Chapter XII
Regular Types

In this chapter we introduce the most important concepts involved in as-
signing dimension to models. We saw in Section 1.3 that the simplest sort of
R;-categorical theory is one in which the universe of each model is strongly
minimal. A strongly minimal set D has two crucial features: i) its dimension
is well-defined, ii) if M C N, every element of D(N) — D(M) is independent
from M over the empty set. The possession of both of these features is no
accident; we will show that properly formulated versions of the two prop-
erties are equivalent. For any acceptable class K, we define the concept of
a K-strongly regular type.. The definition given in Section 1 is less intuitive
but technically more useful than either of the properties just described.
We then recast this definition in terms of the second of these properties.
This recasting simplifies the construction of regular types in Section 2. In
Section 3 we analyze invariance of dimension in terms of the transitivity
properties of the forking relation. This approach makes it clear that for any
K-strongly regular (stationary) type based on A C M, dim(p, M) is well
defined. Finally, in Section 4 we show that the two approaches to defin-
ing regular types yield the same class of types. With this we can describe
the relation between £ and >¢. Two types are orthogonal if and only if
they are disjoint in the partial ordering imposed by domination. We fur-
ther conclude that [ is an equivalence relation on the K-strongly regular
types. Moreover, if M < N and q is the nonforking extension of p to S(N)
then dim(p, N) = dim(p, M) + dim(g, N).

Throughout this chapter we assume that K is an acceptable class of
models.

1. Weak Isolation and Regular Types

The usual notion of regular type is primarily associated with S-models
and superstable theories; strongly regular types are similarly associated
with arbitrary models of an w-stable theory. We develop in this chapter a
common framework for the two notions.
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The first three paragraphs of this section define the notions of regularity,
strong regularity and weak isolation. The next three pages expound tech-
nical properties of these notions and establish their parallelism invariance.
These technicalities arise again, for example in Theorem XIII.3.3. The the-
ories described in Example 1.11 illustrate the fine distinctions made earlier
in the discussion. The last three results concern the structure of M [p] where
p is regular.

We will describe a collection of types with the following property. On
realizations of a type in the class the dependence relation arising from
forking has a good notion of dimension. That is, we will be able to find a
‘basis’ for the set of realizations of such a type. Intuitively, a basis is both a
maximal independent set and a minimal generating set. Suppose that a, b,
are the realizations of such a type in M and that a is independent from b.
If both ¢ depends on a and b depends on ¢ over a, we have that {a,b} is
a maximal independent set but {a} is a smaller generating set. Thus, we
need to guarantee that if a and b are independent and ¢ depends on a then
b does not depend on ¢ over a or, by symmetry, that ¢ does not depend
on b over a. The following definition is, a priori, somewhat stronger than
is required. We will see in Section 4 that the weaker intuition suffices but
the chosen definition is more useful in practice.

1.1 Definition. The non-algebraic type p € S(A) is regular if and only if
every extension of p is orthogonal to p or parallel to p.

If g = stp(b; B) then q is regular if the unique nonforking extension of q
to a complete type over B Ub is regular.

There are two difficulties with this definition. First, it makes the ver-
ification of the existence of regular types inconvenient. More important,
a surprising but crucial consequence of this definition—that regular types
are S-minimal—does not extend to the w-stable case. For this, we must
sharpen the definition of regularity. The sharpened version deals with a
pair (p, q) where p is a complete type and ¢ is an I-formula.

1.2 Definition. i) For any acceptable class K, any non-algebraic type
p € S(A), and any I-formula g over A with q C p, (p, q) is K -strongly
regular if for every B D A and for every r € S(B) which extends g,
either r is a nonforking extension of p or r L p.

ii) The pair (p, q) is called stationary and strongly regular if, in addition,
p is stationary.

iii) We may write p € S(A) is K -strongly regular to mean that for some
I-formula over A, (p,q) is K-strongly regular.

Unless explicitly declared otherwise, when we refer to a K-strongly reg-
ular pair (p, q), we denote dom p by A.

Following [Shelah 1978] and in contrast to [Makkai 1984], we do not
require that a K-strongly regular type be stationary. Note that in Definition
1.2 i) the requirement is that r does not fork over A, not that r does not fork
over dom g. Neither p nor r is required to be a nonforking extension of q.
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This distinction is illustrated in Example 1.11 iv). In fact, this requirement
could be added without invalidating the existence proof. We omitted it to
maintain uniformity with [Shelah 1978].

The role of ¢q in the definition of strong regularity is suggested by the
relation between a strongly minimal formula, ¢(z), and the unique non-
algebraic type p containing ¢. That is, ¢ ‘weakly isolates’ p in the sense that
if the parameters of ¢ are from a model M and N is a proper elementary
extension of M, then every realization of ¢ in N — M actually realizes p.
The following definition of one type weakly isolating another extends this
concept to an arbitrary acceptable class K. After showing this relation is a
property of the parallelism class of p, we will prove that (p, q) is K-strongly
regular if and only if p is weakly isolated by gq.

1.3 Definition. (Fig. 1). Let M C N |=T. Suppose M is I-saturated, g is
an I-formula over A C M, and p is a nonforking extension of q to S(M).

i) q weakly isolates p in N if ¢q(N) — M # @ and every b € ¢(N) — M
both satisfies p|A and is independent from M over A.

ii) g weakly isolates the type p € S(M) if for some N containing M with
q(N) — M # 0, q weakly isolates p in N.

pN)  PIAM)

Fig. 1. q¢ weakly isolates p in N. If p|A is stationary then p|A (N) — p(N)
is empty.

We will need in Section XIII.3 the following more complicated version
of weak isolation.

iii) ¢ weakly isolates p in (N1, N), where M C Ny C N, if g(N) — N1 # 0
and for every b € ¢(N;) — N, b |4 M and b realizes p|A.
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Note that i) is the special case of iii) obtained by identifying N; and N.

The definition of weak isolation is actually relative to the class K. Since
this class is invariably fixed by the context we have not made it explicit in
the definition.

In considering this definition recall that the notation b € q(N) — M
means b € N realizes ¢ and some member of the sequence b is not in M.
The conclusion b | 4 M implies b M C cl(A). Thus, a minor consequence
of q weakly isolating p in NNV is that no realization b € N of q can contain
points from M which are not algebraic over A.

