
Chapter XV

The Width of a Theory

Our discussion of independence has focused on individual types. We have
defined the dimension of a type p in a model M and if the type is regular
or even has weight one then this dimension is always well defined. We have
seen, however, that we may need to consider the dimension of more than
one type in order to specify a model. In Section 1 of this chapter we define
the width of a theory so that when this width is a cardinal number, it
is the number of types whose individual dimensions must be specified to
determine a model. Unfortunately, the situation is not always that simple.

There are three important cases. If all types have the same dimension,
we call the theory unidimensional. Unidimensional theories are a natural
generalization of NI-categorical theories. If there is a cardinal δ(T) such
that we must specify the dimension of δ(T) types to determine each model,
we call the theory bounded. If no such δ(T) exists, we call the theory
unbounded. Section 2 begins the study of unbounded theories. We prove
there lower bounds on the number of models for an unbounded theory. The
bounded case is the comparatively straightforward generalization of vector
space theory to allow several dimensions. In Section 3 of this chapter we
derive a number of properties of the spectrum of a bounded theory.

The unbounded case is much more complicated. It is no longer possible
to define a single unordered set as a basis for a model. Rather, there is
a skeleton which is, roughly speaking, partially ordered by dependence.
Chapter XVI is devoted to a detailed analysis of such skeletons.

We consider in Section 4 an extension of the notion of homogeneity to
obtain some more detailed information about countable models of bounded
theories. In particular, we solve Vaught's conjecture for ω-stable bounded
theories.
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1. Classifying Theories By Width

We begin this section by formally defining the width of theory. In some
respects the arguments here just reformulate those in Chapter XIII.2.

1.1 Notation. Let R(A) denote the set of non-algebraic regular types in
S(A).

Note that in Definition XIII.1, R(M, A) referred to a set of points; here
R(A) is a set of types.

1.2 Definition. Let X be a set of regular types. For X0 C X and p G X
we say p depends on XQ if for some q G XQ, q \-+κ p. δ(X) is the cardinality
of a maximal independent set of types in X under this dependence relation.
We will write δ(A) for δ(R(A)).

The treatment of this notion as a dependence relation is somewhat ar-
tificial. For most purposes, we could just describe the δ(X) defined here as
the maximal number of pairwise orthogonal types in X.

We could just as easily define p to depend on X0 if p is realized when all
the members of XQ are realized because the restriction of \-+s to ίf-strongly
regular types is totally trivial. That is, whenever a pair of strongly regular
types compel a third, one of them does. This observation makes the next
theorem easy.

1.3 Theorem. For any A, the cardinal δ(R(A)) is well defined.

1.4 Exercise. For any set M G 5, δ(M) is the supremum of the cardinals
K, such that there exist regular types {pi G S(M) :i < K} such that if i ^ j
then pi -L PJ.

1.5 Definition. The width of a superstable theory T, which we denote by
δ (T), is sup{δ (M): M G S} if such a supremum exists; otherwise δ (T) = oo.

i) If δ(T) = 1, T is called unidimensional
ii) If 1 < δ(T) < oo, T is called bounded.

\ι\) If δ(T) = oo, T is called unbounded.

We differ here from Shelah's terminology. He uses multidimensional
to refer to what we call unbounded and non-multidimensional for our
bounded.

Recall that throughout Part D we assume the class K admits stationary
regular types. We defined the width of T in terms of the acceptable class S.
Ostensibly, we could have defined a K-width of T 6κ (T) for each acceptable
class K. In fact, for superstable T all such δκ(T) are equal. To see this,
choose M G S. Extend M to an M' G K and a basis for k(M) to a
set of pairwise orthogonal regular types in S(Mf). By Theorem XIΠ.3.4
δκ(M') > δs(M') > δs(M). Thus, δκ(T) > δs(T). But the converse is
even easier noting that every ίί-strongly regular type is regular.

In the remainder of the book we concentrate on superstable theories.
Our major aim is the calculation of the spectrum of each theory and we
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know T has 2λ nonisomorphic models of power λ if T is not superstable
so we need not investigate unstable and strictly stable theories. There are,
however, important questions about the width of strictly stable theories
([Shelah 1978] V.4, [Buechler unk], [Hrushovski 1986]).

1.6 Exercise. Show that if every type has {/-rank at most 1 then T is
bounded.

The following theorem describes the fundamental properties of bounded
theories.

1.7 Theorem. The following are equivalent for a superstable theory T.

ii) T is bounded.
iii) For every type p, p / 0.
iv) For every regular type p, p / 0.

IfT is ω-stable we can add a fifth equivalent.

v) For every AT -strongly regular type p, p •/ 0.

Proof. Clearly i) implies ii). We show that ii) implies iii) and then that iii)
implies i). Suppose iii) fails. Then, there is a type p H 0 based on a finite
set a which is not (Exercise VI. 2.4) in the algebraic closure of 0. For any
cardinal /c, let (α^ : i < K) be a sequence of independent elements realizing
s£p(α; 0). Then if pi is the image of p under an automorphism taking a to α^,
by Theorem VI. 2. 22 the pi are pairwise orthogonal and we contradict ii).
Thus, ii) implies iii). To show iii) implies i), note that if there are /c pairwise
orthogonal types with K > 2lτ ', we can assume without loss that each is
based on a finite set α^ and that all the α^ have the same length. Then
by Theorem V.I. 28, we can assume that the α; are independent. Finally,
since there are only 2'τ' strong types over a finite set, two of the types
must be conjugate by a strong automorphism (Definition IV. 3. 9) mapping
their base sets from one to the other. By Theorem VI. 2. 22 this contradicts
iii) and yields the theorem. The equivalence of iii) and iv) is easy using
Theorem XIΠ.2.15.

Now v) follows easily by decomposing an arbitrary type in an ω-stable
theory as a product of AT-strongly regular types. (Apply Theorem XIΠ.3.6
(with K = AT), Exercise XIΠ.2.14, and Corollary XIΠ.2.24.)

The following theorem shows that if T is unbounded this fact is witnessed
by a particular type. The next definition picks out such a witness and
provides a useful notation for discussing its conjugates.

1.8 Definition. If the regular type p is orthogonal to the empty set, we
say p is an unbounded type. We say the unbounded type p is based on the
type r if p is strongly based on the set A and t(A; 0) = r.

Although for most of our applications T will be superstable and A a
finite set this is not essential to the definition.
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Examination of the argument for Theorem 1.7 shows that we have in
fact proved.

1.9 Theorem. IfT is a bounded theory and s£p(α;0) = s£p(6;0) then for
each p = pa£ S(a), p^ / p^

The last theorem restates Theorem VI.2.22 in this important context.

1.10 Corollary. IfT is superstate and bounded then δ(T) is at most the
number of strong types over 0 times the number of types over a finite set.
In particular, ifT is ω-stable and bounded then δ(T) < N0

It follows from [Cherlin, Harrington, & Lachlan 1985] that if T is No-
categorical, bounded, and ω-stable then δ(T) is finite.

If T is bounded the computation of δ(T) does not require the taking of
suprema.

