
Chapter V

Indiscernibles In Stable Theories

Sets of indiscernibles play a number of important roles in model theory.
They are used to realize types (as in the proof of the existence of saturated
models); they are also used to 'blow up' models (without realizing new
types). Moreover the cardinalities of maximal sets of indiscernibles can be
used as invariants in classifying models. We begin this chapter by expound-
ing the basic properties of indiscernibles in a stable theory and explaining
the distinction between sequences of indiscernibles and independent sets.
Section 2 begins the rather lengthy process of using sets of indiscernibles
as bases for models of stable theories (cf. the introduction to Section 2). In
Section 3 we apply the notion of indiscernibility to show the equivalence
between the notion of forking as introduced here and the original version
of Shelah [Shelah 1978].

1. Sets Of Indiscernibles

If X is a set of algebraically independent elements in an algebraically closed
field then every permutation of X is in fact an elementary map. This indis-
cernibility of the elements of X is closely related to their independence. We
explain this connection in Lemma 1.8 and Theorem 1.23. In this section we
study in detail indiscernible elements in a model of a stable theory. We de-
fine such notions as indiscernible sequences (of sequences) and indiscernible
sets (of sequences). That is, we deal with families E = {βi : i e /} where
each Έi is a finite sequence. Very little intuition is lost by thinking of each
Έi as a single individual but the added generality is necessary.

1.1 Definition. The ordered set X = {xi : i € /} is a sequence of (order)
indiscernibles if every order preserving map / mapping into a finite subset
of the linear order / induces a partial elementary monomorphism of X by
taking Xi to x / ( i )

The index set will be well-ordered unless we explicitly assert otherwise.
We distinguish now between a sequence and a set of indiscernibles. While
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this is an important distinction in general model theory, we will see that
in our situations the concepts coalesce.

1.2 Definition. The set X = {xi : i E /} is a set of (pure) indiscernible se-
quences if every partial permutation of X is an elementary monomorphism.

In Definition 1.1 (1.2) we refer to X as a sequence (set) of indiscernibles.
Naturally, both of these definitions can be made relative to a set A.

The next theorem emphasizes two important properties of indiscernible
sequences in a stable theory.

1.3 Theorem. Let M be a model of the stable theory T.

i) Every infinite sequence of indiscernibles in M is a set of indis-
cernibles.

ii) For any formula φ(xm,y), there is an integer n(φ) such that for am/ 6,
if E = {βi : i E ω} is an infinite set of indiscernibles over the empty
set either \{i : φ(ei\b}}\ < n(φ) or \{i : -^φfa; b}}\ < n(φ).

Proof. In showing i), let Sn denote the symmetric group on n elements and
denote the application of a permutation s E Sn to an element i by si. Fix
iι < . . . < in E ω, and consider an arbitrary formula φ(x\, . . . , zn) Let Tn

be the set of s E Sn such that |= φ(eial , . . . , βiβn ). If Tn is 0 or Sn we finish.
If not, fix t E Tn and s E Sn — Tn. Then s and t differ by a product of
transpositions so there exist u E Tn and υ E Sn — Tn such that for some
k < n, v = (fc, k + 1)̂ . (This requires a little argument with permutations.)
Let ψ(xι, . . . , xn) = Φ&vii ,£vn) Now we have

a) \=Ψ(ein -,ein) and

b) ̂
Note that a) and b) hold when ύ, . . . , in are replaced by any other properly
ordered n-tuple from ω (by order indiscernibility). Now by compactness,
we can replace ω by an index set R with order type of the real numbers
such that a) and b) hold whenever i\ , . . . , in are replaced by a properly
ordered n-tuple r\ , . . . , rn from R. If r and rf are arbitrary distinct members
of Λ, there exist rational numbers {qi : 1 < i < n Λ i ^ k} such that
qι < < Qk-i <r < qk+ι < r1 < qk+2 < . . . < qn. Hence

c) 1= ^(ββi, - - - , e^-i > βn eβi+1, , eqj and
d) (= -«^(eςι , . . . , eqk_ ί , er, , eς/fe+ x , . . . , eqn ) .

Thus distinct er for r e R realize distinct ^-types over the countable set of
eq indexed by rationale. By Theorem IΠ.1.6, T is not stable.

For ii),j3uppose first there is an infinite and coinfinite subset F of E such
that φ(e, b) holds iff e is in F. For each infinite and coinfinite subset W of
E, there is an elementary monomorphism fw with f ( F ) = W. Since the
monster model is so homogeneous, we can extend / to an automorphism
of the monster model. Now, φ(άi, /(&)) holds iff α^ is in W. Thus there are
continuum many </>-types over E, contrary to the stability of T.
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This argument depended on the choice of F and 6. However, if arbitrarily
large finite F could be found for various choices of 6, by compactness we
could obtain a single F and b to which the above proof applies.

Note that Theorem 1.3ii), but not necessarily i), holds for any theory
which does not have the independence property (cf. Section IΠ.4.43).

1.4 Exercise. Find an example showing the necessity of the assumption
that the sequence is infinite in Theorem 1.3i).

By Theorem 1.3 i) in stable theories all infinite sequences of indiscernibles
are sets of pure indiscernibles. In fact the converse is true, but we won't
prove it here (see Chapter 2 in [Shelah 1978]). Using the second part of
this theorem we can attach to each set of indiscernible n-tuples a complete
n-type as follows.

1.5 Definition. Let X = {άi : i G /} be an infinite set of indiscernibles
over the empty set. The average type of X over A, denoted Av(X;A), is
(0(x;α): 0(x;α) in F(A) such that for all but finitely many i, f= </>(α^;α)}.

Thus, if X is an indiscernible set of n-tuples, Av(X, A) G Sn(A). Note
that if X is indiscernible over any set B it is certainly indiscernible over
the empty set; X is usually not indiscernible over A when we apply this
definition.