Suppose that a nonalgebraic type p € S?(A) is realized by (a,b) with
a |4 b. Then we can choose (c,d) such that a—b |4 ¢—d and each of (a,b),
(¢, b), and (c,d) realize p. This choice quickly yields that p is not regular.
Thus, although we consider regular n-types for n > 1, any sequence realizing
such a regular type must be dependent.

When K is the class of AT-saturated (i.e. all models) we have the no-
tion called strongly regular in Shelah [Shelah 1978]. In discussing w-stable
theories, we will frequently write strongly regular for AT-strongly regular.

1.4 Exercise. Show that if ¢ weakly isolates p € S(M), where ¢ is an
I-formula and M € K, then q weakly isolates p in M[a] for any @ realizing
.

The next lemma is a technical point to show that weak isolation is a
property of the parallelism class of p where p € S(M). Note that if ¢
weakly isolates p in NV then ¢ weakly isolates p in the image of N under
any isomorphism which fixes M. We will show that if ¢ weakly isolates p
then ¢ weakly isolates every p’ which extends ¢ and is parallel to p. We
first show this if p’ is a nonforking extension of p (or vice versa). The
result then extends to arbitrary parallel p and p’ by passing through their
common nonforking extension.

1.5 Theorem. Let q be an I-formula and M be an I-saturated model. Sup-
posep € S(M) andp’' € S(M') is a nonforking extension of p. Then q weakly
1solates p if and only if ¢ weakly isolates p'.

Proof. Suppose first that ¢ weakly isolates p’ and let @ realize p’. Suppose
that N' D M’ Ua witnesses the weak isolation of p’ by ¢. Let N = M[a].
It suffices to show that g weakly isolates p in N. Let beq(N)— M. Let by
denote bN (N M) and by denote 5N M. Then @t>ps by. Since @ | M’ it
follows that by | M’. By monotonicity and since by €M, by Ip M'U b2
and thus b |p M’. So, b € q(M'[a]) — M'. Now, as q weakly isolates p’
we have b realizes p’|A = p|A and b | 4 M'. By monotonicity b |4 M, so q
weakly isolates p in N

Now suppose that g weakly isolates p and let @ realize p’. Let N' = M'[a].
Assume for contradiction that b € N’ realizes ¢ but either b does not realize
p|Aor b}, M'. We prove the following strong result which not only yields
the theorem at hand but will be applied again to prove Theorem 1.7 and
Corollary 1.8.
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1.6 Lemma. Suppose the type q over A C M weakly isolates the type p €
S(M) where q is an I-formula and M is I-saturated. Let @ realize p and
suppose @ |4 M and @ |p D. For any b realizing q, if b Iamup @ then
t(b; M U D) is a nonforking extension of p|A.

Proof. By monotonicity, @ {4 M U D U b so applying the local charac-
ter of forking, there is a formula xo(Z,7,%) € F(A) such that xo(a, b, m)
for some m € M U D and for any b and ', if = xo(a,b,m’) then
[ b~ m. We argue by contradiction. If t(b; A) # p|A let x1(Z) be a
formula over A which is satisfied by b but is not in p|A. Otherwise, choose
x1(Z,9) € F(A) and d € M U D so that = x1(b,d) and for every b realizing
t(b; A), if &= xl(y,c_l') then b L4 d. Now apply Corollary X.1.13 to the
I-formula {x0(a@,7,%) A x1(7,®)} U q(y) to obtain m’,d € M and b such
that xo(@,b,m') Ax1(5,d) Aq(B). Let N be any model in K containing
Muaub.Asa La pm, b & M. Since g weakly isolates p, t(BI; A) =p|A.
This contradicts the choice of x; in the case t(b; A) # p|A. In the second
case, we have 3 La d which also contradicts the weak isolation of p by q.
This concludes the proof of the lemma.

To finish the proof of Theorem 1.5, let M’ = D. Then by Fly, b f,, M'Uga
so t(b; M) £ p. Hence, by Lemma 1.6, t(b; M’) is a nonforking extension of
D.

With these technical preliminaries disposed of we can recast the K-
strong regularity in terms of weak isolation. We will profit from this refor-

. mulation in showing that strong regularity is a parallelism invariant and
when constructing K-strongly regular types in Section 2.

1.7 Theorem. Let p € S(A) and g C p be an I-formula over A. The pair
(p,q) 1s K -strongly regular if and only if there ts an M € K which contains
A and an @ realizing p with @ | 4 M such that g weakly isolates t(a; M).

Proof. Suppose that p is K-strongly regular. Let A C M € K and let p’ be
a nonforking extension of p to S(M). Let @’ realize p'.

We claim q weakly isolates p’ in M[@’]. To see this, let b € M[a@'] realize q
and let 7 denote t(b; M). By the definition of K-strong regularity, r L p or
r is a nonforking extension of p. The first is impossible. For, r } p’ because
r is realized in M([a’]; thus, r is a nonforking extension of p as required.

Note that we are not required to conclude that b realizes p’. Without
assuming that p is stationary we could not reach that conclusion.

Suppose the second condition holds. We must show that if B D A, r €
S(B), and r D g then r L p or r is a nonforking extension of p. By taking
a nonforking extension of r we can assume without loss of generality that
B is the universe of a model M € S. Then, if r £ p there exist a b realizing
r, an @ realizing p such that @ | 4 M and a set D such that @ |pr D, b | D
but (@ } b; M U D). By Lemma 1.6, r is a nonforking extension of p.

An easy application of Theorem 1.7 yields that if the I-formula g weakly
isolates p € S(M) then (p,q) is K-strongly regular. We now give sufficient
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conditions for the preservation of regularity and strong regularity ‘up’ and
‘down’ under nonforking extensions. We have so far avoided requiring reg-
ular types to be stationary. That requirement is essential for most of the
preservation results. The proof of Theorem 1.8 ii) is a natural extension of
the second paragraph of the proof of Theorem 1.7.

1.8 Corollary. Let p’ € S(A’) be a nonforking extension of p € S(A).

i) If p is regular then p’ is regular. If p is stationary and p' is regular
then p s regular.
ii) Suppose the stationary type p contains the I-formulas q and for some
M € K, q weakly isolates pM. Then (p',q) is K-strongly regular.
iii) Suppose p is stationary. Then for any I-formula ¢ C p, (p',q) is
K -strongly regular if and only if (p,q) is K -strongly regular.