1.11 Theorem. IfT is bounded and admits K-strongly regular types then
for all Me K, δ(M) = δ(T).

Proof. If possible, choose M G K with δ(M) < δ(T). Imbed M in N with
δ(N) > δ(M). Let X be a basis for £(M). Then X1', the collection of
nonforking extensions to TV of the types in X, is an independent set of
regular types over N but it is not maximal such. Let q G S(N) be regular
and orthogonal to each member of X' and hence to each member of X. By
Theorem 1.7 ii), q / 0 so q -fi M. Therefore by Corollary XIII.3.4, q / r for
some regular r G S(M). Since X is a basis for £(M) this implies q is not
orthogonal to some member of X. This contradiction yields the result.

1.12 Exercise. Let T be the theory of seven disjoint, infinite, unary pred-
icates. Find a basis for the strongly regular types over the prime model of
T.

1.13 Exercise. Let T be the theory of infinitely many disjoint, infinite,
unary predicates. Find a basis for the strongly regular types over the prime
model of T.

1.14 Historical Notes. The division of theories into multidimensional
and non-multidimensional ones was made by Shelah in [Shelah 1978]. His
definition is more complicated and applies to stable theories. The definition
here is due to Lascar and agrees with Shelah's on superstable theories. The
preparation of this chapter also depended heavily on the surveys by Pillay
[Pillay 1983f] and Saffe [Saffe 1983].
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2. Unbounded Theories

In this section we deal with unbounded or multidimensional superstable
theories. At this time we will only provide lower bounds on the number of
models in various classes of unbounded theories. In the next section we will
determine the spectra of bounded theories. In later chapters we will return
to a more detailed discussion of unbounded theories.

The simplest example of an unbounded theory is the theory of a single
equivalence relation with infinitely many infinite classes. This theory is
manifestly No-categorical. There are NO models of power NI. Each one is
determined by the number of blocks of size NI and the number of blocks
of size N0. The first number can be any cardinal between 1 and NI; the
second any cardinal between 0 and NI. By iterating this kind of argument
one can show the following exercise.

2.1 Exercise. Let T be the theory of a single equivalence relation with
infinitely many infinite classes. Show /(Nα, AT) = \a + ω|lα~ l~1L

2.2 Exercise. Let T be the theory of an equivalence relation with in-
finitely many infinite classes each of which is a model of Th(Z, S). Show

2.3 Exercise. Show that in these examples /*(Nα, AT) = /(Nα, AT).

The calculation of the spectrum function given in this section specializes
to a number of different cases. On first reading K should be taken to be
S and we are just computing the number of strongly No-saturated models
of a countable superstable theory. To strengthen the conclusion take K
to be your favorite acceptable class, e.g., the SET^3 -saturated models of
an uncountable theory. The argument also applies to give the number of
models of an ω-stable theory but since we are proving lower bounds this
reading provides no new information.

We strike here a theme of continuing importance. The number of models
in a class K which have cardinality λ = Nα is often computed not as function
of λ but, since it depends on the number of cardinals less than λ, as a
function of a. Recall that λo(I) tells us the cardinality of the smallest
I-saturated model. Thus the calculation of the number of models in a class
K depends also on β when A0(I) = N^. When K = AT, β = 0.

In the first major result of this section we show that the number of
K -models with cardinality Nα is at least as large as the number of functions
from the set of cardinals between λo(I) and Nα to the set of cardinals less
than Nα. Roughly speaking, for each dimension between N/? and Nα we can
fix the number of copies of a given type which have that dimension as any
cardinal < Nα.

2.4 Theorem. Suppose T is a countable superstable unbounded theory and
λ0(I) = N/?. ThenI(Ka,K)> |α + ω|lα-^+1l.

The proof will require several steps. We begin by fixing some notation.
By Theorem 1.7, a theory is unbounded just if it contains a regular type
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which is orthogonal to 0. Since T is superstable we can assume that this
type is based on a finite set.

2.5 Notation. Let p = Pa be a /f-strongly regular type which is strongly
based on the finite sequence α. Let q denote stp(a; 0). For any M G K, let
Dp,q(M) = D(M) = {pf. \= q(b) and δ G M}

By Theorem 1.3, we know that δ (Z)(M)), the maximal number of pair-
wise orthogonal copies of pa based on M, is an invariant of M . That is,
δ(D(M)} does not depend on the choice of basis for D(M). For the proof
of Theorem 2.4 we refine this invariant somewhat.

2.6 Definition. For any M G K with |M| = Nα, any 7 < \a - β + 1|, and
any basis J for D(Af ), let δJ

M(Ί] - δ(Ί) = \{p e J : dim(p, M) =

Ostensibly, the function δ depends on p, </, M, and J. The dependence on
p and </ is real. We simply keep these parameters constant throughout the
discussion and suppress them for ease of reading. The next lemma shows δ
does not really depend on J.

Note that δ maps the set of cardinals between #0 and #a into the set of
cardinals less than Nα. Thus it can be viewed as a member of |a + o;|la~^+1l.
Recall that we do not distinguish in notation between the set of functions
from one cardinal to another and the cardinality of that set of functions.

2.7 Lemma
are bases

.

ma. Let \M\ = #a and suppose M G K. For any I and J which
for D(M), and for each 7 < \a + ω\, ^(7) = SM(Ί)

Proof. (Fig. 1). There is a 1 — 1 correspondence between / and J which
assigns to each p G / the unique q G J such that pJίq.By Theorem XIV. 2. 8,
dim(p, M) = dim(<7, Λf)mod(λ(I)) and the result follows.

Thus we can simplify our notation by writing OM for <$M Now we return
to the proof of Theorem 2.4.
Proof of Theorem 2.4- Let C be the set of cardinals less than or equal to Nα.
Observe that \C\ = \ω + a\. For each / G C\a"0+l\ such that f(a - β) = Nα

we will define a model M/ such that 6^f = f . First, choose for each i with
N/? < N* < #a a set Ei of sequences realizing q such that \Ei\ = f ( i ) and E =
(Ji<N Ei is an independent set. Then for each e G EΪ choose an independent
set AC of Nj realizations of p^. Let A — \J^EAe. Let p'τ be the nonforking
extension of p$ to e U A?. Let S = {pL :e€:E}. Since each p G S is orthogonal
to 0, p is (λφ+^-tractable by Lemma XIV.3.2. As {AΈ:ee E} is an
independent set, by Theorem XIV. 3. 5 there is a model TV such that for
each e G JE», dim(p^-, TV) < λ(I) + N^ and dim(<7, TV) = Nα if q is irrelevant
to S. Since dim(/>e,TV) > fy > λ(I), dim(pe,AΓ) = I AF| -f dim(^, TV) = «<.
Extend {pe : e G £} to a basis / for D(N). Note that δff = f and the
theorem follows.

The following exercises are just computations demonstrating the mean-
ing of the theorem.
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Fig. 1. Lemma XV.2.7: \Ei\ = f ( i } \ e e Ei implies Ae = NI

2.8 Exercise. Show that if T is a countable ω-stable unbounded theory,
then /(NQ, AT) > |α + α;|lα+1l if Nα > N0 In particular, T has infinitely
many models in every uncountable power.

2.9 Exercise. Show that if T is a countable superstable unbounded the-
ory, then /(Nα,S) > |α+ ω|lc*+1l if Nα > 2*°.

The next exercise outlines the means to extend the last sentence of
Exercise 2.8 to the situation of Exercise 2.9.