1.6 Exercise. Show that if e realizes Av(£"; A) where E is an infinite set of
indiscernibles over B C A and B U E C A then E U e is a set of indiscernibles
over B.

The identification of indiscernibles with independent elements in vector
spaces, algebraically closed fields, and free algebras is not a fluke. These
examples are somewhat misleading, however. Here are some more revealing
ones.

1.7 Examples. First we show a sequence may be indiscernible without
being independent.

i) Let T be the theory of an equivalence relation with infinitely many
infinite classes. If X is an infinite set of points in the same equivalence
class then X is a set of indiscernibles but X is not an independent
set.

Here is an independent set which is not a set of indiscernibles.

ii) In the theory of infinitely many refining equivalence relations with
finite splitting (REFω ) let (α^ : i < ω) be a sequence such that
Ei(a,k,a,j) iff k,j > i. Then for each i, t(a^Ai) does not fork over 0
but the sequence (α^: i < ω) is not indiscernible over the empty set.
Note also that t(a^ Ai) C t(aj\ Ai) if i < j.

These examples show that independence does not quite guarantee indis-
cernibility; however, only one ingredient is missing. Recall Definition II.2.19
declares that an independent sequence is strongly independent over A if all
elements of the sequence realize the same stationary type over A.
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1.8 Lemma. If E is an infinite strongly independent set over A then E is
a set of indiscernibles over A.

Proof. Fix a well ordering (αα : a < K) of E. We prove by induction on
β < K that Ep is an indiscernible sequence over A] by Theorem 1.3 this
suffices. The result is clear for limit ordinals, so suppose β = a + 1 and
Ea is a sequence of indiscernibles over A. Let α ϊ o , . . ., αίn and α j o,..., αjn

be in Eβ with ZQ < ii < ... < in, jb < Ji < < jn > and without loss of
generality in < jn. We need only show

t(άa', {ΰi0,... ,ain} U A) = ί(άα; {α jo,... ,α jn} U A).

By induction, there exists a map / which fixes A and sends ά^ to άjt

for / < n. Both ί(όβ; {α jo,..., α jVt} U A) and /(ί(άβ; {άίo,... ,άtn} U 4))
are nonforking extensions of the same stationary type so they are equal.
Applying f~l we have the result.

Theorem 1.23 below is almost a converse to this result. We can weaken
the hypothesis that E is strongly independent over A slightly as follows.
The second exercise shows that this provides a real weakening of the hy-
pothesis.

1.9 Exercise. Show that if the infinite set E is independent over A and
all e E E realize the same strong type over A then E is a set of indis-
cernibles over A. (Hint: First apply Lemma 1.8 to show E — {e} is a set of
indiscernibles over A U {e} for each e £ E. Then deduce that E is a set of
indiscernibles over A.)

1.10 Exercise. Let M be a model of CEFω and suppose {ci: i < ω} is an
infinite set of elements realizing the same strong type over 0. Show using
the previous exercise (or by inspection) that the c^ are indiscernible. Show
also that no type over the empty set is stationary.

The argument for Lemma 1.8 does not depend on the particular prop-
erties of stable theories but relies only on the definitions of stationary type
and strongly independent sequence. We will use stability theory to con-
struct a strongly independent sequence. We first describe a somewhat more
syntactic way of finding an indiscernible sequence and indicate how to find
indiscernibles in models of arbitrary theories. We devote the remainder of
the section to elucidating those properties of sets of indiscernibles which
depend on stability.

The following exercises are not necessary for our development but they
put our uses of the hypothesis of stability into context. For this set of
exercises we drop the standing assumption that T is stable.

1.11 Exercise. Show that if (pi: i < a) is an increasing sequence of types,
each pi € S(A U^ ), with A C dompo? no Pi splits (Definition IΠ.2.9) over
A, and βi realizes pi then (βi: ί < a) is a sequence of indiscernibles.

Using this observation and the fact that coheirs over models always exist
solve the following exercises for an arbitrary theory T.
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1.12 Exercise. If M is a model of T, find in the monster model an infinite
set of indiscernibles over M.

1.13 Exercise. If M C N and N is |M|+-saturated find in N an infinite
set of indiscernibles over M.

1.14 Exercise. If A C TV and N is (\A\ + |T|)+-saturated find in N an
infinite set of indiscernibles over A.

The remaining results in this section depend, at least indirectly, on the
hypothesis that types over models are stationary. The essential point is
that indiscernible elements in stable theories are even more similar than is
evident from the definition of indiscernibility. We first show that if E is a
set of indiscernibles over A (i.e. the elements of E cannot be distinguished
by formulas which are over A) then in fact the elements of E cannot be
distinguished by formulas which are almost over A.

Note that in the following lemma E is a sequence of sequences. Thus,
each variable x and each constant e refers to a sequence of sequences, e.g.
x = ( 2 / 0 5 . . . , ym), where lg(yj is the common length of the sequences in E.

1.15 Lemma. If E is an infinite set of sequences which is indiscernible
over A, and φ(xι,..., xn; c) is almost over A then every sequence (βi,... en)
from E yields the same truth value for φ(e\,... ,en; c).

Proof. If the lemma fails, we can choose disjoint sequences (of sequences) h
and g from E such that stp(h\ A) φ stp(g\ A). (If h and g are not disjoint
replace one of them by a sequence disjoint from both of the original two.)
There is a member R of FErn(A) such that -«-R(<7, h). Thus any pair of
disjoint sequences from E each having the same length as g are inequivalent
under R so R has infinitely many equivalence classes, contrary to the choice
ofR'mFErn(A).

1.16 Exercise. Show that if E is an infinite set of indiscernibles over A
then E is an infinite set of indiscernibles over cl(A). Show that it is essential
to assume that E is infinite.

1.17 Exercise. Suppose θ(x) is almost over B C A and E C A is an infinite
set of indiscernibles over B such that all but finitely many e G E satisfy θ.
Show that \ίe' realizes Av(£, A) then |= θ(e').