Proof. 1) Preservation ‘up’ is immediate from the definitions. Suppose for
the converse that p’ € S(A’) is a nonforking extension of the stationary
type p and p’ is regular. To show p is regular, let A C C and suppose b
realizes a forking extension r of p to S(C). Without loss of generality, we
may choose C™b | 4 A’. Thus, t(b; C U A’) is a forking extension of p’ (since
p is stationary and b | 4 A’). So t(b;C U A’) is orthogonal to p’ and thus to
p. But, by monotonicity, b |c A’ UC so r L p as required.

ii) Let r € S(B) be an extension of p’. Suppose N contains M U B and
' is a nonforking extension of r to S(N). Now if r [ p, the preservation of
nonorthogonality by parallelism guarantees ' £ p™. Choose 3 realizing 7/,
a realizing p™ and D so that b |y D and @)y D butb }pn @. By Lemma
1.5, g weakly isolates p”. So, by Lemma 1.6 7’ is a nonforking extension of
p. Since p is stationary, ' is a nonforking extension of p as required.

iii) Suppose (p, q) is K-strongly regular. By Theorem 1.7, for some M in
K, q weakly isolates p™. By ii) we conclude (p’,q) is K-strongly regular.
Conversely, if (p', q) is K-strongly regular then for some M € K, q weakly
isolates (p')M. But, (p')™ = pM so the result follows by ii).

1.9 Exercise. Prove the ‘up’ direction of Corollary 1.8 i). Deduce from
Corollary 1.8 that if p € S(A) is regular and @ realizes p then stp(a; A) is
regular.

1.10 Exercise. Show that the hypothesis that p is stationary is necessary
to prove that regularity is preserved downwards by nonforking extensions.
(Hint: Consider the following theory with three equivalence relations E,
E,, E5. Restricted to E; and E5, T is the theory CEF,. E3 has two classes,
one coincides with a single F; class. In this theory there are two types over
the empty set: p; contains (y)[E3(z,y) A ~E1(z,y)] while ps does not.
However, it is easy to see that if there were a unique type over the empty
set it would have both a nonforking extension which is regular and one
which is not. David Marker has suggested the following device to modify
the theory and obtain a single type over the empty set. Add to the language
three unary predicates A, B, and C. Let the extension of C in a model of T
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be the structure described above. Now consider a ternary relation R with
the following properties.

i) R(z,y,2) — A(z) A B(y) A C(2).

ii) For each a € A, there are infinitely many b € B (this subset of B is
called U}) such that R(a,b,c) if and only if b realizes p;.

iii) For each a € A, there are infinitely many b € B (this subset of B is
called U2) such that R(a,b,c) if and only if b realizes p,.

iv) For each a € A, there are infinitely many b € B (this subset of B is
called U2) such that there is no ¢ € C satisfying R(a, b, c).

v) If ap # a1, U3, UU2 C U3 .

a; —

The first four conditions tranform the pair of types into a single type. The
fifth condition makes the theory complete and w-stable.)

The following examples illustrate a number of the subtleties of the notion
of K-strong regularity.

1.11 Examples. i) If T is w-stable and K is the class of AT-saturated
models then for any strongly minimal set D, if p is the type of an
unrealized element of D, the pair (p, D) is K-strongly regular.

ii) Let T be the theory of an equivalence relation with infinitely many
infinite classes each of which is a model of Th(Z, S). Consider the
2-type, p, of a pair of elements, (a,b), which are equivalent but not
on the same Z-segment. Whether p is K-strongly regular depends
on our choice of K. If we fix K; to be AT and thus I-formulas are
single formulas then p is not K;-strongly regular. For, if ¢(z,y) is
any formula in p, there is a nonforking extension of ¢ realized by
two elements which are only finitely distant as well as one which is
realized by two points which are infinitely far apart. Thus, there is
no choice of an I-formula ¢ to make (p, ¢) K;-strongly regular.

On the other hand, letting K5 be the class of (strongly)-Ro-saturated
models of T (thus the I-formulas are types which are (almost) over
finite sets) it is easy to see that (p,p|0) is Ka-strongly regular.

Both example i) and ii) (when K = S) have the property that if we pass

to M there is an obvious ‘quotient’ type of the K-strongly regular type

which contains a strongly minimal formula. The next example does not
have that property.

iii) Let T be the theory REI, of countably many refining equivalence
relations with infinite splitting. If M is a model of T', p € S(M), and
p specifies all the equivalence classes, then (p’,p) is ATy,-strongly
regular for any nonforking extension p’ of p. But no strongly minimal
set is associated with p (even in M€?).

The next two examples illustrate some difficulties in trying to strengthen
the properties of the weakly isolating formula in a strongly regular pair.

iv) Let T be the theory of two crosscutting equivalence relations, Ej,
E,, and let p be the complete type over a containing the formula
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{E1(z;a) A E2(z;a)}. Then (p,z = z) is AT-strongly regular but
p forks over the empty set. (This example was suggested by Steve
Buechler.)

It is essential for Theorem 1.7 that p be a complete type over A. More-
over, it is impossible to revise the definition of strongly regular type to make
it a property of one type rather than a pair of types. The next example
illustrates the dependence on p.

v) Let T be the theory of infinitely many disjoint infinite unary predi-
cates. If M is the prime model of T and p is any non-algebraic type
over M, (p,z = z) is AT-strongly regular. But there is no station-
ary formula ¢ so that (p,q) is AT-strongly regular. Here, we say a
formula, ¢, is stationary if the type {¢} is stationary.

The following result emphasizes the importance of the S-saturated mod-
els.

1.12 Theorem. The following are equivalent.

i) There ts an S-formula q such that (p,q) is S-strongly regular.
i) For some acceptable class K, there is an I-formula q such that (p, q)
18 K -strongly regular.
ili) The type p is regular.

Proof. Clearly, i) implies ii). Definition 1.2 yields immediately that ii) im-
plies iii). To see that iii) implies i), let p € S(B) and choose A C B with
|A| < k(T) such that p does not fork over A. For some @ realizing p,
let ¢ = stp(a; A). By Theorem 1.8 i) q is regular. Now, let M 2 B be
S-saturated and p’ € S(M) be a nonforking extension of p. If @’ realizes p’
then for any b in g(M[a@']) — M, ¢(§; M) £ p' by FI,. Thus by the definition
of regular, t(EI; M) is a nonforking extension of ¢ and thus of p as required.

