7 recursively from gk. D

A preliminary strategy for embedding a finite lattice <L, ^ , v , Λ> as an initial
segment of 2 might proceed as follows:

Step L Find a recursive table for <L, < , v , Λ>, where L = {u0, ...,un}.

Step 2. Construct a sequence of trees {TtiieN} and choose gneΓ\{Ti:ieN}.

Step 3. Guarantee that for all ij < «, if ut φ Uj then gt ψ gjm The map φ of Lemma
1.4 will then be a usl isomorphism.

4. Guarantee that for all e e N, ύΦ9

e

n is total, then Φ9

e

n =Tgt for some / ̂  n. The
set G of Lemma 1.4 will then be an initial segment, and hence an ideal, of 2 .
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This strategy almost works, but modifications are needed. In order to satisfy
Step 2, we will require the table for the lattice to be finite. Problems arise in carrying
out Step 3, which are circumvented by requiring that all trees be uniform. This
restriction on the trees will force us to require additional properties of tables in
order to be able to carry out Step 4. We will have to require that tables be
homogeneous and preserve greatest lower bounds. These conditions are discussed in
Sect. 3.

1.5 Remarks. Lattice representations have been studied by lattice theorists, but we
know of no results concerning lattice representations which possess the homo-
geneity property which we require. Many theorems about ideals of 2 were proved
implicitly using representations of particular lattices or classes of lattices, without
specifying that this was the case. Thomason [1970] first noticed the importance of
lattice representations in such proofs, paving the way for the complete characteri-
zation of the countable ideals of ®.

1.6-1.7 Exercises

1.6 Let if = <L, < , V , Λ > be the lattice such that L = {u0,...,un) with
u0 <u1 < <un. Find a usl table for if.

1.7 Let & be the boolean algebra consisting of 2m elements. Find a usl table for $.

2. Uniform Trees

Many of the trees needed to construct countable ideals of ^ are introduced in this
section.

For the next two sections, fix a finite lattice if = <L, ^ , v , Λ> which has a
finite table Θ. Without loss of generality, we may assume that {α["]: α e Θ} = [0,p)
where L has n + 1 elements. Let L = {u0, ...,un} with u0 being the least element of
L and un being the greatest element of L. It follows from Definition 1.2(ii) that for all
q < /?, there is exactly one oceΘ such that α[w] = q. Thus we can identify each oceΘ
with its nth coordinate, α[π]. The definition of = f can thus be extended from Θ
to the nth coordinates of Θ. (The reader should note that this extension to integers
< p is dependent on Θ.)

2.1 Definition. Let q,r <p (q and r should be thought of as the nth coordinates of
rows of Θ) and i:^ n be given. We say that q = ι r if there are α, β e Θ such that
oc[n] = q , β [ n ] = r, a n d a = f j 8 .

The definition of = f can be extended, argument by argument, to partial
functions, and hence to strings and total functions.

2.2 Definition. Let θ, 0*: N -> [0,/?) be partial functions, and let /: ̂  n be given. We
say that 0 =,-0* if for all xeN, if 0(x)| and 0*(JC)|, then Θ(x) =iθ*(x).

Trees are functions from strings into strings, so the notation of Definition 2.2
carries over to trees. Thus if T: Sfp -• ίfp is a tree and / ̂  n, then we write

T(ζ) =£ T(η)o\/x
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We thus compare T(ξ) and T(η), argument by argument, and require that for each
argument x such that x < \h(T(ξ)) and c < lh(7ϊfa)), if T(ξ)(x) = y and T(η)(x) = z,
then there are α and β in the table such that α[πl = y, β[n] = z, and α = f /?.

Uniform trees, which are introduced in the next definition, are needed in order
to make the homomorphism into the degrees which is given in Lemma 1.4 a one-one
map. Thus given ij ^ n such that ut ^ u} and eeN, we must make sure that
φβj φ gt. We use 1.2(iii) to produce an xeN on which, for some q,r<p,
T(q) =jT(r) but T(q)(x) φiT(r){x) (here, Tis the tree which we want to refine in
order to force Φ9J Φ #,). We thus try to compute Φ9

e

j(x) on some branch g of T which
extends T(q), and if we find, for this branch, that Φg

e

j(x) = T(q)(x) (and so that we
have failed to satisfy the given diagonalization requirement), then we need to switch
to a branch h cz T such that h => T{r) and h=jg. It will then follow that
Φ9j{x) = Φh

e

J(x) = T(q)(x) Φ T(r)(x). Clause (ii) of the next definition will enable us
to make this switch. The other clauses will facilitate later proofs.

2.3 Definition. A tree T is uniform if it has the following properties:

x < lh(Γ(σ * q))

A better way of picturing uniform trees is in terms of admissible p + 1-tuples of
functions. There is one function/which specifies the height of the levels of the tree,
i.e.,/(0) = 0 and/(m + 1) = lh(Γ(σ)) where lh(σ) = m. The other functions, 0/m)
specify the string placed as the7th branch of level m of the tree, i.e., the τ such that
T(σ) * τ = T(σ */) where lh(σ) = m. By Definition 2.3(iii), this τ is independent of σ
as long as lh(σ) = m. Figure 2.1 pictures such a binary tree.

(i) Vσ, τ e ^(lh(σ) = lh(τ) -> lh(Γ(σ)) = lh(Γ(τ))).

(ii) Vσ,τGypVι < » ( f f Ξ ί T H Γ(σ) = f Γ(τ)).

(iii) Vσ, τ 6 ^ V# < /? Vxe 7V(lh(σ) = lh(τ) & lh(Γ(σ))

Γ(0*l) Γ(0*0)

level 2

A2)=lh(7X0)) =
lh(7Xl»

level 1

/(l)=lh(Γ(φ))

level 0

Fig. 2.1

Clause (iii) of Definition 2.3 can be eliminated, but is useful to have since the
simplest construction yields such a tree and this fact facilitates the verification of
Definition 2.3(ii). This latter clause is vacuous in the case where Γis a binary tree.
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Definition 2.3(i), which requires that the levels of the tree be uniform, is used heavily
in the proof of the Computation Lemma. The crucial point will be that if we want to
prove that Φ9

e

n = τgh then the recovery of gx from Φ9

e

n proceeds by induction on
levels.

The first tree which we define is the identity /^-branching tree.

2.4 Definition. The identityp-branching tree Id p : £fp -+ Sfp is defined by lάp(σ) = σ for

2.5 Remark. Idp is a recursive uniform tree.

Uniforms-branching trees are the conditions of our notion of forcing. These are
ordered, as before, by the subtree relation. However, when we refine a tree by taking
one of its subtrees, we must make sure that the subtree is uniform, and so an
allowable condition.

2.6 Definition. Let Γand Γ* be trees. We say that Γ* is a uniform subtree of Γ (write
Γ* c u T) if Γ* is a subtree of Γ which is uniform.

Frequently, when we construct a subtree Γ* of a uniform tree Γin this chapter,
the following property will be satisfied:

(1) V? </?Vσ,τe^(Γ*(σ) = Γ(τ)-• Γ(τ * <?) c T*(σ*q)).

This property will facilitate showing that Γ* is a uniform subtree of Γ because,
given the uniformity of Γ, (1) together with 2.3(i) for Γ* implies the <- direction of
2.3(ii). We thus have:

2.7 Lemma. Let Tbe a uniform tree, and let Γ* be a subtree of T which satisfies (1),
2.3(i) and (iii), and

(i) Vσ, τ € Sfp Vi ^ n(σ =, τ -» T*(σ) = , Γ*(τ)).

(Note that (i) differs from 23{iί) in that the equivalence is replaced by an implication.)
Then Γ* c w r .

Proof Let σ , ΐ G ^ and i^n be given such that σ # t τ . We show that
Γ*(σ)^iΓ*(τ). Since σ # t τ , there is an x < min({lh(σ),lh(τ)}) such that
σ(x) #i i(x) . Let ξ = σ t x and η = τ Γ x. Then \h(ξ) = \h(η), so by 2.3(i) for Γ*,
lh(Γ*(O) = lh(Γ*(?y)). Thus there are σ o , τ o e ^ such that lh(σ0) = lh(τ0),
T\σo)=T*(ξ)9 and Γ(τ0) = T*(η). By (1), Γ*(σ) 3 Γ(σ0 * σ(x)) and Γ*(τ) 2
Γ(τo*τ(x)). But σ0 * σ(x) ^ f τ 0 * τ(x), and so by 2.3(ii) for T, T(σ0 * σ(x)) # t

Γ(τ0 * τ(x)). Hence T*(σ) ψ { Γ*(τ). D

We will frequently use the following types of subtrees of a tree T to force
requirements.