Now we apply Lemma 1.15 to show that if E is a set of indiscernibles over
A then E remains indiscernible over supersets of A which are independent
from E over A. The next theorem does all the work. This is one of the most
important facts about the nonforking relation.

1.JL8 Theorem. // E is an infinite set of indiscernibles over A and if
t(b; E U A) does not fork over A then E is a set of indiscernibles over A\Jb.

Proof. It suffices (since E is indiscernible over A) to show that the type q of
an arbitrary n-tuple of elements from E has a unique extension q1 E S(A\Jb)
which is realized in E. But if r € S(A U b) is the type of an n-tuple from
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E, by the symmetry lemma r does not fork over A. Thus, if E is not a set
of indiscemibles over A U 6, we have two extensions, r and r1 of q which
are realized in E and do not fork over A. By a form (Theorem IV.1.23) of
the Finite Equivalence Relation Theorem, this implies that r and r1 imply
contradictory formulas which are almost over A. This contradicts Lemma
1.15.

The proof of Lemma 1.15 does not rely on stability. However, to make
effective use of Lemma 1.15 and Theorem 1.18 we need to have κ(T) < oo.
Some simple cardinal computations and the definition of κ(T) yield the
following consequences.

1.19 Corollary. Let E be indiscernible over A.

i) For any b, there is an EQ C E_ with \E0\ < κ(T) such that E - EQ is
indiscernible over A U EQ U {&}.

ii) For any B there is a subset EQ C E such that E — EQ is indiscernible
over EQ U A U B with

a) \EQ\ < κ(T) + \B\ and
b) i f \ B \ < κ(T) then \E0\ < κ(T).

Proof. For i) use the definition of 7c(T); for ii) we iterate the construction.
For each finite sequence 6 from B choose E(b) contained in E such that
\E(b)\ < κ(T) and E - E(b) is indiscernible over A U {b}. Then, let EQ be
\J{E(b): b a finite sequence from B}. It is easy to check EQ has the required
cardinality.

If we are willing to replace the 7c(Γ) in i) by |T|+, an argument both
more naive and more general will suffice.

1.20 Exercise. Use Theorem 1.3 to show that if T does not have the inde-
pendence property (cf. Paragraph IΠ.4.42) and E is a set of indiscemibles
over A then for any b there exists EQ C E with \EQ\ < \T\ such that E — EQ
is indiscernible over A U EQ U b.

Our next aim is to prove a suitable converse to Lemma 1.8. Recall the
definition from II.2.14 of a coherent sequence.

1.21 Lemma. Let E = {ez : i < β} be a coherent sequence over A.

i) If β > ω then a^ ^m for m>ω realize the same strong type over A.
ii) // \E\ > 7c(T) then E contains a subset EQ with \EQ\ < κ(T) such

that E - EQ is independent over A U EQ.

Proof, i) For each finite equivalence relation R over A, there is an n (one
more than the number of classes of R) such that for all a > n, ea is R-
equivalent to some (the same) member of En. Thus all ea for a > ω satisfy
the same strong type over A.

ii) There exists EQ C E with \E0\ < κ(T) such that Av(£; E U A) does
not fork over EQ U A. Since E is coherent, for any eeE- EQ, t(ea]Ea U A)
is a restriction of Av(£7; E U ̂ 4) so we finish.
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The property described in Lemma 1.21 i) depends on the order type
rather than the cardinality of the sequence E. Note that Lemma 1.211)
does not depend on the cardinality of L. It holds for a sequence E, even if
\L\ is much greater than \E\.

1.22 Exercise. Show that even for countable T, there can be coherent
sequences over a set A of arbitrary finite length (βi :i < n) such that not
all the βi realize the same strong type over A.

Since any sequence of indiscernibles is a coherent sequence we could
apply Lemma 1.21 directly to any indiscernible set E to obtain a proper
subset EQ of E over which E - EQ is strongly independent and with \E0\ <
κ(T) + NI. However, we can use Lemma 1.15 to improve the bound on \EQ\.
In particular, if T is superstable we choose EQ in the following theorem to
be finite.

1.23 Theorem. // E is a set of indiscernibles over A and \E\ > 7c(T)
then there is a set EQ C E with \EQ\ < 7c(T) such that E — EQ is strongly
independent over EQ U A.

Proof. Since E is a coherent sequence, we can choose by Lemma 1.21 ii) a
set EQ with \EQ\ < κ(T) such that E-EQ'IS independent over A U EQ. Let
EQ = E*Q\Je for any e in E - E'Q. By Lemma 1.15 all elements of E - EQ
realize the same strong type over A U E'Q and this strong type is specified
by the choice of e.

We have discussed the notions: a) a strongly independent sequence b) an
independent sequence and c) a sequence of indiscernibles. We have shown
that a) implies both b) and c). Neither converse holds. But, Theorem 1.23
asserts that each set satisfying c) 'eventually' satisfies a).

From Lemma 1.15 we see that if E is a set of indiscernibles over A then
all elements of E realize the same strong type over A. Moreover, for any
fc, any fc-tuple of sequences from E realizes the same strong type over A.
For applications, we need a somewhat stronger result. Namely, we would
like the type over A to actually specify which strong type is realized by the
sequence of indiscernibles. To arrange this for 1-tuples from E is easy; we
just add one element of E to A and work over A U e. It would seem that
to deal with fc-tuples from E we would have to add k members of E. This
would be unfortunate if E had only NO members. However, here we are
able to use the strength of independence instead of mere indiscernibility.
The case of the following theorem with lg(/ι) = 2 is Exercise II.2.1. The
argument here requires one crucial observation about automorphisms and
the equality of types: If a is an automorphism fixing B and taking a to a*

and t(ab', a1 U B) = t(b'-, ά' U B) then £(6^ά; B) = t(Ί>~cf] B).