K-strongly regular types should be. viewed as a particuarly good sort
of K-minimal type. The next theorem verifies that they are, in fact, K-
minimal. Sections 3 and 4 will reveal their sterling qualities.

1.13 Theorem. IfM € K, pe€ S(M) and (p,q) is K -strongly regular then
p 18 K-minimal.

Proof. Suppose r € S(M), r is not realized in M, and p |- g r. We must show
r gk p. To this end, let b realize p and @ € M|[b] realize r. By Corollary
X.1.22 (letting D = @) there exists a beM [@a] — M which realizes q. By
the definition of a strongly regular pair, b realizes p and we finish.

The following theorem of Pillay shows a good deal about the structure
of the K-models prime over K-strongly regular types.

1.14 Theorem. If M € K, p € S(M) and (p,po) is K-strongly regular
then for any @ realizing p and any b € M[a] — M, t(a; M Ub) is I-isolated.
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Proof. Since @ f,, b, there is a formula x(Z;b) such that = x(a;b) and
x(M;b) N M = 0. Let the I-formula go(a;y) isolate ¢(b; M U @). Then the
type p(Z) U qo(T;y) implies a complete type in Z—7 over M. Let rg be the
I-formula, po(Z) U qo(Z;b) U x(Z; b). Now, any point in M (@] which realizes
ro (in particular, which realizes po U x(Z;b)) is in M[a] — M and thus
realizes p. Since M|a] is I-saturated, this implies that r¢g |- p. We deduce
70(Z) I p(Z) U qo(Z;b) | t(@; M UD) and finish.

We can immediately conclude

1.15 Corollary. If M € K, p,q € S(M) are K-strongly regular, and p |- g
q then M[p] ~ M|q].

Proof. Let @ realize p, b realize q. Applying Theorem 1.14 it is easy to
see that M|a] is I-constructible over M U b. By Theorem 1X.4.12, M([a] is
isomorphic to Mb).

1.16 Historical Notes. Shelah introduces the notion of regular type in
Section V.1 and that of strongly regular type in Section V.3 of [Shelah
1978]. Our treatment has been greatly influenced by [Makkai 1984] which
in turn was influenced by [Lascar 1984]. The direct argument for Theorem
1.13 is due to Lascar [Lascar 1984]. Theorem 1.14 is due to Pillay, [Pillay
1982] (also quoted in [Lascar 1984]). We also learned a good deal in con-
versations with Buechler and Pillay. Another approach is taken in [Pillay
1984]. Exercise 1.10 provides a negative answer to question 1.1 on page 224
of [Shelah 1978].

2. FEmistence of Strongly Regular Types

This section is devoted to finding strongly regular types for various accept-
able classes K. We will see that for superstable theories regular types are
plentiful. One of the difficulties in investigating theories which are stable
but not superstable is that analogs of the next several results do not hold.

For the existence theorems beginning this section we do not assume that
T admits K-prime models. In particular, one of the exercises shows that a
small superstable theory admits AT-strongly regular types (which may not
be stationary). We will reap some benefits from this added generality in
Chapter XIII. However, the main cases are S-models of superstable theories
and arbitrary models of w-stable theories.

The exercise after the following definition describes the ‘useful’ version
of that definition. That is, it provides for the existence of all regular types
needed for most of the arguments in this chapter. For Theorem XIII.3.3
a more refined existence theorem is necessary. The definition itself, which
relies on part iii) of Definition 1.3, formulates this condition. Since the
definition only yields a b € N — N; which is weakly isolated over M, not
Ny, the definition is not a very significant strengthening of the exercise.
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The extremely difficult Theorem XIII.3.3 is necessary to get any benefit
from the extension.

2.1 Definition. The acceptable class K admits (K -strongly) regular types
if for every triple of K-models M C N; C N with M properly contained in
N there is an I-formula, pg, over A C M with |[A| < A(I) andabe N — N,
such that pg weakly isolates t(b; M) in (N1, N).

We say K admits stationary regular types if we can demand in addition
that t(b; A) is stationary. The theory T admits K-strongly regular types if
the class of K-models of T' does so.

Although we spoke in Section 1 of regular type of arbitrary finite length,
this definition specifically provides for the existence of regular 1-types.

2.2 Exercise. Show that by taking N; = N we can deduce from the asser-
tion that K admits regular types the following simpler assertion. For every
M, N € K with N a proper extension of M, there is a b € N such that
for some A C M and some I-formula, g, over A, (¢(b; M), q) is K-strongly
regular.

2.3 Theorem. IfT is a superstable theory then S admits stationary regu-
lar types.

Proof. (Fig. 2). Let M C N; C N with N; properly contained in N. For as

ai+1 )Z Bi+1
Bi

Fig. 2. Theorem XII.2.3.

long as possible, choose a coherent sequence (@;:7 < a) and (B;:¢ < ) with
B; C B;+1 C M such that @; € N — Ny, t(a;; B;) is stationary, |B;| < x(T),
|Bi+1 — Bi| < w, and @i41 {p, Bit1. If continued infinitely this sequence
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contradicts the assumption that «(T") = w; when it stops stp(a;; B;) weakly
isolates t(a;; M) in (N1, N).

This argument does not continue past a limit ordinal. Thus, we are
unable to prove that a countable stable theory admits regular types for
K = ATy,, which is the natural candidate when T is merely stable. It is
not easy to find an example to illustrate this problem. There may be one
in the second edition of [Shelah 1978].

2.4 Exercise. Modify the argument for Theorem 2.3 to show that if M is
S-saturated, T is superstable and M is a proper submodel of the S-model
N then there is a b€ N — M with t(b; M) regular.

An alternative proof of Theorem 2.3 invokes rank to find the element
realizing the regular type.

2.5 Exercise. Show that if T is superstable and R (t(a; M)) is minimal
among all types over M realized in N then t(a; M) is regular.

In the remaining arguments in this chapter we shall use several of the
notions of rank discussed in Chapter VII. We begin by extending the last
result to the class of all models if T is a countable w-stable theory.