2.8 Definition. Let a tree T and σ e <9£ be given. Define Extp(Γ, σ), the subtree of Γ
extending Γ(σ), by Extp(Γ,σ)(τ) = Γ(σ*τ) for all T 6 ^ . Thus the branches of
Extp(Γ, σ) are those branches of T which extend T(σ).

2.9 Remark. Extp(Γ, σ) c Γand if Γis uniform then Extp(Γ, σ) c M Γ. Furthermore,
for all /z: Λ -̂̂  V̂, if T is recursive in /z then Extp(Γ, σ) is recursive in h.
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We now construct subtrees which will force the map ψ of Lemma 1.4 to be an
isomorphism. These are the trees used for diagonalization, and were alluded to in
motivating the definition of uniform tree. Their purpose is to insure that gt Φ Φg

e

j

whenever ut ^ u y The following useful definitions are given first.
Given a string σ e ^ , w e treat σ as an initial segment of the function g. Hence,

using the table Θ, we can compute the initial segments gt ί x for each / ̂  n and
x < lh(σ). We call these initial segments σ<i}. Formally, we introduce this notation
in the next definition.

2.10 Definition. Given σe^p and i^n, let σ<ι>eSfp be defined as follows:
lh(σ<i>) = lh(σ), and for each x < lh(σ), let α x e 0 b e such that σ(x) = o£πl; define
σ<iy(x) = α^1. The notation f<ίy for functions is defined similarly.

We will sometimes have to redefine a string by changing its beginning. Notation
is now introduced for this operation.

2.11 Definition. Let σ, τ, p e 5fp be given such that σ a p and lh(σ) = lh(τ). We define
the string tr(σ -> τ p), the transfer of σ into τ below p, by

ί
τ(x) if Jt <lh(τ)

p(x) if lh(τ) ^ JC < lh(p)

t otherwise.

2.12 Definition. Let T be a tree and let eeN and ij ^ n be given. T is <e, ij}-
differentiating if for all g a T, Φ9J φ gt.

2.13 Lemma. Let Tbe a uniform tree and let eeN and i,j ^ n be given. Assume that
Ui^Uj. Then there is a tree T* ̂ UT such that Γ* is (ejjy-differentiating.
Furthermore, for all h: N-> N, if T is recursive in h then T* is recursive in h.

Proof. First assume that there are σ e £fp and x e N such that for all τ e 5^, if σ ^ τ
then Φj ( τ ) O > (x) | . In this case, fix such a σ and let Γ* = Extp(Γ, σ). The lemma now
follows from Remark 2.9. Otherwise,

(2) Vσe^Vxe7V3τe^(σ <Ξ τ&Φj ( τ ) O > >(x) |).

The table given by Definition 1.2(iii) allows us to fix oc,βeΘ such that oc=jβ but
α Φiβ. Let oc[n] = r and β[n] = q. Since Tis uniform, it follows from Definition 2.3(ii)
that T(r)=jT(q) but T(r)ψiT(q), so there is an JC < lh(Γ(r)) such that
T(r)<iy(x) Φ T(q)<iy(x). By (2), we can fix τ e ̂  such that r c τ and Φj ( τ ) O > (x) | = z.
Let p - tr(r -• q; τ). Then τ Ξ^p so Φ j ( p ) O > ( x ) | = z. Since Γ(τ)<I>(x) ^ Γ(/?)<ί>(x),
we can let σ = τ if Γ(τ)<ι>(x) ^ z, and σ = p otherwise. We now define
Γ* = Extp(Γ,σ) and note that Γ* is <e, /j>-differentiating. The lemma now
follows from Remark 2.9. D

2.14 Definition. Let Diίfp(T,e,iJ) be the <e, /j>-differentiating subtree of Γ
defined in Lemma 2.13.

The initial segments results which are proved in this chapter can be relativized
through the use of pointed trees. These trees are defined exactly as in Lemma V.4.2.
Narrow subtrees, which are used to construct degrees which are not in L! are also
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defined exactly as in Lemma V.3.9. It is, however, more difficult to construct
uniform e-total trees. Such trees were used to control the double jumps of the
degrees constructed. We now indicate how to construct these trees.

2.15 Lemma. Let eeN be given, and fix a uniform tree T. Assume that

(i) \/xeN\/σeSfp3τe6fp(σ <= τ&Φj(τ)(;c)|).

Then there is an e-total Γ* c u T. Furthermore, for allh:N^>N,ifTis recursive in h
then 7"* is recursive in h.

Proof We define Γ* by induction on lh(σ). Let {σj .jeN} be a one-one recursive
correspondence of N with Sfp.

Stage 0. Find the least jeN such that Φj ( σ j ) (0) | . Such a j must exist by (i). Let

Γ*(0) = T(σj).

Stage m + 1. The induction step is an iteration of the operation performed at Stage
0, dovetailed with the dummying in of strings in order to preserve uniformity. Let
Po,...,pr be the set of strings in Sfp such that lh(p£) = m + 1. We perform a
subinduction on {s\s ^ r + 1}. At substage s, we will define {τs

q:q ^ r) such that
for all q ^ r, T*(p~) a τq £ c τ* so as to preserve the uniformity of Γ* and to
force the convergence of Φζsί(m + 1). We assume the following induction
hypotheses:

(3) V£ η e ^(lh(£) = lhfo) = /*!-> lh(Γ*«)) =

(4) Vί,ςf<rVi<5(lh(^) = lh(τ;)).

(5) V£ e ^(lh(ξ) = m - Γ*(ί) c Γ).

(6) V<7^rW<s(τ;c=;Γ).

(3)-(6) are easily verified at the end of Stage 0.

Substage 0. For all q < r, fix the unique /9eiV such that pή = p~ *iq. By (5),
T*(j)~) = 7T[^) for some ^e«9J. Set τ^ = T(ηq * /β) for all q ^ r. Note that (4) and
(6) hold since T is uniform.

Substage s, l < j < r + l . Find the least / e # such that Φ (̂/w -f 1) | and
τ*l} c σ . c: Γ. By (i) and (6), such an / must exist. For each q ^ r, define

Since T is uniform, (4) and (6) hold with s + 1 in place of s.
If s = r + 1, set Γ*(pβ) = τ* + 1 for all ^ ^ r. By (4) and (6), we note that (3) and

(5) follow for s + 1 in place of s.

This concludes the construction of T*. (3)-(6) can be used to show that
Γ* c u T; we leave the verification of this fact to the reader. It is easily shown that
Γ* is e-total. Furthermore, for all h\N-• N, if T is recursive in A, then Γ* is
recursive in A. 0

2.16 Definition. Let Totp(Γ, e) be the e-total uniform subtree of T constructed in the
proof of Lemma 2.15.
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2.17 Remarks. Spector [1956] used admissible triples in order to construct a
minimal degree. Shoenfield [1966] simplified the construction of a minimal degree
by using trees instead of admissible triples. Subsequently, Hugill [1969] and
Lachlan [1968] recast Spector's construction in terms of uniform trees. Admissible
triples were also used by Miller and Martin [1968] to construct hyperimmune-free
degrees.

2.18 Exercise. Verify the claim that Totp(T,e) is a uniform subtree of T and is
e-total.

3. Splitting Trees

The splitting trees which are used to construct distributive initial segments of Q) are
introduced in this section. In order to prove that such trees exist, we require
additional properties of tables. These properties are introduced as they are needed.

Given eeNand a uniform tree T, we want to find / ̂  n such that for all g a T, if
Φ9 is total, then Φ9

e=τ 9v We will be able to do this if Γis e-splitting for i. This fact is
the content of the Computation Lemma, which we prove after introducing some
useful terminology.

3.1 Definition. Let σ, τ, p e £fp and e, ieNbe given such that <τ, p} is an e-splitting of
σ. We say that <τ, p} e-splits σ mod i if τ =ιp.

3.2 Definition. Let Tbe a tree, and let eeN and / ^ n be given. Tis said to be an
e-splitting tree for i if:

(i) Vσ e ^ V?, r </?(## t r ^ < T{σ * q), T(σ * r)> e-splits T(σ)).

(ii) Vσ, τ G ^ p « Γ ( σ ) , Γ(τ)> e-splits Γ(0) ^σφiτ).

3.3 Computation Lemma. Let The a uniform tree and let eeN and i^nbe given such
that T is an e-splitting tree for i. Let h\ N ^ N be given such that T is recursive in h.
Then for every branch g ofT, ifΦ9

e is total, then Φ9

e^τQi®h andg, ^ΎΦ9

e®h, where
g v is defined as in Lemma 1.4.