1..24 Theorem. If E is strongly independent over_A then for any sequence
h of sequences from E (i.e. h = (ei0,..., ein)), t(h', A) is stationary.

Proof. The proof is by induction on the length of h. If lg(/i) = 1, this is
the definition of strong independence. Now suppose h = g^e and t(g-, A)
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is stationary. Suppose that there exist B D A, ~g', ~g", e', e" such that
t(g'^e'',A) = t(g"^e"',A) = t(g^e\A) and t(g'^e'',B] does not fork over
A and t(g"^e"\ B) does not fork over A. Since t(g'~e'', A) = ί(ϊpe; A), the
independence of E implies t(g'\ A U e') does not fork over A. But then, by
Corollary Π.2.10, t(g'; B U e') does not fork over B. Since t(e'; B) does not
fork over A and t(e"; B) does not fork over A and their common restriction
to A is stationary, t(e';B) = t(e"',B). Hence, there is an automorphism α
which fixes B and maps e" to e'. We can apply to otg" the same argument
we applied to gf and conclude t(άg"',B U e') does not fork over A. Thus
by the stationarity of t(g\ A), t(g'-, B\Je') = t(otg"; B U e1}. Hence we can
conclude t(g'^e'-,B) = t(g"^e"',B} as required.

1.25 Exercise. Produce an example where £(α;A(j6)_is stationary and
£(6; A U α) is not. Refine the example to make a [A A U b.

For simplicity of notation, we state the following theorem for a set of
indiscernibles over the empty set.

1.26 Corollary. // T is a small super stable theory and I is a countable
set of indiscernibles over 0, then \S(I)\ = NO-

Proof. Suppose S(I) is uncountable. For every p € S(I) there is a finite
IP C / such that p does not fork over Ip. Thus, there is an IQ C / with 2**°
types p E S(I) which do not fork over /0. Without loss of generality, / — IQ
is strongly independent over IQ. Let, then, α and b realize the same type
over IQ but distinct types over / with α |/0 / and b |/0 /. Thus, for some
finite sequence e £ / we have £(e;/o U α) ̂  £(α:(e);/o U α) where α is an
automorphism of Λl which fixes IQ and maps b to a. But both e |/0 a and
°t(e) i/o ^ so tms contradicts Theorem 1.24, which implies that £(e;/0) is
stationary.

1.27 Exercise. Suppose (pi: i < a) is an increasing sequence of types with
the ordinal a > ω and cf (\a\) > κ(T). If E = {ez : i < a} where βi realizes
Pi then E contains an infinite indiscernible subsequence.

Thus far in this section we have dealt with indiscernibles without gen-
erally guaranteeing their existence or their location. In Exercises 1.13 and
1.14 we showed the existence of indiscernibles somewhere in the monster
model; now, we employ a variant on an argument due originally to Morley
to construct indiscernibles within a given set. The specific argument here
was suggested to me by Lascar.

1.28 Theorem. Let T be X-stable, X > \T\ + κ(T), and A a subset of
B with \B\ > X > \A\. Then B contains a subset E with \E\ > X which
is strongly independent over some M containing A and thus indiscernible
over A.

Proof. (Fig. 1). Choose by induction sets EiCB such that Ei+ι is maximal
with respect to being independent over A UEi (and taking unions at limits).
If for each ΐ, \Ei\ < X this construction can be continued at least λ times.
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B

Fig. 1. Theorem 1.28. Constructing Indiscernibles

Choose any b E B — \Ji<χEi. Then, for each i, by the definition of £7t ,

t(b; A U (Jj<i#j) forks over (Jj<iEj u A. Since λ > /c(T), this is impossible.
Thus for some k < λ, \Ek\ > λ. Choose M containing A such that |M| =
λ and £(M; B) does not fork over \^ <kEj U A. Since T is stable in λ
there is a subset E of Ek with \E\ > X such that all elements of E realize
the same, necessarily stationary, type over M. By the symmetry axiom
and Corollary Π.2.10, E is independent over M, whence by Theorem 1.3
indiscernible over M and a fortiori indiscernible over A.

1.29 Exercise. Derive Morley's theorem which states that if T is a count-
able ω-stable theory and A is an uncountable set then for any countable
set B C A, A contains an uncountable set of elements indiscernible over B.

These ideas can be applied along with Konig's lemma to give the follow-
ing results of [Zilber 1980b]. For the following three exercises, assume T is
No-categorical and superstable and so u -stable. Let X be a finite subset of
a model of T.

1.30 Exercise. Any infinite subset of a model of T contains an infinite set
of indiscernibles over X. (Hint: use Konig's lemma and Lemma 1.21.)

Now using Theorem 1.18 deduce the following.

1.31 Exercise. If X C A, Y is infinite and £(Y; A) does not fork over X
then Y contains an infinite set of indiscernibles over A.

1.32 Exercise. If X is a subset of A, M is a minimal prime model over A
(cf. Chapter IX), and Y is a subset of M which satisfies 'ί(F; A) does not
fork over X\ then Y is finite.



2. Comparing Sets of Indiscernibles 127

1.33 Historical Notes. The vital notion of a set of indiscernibles was
introduced by Ehrenfeucht and Mostowski [Ehrenfeucht & Mostowski 1956]
who used it to prove that a first order theory has models of arbitrary
cardinality /c whose automorphism groups have cardinality 2*. In [Morley
1965], Morley discovered the important distinction between order and pure
indiscernibles and introduced the inductive construction of sequences of
indiscernibles. Shelah's recognition that this construction could be carried
out with a more general technique than the minimization of Morley rank
was one of the impulses towards the development of the nonforking notion.
Shelah introduced the notion of an average type in [Shelah 1978]. Precursors
of the important fact (Theorem 1.18) that nonforking extensions preserve
indiscernibility are in [Harnik & Ressayre 1971] and [Shelah 1972].