2.6 Theorem. If T is a countable w-stable theory then AT admits sta-
tionary AT-strongly regular types.

Proof. Let M C N; C N with M properly contained in N. Choose a in
N — N; to minimize the Morley rank, Rps(¢(a; M)), and choose a formula
#(z;b) € t(a; M) = p with the same rank, say «, and degree as p. Clearly,
the degree is one. Now if a’ € N — M and |= ¢(a';b) then Rps(t(a’; M)) > «
so t(a’;b) =p|b and @’ |; M. Thus, ¢(z,b) weakly isolates t(a; M) in (N1, N)
and (p, ¢(z,b)) is AT-strongly regular as required.

The following exercise shows the necessity of assuming w-stability for
this theorem.

2.7 Exercise. Show that the theory of infinitely many independent unary
predicates does not admit AT-strongly regular types.

2.8 Exercise. Show, by forming a disjoint union of the last example with
a strongly minimal set, that one can have (p,q) K-strongly regular and r
a nonforking extension of ¢ without (r,q) being K-strongly regular. (This
differs from Theorem 1.8 as we require only r D g rather than r D p.)

Two contrasting properties of Morley rank were used in the proof of
Theorem 2.6. On the one hand, every type contains a formula with the
same rank; on the other, a type has only finitely many distinct extensions
of the same rank. Possessing both of these properties characterizes Morley
rank. We can extend the scope of this result slightly by using different ranks
to serve the two functions. However, we lose the ability to demand that p
is stationary.
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2.9 Exercise. Let T be a small superstable theory. Show T admits AT-
strongly regular types. (Hint: First choose a € N — M to minimize the
Shelah degree of ¢t(a; M) = p. Then choose ¢(z;b) € p with the same degree.
Then choose a’ satisfying ¢(z;b) to minimize the Cantor-Bendixson rank
in S(b) of t(a’;). Show this is an appropriate choice.)

This exercise may seem illegitimate since our development of K-strongly
regular types assumed that T admits K-prime models. However, the proof
that weak isolation implies strong regularity in Theorem 1.7 does not re-
quire this hypothesis. The current proof of the converse does need the
hypothesis.

The previous set of exercises shows that if T' is a small superstable
theory then T" admits AT-strongly regular types. However, while one may
find p € S(M) and ¢ over M with (p,$) AT-strongly regular, there is
no guarantee that there is a finite subset A C M with p|A stationary
and (p|A, ¢) AT-strongly regular. Indeed, Example V1.1.33 ii) shows this
property may fail.

2.10 Exercise. Find an example to show the result of Exercise 2.9 can

not be improved to require p to be stationary. (Hint: Consider the theory
REF,.)

2.11 Exercise. Contrast the theories CEF,, and REF,, with respect to
the existence of AT-strongly regular types.

The following characterization of K-minimal types requires the existence
of regular types and so could not have been proved at the end of Section 1.

2.12 Theorem. Let M € K andp € S(M). If K admits regular types then
p s K-minimal if and only if for some K -strongly regular g€ S(M), p |- q.

Proof. Suppose p is K-minimal. Since K admits regular types we can find
a K-strongly regular ¢ realized in M[p]. Thus, p |- ¢. But since p is K-
minimal, q |- p. The converse follows quickly from Theorem 1.13.

We can combine this result with Theorem 1.14 to extend Corollary 1.15
and conclude that all K-minimal types yield isomorphic prime models.

2.13 Exercise. If M € K, p,q € S(M) are K-minimal and p |- q then
Mip] ~ M]g].

The following construction provides another source of regular types as
well as illustrating their connection with strongly minimal sets.

2.14 Definition. The type p € S(A) is minimal if for every formula ¢(z),
either p U ¢ or p U —¢ has only finitely many solutions.

The following property of minimal types is straightforward.
2.15 Exercise. Every minimal type is regular.

This notion of minimality is quite distinct from K-minimality. Although
by Theorem 2.12 and Exercise 2.15 every minimal type is K-minimal the
converse is far from true.
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2.16 Exercise. Find a regular type which is not minimal (say for AT).

2.17 Historical Notes. The existence arguments are derived from The-
orem V.3.5 in [Shelah 1978], [Shelah 1982] and [Makkai 1984]. There is a
considerably deeper treatment of minimal types in Section V.1 of [Shelah
1978]. They also play an important role in [Buechler 1984a).

3. Some Variants on Transitivity

At the outset of this chapter, we noted that the notion of regularity gen-
eralized two properties of strongly minimal sets. So far we have focused on
the weak isolation aspect. Now, we consider the property, ‘having a well
defined dimension’. We showed in Section V.2 that the dimension of a set
of indiscernibles is well defined if the set of indiscernibles has at least «(T')
elements. To extend this result to sets with finite dimension depends, as
in the theory of vector spaces, on a more detailed analysis of the inde-
pendence notion. But in the theory of vector spaces, the extra care arises
from the exchange principle which, in the form of the symmetry axiom, we
always have. The extra difficulty arises here in guaranteeing that depen-
dence is transitive. Accordingly we develop in this section, perhaps over
pedantically, some variations on the notion of transitivity. Several of these
will be seen in later sections to play an important role in our dimension
theory. The notion of transitivity of dependence was formulated by Van der
Waerden as follows.

If a depends on X and each z € X depends on Y then a depends on Y.

In Chapter II we extended the notion of dependence to deal directly with
n-tuples (or, as we saw later, n-element sets). The proper generalization of
this axiom is somewhat problematical. The most obvious generalization is

If (@ ) BUC;A) and each ¢ € C satisfies ¢ 4 B thena /4 B. (%)

Unfortunately, this version doesn’t quite work. The basic problem is that
if C is the union of the ranges of a collection of sequences which realize
an n-type, we may not have enough information about individual members
of C to carry through the proofs. This problem shows up in the proof of
Theorem 4.1. The proper notion requires our conventions (see Convention
X.1.29) about the treatment of n-tuples and the relation between p*(M)
and p(M).

3.1 Definition. Let p be a type over A. The relation of forking is fully
transitive on p(M) if for any sets B and C with BUC C p(M) and any @
realizing p, if @ f4 (BUC) and each ¢ € C satisfies¢ /4 B then @ }, B.