2.10 Exercise (Saffe). Show that every countable superstable unbounded
theory has infinitely many models in every uncountable power. Hint:

1) Note that T is small; otherwise it has > 2**° models in each power.
2) Thus T has prime models over countable sets of indiscernibles by

Corollary V.1.26.
3) Let M be the prime model of T and choose p G S(M) and e E M such

that for some φ over e, (p, φ) is AT-strongly regular, p H 0, and p
does not fork over e. Let q — £(e; 0). (Note that one can not guarantee
that p\e is stationary.)

4) Let E = {Έi: i < ω} be a strongly independent set of realization of q.
Let N be prime over E and let pi be a nonforking extension of the
conjugate of p obtained by mapping etoβi. Thus the pi are pairwise
orthogonal.
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5) Construct for each n < ω a model of T with cardinality N7 such
that exactly n nonorthogonality classes of the pi are realized only
countably many times. This construction is done by iterating the
following observation. If NI is L-constructible over N U a where a
realizes pi then for i φ j, pj\ej is omitted in NI. (This is a little
subtle since Pj\βj is not stationary.)

It is not entirely clear how to extend this argument to get the full force
of the Exercise 2.8. Saffe suggests that one can construct elementary sub-
models of the distinct S-models constructed in the last exercise so that the
S-models are S-prime over the submodels. Then the uniqueness of prime
models will guarantee the submodels are distinct.

It is tempting to think that an argument similar to that for Theorem
2.4 would show that if a countable ω-stable theory has a nonisolated type
which is unbounded then the lower bound in Exercise 2.8 could be improved
to /(Nα, AT) > |α + ω|'α+ωl. The difficulty is that if we assign to each of
a family (pi : i < ω) of orthogonal copies of a nonisolated type a finite
dimension (by saying pi G S(άi) is realized by a set Xi of independent
elements and taking the prime model M over all the α^ and Xi) then
we know dim(pi,M) is finite but we can not control its exact value. This
problem is the fundamental difficulty of the Vaught conjecture (for ω-stable
T).

The preceding argument shows in particular that an unbounded theory
T has at least 2lαl models in power Nα. We will see later that this is a very
weak lower bound. We show now that with one further requirement we can
force T to have 2λ models of power λ.

We now consider one consequence of assuming that forking is trivial
on the realizations of a type p. We show here, by methods similar to the
proof of the last theorem, that the existence of nontrivial types of a certain
kind implies there are many models. In Section XVI.2 we will develop
many useful properties of trivial types and connect this notion with the
dimensional order property.

2.11 Definition. The stationary type p G S(A) is trivial if the dependence
relation of forking is trivial on p'(Λt) for any nonforking extension p1 of p.
That is, if α, 6, c realize p1 and are pairwise independent then they are
independent. If α, 6, c are pairwise independent but not independent we say
they form a triangle.

The remainder of this section is devoted to the proof of the following
theorem.

2.12 Theorem. Let K be an acceptable class anάp an unbounded (λ,K)-
tractable type. Suppose p is based on d and b \>φ d where b realizes a non-
trivial, weight one type r. Then /(A, if) = 2λ for every A > A0(I).

The following special case includes the essential ideas shorn of the extra
parameters.
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Let T be ω-stable and suppose p E S(a) is an unbounded, stationary,
nonprincipal type. If £(α; 0) has weight one and is nontrivial then T has 2**°
countable models. _

We may assume in prpving_ Theorem 2.12_that d realizes a nontrivial
weight one type r. For, b >0 d implies wt(£(d;0)) = 1. But if ί(6;0) and
£(d;0) both have weight one, domination and Theorem XIII.2.9 transfer
nontriviality of t(b', 0) to nontriviality of t(d', 0).

To make the following argument easier to read, we use single letters such
as_α, 6, c to refer to realizations of r and p rather than the vector notation
α,6,c we have held to so far. We write A^ for the set of two element
subsets of A.
Proof of Theorem 2.12. (Fig. 2). Let r± be the type of a triangle of realiza-
tions of r. Let G be a graph of power λ which is a disjoint union of graphs
(Gi : i < λ) such that for each i, \Gi\ < λ, every element of Gi is con-
nected to at two least others and Gi contains no triangles (i.e. no complete
subgraph on three vertices). Let the vertices of G be a set A = \Ji<χAi
of independent realizations of r. Apply Lemma II.2.26 to construct a set
C = Ut<λ^» where d = {c{a,b} '• (0,6) Ξ Gμ} such that, writing cab for
c{α,6} — c{6,α}5

 e&ch triple (α,6, cαb) realizes r\ and such that D = A U C
is independent relative to the partial ordering which has only the relations
a < cab and b < cab for α, b E A. Thus, {α, 6, cab) is a triangle.

For each d E £>, let pd denote the copy of p over d. To simplify notation,
we write pab for pCab. For each triple {α, δ, cab) we call a and b roots of cab

Now let S — {pa :a £ A}\J {pab (α, b) EG}. Note that each pab is over
some Ai U Q with |Λ» U C»| < λ. Take each of AC, λ, and μ as in Theorem
XIV.3.5 and form a model MG such that every type in S has dimension
less than λ and all types irrelevant to S have dimension λ. We can apply
Theorem XIV.3.5 since, if Di denotes \Jj<χ(Aj U Cj) - (Ai U d) then by

the independence relative to < of D, Dl |0 Ai U C».
Since r has weight one, forking is an equivalence relation on r(MG). We

will recover G from MG by identifying the elements of G as equivalence
classes mod / of r(MG). For e realizing r, let [e] denote the equivalence
class of e under this relation. An equivalence class, <f, is standard if for
some e E £, dim(pe,M

G) < λ. Note that £ is standard just if for some
d E D = A U G, [e] = [d]. This follows because p H 0, so if e\d for all d E P,
by Theorem VI.2.21 p H d, and so pe is irrelevant to S.

A triangle, (<Γ0, <fι, £2), is a set of three equivalence classes such that
some set of representatives (eo, 61,62) is pairwise independent but depen-
dent. We showed in Theorem XIII.2.9 that a map a »—>> α such that α /0 ά
preserves independence if its domain and range are contained in sets of real-
izations of weight one types. Thus, any set of representatives for a triangle
of equivalence classes will be a triangle of elements. Note also that each
equivalence class intersects D in at most one element. A standard triangle
is one such that each & is standard.

The following proposition contains the main technical remarks necessary
to finish the proof.
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•CM*)

Fig. 2. Theorem XV.2.12.

2.13 Proposition. If (<fo, <fι, £2) is a standard triangle then for some α, b E
A and the associated cab E (7, (<fo, <fι, £2) = ([α], [6], [cab]).

The proof of the proposition relies on a number of observations about
MG which we record in the following exercises. The first depends only on
the partial order defined on D.

2.14 Exercise. Show that if {α,M,e} <Ξ A then i) if {α,6} Π {d,e} = 0
then cab 10 Cde and ii) if {α, b} Π {d, e} = {b} = {d} then cab \b cde.

Now we can improve the second part of the last exercise using the fact
that the triples (α, 6, cα&) were all required to be triangles.