2. Comparing Sets of Indiscernibles

We will eventually assign as invariants of a model the cardinalities of various
sets of indiscernibles. While the structure of a vector space is determined by
one magnitude or dimension, models of other theories will depend on more
than one dimension. Consider first the theory of an infinite set and second
the theory of an equivalence relation with two infinite classes. A model of
the first is specified by one magnitude, its cardinality; a model of the second
requires two magnitudes to be specified, the cardinality of each equivalence
class. Once we agree to count more than one set of indiscernibles, we face
a problem of redundant information. Of which sets of indiscernibles do
we need to know the cardinality? For example, consider the theory of an
equivalence relation with two infinite classes, each of which is a model of
the theory of the integers under successor. Clearly, to determine a model
we need to count the number of components in each class. In a particular
class, a set of indiscernibles containing one element from each component
and a second set consisting of the successors of the elements in the first set
give the same information. (Fig. 2).

Fig. 2. The x's and o's give the same information.

Our aim, which can be achieved only in some cases, is to define an equiv-
alence relation on sets of indiscernibles in a model, assign a dimension to
each class, and have these dimensions determine the model up to isomor-
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phism. For this procedure to be useful we need to check two things. First,
that the obvious way of assigning such a dimension as the cardinality of a
maximal set of indiscernibles in the equivalence class is well-defined. Sec-
ond, that in fact the cardinalities of these maximal sets of indiscernibles
determine the model up to isomorphism.

There are several difficulties in this program. The first condition is easily
met for equivalence classes whose dimension is greater than \T\ and even
without too much difficulty for those with cardinality above κ(T). It is much
more difficult for small (e.g. finite) dimensions. Unfortunately , it is just
the finite dimensions which are crucial in investigating countable models
and this is one reason for the difficulty of settling Vaught's conjecture. It
is to meet this difficulty that the apparatus of regular types is developed
in Chapter XII.

There is however a second difficulty with redundancy. It turns out that
the equivalence relation suggested by the example beginning this section
is not sufficiently coarse. If we were to expand that example by adding a
1-1 function between the two equivalence classes then we would need only
one cardinal to specify a model instead of two. But, the indiscernibles in
distinct classes are not equivalent. We will need to describe a second equiva-
lence relation to allow for this second level of redundancy. This equivalence
relation is defined in Chapter XI.

2.1 Definition. Let X\ and X<2 be infinite sets of indiscernibles over A.
We write X\ ~A Xz and say Xι and X<ι are equivalent if there is an infinite
set, y, of indiscernibles over A such that X\ U Y and XΊ U Y are sets of
indiscernibles over A. We omit the A if it is the empty set.

Note that EQ and E\ can be equivalent without EQ U EI being a set
of indiscernibles. Just choose two distinct sets of representatives for the
equivalence classes in the example considered in the paragraph before the
definition. For another example, in the theory of the integers under suc-
cessor let EQ and EI each select a different element from each of infinitely
many components of a model.

If X1 ~A X<ι and \Xι\ = \X2\ then t(X\;A) = t(XχA) so there is an
automorphism fixing A taking X\ to X^. Clearly ~A is symmetric and re-
flexive; but to establish transitivity we prove the following characterization.

2.2 Theorem. // Xι and X% are infinite sets of indiscernibles over the
empty set, the following are equivalent.

i) Xι ~ Xz.
ii) For every A, Av(AΊ; A) = Pw(X<2',A).

iii) For some model M containing X\ U X%, Av(AΊ; M) = Av(X%] Af).

Proof. Suppose i) holds and Xι U Y and X2 U Y are both sets of in-
discernibles over the empty set. Then for any A, since A!Ί, X^ and Y
are infinite, Av(Xι Λ) = Av(Xι U F; A) = Av(F; A) = Av(X2 U Y; A) =
Av(X2',A). Thus ii) holds.
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Now we show that ii) implies i). For this, first define by induction a
set C = {ci : i E ω} so that if Dn denotes A U X\ U X<2 U Cn, cn real-
izes Av(Xι',Dn). Observe that if the construction were repeated replacing
Av(Xι',Dn) with Av(X2',Dn) the resulting set C' would be isomorphic to
C over X\ U XΊ U A. Now, applying the fact that if F is a set of indis-
cernibles over an arbitrary set A and c realizes Av(F; A\JF) then F U {c}
is a set of indiscernibles over A, it is easy to show by induction that C is
the required set of indiscernibles for the theorem.

Now we show ii) and iii) are equivalent. It is obvious that ii) implies iii).
If for some A, Av(ΛΊ; A) ^ Av(^2; A) then there is a formula (/>(x; ά) such
that 0(x;α) is in Av(Xι,A) but -«0(x;α)Js in Av(X2,A). Let n = n(φ)
from Theorem 1.3ii). Now choose 61, . . . ,6n from Xi and ci, . . . ,cn from
^2 such that [= φ(bi',a) Λ -*φ(ci',ά) for all i < n + 1. Then since M is a
model of T which contains both Xi and X%, for some α' in M,

t<n+l

is true. By Theorem 1.3, Av(Xι M) / Av(X2 M).
Since ii) is obviously transitive, so is i) as required.

We want now to define the dimension of an equivalence class in this
relation.

2.3 Definition, i) Let A C β, E C B and suppose E is a set of indis-
cernibles over A. Then dim(£7, A, B), the dimension of E in B over A,
is the minimal cardinality of a maximal set of indiscernibles F C B
such that E ~A F.

We can extend this notion to types as follows.

ii) Let p E S(A) be a stationary type. If A C 5, then dim(p, B) is the
cardinality of a maximal independent coherent sequence over A in B
of realizations of p.

The next lemma shows that for sufficiently large values of the dimen-
sion, it can be calculated as the size of any maximal independent set. This
is analogous to the situation in linear algebra where a simple cardinality
argument shows that the dimension of a vector space is well defined if it
is infinite but a much more complicated argument is necessary for the case
of finite dimension. In our situation, we will be unable to handle the case
of finite dimension until Chapter XII when we restrict the class of sets of
indiscernibles that we discuss.