Proof Let Γ, e, / and h be given as in the hypothesis of the lemma. Fix g a T such
that Φg

e is total. We first show how to compute Φ9

e using a gx ® h oracle. Given xeN,
search for σe£fv such that T(σ) =,g and Φτ

e

(σ\x)[. Such a σmust exist since g a T
and Φ9

e is total, and can be found through the use of a g{-® h oracle. Now if τ e yp,
T(τ)czg, and ΦT

e

{τ\x)U then T(τ) = tg = t T(σ\ and so by Definition 3.2(ii),
Φ^τ\x) = ΦT

e

{σ\x) = Φ%x).

We now show how to compute gt using a Φ9

e® h oracle. We proceed by
induction on the levels of T. At stage s in the induction, we define σse^p such that
lh(σs) = s and T(σs) =ιg. Since gfa) = T(σs)

<i}(x) for all x < lh(Γ(σs)), this allows
us to compute gt.

Stage 0. Since Γ(0) c g, we can set σ0 = 0.
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Stage s + 1. By induction, we are given σs such that lh(σs) = s and T(σs) = tg. By
Definition 3.2(i), it follows that for every q < p such that T(σs *q)φi g, there is an
xe N such that Φj{(Ts*q)(x)l Φ Φ9

e(x). Hence one by one, we can eliminate various
q < p as potential candidates for the satisfaction of T(σs *q) a g, until all remaining
candidates are in the same = f class. By Definition 3.2(ii), if lh(σ) = s and
T(σ * q) a g, then q will not be eliminated during this procedure. Hence if we fix any
r < p remaining after the elimination process has been completed, it will be the case
that Γ(σ s*r) =tg. Let σ s + 1 = σs*r. Note that the elimination process can be
carried out through the use of a Φ9

e® h oracle. D

Given a uniform tree T and e e N, we can apply the Computation Lemma if we
can build an e-splitting tree T* ^UT for some k ^ n. i will be chosen so that
uk= A%σ where °Ua = {UjβL: there are no ^-splittings mod/ of T(σ)} for some
σ e £fv. In order to apply the Computation Lemma, we need to know that uk e Wσ i.e.,
that Wσ is closed under Λ . Thus if uk = wf Λ UJ and there are no ^-splittings of
T(σ) mod / and none mody, then there are no ^-splittings of T(σ) mod k. This is
proved by assuming that <Γ(τ), T(p)} e-split Γ(σ)mod/r, and interpolating
τ = τo,τu...,τυ = p such that τ 0 =iτί =jT2 =,•••• =}τΌ and for m = l , . . . ,u,
Φ Jiτm)(x)i where x is chosen so that T(τ) and T(p) e-split on x. We will then have a
contradiction, having produced an ^-splitting of T(σ) mod / or an ^-splitting of
T(σ) mod/ We will prove a lemma which tells us that we can always find such
interpolants. The proof of the lemma relies on the fact that we are using a lattice
table rather than a usl table.

3.4 Definition. The usl table Θ for i f is a lattice table if it satisfies the following
additional greatest lower bound preservation property.

V/,7,k < n(uι A Uj = uk<->Vα,βeΘ(μ =kβ<r-+

3yθ9...,ymeθ(θL = y0 Ξ Ξ ^ =jy2 = f =jym = β))).

Recall the table for the diamond lattice which we reproduce in Fig. 3.1 below as
an example. Note that u0 = uλ A U2 and α0 = 0 α3 but α0 ψ i α3 and α0 Φ2^3 The
single interpolant ocί can be chosen in this case. For α0 = i αx Ξ 2 α 3 .

Henceforth, unless otherwise indicated, we assume that Θ is a lattice table
for if.

So

0

0

0

0

g\

0

0

1

1

22

0

1

0

1

# 3

0

1

2

3

Fig. 3.1

3.5 G L B Interpolation Lemma. Let ij,k ^n and τ,pe^p be given such that

Ui Λ Uj = Kfc,lh(τ) = lh(p) andτ =kp. Then there is a sequence τ = τo,τί9... , τ m = p
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of elements of £fp such that

lh(τ0) = lh(τi) = = lh(τm) and τo=iτι=jτ2=i =}τm.

Proof. We proceed by induction on lh(τ). The lemma is trivial for τ = 0. Assume
that the lemma holds whenever lh(τ) = s. Let i,j9k ^n and τ,peSfp be given
satisfying the hypothesis of the lemma with lh(τ) = s + 1. Fix q, r < p such that

τ = τ-*q and p = p~*r. By induction, there are interpolants
τ " = po,pu...9pv = p~, all of lengths, such that ρ0 = f p i =jp2 =i"m =jpv- By
Definition 3.4, there are q = q0,... ,qw = r such that each qx is <p and
# 0 =tqi =jq2 =i''' =j<lw' It is now easily checked that the sequence po*qo,
Pi * <7o> , Pv * <7o? Pv*<Ii,-',Pv*qw n a s the desired properties. D

The GLB Interpolation Lemma is used to prove the following important
proposition.

3.6 Proposition. Let The a uniform tree, andleteeNandij, k ^ nbe given such that
Ui Λ Uj = uk. Assume that there is an e-splitting mod k on T, and that

c τ &Φj ( τ ) (x)i).

Then either T has an e-splitting mod / or T has an e-splitting mod/

Proof. Let <Γ(τ), Γ(p)> be an ^-splitting mod k on x. Without loss of generality, we
may assume that lh(τ) = lh(p) since T is uniform. By the GLB Interpolation
Lemma, we can fix a sequence τ = p 0 , P i , . . . , pm = p of strings, all of the same
length, such that for all c < m, there is a de{i,j} for which ρc =dpc+1. Define
τ 0 = p 0 ? and assuming that c < m and τc has been defined, let τc+1 be the least σ
(under some fixed recursive one-one correspondence of SPp with N) such that
σ ^ tr(pc ->p c +i;τ c ) and Φj (σ)(jc)|. Then there is a least c < w such that
<Γ(τc), Γ(τc + 1)> ^-splits on x. For some ί/e {/j}, τc = d τ c + 1 . Since Γis uniform, we
have produced an e-splitting mod i or an e-splitting mody on T. D

Let Tbe a uniform tree, and let eeN and / ̂  n be given so that the following
conditions hold:

(1) Vσe^V/ ^ (̂Mj. > Wi -> 3 τ , p e ^ ( σ c τ & σ c

(2) Vσ, τ e 5^(σ = f τ - > < Γ(σ), Γ(τ)> is not an e-splitting).

(3)

Under these circumstances, we will want to build an e-splitting subtree Γ* ^ M Γfor
/. The construction of such a tree proceeds level by level. At each level, we iterate a
certain basic procedure which, when completed, will guarantee that < T*(σ), Γ*(τ)>
is an e-splitting for the particular σ and τ chosen with σ φ{τ. Conditions (1) and (3)
allow us to carry out this procedure, as we show in the next lemma.

3.7 Lemma. Let The a uniform tree, and let e eNand i ^nbe given so that (1) and (3)
hold. Let σo,σιe£fp and j < n be given such that lh(σ0) = lh(σi), σ0 =j(?i,
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Uj ̂  ut. Then there are τ 0 , τx G 5 ^ such that lh(τ0) = lh(τi), σ0 ^ τ 0 ,
<Γ(τ0), 7"(τi)> W β« e-splittίng mod/

^ τ 1 ?

Proof. Search for an ^-splitting mody, <Γ(ξ0), 7\£i)> of Γ(σ0), which must exist by
(1). (See Fig. 3.2; strings marked with the same symbol are equal.) Let

), Tζξi)} e-split on x, and let η = tr(σ0 -• σi ξ0). Search for p ^ η such that
1; such a p must exist by (3). Let ξ* = tτ(η -+ ξk;p) for fc = 0,1. Then

), T(ρ)} is an e-splitting mody for some he {0,1}. Fix this A: and let τ 0 = £*
and Tx = p to complete the proof of the lemma. D

Fig. 3.2

We continue the discussion preceding Lemma 3.7. Suppose that 7 satisfies
(l)-(3), and that we want to build an e-splitting subtree 7* of 7 for /. Suppose that
7*(£*) has been defined for all ξ* e ^p such that lh(ξ*) ^ m, and we want to define
7*(σ*) where lh(σ*) = m + 1. Let T*(σ*~) = T(ξ).

Given τ* e<fp such that lh(τ*) = /w + 1, τ* # f σ * , and 7*(τ*~) - T(η), we will
need to define 7* so that <7*(σ*), 7*(τ*)> is an e-splitting, while preserving the
uniformity of 7*. Thus we will have to find σ 3 ξ and τ ^ ^ such that <7(σ), 7(τ)>
is an ^-splitting modj (Uj is the greatest element of L such that σ* = 7 τ*), in order to
erect this ^-splitting on the uniform tree Γ* with T(σ) c Γ*(σ*) and Γ(τ) c Γ*(τ*).
(The procedure which we follow will be iterated to take care of all σ* and τ*
satisfying the above conditions.)