2.15 Exercise. Show that if {α, 6, d,e}CA and {α, b} Π {d, e} = {6} = {d}

then cab I Cde

2.16 Exercise. Show that for each c E C there is a unique pair {a,b} in
A^ such that c /0 a^b.

Proof of 2.13. Since (<fo, <fι, £2) is a standard triangle we know (<?o> £17 £2) =
([do], [di], [^2]) for some d0,dι,d2 E £>. There are four cases.

(7αse i: All the di are in A. Then the di do not form a triangle since A
is independent.

Case 2: All the di are in C. Then the di do not form a triangle since by
Exercises 2.14 and 2.15 C is an independent set.
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Case 8: Two di, say do and di, are in C, the third is in A. If d<2 is a
common root of do and di, we have (since C is independent relative to <)
that do Id2 di and since the elements of D are pairwise independent that
do 10 dι^d2 Thus the di do not form a triangle.

If d<2 is not a common root of do,dι then d^ is not in the downward
closure of {do,dι} under the order < so {do,dι,d2} is an independent set
and again the di do not form a triangle.

Case 4' Thus we have two of the d^, say do, di in A and the third in C.
By Exercise 2.16 (do,dι,d2) = (α,ί>,cab) for some α,6 £ A.

This finishes the proof of the proposition.
Now we can finish the proof of the theorem. Note that by Exercise 2.16

and Proposition 2.13 no class [c] with c E C can be in two standard triangles.
Thus, we recover {[α] : a £ A} as the standard classes which are contained
in at least two standard triangles and we recover the relation G on A by
([α], [b]) is in G just if there is a triangle containing both [α] and [b].

2.17 Exercise. Let T be a superstable theory. Show that if p € S(α), p H 0
and ί(α;0) is a nontrivial weight one type then for every λ > 2'τl, T has
2λ S-models of power λ.

2.18 Historical Notes. Theorem 2.4 is due to Shelah (Section V.4 of
[Shelah 1978]), but the proof here has been influenced by some notes of
Lascar, [Bouscaren & Lascar 1983], and [Makkai 1984]. Theorem 2.12 is part
of the Harrington-Makkai proof [Harrington & Makkai 1985] of Shelah's
theorem that a theory with the dimensional order property has 2λ models
of power λ. We place it in this section to emphasize that the proof does not
involve the dimensional order property. However, we will show in Chapter
XVI that the hypothesis of Theorem 2.12 does imply the dimensional order
property.

3. Bounded Theories

In this section we solve the spectrum problem for theories that are bounded
but not unidimensional. We also handle some cases of unidimensional theo-
ries which fit easily into the general framework. We want to simultaneously
compute the spectrum function /(λ, K) for a number of different classes K.
The uniform proof requires more restrictive assumptions about the class K
than we have previously made.

The following classes will fall under this rubric: The class of all models
of a countable ω-stable theory with λ > ω, the class of S-models of a
superstable theory with λ > 2l τ l , and the class of μ-saturated models of a
superstable theory for λ > sup(μ, 2'τl).

The next result gives a normal form for any model of a bounded theory.
To simplify the discussion we fix some notation at the beginning. We will
continue to accumulate special notations throughout this section as we
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refine this normal form to make the calculation of the spectrum function
more precise.

3.1 Notation. Let P denote the /f -prime model of the theory T and let
B — (ri : ί < δ(T)) be a basis for R,(P), the K -strongly regular types over
P. Recall that for p G S(M ), if p is strongly based on a C M, we write p^
for the restriction p\a of p to a. In this situation we will say a sustains p^.

3.2 Theorem. Let N G K. Then N is K-prime and in fact K-minimal
over P U X where X is a maximal independent subset of N such that each
x € X realizes some Ti .

Proof. Let N\ be K-pήme over M U X. If N\ ^ N then since K admits
regular types there is a q G S(Nι) which is X-strongly regular and realized
in N — NI . By the maximality of B , q / r for some r G fl . But then the
nonforking extension r1 of r to S(Nι) must be realized in Nι[q] C TV. This
contradicts the maximality of X.

3.3 Exercise. Show, by considering the theory of an equivalence relation
with infinitely many infinite classes, that Theorem 3.2 may fail when T is
unbounded.

Let T' = Th(Λ(, P) (i.e. name the elements of P). Clearly the spectrum
function for T1 dominates that for T and we can now easily calculate an
upper bound on the spectrum function for T' . Let C be the set of cardinals
less than or equal Nα. If {rt : i < δ(T)} enumerates a basis for R,(P) there is a
function from Cδ^ onto K<a given by s »-> M if M is /Γ-prime over P UX
where X is an independent set containing s(i) independent realizations of
Γi, for i < δ(T) and s G Cδ^τ\ Two refinements are necessary to convert
this upper bound into an exact computation.

First, we replace P with a set B on which all the types in a basis for
%(P) are based. The second refinement is motivated by the following simple
example. Let T be the theory of an equivalence relation with two infinite
classes. The theory T", which is obtained from T by naming the equiva-
lence classes (that is, naming elements which sustain a basis for R(P)) has
four models of power at most NI, given by assigning the two equivalence
classes the cardinalities (No? NO)? (N0,Nι), (Nι,N0), or (Nι,Nι). Of course,
as models of Γ, the second and third choices are isomorphic. These two
models are 'accidentally' isomorphic; there are two orthogonal types from
the basis for R,(P) which happen to be assigned the same dimension. To
give a general description of this phenomenon we have to be more careful
in our choice of a basis for the ίί-strongly regular types.

3.4 Notation. We impose some further constraints on B = (r» : i <
a basis for R ( P ) . If i ̂  j then either r» is a conjugate of TJ or r, is orthogonal
to every conjugate of r/.

A basis satisfying this condition can easily be chosen by induction. Sup-
pose (ft : i < k) are chosen. If there is a type r G S(M) which is orthogonal
to the Ti for i < k and which is conjugate to one of them let r> = r. If not, let



304 XV. The Width of a Theory

Γfc be any regular type over P orthogonal to each of those already chosen.
Note that in this case r^ is in fact orthogonal to all conjugates of the r; for
i < k. For, if r> / r( for some conjugate r( of r; then by Lemmas XIV.2.13
and XIV.2.10 r( is nonorthogonal to some conjugate r" of rz which is based
on P and orthogonal to the rz for i < k.

With this choice^ Theorem 1.9 implies that if r» and TJ are conjugate
the strong types of bi and bj are distinct. Thus, we have a set B = \Ji<k Bi
where each Bi is a set of realizations of a type gt over the empty set and
each p G B is based on some b G B.

Let G be the group of permutations a of δ(T) such that for some a in
Aut(Λl) there is a B' = α(β) such that for each r^ e B,

We have fixed a 1 — 1 correspondence between B and 5(T) by our indexing
so we can regard G as acting on either B or δ(T).

The following exercise justifies our replacing P by B.

3.5 Exercise. Modify the proof of Theorem 3.2 to show that if M G K
and B and r^ are chosen according to 3.4 then M is a prime over B union
a maximal independent set of realizations of the r».

With the discussion in Paragraph 3.4 in mind we make the following
definition of a combinatorial structure to which we reduce the calculation
of the spectrum problem.