2.4 Theorem. Let E be a maximal set of indiscernibles over A with A U E
contained in B. 7/dim(£7, Λ, B) > κ(T) then for any maximal indiscernible
setFCB with F ~Λ E, \E\ = \F\.

Proof. Without loss of generality, suppose for contradiction that \F\ > \E\.
Then by Corollary 1.19 we can find a subset F1 of F with |F'| > \E\
such that F1 is a set of indiscernibles over E. We will show F' U E is a
set of indiscernibles, contradicting the maximality of E. Since E and F are
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equivalent, there is an infinite set EQ such that F\JEo and E\JEQ are both
indiscernible sets. Thus F1 U EQ is a set of indiscernibles and, possibly first
extending EQ and applying Corollary 1.19 again, we can assume F' U EQ is
indiscernible over E. But now it is easy to see that F' U E is indiscernible
over A.

Let E be a set of indiscernibles over A. The remainder of this section
is devoted to the search for a syntactic description of E which preserves
equivalence over A.

One description of E is t(E] A). This description does not contain enough
information to specify E up to equivalence. To see this, consider a theory
T with two unary predicates R and S which partition the universe of each
model. Further, let / be a function from R onto S such that each element
has infinitely many preimages. Now consider sets X and Y of elements
realizing R such that all elements of X map to a single α satisfying S; all
elements of Y map to a single element b in S; α ̂  6. Then each of X and Y
is a set of indiscernibles and t(X\ 0) = t(Y 0) but X is not equivalent to Y.
For, suppose Z were an infinite set such that both X U Z and Y U Z were
indiscernible. For any z E Z, we must have f ( z ) = a from the viewpoint of
X and f ( z ) = b from the viewpoint of Y.

We will describe E in terms of the type of a single element in the sequence
E. To describe the cases in which this is possible, we require some futher
definitions. These notions extend, but do not conflict with, the definition
of a type being based or strongly based on a set (Definition IV.2.4).

2.5 Definition, i) The infinite set of indiscernibles E is based on A if for
every B which contains A, Av(JE, B) does not fork over A.

ii) If, in addition Av(£7, A) is stationary then E is strongly based on A.
If q = Av(J5, A), we may write E is based on #.

iii) If p E 8(A) and for some c realizing p, 1£ is strongly based on g, we
also say E is based on p.

Of course, either of the conditions in Definition 2.5 can be checked by
considering Av(E, M) rather than all B containing A.

2.6 Lemma. If E is an infinite indiscernible set then there is a definition
d of Av(E, E) with parameters from E such that d defines Av(J5, M).

Proof. For each formula φ(χ-,y) there is by Theorem 1.3 an n(φ) such that
for any c e M, φ(x',c) £ Av(E,M) iff \= φ(ei',c] for at least n = n(φ]
sequences et from E. Thus we can take as dφ the formula

V Λ ΦfrΉ
rcEn+l <€/

|/|=n

We have, in fact, that Av(-B, E) is defined by a positive Boolean combi-
nation of instances of φ. This result also holds for any type over a model
(cf. [Baldwin & Shelah 1985] IV.2.15). This observation is also closely con-
nected to the normalization lemma (cf. [Harnik & Harrington 1984] [Pillay
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198?]). This similarity in role between a set of indiscernibles and a model
appears again in Section X.4.

2.7 Theorem. Let E be an infinite set which is indiscernible over A. Then
E is strongly based on E.

Proof. By Lemma 2.6, Av(£7; Λί) is definable over E so Av(£; Λt) does not
fork over E. It remains to show that Av(£; E) is stationary. For this, it
suffices to show that if α realizes Av(£7, E) then for any finite equivalence
relation R over E, for some e G E, R(x;e) e £(α; E). But this is immediate
from the definition of average type.

The next exercise illustrates another aspect of the analogy between in-
discernible sets and models.

2.8 Exercise. Show directly from the definition that if E C B is an infi-
nite set of indiscernibles then Av(£, B) is finitely satisfied in E and thus
Av(£7, B) does not fork over E.

2.9 Exercise. Let M be |yl|+-saturated and A a subset of M. Show that
if p G S(M) does not fork over A and the sequence (en : n < ω) is chosen
so that EQ = A and en+ι € M realizes p\En then p = Av(£; M).

With this in hand, we see that Av(E E) is the desired syntactic de-
scription of E. The next definition makes more precise the requirement we
would like this syntactic definition to meet. We proceed by formalizing the
solution to the first problem of redundancy discussed at the beginning of
this section.

2.10 Definition. Let p be a type over A and q a type over B. The types
p and q are parallel, written p \\ q, if there is a global type f extending p U q
which does not fork over either domp or domg.

If p is stationary, p has a unique nonforking extension to a global type.
Thus, parallelism is an equivalence relation on stationary types. In fact,
parallelism is a congruence relation with respect to all the major relations
among stationary types and this will be one of the first properties we prove
as we introduce each new notion.

We could have replaced 'global type' in the definition of parallel by
'type over some model containing domp U domg'. This is easily verified
using transitivity of independence in one direction and monotonicity in the
other.

2.11 Theorem. Suppose E and F are infinite sets of indiscernibles. Then
E ~ F if and only if Av(£; E) \\ Av(F; F).

Proof. Let p (resp. q) be the unique global type which is a nonforking
extension of Av(£?;£) (resp. Av(F F)). If p = q, it is easy to restrict p
and q to some sufficiently saturated model M containing EUF and then
define a strongly independent sequence realizing p\M which will witness
the equivalence of E and F.
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Conversely, if EQ witnesses the equivalence of E and F and r is the
unique nonforking extension of AV(EQ,EQ) to a global type, it is easy to
see that p = r = q.

In general we can restrict the size of the set E over which we average by
invoking Theorem 1.23 and the following easy remark.