Lemma 3.7 allows us to find σ and τ as in the above paragraph. However, we will
still have to define Γ*(p*) for p * e ^ with lh(p*) = m+l and ρ*<£{σ*,τ*}. In
order to be able to define Γ*(p*) while preserving the uniformity of T*9 we require
that the table be homogeneous. The following example is used to demonstrate the
need for the homogeneity property. The reader should refer to Fig. 3.3 while
following the example.

Consider the diamond lattice of Fig. 3.1 together with its corresponding table.
Let T = Idp, and suppose that we are trying to build an e-splitting subtree Γ* of T
for / = 2, after having specified that Γ*(0) = 0. Since 0 φ2 1, <Γ*(0), Γ*(l)> must
be an ^-splitting. Since 0 = i 1, the uniformity of Γ* requires that Γ*(0) = x Γ*(l).
We use Lemma 3.7 and find, for example, that <0 * 3,1 * 2> = < 7(0 * 3), 7(1 * 2)> is
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an ^-splitting. We then want to specify that 0 * 3 ς ;F*(0) and 1 * 2 c Γ*(l). We will
also have to specify the strings of length 2 which are to be initial segments of Γ*(2)
and Γ*(3). We begin by forming a diagram (see the left-hand side of Fig. 3.3) whose
columns correspond to the tuples of the table. We have already specified the initial
segments of length 2 corresponding to the tuples α0 and αx as 0*3 and 1 *2
respectively (αf and / are identified), so we place these strings in the designated
columns and fill in the remaining columns with dashes. We now need a way to fill in
the dashes while preserving the uniformity of Γ* thus for all k ^ n, ij < p and
r ^ 1, we must satisfy the condition

α« =kθtj^fr(ocd =kfr(ctj)

where/r(αt) is the integer placed in row r, column /, of the diagram. The right-hand
side of Fig. 3.3 indicates how to define/0 and/i for the given example. We now have
to check that each/ preserves congruences. Thus 0 Ξ 2 2 and 0 * 3 = 2 2 * l . We
leave it to the reader to check the remaining cases.

/o

/ l

0

3

1

2

<*2

-

-

-

-

/o

Λ

Fig. 3.3

The homogeneity property which will allow us to fill in the dashes as in Fig. 3.3
in a congruence preserving way is now defined.

3.8 Definition. The lattice table Θ for <£ is homogeneous if for all α0, α l 5 β0, βi e Θ,
whenever

(i) Vk^n(xo=ΞkaLί-+βo=kβi)

then there is a function f\Θ -+ Θ such that for all je{0,1} and oc,βeΘ

(ii) /(α, ) = ft

and

(iii) V ^ φ Ξ f c ^ / ( α ) E , /OS)).

For the rest of this section, assume that Θ is a homogeneous table. This
homogeneity property can be lifted to £fp as follows:

3.9 Lemma. Let σ0, σ 1 , . . . , σ p _ 1 e ^ be given such that lh(σ0) = lh(σi) =
• = lh(σp_ ι) andfor all q, r < p and all k < n, ifq =kr thenσq =kσr. Let w, v < p
and τu, τve^pbe given such that lh(τtt) = lh(τ,,), σu c τu, σv c Tt7J and for all k ^n,if
u=kv then τu=kτv. Then there exist p0, p l 5 . . . ,ρp-i £ ^ ŵc/z /Aαί
lh(po) = lh(pθ = = lh(pp_ 0, τu = pu, τv = pV9 σ} c p^./or α//y < p, and for all
q,r <p and k ^ n9 ifq =kr then pq =kρr.
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Proof. By choice of τu and τV9 for each k ^ n and xeNsuch that lh(σu) ^ x < lh(τu),
if u = k v then τu(x) = k τv(x). Since Θ is homogeneous, for each such x there is a map
fx: such that fx(u) = τu(x),fx(v) = τv{x) and for all q,r < p and k ^ n,iΐq =kr then
fχ(Φ =kfx(r). For each # < p, define

ί
'σg(x) if x < lh(σq)

fx(q) if lh(σβ) < x < lh(τM)

ΐ otherwise.

Then {pq:q <p} has the desired properties. D

We now have all the pieces needed to construct an e-splitting subtree for /. These
trees are now constructed as subtrees of uniform trees.

3.10 Lemma. Let Tbeα uniform tree, and leteeN and i^nbe given so that (l)-(3)
hold. Then there is a tree T* ^UT which is e-splitting for i. Furthermore, for all
h:N-*N, if T is recursive in h then T* is recursive in h.

Proof We proceed by induction on the levels of Γ*. At stage s of the induction, we
define Γ*(σ) for all σe^p such that lh(σ) = s. We begin, at stage 0, by setting
Γ*(0) = 7X0).

Stage s + \. Let {{ηm,qm,rm}:m < m0} list all {η,q,r)e^p x [0,/?)2 such that
\h(η) = s and q φ t r. For m < m0, let ξm e 9>v be the string such that T(ξm) = T*(ηm).
We perform a subinduction on { m : m ^ m 0 } , defining, at step m, a sequence
{pjeSfp:j < p} which satisfies:

(4) lh(p-) = lh(p?) = •• =lh(p-_ 1 ) .

(5) Vj<p(m>0^p?=>pJ-1).

(6) Vq,r<pVk < n(q ^kr^p™ = k p r ") .

(7) m > 0 -• <Γ(ξm_! * p*m_), T(ξm.! * pr

m

m t)> is an e-splitting.

We begin, for m = 0, setting p^ = 7 for all j < p.

Substagem + 1. Let wfcm be the greatest element of L such that qm =krnrm. Such a &w

must exist, as is seen immediately from the Least Upper Bound Property for tables
(Definition 1.2(iv)). By Lemma 3.7, there are τ^m, τ Γ m e5^ such that τqrn 3 p™m,
τrm 3 p ^ ? and (T(ξm * τβ J , Γ(^m * τΓm)> is an e-splitting'mod A:m. By (4) andm(6), the
hypotheses for Lemma 3.9 are satisfied, so Lemma 3.9 produces {pj+1:j <p)
satisfying (4)-(6) with m + 1 in place of m. Since p™*1 = τqm and p™^: = τΓm, (7) is
also satisfied.

Once the subinduction is completed, we define T*(η * q) = T(ξ * p™°) for all
such that lh(ιy) = s and all 4 < p, where £ is defined by T(ξ) = T*(η).

Since the subinduction satisfies (4)-(6) and by the definition of T*, we note that
71* is a uniform tree. Since the subinduction satisfies (5) and (7), Γ* is an e-splitting
tree for /. (Note that this is the only place where (2) is used.) Furthermore, if T is
recursive in h, then the construction of Γ* can be carried out recursively in h. D
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3.11 Definition. Let T be a uniform tree and let eeN and / ̂  n be given so that
(l)-(3) are satisfied. Then Lemma 3.10 constructs Γ* ^UT such that Γ* is an
e-splitting tree for i. We give that tree Γ* a name, Spp(Γ,e, /).

The final result of this section shows that if T is a uniform tree and eeN, then
there is some / ̂  n such that T has an ^-splitting subtree for /, provided that T
satisfies (3).

3.12 Lemma. Let The a uniform tree satisfying (3) and let eeN be given. Then there is
an i ^n and a tree T* ̂ UT such that Γ* is e-splitting for i. Furthermore, for all
h: N -> N, if T is recursive in h then 7"* is recursive in h.

Proof. For each σe^p, let %σ = {ukeL: there are no ^-splittings mod/: on
Extp(Γ, σ)}. Note that if σ c τ then <%σ c <%t. Since L is finite, we can fix σ e £fp such
that %a =

 ύUτ for all τ ^ σ. Let ut = Λ * σ . By Proposition 3.6, ut e <%σ, hence (1) and
(2) hold for E x t p ( 7 » . Hence by Lemma 3.10 Sp p (Ext p (7»,e,/) is the desired
tree. D

3.13 Remark. The notation for marking trees as in Fig. 3.2 was introduced by
Epstein [1975].

4. Initial Segments of 2)

We will show, in this section, that if i f is a lattice which has a homogeneous lattice
table, then if is isomorphic to an ideal oϊS . In particular, we will show that every
finite distributive lattice is isomorphic to an ideal of Θ. This fact is then used to
show that Th(^) is undecidable.

4.1 Notation. Let if be a usl. We use if c=>* 2 to denote the assertion that 5£ is
isomorphic to an initial segment of 3>.