This would seem a perfectly natural extension of the first version of tran-
sitivity to n-tuples, but for one anamoly. Formally, the assertion @ J 4, (BU
C) makes sense only when B U C is thought of as a subset of p*(M) rather
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than p(M). However, the symmetry axioms and Theorem II.10 guarantee
the equivalence of @ | 4 p(M) with @ | 4 p* M).

3.2 Exercise. Prove the notion of transitivity in Definition 3.1 implies
that mentioned in the paragraph above the definition.

3.3 Exercise. Prove that if p is an n-type over A, ¢ € p*(M), and Ig(c) <n
then letting ¢ = ¢(c; A), ¢*(M) C p*(M).

3.4 Exercise. Prove for p a type over A and p C g € S(A) that if forking
is fully transitive on p(M) then forking is fully transitive on g(M).

Clearly, by the finite character of dependence we can reduce any question
about transitivity to one about finite B and C. In the next lemma we
observe that it is enough to check the case where C has one element to
. prove full transitivity.

3.5 Lemma. Let p € S(A). Suppose for any BUT C p(M) and for any
ae€p(M), ifa fu (BUT) andT {4 B thena }4 B. Then forking is fully
transitive on p(M).

Proof. Without loss of generality we assume B U C is finite and induct
on the cardinality of C. The hypothesis of the lemma is the case |C| = 1.
Suppose |C| = n + 1. Let d denote the sequence (Co,...,Cn_1). We have
@ {4 BUdUE, and ¢, /4 B. By monotonicity, ¢, {4 BUd. Now @ /4, (BUd)
follows by using the hypothesis of the lemma with B U d playing the role
of B. By induction, we have @ /4 B as required.

There is another variant of transitivity which plays an important role.

3.6 Definition. Let p € S(A). The forking relation is mildly transitive on
p(M) if for each @, b, ¢ € p(M) whenever @ J4band b J,Cthena f,C.

This definition just asserts that for non-algebraic p forking is an equiva-
lence relation on p(M). Note that if p(M) is mildly transitive then for any
M we can assign an invariant to p(M): the number of pairwise independent
realizations of p in M. The exact properties of this invariant are unclear.
It is unclear, for example, that if we defined a notion of dimension in terms
of the maximal number of pairwise independent realizations of a type on
which forking is mildly transitive whether the vitally important Theorem
4.4 (below) would still hold.

We have introduced these notions as variations of transitivity in this
section to indicate one way in which they are related. Later we will revert
to the more standard usage, p is regular if forking is fully transitive on p(M);
p has weight one if forking satisfies a condition slightly stronger than mild
transitivity on p(M). We will show that the term ‘weight one’, at least, is
extremely descriptive. The next lemma formulates the minimal amount of
transitivity necessary for a well defined dimension.

3.7 Definition. Let X be a set of n-tuples. The forking relation on X is
weakly transitive over A if for any @, B,C contained in X the following
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condition holds. If B and C are each independent sets over A and if each
¢ e C satisfies¢ 4, Banda J4, (BUC) thena f, B.
If A =0 we just write ‘weakly transitive’.

3.8 Exercise. Show that full transitivity implies weak transitivity implies
mild transitivity.

We show now that weak transitivity implies that dimension is well de-
fined. This proof is exactly as in linear algebra. We just note that the
application of transitivity uses only weak transitivity. To ease readability
we prove this theorem for X such that forking is weakly transitive over the
empty set. The extension to an arbitrary A is routine.

3.9 Theorem. Suppose the forking relation on X is weakly transitive over
the empty set. For any Y and Z which are mazimal independent subsets of
X, [Y|=|2|.

Proof. By the finite character of forking the result is obvious unless one
of Y and Z is finite. Suppose |Z| < w. We show by induction on |A| for
A CY that there exists a subset B of Z such that |B| = |A| and, letting
Zo denote Z — B, that AU Zj is a maximal independent set. This implies
|Y| < |Z|. If A =0 there is nothing to prove. Suppose we have the result
for |A| < n and suppose A = A’ U {a} with |A’| < n. By induction, there
exists B’ with |B’| = |A’| such that, letting Zj denote Z — B’, A’ U Z is a
maximal independent set. Thus a J A’ U Zj. By the generalized symmetry
principle (Corollary I1.1.12), letting Z, denote Zj — {b}, for any b € Z},
b Y (AUZyU{a}). Ifa f A' U Z, then by weak transitivity, b } A’ U Z,
contradicting the induction hypothesis. (We don’t need full transitivity
since a and A’ U Z, are separately independent.) Thus A’ U Zy U {a} is
independent as required.

The following example illustrates the difference between these variants
on transitivity.

3.10 Example. Let T be the theory of the group Zf°. Let r be the type
over the empty set asserting x has order 4. Let M be a countable model of
T and let N be M & Z4 @ Z4. Consider the following three elements of vV

M Zy Z
a 0 1 0
b 0 1 2
c 0 0 1

Now ¢ {3 a"band b [, a but ¢ | a a so forking is not fully transitive nor
even weakly transitive on 7(M). It is mildly transitive.

Our goal, of course, is to be able to attach a dimension to large subsets
of models of T (large enough eventually so that they determine the model).
The next lemma separates the part of our construction which is on the level
of linear algebra from that which is model theory. We will apply this lemma
in Section XIII.1.
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3.11 Lemma. Let X be a subset of M™. Suppose that there is an equiva-
lence relation E on X such that

i) Forking over A is fully transitive on each equivalence class of E.
ii) IfICX anda Y4 I thena J 4 Iz where Iz = {b C I : bEa}.

Then forking over A is weakly transitive on X.

Proof. Let I, J C X be separately independent over A. Suppose @ /4 (I uJ)
and for each b C I, b } 4 J. By ii) @ } 4 (IzU J3). Clearly, if b € I then bEa
implies b } 4 Jg. Since forking is fully transitive on the equivalence class of
@, @ f4 Jz and the result is immediate by monotonicity.

With these notions of transitivity in hand we can draw some conclusions
about the dimensions of types.

3.12 Definition. Let p € S(A) and A C M. Then dim(p, M) is the cardi-
nality of any maximal independent set of realizations of p in M.

The following result is obvious from the considerations in Theorem 3.9.