2.12 Lemma. If E is a set of indiscernibles over A and an infinite subset
of E is strongly independent over A U EQ (for some subset EQ of E) then
E is strongly based on EQ U A.

2.13 Exercise. Let T be the theory of an equivalence relation E with two
classes. Let p be the unique type over the empty set. Suppose ->E(a,b),
Pa,pb are non-forking extensions of p in S(a), S(b). Show pa \\P,Pb \\P but
pa is not parallel to p&.

2.14 Historical Notes. This discussion of the average of a type is primar-
ily taken from Chapter III of [Shelah 1978]. There are two complementary
techniques for discussing the eventual behavior of a stationary type. Shelah
builds a set of indiscernibles based on this type and works directly with this
set of indiscernibles. Lascar emphasizes the role of the base type. We have
incorporated both viewpoints; this section contains the fundamental prop-
erties of the indiscernible sequences. The definition of dimension appears
in Chapter III of [Shelah 1978].

8. Forking and Dividing

In this section we study the combinatorial core of forking. We have defined
the notion of forking in terms of definability of types in a stable theory.
The concept we call implicit division here is Shelah's original notion of
forking, which is described by specific properties of formulas. This formu-
lation makes sense in an arbitrary theory and there have been some uses
of it in unstable theories [Shelah 1980a]. We will not rely on results from
this chapter except for examples. It is useful for reading Shelah's book and
it does make the notion of forking much more concrete. We could have
introduced implicit division at any time, but the proof of the equivalence
of this notion with the one we introduced in Chapter III requires some of
the properties of indiscernibles discussed in Section V.I.

We begin by defining some combinatorial properties of formulas and
types. Note that types may be incomplete unless they are explicitly asserted
to be complete.

3.1 Definition. For n > 1 and φ an L-formula, the collection of formulas
{φ(x\ e): e € E} is n-inconsistent if for any subset EQ of E with n or more
elements, {φ(x; e ) : e E EQ} is inconsistent but for each e, (= (3z)0(x;e).

Thus, 2-inconsistency means the sets defined by the formulas φ(x;~e)
are non-empty and disjoint for distinct choices of e. For a slightly more
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complicated example, consider the set E of natural numbers which are
divisible by at most 7 distinct primes. Define a single binary relation R(x, y)
which holds of n and p just if p is a prime and p\n. Then {R(x, e) : e G E}
is 8-inconsistent.

3.2 Definition. The formula φ(x',y) divides over A with respect to the
type q(y) € S(A) if i) (3x)</>(x',y) is in q(y) and ii) there exists an infinite
set E of sequences which realize q such that {φ(x, e): e E E} is ra-inconsistent
for some n.

We frequently write φ(xf,c) divides over A to mean, 'φfay) divides over
A with respect to t(c',A)S We may also write l φ ( x ; y ) and q divide over
A1 to indicate that φ divides with respect to q. However, the assertion,
cp divides over A1 means there is a formula φ(x\ c) £ p such that φ(χ-, y)
divides over A with respect to t(c\ A). Note that if t(c',A) is algebraic, in
particular if c E A, then φ(x\ c) does not divide over A.

We would like to use the notion of dividing as our combinatorial equiv-
alent of forking and eventually for stable theories we will be able to do
so (see Lemma 3.9). For the moment, however, we introduce a notion of
implicit dividing and show it is equivalent to forking. We must do this as
it is not obvious that if p is a type over B and p does not divide over ^4,
then p can be extended to a complete type over B which does not divide
over A.

3.3 Definition. The type p(x) implicitly divides over A, if there exist for-
mulas φo(x; OQ), ..., φn(z, άn) such that p implies the disjunction of the φi
and each φi divides over A.

There is no assumption that the α^ realize the same type over A or even
have the same length. We want first to establish some simple properties of
implicit division and then show that it satisfies the extension requirement.

3.4 Lemma, i) Ify is a subsequence o f x , </>(x;c) divides over A, and
|= (3y)ψ(y',c), \=. </>(t/;c) -> φ(x',c), then ψ(y-,c) divides over A.

ii) If φ(χ-,a) divides over A then 0(x;α) implicitly divides over A.
Ίii) The type p implicitly divides over A iff some finite subtype of p

implicitly divides over A.
iv) (monotonicity) If A is contained in B and p, q are types such that

q implies p (in particular if q extends p) then if p implicitly divides
over B it follows that q implicitly divides over A.

v) If for each i < n, p U {φi} implicitly divides over A then p U Vz<n &
implicitly divides over A.

Proof. All of these results follow immediately from the definitions.

We now consider a slightly more complicated condition which is equiva-
lent to dividing. The proof is just a variant on the Ehrenfeucht-Mostowski
method of constructing indiscernibles; such variants will abound in this
section.
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3.5 Lemma. The formula φ(x; c) divides over A iff there is an infinite
set E = {βi : i € /} of indiscernibles over A such that {φ(x', e) : e £ E} is
n-inconsistent for some n and c = ΈQ.

Proof. Clearly the latter condition implies that φ(x',c) divides oyer^. For
the converse, suppose that F isji set of sequences such that {φ(x', /): / € F}
is n-inconsistent and for each / E F, £(/; A) = £(c; A). By Ramsey's theo-
rem and compactness, there is a set E of indiscernibles over A such that
each member of E realizes £(c; A) and {φ(x;ei) : β i £ E} is n-inconsistent.
Now choose an automorphism of the monster model which maps e$ to c.
The image of E under this automorphism satisfies the lemma.

Now by Lemma 1.15 we can rephrase Lemma 3.5 as follows.

3.6 Theorem. Ifφ(χ-,y) andt(c-,A) divide over A, then there is an infinite
set E with c £ E such that

i) any two sequences of the same length from E satisfy the same strong
type over A and

ii) {φ(x', e ) : e E E} is n-inconsistent.

Our next step is to show that for a stable theory, forking is the same as
implicitly dividing.

3.7 Lemma. If p implicitly divides over A then p forks over A.

Fig. 3. Lemma V.3.7.