Let ^£ = <L, ^ , v> be a usl such that i f cz> * ̂ , and let/be the embedding map.
Then L is a lattice if and only if /(L) is a lattice.

We have been using the words ideal and initial segment almost interchangeably
in this chapter. We note that an ideal of 2 is an initial segment of 9 which is closed
under u .

The embedding results of this chapter are corollaries of the following theorem.

4.2 Theorem. Let ̂ £ be a lattice which has a finite homogeneous lattice table. Then

Proof. Let if = <L, ^ , v , Λ > b e a lattice with finite homogeneous table Θ. Let
L = {w0,..., un} where u0 and un are, respectively, the least and greatest elements of
L. Without loss of generality, we can renumber Θ so that {α [" ] :αe0} = [0,/?). We
construct a function g:N-+ N and embed ^£ into Of with the embedding map
sending w£ to g<ι} for all / ̂  n. By Lemma 1.4, it suffices to construct g so that the
following requirements are satisfied for each eeN:
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(1) Pe,ij'.g<iy £ T Φf\ where ij ^ n and u, ^ Uj.

(2) Qe: If Φg

e is total, then Φg

e=τ g<i} for some i ^ n.

Let $ = {Re:eeN} be the set of all requirements mentioned in (1) and (2).
Our notion of forcing is < ^ , c > where ZΓp is the class of all recursive uniforms-

branching trees and c is the subtree relation. We say that T forces Re (write
if every branch g of T satisfies Re. For each Re 01, let CΛ =

: Γ | | - /?} and let <€ = {CR\ReM}. We show that each CR is a dense set.
Let Te^eeN and ij ^ « be given such that u x ^ w, . By Lemma 2.13, there is

an <e,/^-differentiating tree Γ* = Diffp(T,e,iJ) ^ u Γ S u c h that Γ * e ^ . Since
Γ* is <e, /,7>-differentiating, Γ* 11- P e > i J .

Let Te$~p and ^eTV be given. Assume first that

(3) Vσ G 5£ VJC e TV3τ e 5^(τ ^ σ & ΦJ(τ)(x)|).

By Lemma 3.12, there is then an / ̂  n and a tree Γ* c M Γsuch that Γ* is e-splitting
for /. It then follows from the Computation Lemma that Γ* | \- Qe. If (3) fails to
hold, then there are x e N and σ e £fv such that for all τ G 5£, if τ ^ σ then Φj(τ)(;c)t.
Fix such a σ and let Γ* = Extp(Γ, σ). By Remark 2.9, Γ* c M Γ so T* e 3Tp. In this
case, for all g cz T*, Φ9

e is not total, so Γ* | | - g e .
We have thus shown that <& is a collection of dense sets. By Theorem II.2.8, there

exists a ^-generic set G. By Lemma V. 1.9, we can choose a function # G ΠG. By the
definition of 11— on 01, all requirements are satisfied by this g. 0

The proof of Theorem 4.2 can be modified, using techniques introduced in
Chap. V, to yield more information about embeddings if d > * ^ . Results of this
form are left as exercises for the reader.

The diamond lattice is an example of a lattice which satisfies the hypothesis of
Theorem 4.2. Additional examples are now discussed.

4.3 Definition. The lattice <L, ^ , v , Λ> is distributive if for all x,y,zeL:

(i) x v (y A z) = (x v y) Λ (X V Z).

(ii) x A (y v z) = (x A y) v (x A z).

The following theorem is proved in Appendix B.I. 11.

4.4 Theorem. Let $£ be a finite distributive lattice. Then <£ has a finite homogeneous
lattice table.

Theorem 4.2 and Theorem 4.4 combine to yield the following corollary.

4.5 Corollary. Let ££ be a finite distributive lattice. Then J£ a>* @.

Other lattices to which Theorem 4.2 applies can be found in the exercises and in
Thomason [1970].

Corollary 4.5 yields important information about the decidability of

4.6 Theorem. Th(^) is undecidable.
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Proof. Let if# be the language for finite posets introduced in Chap. II.3.8. Then
there is a formula Θ(x) of i f # which is satisfied in 2 by d e D if and only if ^ [ 0 , d] is
a distributive lattice. Let S be the set of all sentences of i f * which are true of all
distributive lattices, and let F be the set of all sentences of i f * which are true of all
finite distributive lattices. Then S c F. Ershov and Taitslin [1963] have shown that
there is no recursive set R such that S c R<^ F.

Let σ be any sentence of i f *. Let σ'(x) be the formula obtained from σ by
restricting all quantifiers of σ to elements < x, and let σ" be the sentence
\fx(Θ(x) -• σ'(jc)). Let # = {σ: 2 \= σ"}. By Corollary 4.5, S ^ H ^ F. Thus Th(0)
must be undecidable, else // would be recursive. D

It will follow from Exercise 4.17 that the sets H and 5 in the proof of Theorem
4.6 are identical.

4.7 Remarks. Theorem 4.2 is due to Thomason [1970]. Corollary 4.5 and Theorem
4.6 were proved by Lachlan [1968].

Thomason's proof of Theorem 4.2 was the first result about initial segments of
2 to explicitly focus on the use of representations of lattices, and so paved the way
for further theorems of the form if cz>* 2 which we prove in the next two chapters.
Much work on theorems of the form if cz**^ was done in the period between
Spector [1956] and Thomason [1970], and most of these results were subsumed by
Thomason's results. With the exception of Lerman [1969], these results used binary
trees, so clause (ii) of Definition 2.3 (uniform trees) was vacuous, but clause (iii) was
crucial in that setting. Large numbers of branches at a given node of a tree were thus
not used; rather, many levels of a binary tree were used to recover functions having
degree in the initial segment. Thus for the diamond lattice, if g was the degree
constructed, then g1 was defined by #i(x) = θQx) for all x e N, and g2 similarly was
just the odd part of g.

We list the initial segments results which preceded Thomason [1970] with
references. The three element chain; Titgemeyer [1962]. The diamond lattice;
Sacks [1963]. Finite boolean algebras and some infinite ones; Rosenstein [1968]
and Shoenfield (unpublished). Countable linearly ordered sets; Hugill [1969].
Countable distributive lattices; Lachlan [1968]. 1 - 3 - 1 (see Fig. 4.1);
Shoenfield (unpublished). 1 — n — 1 where n — 1 is a prime power Lerman [1969].
The pentagon (see Fig. 4.2); Lerman [1969].

n elements at this level

1 — n — 1 (or the «th Chinese lantern)

Fig. 4.1

The embedding of the pentagon as an initial segment of 2 used a weakly
homogeneous lattice table. Thomason notes that his proof can be modified to
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replace homogeneity with weak homogeneity, but this was still not sufficient to 
prove 9 q* 9 for all finite lattices 9 .  We prove this theorem in the next section, 
passing to sequential tables for lattices. 

4.8-4.18 Exercises 

4.8 Let 9 = (L, 6 ,  v ,  A )  be a lattice which has a finite homogeneous lattice 
table. Show that there is an isomorphism 9 taking L onto an initial segment of D 
such that if u, is the greatest element of L and d = d(u,) then d") = 0(2) and d 4 GL,. 

4.9 Let 2 be a lattice with a finite homogeneous lattice table. Show that there are 
2"" distinct embeddings 9 q* 9 .  

Let 9 be a lattice and let  ED be given. We call a €  D an 9-cot'er of d if 
9 = 9[d, a]. 

4.10 Let 9 be a lattice which has a finite homogeneous lattice table and let d E D 
be given. Show that there is an 9-cover a of 0 such that a") = a u 0'') = d u 0"). 

4.11 Let 6u be a lattice which has a finite homogeneous lattice table and let c E D 
be given. Show that there is an 9-cover a of c such that a(') = d2) and a @ GLl(c). 

4.12 Let 9 be a lattice which has a finite homogeneous lattice table and let d E D 
be given. Show that d has 2'0 distinct 9-covers. 

4.13 Let 9 be a lattice which has a finite homogeneous lattice table and let c, d E D 
be given. Show that there is an 2-cover a of c such that a") = a u c(') = d u c('). 

4.14 Let  ED be given. Show that the following theories are undecidable: 

(i) Th(9Cd, 0)). 

(ii) Th(9[d, d"'). 

(iii) Th((D'2)(d), < )) where D(2)(d) = {c E D:  c d & c(') = d")). 

(iv) Th((D*, <)) where D* is any subset of D for which 

D(')(d) G D* for some d E D. 

Let 9 be a lattice with least element 0 and let I be a countable ideal of 9. We call 
a E D an 9-cover of I if 9 - (0) E (D(1, a], < ) where 

D(I,a] = { d ~ D : d  < a & V c ~ I ( d  > c)). 