3.6 Definition. Let μ and δ be cardinal numbers and let G be a group of
permutations of δ. Then

denotes the result of partitioning the set of functions from δ into μ by the
equivalence relation: / ~ g if there exists an α G G with g = f o a.

3.7 Exercise. Verify ~ is an equivalence relation.

Now we can calculate the spectra of Sλ-saturated and SEΊVsaturated
models of a superstable theory. Calculation of the spectra of all models will
require some further considerations. Note, however, that if T is countable
and No-categorical then every model of T is an S-model and so this theorem
applies.

3.8 Theorem. Let T be a bounded superstable theory and suppose K is
SETλ or SA with X = N/? > λ0(I) (for the relevant I). Then there is a
group G of permutations of δ(T) such that for any a with Nα > λo(I)

Proof. Fix B and G as in Notation 3.4. Let C be the set of cardinals K,
with N0 < K, < Nα. Clearly, \C\ = \a - β + 1|. For any / 6 C*W define

Mf to be K-pήme over B U X where X = Ut<$(r)-^» an(^ eac^ ̂  ^s an

independent set of f ( i ) realizations of r». By Exercise 3.5 each M G K
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must be isomorphic to some M/. We must show M/ w Mg if and only if
/ ~ g. Suppose a is an isomorphism between M/ and Mg\ write B1 for
a(B). Note that if r^ G B is based on the empty set then a fixes r^ and
/(i) = g(ι). Now consider an r^ based on some a €. B. Then α(r^) is based
on a' = θί(a) € Mg. Since S is a basis, α(rt ) / ry for some r^ E B. For each
ΐ, let ά(ΐ) be the y given by this procedure; then a G G. We must show
f = goo>. Since α(r i) / ry, the careful selection of B guarantees that TJ is a
conjugate of r» and thus of α(r*i). Since α is an isomorphism and invoking
Theorem XIV.2.15 we have

dim(rj, Af/) = dim(α(r, ), Af y)

Thus, / = 0 o ά and / ~ g. If / ~ g via a permutation 7 then the auto-
morphism of Λt which induces 7 induces, via the uniqueness of /f -prime
models, an isomorphism of M/ and Mg.

We have reduced the calculation of the spectra of S-models to the cal-
culation of \μδ/G\. Note that each equivalence class under c± has at most
\G\ elements. Thus for infinite μ if μδ > \G\ and especially if μ > |6?|,
\μδ/G\ = \μ\δ. Thus G is relevant to the calculation of I*(Kβ,K) only for
relatively small values of μ.

3.9 Exercise. Suppose that T is a countable superstable theory and that
Nβ > 2*° - fy, then 7*(Kα,5) - |α - /? + 1|*(Γ>.

The following exercise can be solved by analyzing the various possibilities
for δ(T).

3.10 Exercise. Find all the possibilities for the function /*(Mα,S) when
T is a countable superstable bounded theory.

One important fact simplifies the situation in Theorem 3.8. We have
a lower bound of N/j on the dimension in a member of K of a strongly
regular type over a finite set. When we deal with arbitrary models of a
theory, some types may have only finite dimension in some models and we
must distinguish this situation.

The following discussion is only relevant when T admits AT-prime mod-
els over finite sets and it will usually be applied when T is ω-stable. In fact,
the analysis we now describe can be completely carried out only for a count-
able ω-stable theory. However, in view of the importance of these concepts
for studying Vaught's conjecture for superstable theories we will make the
definitions as general as possible and carry out as much of the analysis
as we can for small superstable theories. The essential difficulty is that we
can not guarantee that a small superstable theory admits stationary regular
types.

We want to distinguish between those types which are 'N0-categoricaΓ,
that is, have infinite dimension in every model, and those to which we can
assign finite dimensions. Roughly speaking, this is the difference between
an isolated and a nonisolated type. However, noting that the only 1-type
over the empty set in Th(Z, S) is isolated but every nonforking extension of
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it is not isolated, shows the situation is a little more complex. The following
definition handles this difficulty.

3.11 Definition. Let p^ e 5(α)-be AT-strongly regular.

i) Pa is eventually nonisolated if for some finite b D α, some nonforking
extension q^ of p^ to S(b) is not AT-isolated.

ii) Pa is persistently isolated if for every finite b D ά, all nonforking
extensions q^ of Pa to S(b) are AT-isolated.

We extend this definition from types over finite sets to arbitrary types in
the following way.

iii) We say an arbitrary type p is eventually nonisolated (persistently
isolated) if it is a nonforking extension of an eventually nonisolated
(persistently isolated) type.

These two concepts are the negations of each other and we have two
separate names only to avoid dissonance. These notions are referred to in
[Shelah, Harrington, & Makkai 1984] as eni and neni types. We may occa-
sionally lapse into this usage. Contrary to [Shelah, Harrington, &; Makkai
1984], we do not require that eventually nonisolated or persistently isolated
types be stationary.

3.12 Exercise. If p is a nonisolated type over a finite set then every non-
forking extension of p is also nonisolated.

3.13 Exercise. If p £ S(a) is eventually nonisolated then every nonforking
extension of p is eventually nonisolated.

3.14 Exercise. Determine the eventually nonisolated and the persistently
isolated types in i) the theory of seven disjoint, infinite, unary predicates
and ii) the theory of infinitely many disjoint unary predicates.

The next lemma shows the notion of eventual nonisolation is invariant
under parallelism. The lemma after it shows that it is also invariant under
nonorthogonality.

3.15 Lemma. If p \\ q and p is eventually nonisolated then so is q.

Proof. Suppose not and assume that p is eventually nonisolated but q is
not. Without loss of generality we may assume that p is not isolated. Let
A = domp U domg. Since p and q are parallel, there is a global type r
which is a nonforking extension of both p and q. Since p is not isolated, the
open mapping theorem guarantees that r\A is not isolated. But since q is
persistently isolated, r\A is isolated. This contradiction yields the theorem.

In this case we have established that a concept defined for types which
do not need to be stationary is invariant under parallelism.

3.16 Lemma, i) If p £ S ( P ) is persistently isolated and based ona^P
then for every M \= T, dim(pα, M) > ω.
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ii) Suppose T is countable and ω-stable. If p G S(M) is persistently
isolated and q Jί p then q is persistently isolated.

Proof, i) It suffices to show that dim(pα, P) is infinite. Clearly, p\A is realized
in P for any finite AC P. But letting A0 = a and choosing α; to realize
p\Ai for i < ω we have the result.

ii) Suppose not. Without loss of generality we can replace p and q by
parallel types over a single finite set A which are respectively isolated and
not isolated. To simplify notation we call the resulting types p and q as
well. Since T is ω-stable, we can assume p and q are stationary. Let M be
prime over A. By i) dim(p, M) = ω while by the omitting types theorem
dim(<7, M) = 0. Let J be a proper subset of an infinite independent set /
of realizations of p in M and choose TV prime over A U J. By Corollary
X.4.4, if a G / — J, a realizes Av(J, TV), so a [A TV. Thus, TV is a proper
elementary submodel of M. Since p / q, if q1 is a nonforking extension of
q to 5(TV), q' / t(a; TV). Thus <?', and a fortiori <?, is realized in TV[α] -< M.
This contradiction yields the theorem.