Proof. (Fig. 3). Let B = domp. If p does not fork over A, we can extend
p to p' in S(B) such that p' does not fork over A. If p implicitly divides
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over A, then by Lemma 3.4 iv) p1 implicitly divides over A. Thus, if there
is any counterexample p to the theorem, we may without loss of generality
assume that p G S(B).

Now p implies a disjunction of, say ra, formulas φi(x\Ci) which divide
over A. That is, for each i < m there is a set Ei of indiscernibles over A
with Ci in Ei such that {φi(x, c): c G £?*} is n-inconsistent for some n. Let D
denote the union of the Ei. Choose M containing A such that (M|£>; A).
Now p is definable over M (by Theorem IΠ.3.26) since p does not fork over
A. So we can extend p to p\ G S(M U B U D) which is definable over M.
Then for each formula φ(x',y), there is a formula dφ(y;m) in F(M] such
that for e G M U B U £>, φ(χ-, e) is in pi iff dφ(e; m). By Lemma 1.18, since
£(m; ̂ 4 U D) does not fork over A, Ei is a set of indiscernibles over A U {m}.
Now p implies Vt<m Φi&c*) an(^ P *s contained in the complete type p\
so, for some φi(χ-,Ci), call it 0(z,c), 0(x,c) G pi, so dφ(c',m) holds. But
then, by indiscernibility, dφ(e-,m) holds for all e in £7, . Thus φ(x,e) is in pi
for all e in £7, , contradicting n-inconsistency and proving the lemma.

The next lemma justifies the extension from divides to implicitly divides.
Note that it does not require stability.

3.8 Lemma. // p is a type over B which does not implicitly divide over
A, then p can be extended to a complete type q in S(B) which does not
implicitly divide over A.

Proof. Let W = {φ(x) G F(B) : φ implicitly divides over A}. Let q' be p U
{-*φ(x) : φ G W}. We first show q' is consistent. If not, there is a finite
subset p' of p and a finite subset WQ of W such that pf U {-*φ : φ G WQ}
is inconsistent. But then p implies the disjunction of the formulas φ(x), in
WQ. Since each φ(x) implicitly divides over A, by Lemma 3.4 iv) and v) p
implicitly divides over A.

Let q be any extension of q1 in S(-B); we now show that q does not
implicitly divide over A. If it does, then q implies the disjunction of a
finite number of formulas, each of which implicitly divides over A. Then
some finite subset, go? of q implies this disjunction so if θ(x) denotes the
conjunction of go, θ(x) implicitly divides over A. So - 0 is in q' which is
contained in g, contradiction.

We have shown that 'implicit dividing' implies 'forking'. We now show
a result somewhat stronger than the converse. Namely we show 'forking'
implies 'dividing' (for a stable theory). The original proof of the following
result was considerably shortened by a suggestion of Jurgen Saffe.

3.9 Lemma. Let T be a stable theory A C B, and p a type over B which
is closed under finite conjunction. Ifp forks over A then p divides over A.

Proof. If p forks over A then by Corollary IΠ.3.13, there is a formula

φ(x; b) G p such that {φ(xf, b')} forks over A for any b realizing q = t(b; A). It
suffices to show that φ(χ-, b) and g_divides over A. Note that ί(6; A) cannot
be algebraic, since if it were φ(x\ b) would be almost over A which would
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contradict Corollary IV.1.5. Let E, with \E\ > ft(T), be an independent
set of sequences realizing q. Choose E to be strongly based on A. If φ(χ-, b)
and q do not divide over A then {φ(x\ e) : e G E} is ra-consistent for every
n. But then for some c G Λt, f= Φ(c',e) for all e E E. But, c 1A e for each
e E E, which contradicts Theorem Π.2.18.

The following example shows the necessity both here and in Corol-
lary IΠ.3.13 of assuming that the type p is closed under conjunction.

3.10 Example. Let the language L contain three unary relation symbols,
U\, U%, E/3 and a binary relation symbol E. The theory T asserts that the
Ui partition the universe into infinite sets and that E is an equivalence
relation splitting C/2 into infinitely many infinite classes but each element
of C/i and U% is related only to itself. Let b be an element of t/2 Then
neither of the formulas, φ\ = E(x,b) V U\(x), nor φ% = E(x,b) V Us(x)
forks over the empty set but the formula φι(x, b) Λ φι(x, b) does.

Even without assuming that p is closed under conjunction we easily
obtain the following.

3.11 Lemma. If p is a type over B and p forks over A then p implicitly
divides over A.

Proof. If p does not implicitly divide over A we can, by Lemma 3.8, extend
p to a complete type over B which does not implicitly divide over A. By the
first monotonicity axiom this complete type forks over A so without loss
of generality we may assume we have a counterexample p, to the lemma
which is in S(B). Now, by Lemma 3.9 we have the result.

The following example due to Charles Steinhorn shows the necessity of
assuming T is stable for the results in this section.

3.12 Example. We construct a theory T and a formula φ such that φ
implicitly divides over the empty set but φ does not divide, nor even fork,
over the empty set. Let T have a language with two unary relations U\ and
t/2 and one binary relation R. The prototypical model of T interprets U\
as an infinite set X, U<ι as the power set of X, and R as the membership
relation. Suppose a and b are elements of C/2 such that α names the com-
plement of the set named by b. Then the formula R(x, a) V R(x, b) does not
divide over the empty set since it is equivalent to U\(x). But each of the
disjuncts divides.

We can summarize this chapter as follows.

3.13 Corollary. Let T be a stable theory, A C B and p E S(B). The
following are equivalent.

i) p forks over A.
ii) p divides over A.

uΐ) p implicitly divides over A.
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3.14 Historical Notes. The term 'implicitly divides' is new here. The
equivalence of dividing and implicitly dividing for stable theories was first
shown by Shelah. Further work on dividing can be found in [Shelah 1980a].