4.15 Let 9 be a lattice with a finite homogeneous lattice table and let I be a 
countable ideal of 9. Show that I has an 9-cover. 

4.16 Let 9 be a lattice with a finite homogeneous lattice table and let I be a 
countable ideal of 9. Show that I has 2'0 distinct 9-covers. 

*4.17 Let 9 = (L, < , v , A )  be a countable distributive lattice with least element 
uo and greatest element u,. For each i~ N, let 9, = (L,, 6 ,  v ,  A )  be a finite 
sublattice of 6u extending YiPl and containing u, and u, such that 
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L = U{Lf:/eiV}. Given a lattice table Θ for ί ? i + 1 , we let

Θ r /={<α [ 0 ] , . . . ,α [ " ( ί ) 1 ) :α6(9} ,

where L, = {u0,..., unii)}. A sequential table for i f has the form {Θifj: ijeN} where

(i) Vi,jeN(Θij is a finite homogeneous lattice table for «Sff).

(ii) VieW3/oeΛΓY/ >jo(θi+1J \ i ς; 6>tJ).

(iii) V/GN({((xjy: αe Θ/>7 } is recursive).

In Exercise 1.12 of Appendix B, we show that every countable distributive lattice
with least and greatest elements has a sequential table. Use this fact to show that
if c ^ * ^ . (Hint: For all ijeN, define/ f:N-> TV by/X/) = | 6 y . List all require-
ments, and satisfy the wth requirement using an/*-branching tree where/* = /„ for
all but finitely many n.)

4.18 Let n e N be given such that n = pk — 1 for some prime number p and some
ke N. Show that 1 - w - l c ^ * ^ . (Hint: It suffices, by Theorem 4.2, to show that
1 — n — 1 has a finite homogeneous lattice table. Such a table can be obtained from
the projective plane of order pk by numbering the points of the projective plane and
letting two points be in the same = f class if they both lie on the same line going
through the fth point on the line at oo. The line at oo does not correspond to such an
equivalence relation. Two additional equivalence relations are added, one in which
no two points are equivalent, and another where all points are equivalent. Schmerl
has noted that an alternate proof can be given utilizing the finite field of order pk.
Number all pairs of point in the field. The = f classes for / in the field are defined by
<<z, b} =i{c,dy if a — c = i(b — d), together with an equivalence relation under
which all points are equivalent.)

5. An Automorphism Base for

The methods introduced in this chapter will now be extended to show that the
minimal degrees form an automorphism base for 3). We will, in fact, show that the
minimal degrees generate D by proving that every d e D can be expressed as
(m0 u mt) n (m2 u m3) where {nii: / < 3} is a set of minimal degrees.

The fact that the minimal degrees generate D is a corollary of the following
result: Given a , d e D such that a ^ d, there are minimal degrees m0 and π^ such
that a = d n (m0 u m i ) . Let A and D be sets of degree a and d respectively. The
minimal degree construction is modified to simultaneously construct sets Mo and
M1 of minimal degree such that A < τ MQ © Mγ which satisfy the following
requirements for*',neN:
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The condition, A ^TMO® Mu will be satisfied as follows: Let
Z = {zeN: M0(z) Φ Mx{z)} and let {zi'.ieN} be an enumeration of Z in order of
magnitude. Mo and Mx are constructed to satisfy the following requirements for
eeN:

The satisfaction of {Se:eeN} clearly implies that A ^TMO® Mi. Special
kinds of trees are introduced in order to satisfy these requirements. All trees in this
section are binary trees.

5.1 Definition. Let τ,pe^2 be given. We say that <τ,p> is strongly uniform if:

(i) lh(τ) = lh(p).

(ii) {xeN: τ(x)l φ p(x)l} has exactly one element.

5.2 Definition. The tree T is strongly uniform if T is uniform and for all
<σ, ξ,η}eSf2, if T(σ*0) = T(σ) * ξ and T(σ* 1) = T(σ) *η then <£,η} is strongly
uniform.

Strongly uniform trees are used to enable us to satisfy {Se: e e N}. For if T were
not strongly uniform, we would not have the flexibility to determine M0(ze) for
some eeN without simultaneously determining M0(ze + ί), possibly incorrectly
insofar as the recovery of A from Mo © Mx is concerned.

Some of the trees introduced in previous sections are strongly uniform, and will
be used again in this section.

5.3 Remark, (i) Id2 is strongly uniform.
(ii) If Γis strongly uniform and σe^ 2 then Ext2(Γ,σ) is strongly uniform,

(iii) If Γis strongly uniform and Tot2(Γ,e) exists, then Ύot2(T,e) is strongly
uniform.

The forcing conditions which will be used are pairs of strongly uniform trees
which look alike except for their values on 0. To pass from one half of the pair to the
other, we use the following kind of tree, which just modifies the definition of the first
tree on 0.

5.4 Definition. Let T be a tree and let σeSf2 be given such that lh(σ) = lh(Γ(0)).
Define the tree Tr(Γ,σ) by

5.5 Remark. It is easily verified that Tr(Γ, σ) is a tree, and that if T is strongly
uniform then Tr(Γ, σ) is strongly uniform. Furthermore, for all h: N -> TV, if T is
recursive in h then Tr(Γ, σ) is recursive in h.

As we define a new pair of trees to force a new requirement, we must make sure
that we have not lost the ability to satisfy {Se: e e N}. Thus we only allow the use of
A-acceptable pairs of trees.
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5.6 Definition. Let σ,τeSf2 be given such that lh(σ) = lh(τ). Let Z(σ,τ) =
{xeN: σ(x)[ φ τ(x)|} and let {z£: i ^ k} be an enumeration of Z(σ, τ) in order of
magnitude. We then say that <σ, τ> is A-consistent if for all i^kJeA^ σ(Zi) = 1.
Let M o , M x c Λf. We say that <M0, AfΊ) is A-consistent if for all σ0, σx e ^ such
that lh(σ0) = l h ^ ) , σ0 £ M o and σx c M 1 ? <σo,σi> is ^-consistent.

5.7 Definition. Let To and Tγ be trees and let A c TV be given. We say that < Γo,
is A-acceptable if the following conditions hold:

(i) <ΓO(0), 7\(0)> is Λ-consistent.
(ii) Γo is strongly uniform.

(iii) Γ ^

The following remark will be useful in obtaining ^-acceptable pairs of trees.

5.8 Remark. Let <Γ0, 7\> be an ^-acceptable pair of trees, and let Tf be a strongly
uniform subtree of Γ, for a fixed ie {0,1}. Define

Γ*_f = Tτ(T*MTiΦ) -> ^ . , ( 0 ) ; Γ*(0))).

Then T\_i is a strongly uniform subtree of 7\ _f and <Γ*, Γ^> is an A -acceptable
pair of trees. Furthermore, if Tf is recursive, then T\_i is recursive.

The use of strongly uniform trees complicates the proof that the requirements
{Qe,i'-eeN&i ^ 1} are satisfied, where

QejAf Φf < is total, then either Φff is recursive or Aff ^ Φ f ' .

The other requirements which must be satisfied are the following for e e N and
/ ^ 1 :

The next lemma is used to show that all requirements in {Se:eεN} can be
satisfied. We first define the ordering which is placed on acceptable pairs of trees.

5.9 Definition. Let <Γ0, 7\> and <Γ*, Γ*> be ^-acceptable pairs of trees. Then
<Γ*, Γ*> c <Γ0, Γx> if Γ* c To and Γ* c r x .

5.10 Lemma. Let eeN be given, and let < To, Tγ > be an A-acceptable pair of recursive
trees. Then thereis an A-acceptable pair <Γ^,Γ*> c {T^TC) of recursive trees such
that Z(Γ*(0), Γ*(0)) Λ^ αί feα^ e elements.

Proof. We proceed by induction on {e: eeN}. The lemma holds trivially for e = 0.
Let <Γ0 ? 7\> be an ^4-acceptable pair of recursive trees. By induction, we may
assume that Z = Z(Γo(0), 7\(0)) has at least e — 1 elements. If Z has at least e
elements, then we are done. Otherwise, fix the unique x < lh(Γo(0)) such that
Γo(0)(.x) Φ T$S)(x\ For / ̂  1, define

0 if (e - 1 G A & Γ O ( 0 ) ( J C ) =l)oτ(e-lφA& To(0)(x) = 0)

otherwise,
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and define Γ* = Ext2(Γ0, σ0) and Γ* - Ext 2(Γ 0,1 - σo) We leave it to the reader
to verify that, for / ̂  1, Tf has the desired properties. D

The strong uniformity of < To, 7\ > was crucial in the proof of Lemma 5.10. For
otherwise, it would have been possible for Z to have e — 1 elements while
Z * = Z(T*(Φ), Γ*(0)) could have more thane elements; thus the coding of A(e — 1)
into Z * might force us to code e into Z * incorrectly.