One of the major applications of these concepts will be to the proof of
Vaught's conjecture for an ω-stable theory. It is natural to ask if we can
extend that proof to superstable theories. For such an extension, we would
like to prove the results here for small superstable theories. The assumption
that T is ω-stable was used in two ways in the preceding proof: first, to
guarantee that p and q were stationary and second, to find the model prime
over A U J. It does not seem necessary to require p and q to be stationary.
We could find a model prime over A U J by invoking Corollary V.I.26 if T
were a small superstable theory. In the next lemma we need again that a
persistently isolated type is stationary. This implicit appeal to ω-stability
seems harder to avoid.

The choice of b to witness that a type p^ is eventually nonisolated seems
fairly arbitrary. In fact, it can be made in any model prime over a.

3.17 Lemma. Let T be a countable ω-stable theory and let pa be a sta-
tionary eventually nonisolated type.

i) I f a C . M, where M is prime over a finite set then dim(pα, M) < ω.
ii) There exists b D a with t(b',ά) AΎ-isolated so that every nonforking

extension of Pa to S(b) is nonisolated.

Proof, i) Suppose M is prime over the finite set A' Da and dim(pα> M) = ω.
We will prove that for any finite BDA1 and any nonforking extension q of p
to S(B], q is isolated. Since any extension of Pa has a nonforking extension
whose domain contains A1', the open mapping theorem then yields that Pa is
not eventually nonisolated. Assume for contradiction that q is nonisolated
and let TV be prime over B. Without loss of generality, M C TV. Let / be an
infinite independent set witnessing dim(pά,M) = ω. Since T is superstable
there is a finite IQ C I such that B [AUIO I — IQ Now, since q is stationary,
any c € / — IQ realizes q. But if q is not isolated, dim(</, TV) = 0.
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ii) Let M be AT-prime over α. By i) dim(p, Af ) < ω. Let IQ be a maximal
independent subset of M realizing p. Then no nonforking extension of p to
S(α U /o) is realized in M. Thus, any such type is nonisolated and /o U a
is the required 5.

3.18 Exercise. Show that Lemma 3.17i) holds for a small superstable
theory under the additional hypothesis that p has finite multiplicity.

3.19 Notation. Let T be a theory with dimension δ — δ(T). Let δι be
the number of persistently isolated types in a basis B for R,(P) and 62
the number of eventually nonisolated types. For simplicity, assume that
B = (n :i < δ) is arranged with the persistently isolated types first. Let
GI be the restriction of the group G of permutations of B defined in 3.4 to
persistently isolated types and G<2 the restriction to eventually nonisolated
types.

The next three theorems describe the spectra of a countable bounded
ω-stable theory.

3.20 Theorem. I f T is a countable bounded ω-stable theory then for any
uncountable Nα

/*(Nα, AT) - ||α + l|δl/Gι| x \\

Proof. Let (ci : i < a + ω) be an enumeration of the cardinals less than
Nα Map |α + l\δl x |α + ω\02 onto /*(Nα, AT) as follows. For each pair
of functions / £ (a + l)δl and g £ (a + ω)δ<2, choose M/ιg such that
dim(pi,M/50) — Cf(i) for i < δ\ and dίm(pt,M/jg) = cg(») for δ\ < ΐ < δ.
Just as in Theorem 3.8, we can see that M/>g w M// ) g/ if and only if there
exist 0:1 € GI and 0:2 G G<2 with /' = / o αi and g7 = </ o α2

The formula in Theorem 3.20 is misleading when δ(T) is infinite. In this
case we can compute J*(Nα,/£") without recourse to G. The computations
in Theorems 3.20 and 3.21 are not contradictory. The group action is still
present in the following situation; it just isn't reflected in the spectrum
calculation.

3.21 Theorem. Let T be a countable bounded ω-stable theory.

ii)

Proof. The proof for the two parts is virtually identical so we do only i).
Suppose first that there exists a type q and infinitely many r^ which witness
that δι is infinite and are all based on realizations bi of q. Then, the TI can
be taken over a single realization b of q. For, since T is ω-stable, q has finite
multiplicity so without loss of generality all the bi realize the same strong
type. But then for each i, j Theorem XIV.2.10 guarantees that TI JL r^
where r^ denotes the conjugate of r^ over bj. So if TJ / r^ we obtain the
contradiction r» / r^ by the transitivity of orthogonality on regular types.
In this situation we obtain the required estimate by passing to the finite
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inessential extension of T obtained by naming b. Thus, we can assume
only finitely many of the rz are based on realizations of any fixed type
over 0. Since each type has finite multiplicity, each set Bi defined in 3.4 is
finite. Thus, there are infinitely many distinct Bi. For each i < ω choose
an Ti e R(P] which is strongly based on some b £ Bi. Now, not only the
Ti but any of their conjugates are pairwise orthogonal. Thus we can choose
a model M fixing the dimensions of rt in M independently and obtain the
theorem.

The following exercise illustrates the loss of information inherent in de-
scribing structure results by spectrum functions.

3.22 Exercise. Show that the two spectrum functions in Theorem 3.21
have the same values.

3.23 Exercise. Show that by using the techniques of 2.6 and 2.7 we could
obtain this result without recourse to the careful arrangement of

In Section 2 we showed that an unbounded ω-stable theory had infinitely
many models in every uncountable power. The next exercise and follow-
ing theorem give two successive weakenings of the hypothesis necessary to
obtain this result.

3.24 Exercise. If T is a countable α -stable theory and δ(T] is infinite
then T has infinitely many models in every uncountable cardinal.

3.25 Theorem. Let T be a countable ω-stable theory. If T is not unidi-
mensional and δ^(T) > 0 then /(μ, AT) > ω for every uncountable μ.

Proof. By Theorem 3.21 we can assume that 6(T) is finite. Let r0 be an
eventually nonisolated type and τ*ι an orthogonal strongly regular type.
Let Mn be prime over μ independent realizations of ri and n independent
realizations of r0. Now for each m < ω there are only finitely many models
Mn such that Mn « Mm. For, such an Mn must have dim(r^Mn) = m
for some i but there are only finitely many choices for i. Thus /(μ, AT) is
infinite.

The following tables summarize some of the consequences for the spec-
trum problem of the work in this section. For S, the spectrum depends on
δ(T) and the group G. For AT, we must also consider the role of δ\ and

«2

The table compiles the results of Theorems 3.8, 3.20, and 3.21 with one
minor adjustment. We have switched from describing the cumulative spec-
trum /* to calculating the exactly the number of models in power Nα. This
requires a modification of the definition of (\a + ω\δ)/G. Instead of con-
sidering all functions from δ into the set of cardinals less than or equal α,
consider those functions which have Nα in their range. Of course, (see the
remark before Exercise 3.9) the group G is really interesting only when δ
and a are both finite. In this case, it is smoother to use the original defini-
tion of (μδ/G) and calculate 7(Km+ι,/f) as J*(«m+ι,ϋC) - Γ(Km,K).
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3.26 Theorem. LetT be a countable bounded ω -stable theory. The follow-
ing tables give the number of S -models (models) of T with cardinality Nα

for a > 0.