3.13 Theorem. If forking is weakly transitive on p(M) then for any M
which contains dom p, dim(p, M) is well defined.

3.14 Historical Notes. This section was motivated by Shelah’s loose as-
sertion in V.1 of [Shelah 1978] that on the realizations of regular types
forking satisfies the axioms for vector spaces. The actual result proved is
that the other axioms and weak transitivity (rather than full transitiv-
ity) are satisfied. The intent was that invariance of dimension holds. These
distinctions were explored in [Baldwin 1984].

4. Strongly Regular Types and Compulsion

In this section we combine the two views of regularity discussed in Sections
1 and 3 to establish the role of orthogonality between K-strongly regular
types in the ordering |- . The first theorem establishes that we have been
looking at the same notion from two viewpoints. Although the assumption
that forking is fully transitive on p(M) seems to be a purely local assump-
tion (dealing only with realizations of p), it has consequences, e.g. those in
Definition 1.1 of regularity, involving points which do not realize p.

4.1 Theorem. Let p € S(A). The following are equivalent.

i) p is a regular type.
ii) Forking is fully transitive on p(M).

Proof. To show ii) implies i), it suffices, as in the proof of Theorem 1.7,
to show that for any S-saturated M with A C M, if @ realizes p then
@laMort(@M) L p. By Theorem VI.1.37, if ¢t(a; M) L p there is a b
realizing p such that b |4 M but @ f,, b. By Axiom FI3 and Proposition
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X.1.37, (@~b|M; AU p*(M)). Now if @ |4 AU p*(M) then @ |4 M by
transitivity of independence and we finish. But if @ J4 A U p*(M) note
that since (@b M; AU p*(M)) we have (b M Ua; A Up*(M) Ua). Hence
if b]a AUp*(M) U@, we conclude by transitivity of independence that
bla M Ua, contrary to the hypothesis that @ },, b. We are thus left with
the case b 4 AUp*(M) U@ and @ }4 A Up*(M) but then invoking the
transitivity of dependence we have b J, AU p*(M). But b |4 M and this
contradiction yields the first assertion.

To show i) implies ii) we show for any B U {@,c} C p(M), if ¢ /4, B
and @ f4 (BUT) then @ /4, B. To see this note that ¢ /4 B implies by
Definition 1.2 that t(¢; B) L p. Thus, if @ |4 B (i.e. t(@; B) || p) we have
t(a; B) L t(c; B). In particular, @ | 4 (¢U B). We now deduce ii) from Lemma
3.5.

In the preceding proof we were careful to follow the notation of Chap-
ter X which distinguishes between p*(M) and p(M). Hereafter, we often
take advantage of the remark after Definition and 3.1 and identify these
two sets when speaking of independence. Note that this circumlocution is
not formally correct if we speak of implication rather than independence.
(Recall that if a | ar b and ¢(a; A) is stationary t(a; A) - t(a; AUD).)

The following version of regularity extends transitivity to domains which
are not contained in p(M).

4.2 Exercise. If p € S(A) is regular, A C B, aU X is a set of realizations
of p such that @ /g X and for each Z € X, T depends on B over A then
@ J4 B. (Note this also holds if we replace @ 5 X in the hypothesis by
af4sXUB.)

We would like to have an analogue of Theorem 4.1 for strong regularity.
Our success depends on the direction of the implication. Part i) of the
following exercise verifies that one half of Theorem 4.1 (regularity implies
transitivity) does go through for any acceptable K. This can be easily
deduced from Theorem 1.12. In fact, this part of the proof of Theorem 4.1
applies to any class K such that if p,g € S(M) and M € K then p L g
implies p L% a. The converse is harder; it is difficult to formulate a smooth
characterization of strong regularity in terms of transitivity. The suggestion
of Shelah embodied in part ii) of Exercise 4.3 seems to be the best.

4.3 Exercise. i) Show that if p € S(A) and (p, ¢) is K-strongly regular
then forking is fully transitive on p(M).
ii) Show (p, q) is K-strongly regular iff the dependence relation on ¢*(M)
defined by ‘@ depends on B over A if and only if t(a; A) # p or
(@ f B; A) is fully transitive.

Now we use both weak isolation and full transitivity to prove an impor-
tant theorem about strongly regular types.

4.4 Theorem. Let M,N € K and p € S(A) with AC M C N. Suppose
that (p,po) ts K-strongly regular. If C is a set of realizations of po which
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is independent over M but C {4 M then C [, p(M). Moreover,
dim(p, N) = dim(p, M) + dim(p™, N).

Proof. (Fig. 3). If the first assertion fails, Proposition X.1.37 yields that
C [ 4 po(M) but C | 4 p(M). Without loss of generality, C is finite. Thus,
for some finite D C po(M) —p(M), C } 4up(ar) D- We show this is impossible
by induction on the cardinality of the set of 1g(p)-tuples D. By the definition

Fig. 3. Lemma XII.4.4.

of strong regularity, for each d € D, t(d; A U p(M)) L pAY?(M)_ Invoking
the triviality of orthogonality and the fact that C is independent over M,
this establishes the result if |D| = 1. Suppose the conclusion holds when
|D| < k and consider D with |D| = k + 1, say, D = D’ Ud and D’ satisfies
the induction hypothesis. Since d does not realize p, the definition of strong
regularity implies that d } , AUp(M)U D' and that t(d; AUp(M)UD’) Lp.
By the triviality of orthogonality we have t(d; A Up(M)U D') L t(C;AU
p(M) U D') and we finish.

To prove the final statement, just extend a basis, X, for p(M) to a basis,
X UY, for p(N). We now show the new elements are a basis for p™ (N).
Since forking is fully transitive on p(N), Y |4 X implies Y |4 p(M). By
the first conclusion of the theorem, this implies Y | 4 M and we finish.

Theorem 1.13 showed that K-strongly regular types are K-minimal.
Thus, two K-strongly regular types are either incomparable or equivalent
modulo | g . The next theorem and its corollaries provide a more syntactic
description of this relation.
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4.5 Theorem. Let M be S-saturated and suppose p € S(M) s a regular
type. If g € S(M) and q L p then q »g p. Thus q> p.