The next lemma is useful for showing that all requirements in {Ren :e,neN} can
be satisfied.

5.11 Lemma. Let e,neN be given, and let <7"0, 7Ί> be an A-acceptable pair of
recursive trees. Then there is an A-acceptable pair <Γ£, ΓJ> of recursive trees such
that <,T*9T*}^ i^TO and

(i) VMo,M! c JV«Λf0, Af!> A-consistent&M0 ^T08cM1^Tι-^
Ren is satisfied by Mo and Mi.

Proof We may assume that ΦΌ

e is total, else the lemma follows once we set Tf =
for / ̂  1. We proceed by cases.

Case I. There are xe N and σ0, o^e^ such that lh(σo) = lh(σ1), <7ϊ>(σ0),
^-consistent, and φJo(σO)θτ1(σ1)(Λ.^ φ Φf(x). Let Tf = Ext2(7;, σ,) for / < 1. It is
easily verified that <Γ£, Γ*> has the desired properties.

Case 2. Otherwise. Set Tf = Tt for / < 1. Fix M o and Mλ as in the hypothesis of (i).
If Φ f 0 @ M l is not total, then (i) holds. Suppose that φ f <>®AΊ i s total. Fix xeN. To
compute Φf(x), search for σθ9 G\£&2 such that lh(σ0) = lh(σi), (TQ(σ0), 7Ί(σi)> is
^-acceptable, and Φlo{σo)®Tύ<Jι\x)[. Such σ0 and σγ must be found since Φ f o θ M l is
total, and can be found recursively in A. Since Case 1 was not followed,

1 ) ( j c ) j SO Φ f ^ τ ^ . 0

Proposition 5.15 which follows shortly is used to show that all requirements in
{Qe,i'-eeN&i ^ 1} can be satisfied. It will suffice to prove the following: Given
e,neNand a strongly uniform recursive e-total tree T, there is a strongly uniform
recursive Γ* c Γsuch that either Γ* is an ^-splitting tree or there are no e-splittings
of Γ*(0) on T*. Similar theorems were proved earlier in the book without the
requirement that Γ* be strongly uniform, a condition which complicates the proof.
Instead of proceeding by cases, we try to construct a strongly uniform ^-splitting
T* c Γ, and if we fail, we show that there is a strongly uniform recursive Γ* c T
with no e-splittings of Γ*(0) on T*. Before giving this construction, we present
some useful definitions and a lemma.

5.12 Definition. Let m, e e N, τ, p e 5ζ, and S c y>2 be given such that for all ξeS,
m = lh(ξ) < lh(τ) = lh(p). We say that <τ, p} induces a simultaneous e-splitting for S
if for all ξeS, <tr(τ Γ m^ξ τ), tr(p f w ^ ^ p)) ^-splits ξ.

The construction of an e-splitting subtree Γ* of Γwill proceed level by level. To
construct level n of T*, we will need a simultaneous strongly uniform e-splitting on
Γof {Γ*(σ):lh(σ) = n}. We construct such a simultaneous e-splitting gradually,
adding one more σ such that lh(σ) = n to the set which is simultaneously e-split at
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each step. We construct a right e-splitting tree for the small set on which we
simultaneously e-split, and show that if we cannot enlarge the simultaneously
e-split set, then we can find a subtree of T on which there are no e-splittings.

5.13 Definition. Let T be a strongly uniform tree, and let e e N and S c ^2 be given.
Assume that for all ξ,ηeS, \h(ξ) = \h(η). Let T(S) = {T(ξ):ξeS}, and for each
k e N, let 0k be the string of length k such that 0k(x) = 0 for all x < k. We say that T
is right e-splitting for S if for all n e N and ξ e S, (T(ξ * 0π * 0), Γ(ί * 0π * 1)> is an e-
splitting.

The following lemma is the crucial lemma used to show that we can satisfy all
requirements in {Qei:eGN&i ^ 1}.

5.14 Lemma. Let T be a strongly uniform recursive e-total tree, and let e,meN,
σe^2, and S c g>2 be given. Assume that T is right e-splitting for S and that for all
ξeS, \h(ξ) = lh(σ) = m. Assume also that there is no strongly uniform e-splitting of
T(σ) on T which induces a simultaneous e-splitting for T(S). Let Γ* = Ext2(T, σ).
Then there are no e-splittings on Γ*.

Proof. Fix e, m, S, Γand σ as in the hypothesis of the lemma. It suffices to show that
there are no e-splittings of T(σ) on T. We refer the reader to Fig. 5.1. Assume that
such ^-splittings exist in order to obtain a contradiction. Let <Γ(τ), Γ(p)> be an e-
splitting of T{σ) on x. Since Γis e-total, there must be an n e N such that n > m and
for all λe^2 such that lh(/l) = n, Φj U ) (x) | . Without loss of generality, we may
assume that lh(τ) = lh(p) = n. Fix k e N such that m + k = n. Fix the largest^ < k
for which there are ξ,ηe^2 such that

(1) ξ^σ*0j*09 η^σ*0j*l9 lh(ξ) = lh(ιy) =/i and <T(ξlT(η)}

e-splits T(σ) on x.

Note that such ay" must exist since one of <Γ(σ*0k), Γ(τ)> or <Γ(σ*0fc),
β-splits T(σ) on x. Fix ξ, ηe£f2 which satisfy (1). Let τ* = tr(̂ y \ m +j + 1 ->
ξ\ m+j+l η) and let p* = η. By choice of j , <Γ(τ*), T(ξ)} cannot
e-split T(σ) on x, hence by choice of n, <Γ(τ*), Γ(p*)> must e-split Γ(σ) on x. Note
that <7"(τ*), 71(p*)> is a strongly uniform e-splitting of 7"(σ). Furthermore, for all
όeS, ^ 0 j * 0 c tr(τ* ί ra-><3;τ*) and ^ * 0 J * l c tr(p* \ m-+δ;p% so as Γ is

Γ(σ)

Fig. 5.1
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right ^-splitting for S, <Γ(τ*), Γ(p*)> is a strongly uniform ^-splitting of T(σ) which
induces a simultaneous e-splitting for T(S). This contradicts the hypothesis of the
lemma. D

We now show that all requirements in {Qey.eeN&i ^ 1} can be satisfied.

5.15 Proposition. Let The a strongly uniform recursive tree and let eeN and i ^ 1 be
given. Then there is a strongly uniform recursive subtree Γ* of T such that one of the
following conditions holds:

(i) VM c Γ*(Φf is not total).

(ii) VM c T*(Φ™ is recursive).

(iii) V M c Γ * ( M ^ Γ Φ f ) .

Proof. Fix e, i and Γas in the hypothesis of the proposition. We will construct Γ*
level by level, and, at level s, will define a set Ss of strings of length s. As long as we
are able to make Γ* a strongly uniform ^-splitting tree through level s, Ss will be
{σ E ̂ 2: lh(σ) = s}. If we first discover, at level s, that it is impossible to make Γ* a
strongly uniform e-splitting tree, we specify a maximal subset Ss of
{σG^:lh(σ) = s} for which we can find a strongly uniform e-splitting
<T*(σ * 0), Γ*(σ * 1)> simultaneous for T*(SS). We then try to construct Γ* so that
for all σeSs and & ̂  0, Ext2(Γ*, σ * 0fc) is a right e-splitting tree. As long as this is
possible at levels above s, we let St = {σ * 0, _ s : σ e Ss}. If this becomes impossible,
we find a maximal St c {σ*0r_s:σe*Ss} for which, for all (je5, and & ̂  0,
Ext2(Γ ί i ί,σ*0/ c) is a right ^-splitting tree through level k. We will then show that
lims|5's| exists and find a string σ such that Ext2(Γ, σ) has no e-splittings.

If there are σe£f2 and xeA^ such that

(2) Vτe5S(τ2σ->Φj ( t )(x)T)

fix such a σ and let Γ* = Ext2(Γ,σ). By Remark 5.3(ii) and Remark 2.9, Γ* is a
strongly uniform recursive subtree of T. (i) follows immediately from (2).

If no σ and x satisfying (2) exist, then by Lemma 2.15 and Remark 5.3(iii),
T+ = Tot2(Γ,e) is defined and is a strongly uniform recursive subtree of T. We
proceed by induction on N, simultaneously constructing Γ*, Ss and σs at stage s e N
such that either Γ* = \J{Tf:sεN} satisfies (iii) or Ext2(Γ*, σs) satisfies (ii) in place
of Γ* for some seN. Fix a recursive one-one correspondence {(τ^, τ\ >: / e N} of TV
with 5̂ 2- We will assume the following induction hypotheses at stage s + 1.