Number of S-models

δ(T) = 1 1< δ(T) < ω δ(T) = ω

1

Number of models

62 = 1

1 < 62 < ω

62 = ω

6l = 0 = I <ω δι = ω

impossible |α + l\δl/G \a + l|u

\a + ω\ |α + l|u

ω

In fact, [Cherlin, Harrington, & Lachlan 1985] shows that the case 62 = 0
but <$ι is infinite does not occur. We can read off from the second table and
Lemma 3.28 (below) a number of the major early results on the spectrum
problem.

3,27 Theorem, i) (Morley's Theorem) // T is categorical in one un-
countable power then T is categorical in every uncountable power.

ii) (Baldwin-Lachlan Theorem) IfT is categorical in some uncountable
power then T has either I or N0 countable models.

m) (Lachlan, Shelah) IfT is ω-stable and has finitely many models in
some uncountable power then T is #Q- categorical and there exists an
integer m and a finite group G such that for n < ω,

iv) (Shelah) IfT is a bounded ω-stable theory then T has 1, N0 or 2*°
countable models.

Proof. For i), ii), and iii) we see by Theorem 2.4 that T must be bounded. In
the first two cases, by Theorems 3.21 and 3.25, T must be unidimensional.
In case iii), Theorem 3.21 implies T is finite dimensional. The remainder
of the theorem can be read off from the chart and the following refinement
of iv).

3.28 LEMMA. The number of countable models of an ω-stable bounded
theory is determined by the value of 6^(T). More specifically,

i) If 62 =Ό then T is ^-categorical.
ii) IfQ<δ2<ω then T has NO countable models.

iii) // 62 is infinite then T has 2**° countable models.



3. Bounded Theories 311

Proof. For i) note that if there is a nonisolated type over some finite set,
the preservation of eni by nonorthogonality guarantees that some member
of the basis must be eventually nonisolated; that is 62 > 0. Part ii) is
immediate from Theorem 3.20 and part iii) from Theorem 3.21 ii).

We quote without proof Theorem IX.1.20 of [Shelah 1978].

3.29 Theorem. Let T be superstate and X the least cardinal in which T
is stable. Then, for any μ with μ > NI + |Γ|, /(T, AT) > min(2^, 2λ).

Combining this result with Theorem 3.26 we have the following theorem
of Lachlan.

3.30 Theorem. Suppose T is a countable superstable theory which has
finitely many models of power Njt for some k < ω. Then, T is a bounded
ω-stable theory. IfT is not NI -categorical then T is ^-categorical and for
k<ω, Γ(Kk, AT) = \(k + l)m/G| for some m and G.

Since we gave Theorem 3.29 without proof a crucial step in our argument
for this theorem is missing: the move from T is superstable to T is ω-stable.

3.31 Historical Notes. Most of the results in this section are contained
in the last theorem of the first edition of [Shelah 1978]. The discussion of
eventually nonisolated and persistently isolated types is taken from [She-
lah, Harrington, & Makkai 1984]. Our exposition depends very heavily on
the treatments in [Bouscaren & Lascar 1983], [Saίfe 1983], and especially
[Pillay 1983f]. We thank David Kueker and the University of Maryland
logic seminar for detecting some serious flaws in an earlier version of this
section.

Morley proved not only Theorem 3.27i) [Morley 1965], but also that an
NI -categorical theory has at most NO countable models which is subsumed
in Theorem 3.27U). The other direction of Theorem 3.27 ii) is from [Bald-
win &; Lachlan 1971]. The results in Theorem 3.27 iii) appear in X.2.7 of
[Shelah 1978] and, more identifiably, in [Lachlan 1975] and [Lachlan 1978].

There has been considerable further work on unidimensional theories.
Kueker [Kueker 198?] conjectured that a countable theory whose every
uncountable model is ω-saturated is either N0 or NI-categorical. Lach-
lan (unpublished) proved the conjecture for ω-stable theories. Buechler
[Buechler 1984a] extended the result to superstable theories. Shelah [Shelah
1978] asked if every stable unidimensional theory is superstable. Hrushovski
([Hrushovski 1986], [Hrushovski 198?], [Hrushovski 198?a]) answered this
question positively and also obtained Kueker's conjecture for stable the-
ories. Shelah [Shelah 1986c] provided a rather straightforward argument

that a countable unidimensional theory has either 1, 2λ or min(2λ,22 °)
models in power λ for each uncountable λ.
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4. Almost Homogeneous Models

In this section we discuss work of Pillay, Bouscaren, and Lascar on a gener-
alization of the notion of an ω-homogeneous model, an almost homogeneous
model. As pointed out by Pillay, the most natural context for this concept is
the class of those stable theories in which all types have finite multiplicity.

4.1 Definition, i) The theory T is extra-stable if T is stable and every
type has finite multiplicity.

ii) The model M is almost homogeneous if for each pair of finite se-
quences α,6 E M with sίp(α;0) = sφ(6;0) and each c G M there
exists a d G M with stp(a^c', 0) = stp(b^d', 0).

4.2 Exercise. Show every ω-stable theory is extra-stable.

There is an inherently slippery feature of almost homogeneity. Namely,
stp(ά', 0) is well defined only when we regard a as sitting in a model of T.
It is this problem which makes condition i) of Theorem 4.10 necessary.

The first major result is that if T is extra-stable a countable model
of T is determined by the types over the empty set which it realizes. The
following more abstract situation allows us to combine two arguments from
the original proof. We slightly generalize the notion of almost homogeneity.
The purpose of this generalization is not so much to cover more cases as
to emphasize the properties of almost homogeneity which dominate the
following proofs.

4.3 Definition. Let Q be a normal subgroup of Aut( M) and for each sub-
model M of M denote by GM the subgroup of Aut(M) consisting of the
restrictions of elements of Q to automorphisms of M. We say ά,ί^G M are
Q-conjugate and write α ~g b if there is an a G Q with a(a) = b. We say
α,δ G M are M-conjugate and write a ~M b if there is an_α G GM with
a(a) = b. The structure M is $-homogeneous if for each α, b G M, a ~M b
if and only if a ~g b.

There are two natural exemplars of this notion, ordinary ω-homogeneity
where Q = Aut(Λί) and almost homogeneity where Q = Saut(Λl).

We say Q is a closed subgroup if every model M and every automorphism
a of M satisfy the following condition. If every restriction of a to a finite
set can be extended to a member of QM then a G QM Both Aut(Λt) and
Saut(Λt) are closed.

4.4 Exercise. Show that if M is countable and Q is closed then_ M is
^-homogeneous if and only if for each pair of finite sequences _α,6 G M
with a — g b and each c G M there exists a d G M with <Γ"c ~g b^d.

The next lemma collects the conditions on Saut(Λl) which are sufficient
to prove most of the results presented here on almost homogeneous models.

4.5 Lemma. Suppose Q is Saut(Λl) and T is extra-stable.
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i) For each p G S(0), the number of orbits of realizations ofp under the
action of GM is finite.

ii) // {αo, ί an} is a set of representatives for distinct orbits of p(M)
under Q and ί(α0,... ,δn; 0) = ί(60ϊ .. , δn; 0) £Λen {60, . - , bn} is a
set of representatives for distinct orbits ofp(M) under Q.

Proof. Condition i) of Lemma 4.5 follows immediately from the definition
of extra stable; condition ii) can be easily verified.