Proof. Let b realize g and let N be S-prime over M Ub. Choose A C M with
|A| < A(I), such that p is strongly based on A and let p; = p|A. Since p £ g,
and over S-models L¥ implies L (Theorem VI.1.40), there is @ realizing
p such that @ J,, (M Ub) and by monotonicity @ /,, N. By Axiom FI3,
p|(AUPT(N)) - p. So (@ Y AUP;(N); A). Let I be a maximal independent
subset of pj (V) such that /N M is a maximal independent subset of p} (M).
Since p (and therefore py) is regular, @ J 4 (AUI). If IN(N — M) = 0 then
@ }4 M, contrary to hypothesis. Thus there exists an @’ € I N (N — M).
Now @’ | 4 (I N M) implies by the choice of I N M and regularity again that
@ |4 (AUp;(M)) and thus using FI3 once more that @ |4 M. Since p; is
stationary, this yields @ realizes p as required.

Note that this argument gives a different proof (for the S-case) of The-
orem 1.13: if p € S(M), M is S-saturated and p is regular then p is
S-minimal.

The following exercise points out a slightly stronger version of Theorem
4.5 which we actually established in the preceding proof.

4.6 Exercise. Let M be S-saturated and suppose p € S (M) is a regular
type, ¢ € S(M) and ¢ L p. If @ realizes p, b realizes q, and @ ,(M b then
there is an @ € M[b] — M which realizes p and satisfies @ f,, @’

The next variant of Theorem 4.5 will be very useful in applications.

4.7 Exercise. Let p € S(A) and q € S(B). If ¢ £ p and p is regular then
q>°p.
Now comparing the models M|[p], M[q], and M|[qz] quickly yields

4.8 Corollary. i) Suppose q; and qa are regular and q¢1 X q2. Then for
any p, p L q1 if and only if p L qo.
ii) Nonorthogonality is the equivalence relation induced on the class of
regular types by the relation |»g.

Proof. We prove only i) as ii) follows immediately from i). Without loss of
generality we may assume p, q;, and ¢o are in S(M) for some S-saturated
M. If p [ qi1, then by Theorem 4.5, q; is realized in M|p|. Since ¢q1 £ g2,
g2 is realized in M[q;] which without loss of generality is a submodel of
M|p]. But then by Exercise X.1.21 there are realizations @, b of p and g3
with (@ J b M). Thus p £ go.

4.9 Corollary. If q is regular then for any p andr, p £ q.and r [ q implies
pLr.

Proof. Suppose not. Without loss of generality, p,q and r € S(M) for some
S-model M. Let @, respectively b, realize p and r. By Theorem 4.5, q is
realized by some ¢ € M([a] — M and some ¢ € M[b] — M. Let a map ¢ to ¢
fixing M. Then a(b) realizes r and ¢ € M[a] N M[a(b)]. But, p L r implies
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(D) | m @ which implies M[(b)] | ;s M[a] which implies M[a(b)] N M([a] =
M. This contradiction yields the result.

To extend these results to K-strongly regular types for arbitary accept-
able classes K, we must extend the result that weak orthogonality implies
orthogonality from types over S-models to types over K-saturated models.
We do that here for stationary K-strongly regular types. This allows us to
conclude the analog of Theorem 4.5 and Corollary 4.8.ii).

4.10 Theorem. Suppose M € K, p € S(M), and (p,po) is K-strongly
regular. If ¢ € S(M) 1is K -strongly regular, q|dom*(qo) is stationary, and
gL pthenqi-gpandp LY q.

Proof. Let A = dom™(qo). Since p £ g, there is a D DO M and @, b realizing
nonforking extensions of p and ¢ to S(D) such that (a } b; D). By Corollary
X.1.22 thereisa b € go(M[a]) such that (5’ Ya; M). Let r = t(E’; M). Then
r is a regular type, so either r L ¢|A or r is a nonforking extension of
the stationary type g|A. In the second case, b realizes q and witnesses
both p £* ¢ and p >k gq. But, r L g|A is impossible. For, we have r £ p
and p [ q|A, since nonorthogonality is a parallelism invariant. Thus, by
Corollary 4.81), r L g|A.

The contrapositive of this result yields: Suppose p,q € S(M) and po, qo
are over A with (g, go) and (p, po) K-strongly regular and ¢|A is stationary.
Ifpl¥ qthenp L gq.

Note that we invoked Theorem 4.81) and thus, indirectly, Theorem 4.5
in the proof of Theorem 4.10. We are unable to give a uniform proof of this
result for all acceptable classes K but must first prove the result for S and
then transfer it to the other classes. This theme resounds through the rest
of this book.

The proof of Theorem 4.10 did not require that K admit regular types.
Thus, it applies for example to an arbitrary model and two stationary
AT-strongly regular types in a superstable theory. Note, however, that
in this situation the hypothesis that q|A be stationary is not automati-
cally satisfied. The extension of Theorem 4.10 to obtain the full analog of
Theorem 4.5 depends on K admitting stationary regular types. With this
hypothesis we will deduce the result for arbitrary types (with domain in K)
in the next chapter and this will allow us to obtain the analog of Theorem
4.8ii). Even without this hypothesis one can extend Theorem 4.8.ii) to any
acceptable K.

4.11 Corollary. Nonorthogonality is the equivalence relation induced on
the class of K -strongly regular types by the relation |- k.

4.12 Exercise. Prove Corollary 4.11.

While our definition of a pair (p, ¢) being AT-strongly regular allows
p to fork over dom ¢, the following exercise shows that has a powerful
consequence. The exercise follows easily from Corollary 4.11 and the fact
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(established in Exercise 2.14 and Theorem 2.15 that in an w-stable theory
questions of orthogonality can be reduced to regular types.

4.13 Exercise (Buechler). Let T be w-stable, M = T, and p € S(M).
Suppose that for some ¢ € M and some formula ¢(z;¢) the pair (p, ) is
AT-strongly regular. Show that if p forks over ¢ then p - €.

4.14 Historical Notes. This entire chapter is an elaboration of Theorem
V.1.19 of [Shelah 1978] which gives five equivalent forms of the definition
of a regular type. We have separated these various notions to indicate the
roles that the various formulations play. In addition, we have integrated
the treatment of strongly regular types. The proof that weak orthogonality
implies orthogonality for K-strongly regular types is derived from [Lascar
1982a]. We have not discussed the notion of a semi-regular type which
is defined in Section V.4 of [Shelah 1978] and plays an important role
in extending the study to strictly stable theories. Hrushovski [Hrushovski
1986] has extensively exploited this notion.