(3) Vσe^2(0 ^ lh(σ) = s - 1 -> <Γ*(σ * 0), Γs*(σ * 1)> is strongly uniform).
(This condition and the next condition are required to witness the fact that
Γ* can be extended to a strongly uniform tree.)

(4) Vσ,τG <f2Mi ̂  1 VxeJV(0 ^ lh(σ) = lh(τ) = s-\&lh(Γ*(σ)) ^ x <

lh(Γ*(σ * i)) - Γ > * i)(x) = Γs*(τ * i)(x) & lh(Γ5*(σ)) = lh(Γ s*(τ))).

(5) VσeS s(lh(σ) = J ) .
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(6) <Γ*(0 s _!*0), ΓS*(OS_!*1)> induces a simultaneous ^-splitting for

Γ*(SS~) where S; = {σ~:σeSs}.

(7) If σs is defined, then there is no strongly uniform ^-splitting of Tf(σs) on
T+ which induces a simultaneous e-splitting for Tf(S~).

Stage 0. Let So = {0} and let σ0 be undefined. Define

\T + (δ) if (5 = 0
T*o(δ) [I otherwise.

(3)-(7) are easily verified for s = 0.

Stage s + 1. The path which the construction takes is determined by the truth or
falsity of the following two conditions.

(8) 3τ,p65^«τ,p> is strongly uniform and <Γ+(τ), T+(p)) induces a
simultaneous e-splitting for Γ*(SS)).

(9) S s = {σ:lh(σ) = s}.

Case 1. (8) is true. Fix the least ie Nsuch that (8) holds for <τt°, τ/> in place of <τ, p>.
Define

CTf(δ) if \h(δ)^s

(10) Γ*+ ,(δ) = 1 Γ+(tr(τ/ \ s ^ δ~ τ/)) if lh(δ) = s + 1 & <5 = <Γ */&/ ^ 1

1̂ 1 otherwise.

If (9) is true, let Ss + 1 = {σ:lh(σ) = s + 1} and if (9) is false, let
Ss+1 = {σ * 0: σ e Ss}. Let σs+ x be undefined. (3)-(7) are easily verified with s + 1 in
place of s.

Case 2. (8) is false. Then there are R a Ss and ξ e Ss - R such that (8) holds for R in
place of Ss but (8) fails to hold for R U {ξ} in place of Ss. Fix such R and ξ. Proceed as
in Case 1, stopping after (10) and replacing Ss with R. Let σ s + 1 =ξ and
Ss+1 = {σ*Q:σeR}. (3)-(7) are easily verified with s + 1 in place of s.

By (3) and (4), Γ* = U{ΓS*: seTV} is strongly uniform. If (8) and (9) are true at
all stages s > 0, then by (6), Γ* is a strongly uniform recursive ^-splitting tree, and
so (iii) follows from the Computation Lemma. Otherwise, let s > 0 be the least stage
at which either (8) or (9) is false. (9) cannot be false at stage 5, else (8) would have
been false at some stage t < s. We now note that (9) is false at all stages t > s. Hence
for all t ^ r > s, \St\ ̂  |SΓ|, so l i m ^ l exists. Fix the least stage r such that for all
t ^ r, \St\ = \Sr\. Note that σr is defined. By (6) and (7), Γ* is right ^-splitting for
T*(S~) but there are no strongly uniform ^-splittings of Γ*(σr) on T+ which induce
simultaneous ^-splittings for T*(S~). By Lemma 5.14, there are no e-splittings on
Ext2(Γ*, σr). Hence by the Computation Lemma, (ii) holds for Ext2(Γ*, σr) in place
of T*. D

We use the next theorem to show that the set of minimal degrees generates D.

5.16 Theorem. Let a, d e D be given such that a < d. Then there are minimal degrees
m0 and mx such that a = d n (m0 u mi).
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Proof. Fix setsy4eaand/)ed. Let @={PeJ:eeN&i^ 1} U {Qey.eeN&i^ 1} U
{Rey.e,neN}\J{Se:eeN}. Our notion of forcing is ^ = <T, c> where F =
{<Γ0, 7\>: <Γ0, T{y is an ^4-acceptable pair of recursive trees} and c is defined as
in Definition 5.9. Note that #" is a poset with greatest element <Id2,Id2>.

For each Re&, define

o i ^ ( ( Q ! ) ^-consistent

and Mi satisfy R).

For each i^e^, let CR = {<Γ0, Γ ^ e F : <Γ0, 7\> | h R} and let ^ = {C
Assume, for the moment, that for each Re01, CR is a dense set. By the Existence
Theorem for ^-generic Sets (Theorem II.2.8), we may choose a ^-generic set G. By
Lemma V.1.9, there is an ^-consistent pair (M0,M{y such that for all i ^ 1,
Mi c r f for all <Γ0, 7\> e G. Since <M0, M t ) is ^-consistent and 5e is satisfied for
all eeN, A ^ τ M o © Mγ. Since /?,,„ is satisfied for all e,neN, an (m0 uπi!) ^ a
where m0 and π^ are the degrees of Mo and M1 respectively. Finally, since Pei and
Qei are satisfied for all eeN and / ̂  1, Mo and M : are sets of minimal degree.

Finally, we verify that for all Re@,CR is dense. Fix ReMΛϊR = Ren, then CR

is dense by Lemma 5.11. If R = Se, then CR is dense by Lemma 5.10. Assume that
R = Qei and let < To, 7\ > e Fbe given. Let Tf be a strongly uniform subtree of Γ, as
in Proposition 5.15, and let

(11) Γ*_f = Tr(Γf,tr(7X0) ^ Γx_t(0); Γ*(0))).

By Remark 5.8, <Γ*, Γ*> <= <Γ0, Γ ^ and <Γ*,Γ*>eF. By Proposition 5.15,
<Γ£, ΓJ> | |- Qei. Hence CR is dense in this case. Assume that R = Pei and let
<Γ0, TγyeF be given. Let L be the two element lattice with uo<uγ. Let
71* = Diff2(Γi,e,l,0) and define Γ*_/ by (11). By Remark 5.8, <Γ*,Γ*><=
<Γ0, Γχ> and <Γ*, Γ*)eF. (Note that since Diff2(Γ,e, 1,0) = Ext2(Γ,σ) for some
(je^2 ) by Remark 5.3(ii), Tf is strongly uniform.) By Lemma 2.13,
<Γ*, Γ*> \\- Pei. Hence CR is dense in this last case. 0

5.17 Corollary. Let aeD be given. Then there are minimal degrees {11̂ : i ^ 3} such
that a = (m0 u π^) n (m2 u m3).

Proof. Apply Theorem 5.16 with d = a to obtain minimal degrees m0 and πii such
that m0 u mi ^ a. Apply Theorem 5.16 again with d = m0 u mj to obtain minimal
degrees m2 and m3 such that a = (m0 u mO n (m2 u m3). D

5.18 Corollary. The set of minimal degrees forms an automorphism base for Q).

Proof. Immediate from Corollary 5.17. D

We note that the construction of the sets Mo and M1 in Theorem 5.16 can be
carried out by an oracle of degree 0(2) u a. Hence every degree b ^ 0(2) is the least
upper bound of a pair of minimal degrees.

5.19 Remarks. Strongly uniform trees were introduced by Lachlan [1971].
Theorem 5.16 and its corollaries are due to Jockusch and Posner [1981].
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5.20-5.23 Exercises

5.20 Show that the set of minimal degrees in GI^ forms an automorphism base

for®.

5.21 Let a e D be given. Show that the set of minimal covers of a forms an
automorphism base for ^[a , oo).

5.22 Let I be a countable ideal of Q). Show that the set of minimal upper bounds
for I forms an automorphism base for ®[I, oo).

The following exercise is due to Jockusch. The proof we sketch was found by
Shore. A weaker result was proved by Manaster [1971] with Σ°n replaced with Δ%+1.
It is not known whether the result holds for n = 2.

5.23 Let n ^ 3 be given. Show that there is a minimal degree which is the degree of
a set in Σ°n — Δ°. {Hint: Construct a tree 3Γ of strongly uniform recursive trees
(letting Tσ = &~(σ)) of degree *ζ 0 ( 2 ) such that each path through 9~ forces all
minimal degree requirements. F must also have the property that for all <τ, τ e Sf2>
there is exactly one xeN such that Tσ^0(τ)(x) φ Tσχi(τ)(x), and for this x,
Tσ#i(τ)(x) = i for / ̂  1. Choose a path through ZΓ corresponding to the set 0(n).
Show that the minimal degree constructed along this path has the desired
properties.)