4.6 Exercise. Show that if T is extrastable and Q = Saut(M) then condi-
tion ii) holds.

4.7 Exercise. Show, in fact, that condition ii) depends only on the hy-
pothesis that Q is normal in Aut(Λt).

4.8 Exercise. Give an example of a type p and two models M and TV of
an extrastable theory such that the realizations of p split into a different
number of strong types in M than in N.

4.9 Exercise. Show the phenomenon of the last exercise is impossible if
p is an isolated type.

The following theorem yields that two countable almost homogeneous
models which realize the same types are isomorphic.

4.10 Theorem. Let T and Q satisfy the conditions listed in Lemma 4.5.

i) If M and N realize the same types over the empty set, M is countable
and N is §-homogeneous then there is an elementary embedding of
M into N.

ii) // M and N are countable, $-homogeneous, and realize the same
types over the empty set then they are isomorphic.

Proof, i) Let M = {α» : ΐ < ω} and let qn = ί(αo,... ,αn-ι;0) We will
construct by induction a set S C ω<ω and for each s £ S an element
bs € N. We write bs for (6s | i,..., bs) and let Sn denote the elements of S
with length n. The construction will satisfy the following conditions.

a) S is closed under the formation of subsequences and each Sn is finite.
b) For each s G 5n, bs realizes qn.
c) If c £ M realizes qn, there is an s £ Sn with bs ~g c.

Suppose for m < n we have defined 5m and bs for each s £ Sm; we must
define Sn and for each s £ Sn, b8. Let C = {c0,... ,cr} be a complete list
of representatives of the orbits of qn(N) under Q. Partition C by c ~ c1

if c\(n — 1) ~ g c'\(n — 1). For each class D of this partition, choose by
c) of the induction hypotheses an SD £ Sn-ι such that for all d £ £>,
d\(n — 1) ~N bSD. By the ^-homogeneity of TV, for each d G D there exists

a bd E TV such that d ~w bSD^bd. Fix an ordering of D and if d is the ith

member of this ordering place SD^Ϊ into Sn and set bSD~i = bd.
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Now S is an infinite finitely branching tree so by Kόnig's lemma it has
an infinite branch, say η. Now, mapping α^ to bη\(i+ι) yields the required
imbedding of M into TV.

ii) By i) we may assume M X TV. We show that for α G M and b G TV,
the relation α ~ 6 if and only if a ~g b is a 'back and forth' which yields
the required isomorphism. The 'forth' is immediate so we prove only the
'back'. Suppose a ~g 5, lg(fc) = n, and d G TV. We must find c G M with
a^c ~g T)^d. Let c = (CQ, ..., cr) be a complete set of representatives for the
orbits of £(6^d;0) under Q which intersect TV and let q = ί(c;0). Choose
c' G M to realize q. By condition 4.5 ii) c' is a set of representatives of
distinct orbits in M of £(6^d; 0) under the action of Q. Since no more orbits
can be represented in M than in TV, for some i < r, Ci ~g b^d. In particular,
Ci\(n — 1) ~g b. Since, by hypothesis, a ~g 6, we have Ci\(n — 1) ~g a. By
the ^-homogeneity of M, there is a c G M with α""c ~g <v By transitivity
b^d ~g a^c as required.

The remaining results in this section use the assumption that T is a
countable ω-stable theory. This assumption is essential for the first result
but it is open whether the hypothesis in the second case can be weakened
to extra-stable.

4.11 Theorem. Let T be countable, ω-stable, and bounded. Then every
countable model of T is almost homogeneous.

Proof. We first note that if T is ω-stable and bounded and sίp(ά;0) =
stp(b', 0) then T satisfies the following condition.

For every c G M with q = t(c; α) strongly_regular , .
there is a d G M with stp(a^c\ 0) = stp(b^d', 0).

For this, let a G Saut(Λl) map a to b. Then since T is bounded, Lemma
XIV.2.9 shows dim(<7,M) = dim(a(g),M). In particular, a(q) is realized in
M and we have the claim.

To see that the theorem follows from (*), fix α,6, and c G M. Since
Saut(Λί) is closed, it suffices to find d G M with stp(a^c\ 0) = stp(b^d', 0).
Choose MI C M to be prime over α and choose άi C MI with a C άi
so that ί(c Mι) is strongly based on αi. Moreover, let ί(c M) πe ®r»
where each r» is strongly regular and based on αi. By Theorem 3.2, we
may suppose further that for some e G M\[c\ C M realizing (g)Γi, ί(c; M U
e) is isolated over a\ U e. This implies, in particular, that t(c',a\ \Je) is
isolated by some </>(x,αι,e). Since αi C MI, ί(άι ά) is principal so applying
Lemma XIV.2.12, there is a bι _G M with βίp(α"άι;0) = 5ίp(6"6ι;0).
Now if α G Saut(Λί) takes αi to 61 there is, by (*), for each e» an e^ G M
realizing α(r»). Since the e» are independent, e' realizes ί(α(e); 6). Now since
</>(x,&ι,e') |— 5ίp(α(c);61) and 61 ̂  6, so M is almost homogeneous.

From Theorems 4.10 and 4.11 we have another proof of Theorem 3.27 iv).

4.12 Corollary. Let T be countable ω-stable and bounded. Then T has
l,No °r 2**° countable models.
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Proof. Each model of Γ is determined by the set of types over the empty
set which are realized in it.

Finally, we show that for ω-stable theories, countable ^-homogeneous
models are almost homogeneous. The following exercise shows where the
difficulties of the theorem lie.

4.13 Exercise. Show that if M is a countable ω-saturated model of an
extra-stable theory then M is almost homogeneous.

4.14 Theorem. Suppose T is a countable ω-stable theory. Every countable
ω-homogeneous model ofT is almost homogeneous.

Proof. Let α,6 G M with s£p(ά;0) = sίp(6;0) and let c G M. Choose
MI C M AT-prime over α and choose άi G MI with ί(c Mχ) strongly
based on α U αi. By Lemma XIV.2.12, there is a 61 G M so that b^bi
realizes s£p(ά"αι;0). Since M is ω-homogeneous, there is a d G M with
ί(ZΓ^άι^c;0) = £(6^bι""d;0). Since s£p(ά""άι;0) = s£p(ό^6ι;0) there is
an a G Saut(M) which maps a^άi to b^bi. If q = sίp(c ά^αι), d realizes
a(q). Thus, by Lemma IV.3.20, sίp(α^άι'~sc;0) = stp(b^bι^d', 0) and we
finish.

There are a number of interesting questions raised by this section. We
adopted an abstract exposition of Theorem 4.10 to emphasize that it is an
assertion about certain families of group representations with little model
theoretic content. In contrast, Theorem 4.11 makes heavy use of the stabil-
ity machinery. This use seems intrinsic to the proof but we have no example
of any model which is homogeneous without being almost homogeneous.
There are several further speculations and insightful examples in [Pillay
1982a].

4.15 Historical Notes. This section is a mild rewrite of [Pillay 1982a]
and one theorem from [Bouscaren & Lascar 1983]. Bouscaren and Lascar
proved a more general version of Theorem 4.11 by induction on [/-rank.
Their argument applies when OLT is finite without assuming that T is
bounded.




