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Existence of the AH + 2 subfactor

Pinhas Grossman

Abstract

We give two di�erent proofs of the existence of the AH +2 subfactor, which is a 3-supertransitive
self-dual subfactor with index 9+

√
17

2 . The �rst proof is a direct construction using connections on
graphs and intertwiner calculus for bimodule categories. The second proof is indirect, and deduces
the existence of AH + 2 from a recent alternative construction of the Asaeda-Haagerup subfactor and
fusion combinatorics of the Brauer-Picard groupoid.

1 Introduction
In [AH99] Asaeda and Haagerup constructed two “exotic” subfactors, which were the �rst examples of
subfactors not coming from groups or quantum groups in an apparent way. One is the Haagerup subfactor,
with index (5 +

√
13)/2, and the other is the Asaeda-Haagerup subfactor, with index (5 +

√
17)/2. The

former has become increasingly well understood, with two new constructions developed [Izu01, Pet10].
Indeed, it is argued in [EG11], based on analysis of the Drinfeld center, that the Haagerup subfactor should
not be viewed as exotic at all, but rather as part of a conjectural in�nite series of subfactors associated to
�nite cyclic groups of odd order (in which the Haagerup subfactor corresponds to Z/3Z).

The Asaeda-Haagerup subfactor (henceforth referred to as AH) has until recently appeared more
opaque. In [GIS], a new construction of AH was given by �rst constructing a new subfactor, which we
call 2AH , with index twice that of AH . The subfactor 2AH is associated to the group Z/4Z× Z/2Z in
an analagous, though more complicated, manner as the Haagerup subfactor is associated to Z/3Z. The
existence of AH is then deduced as a consequence of the existence of 2AH . This construction allowed
for the solution of several open problems regarding AH , notably the description of its Drinfeld center.
An anlysis of the modular data of AH suggests a possible series of subfactors associated to the groups
Z/4nZ× Z/2Z, of which 2AH is the �rst member (see [GI15]).

The motivation for constructing 2AH came from an analysis of the Brauer-Picard groupoid of AH ,
undertaken in [GS14]. The Brauer-Picard groupoid consists of all of the fusion categories in the Morita
equivalence class of the even parts of AH and all Morita equivalences between them. The input of the
analysis was the subfactor AH along with two additional small-index subfactors, called AH + 1 and
AH + 2 (with indices 1 and 2 larger that that of AH , respectively) whose even parts belong to the same
Morita equivalence class as those of AH . Starting with these three subfactors, which each give a Morita
equivalence between two fusion categories, the groupoid was built up using essentially combinatorial
methods. In the end, a gap in the very intricate groupoid structure pointed to the probable existence of
2AH , and led to the new construction of AH and the results of [GIS].

The existence ofAH+1 andAH+2 was in turn motivated by the study of quadrilaterals of subfactors
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[SW94, GJ07, GI08]. A quadrilateral of subfactors is a square of subfactor inclusions
P ⊂ M
∪ ∪
N ⊂ Q

such

that P and Q generate M and intersect in N . In [GI08], a quadrilateral was constructed whose upper
inclusions P ⊂ M and Q ⊂ M are both the Haagerup subfactor, and whose lower inclusions N ⊂ P
and N ⊂ Q both have index one larger; the Galois group of N ⊂ M is Z/3Z. Somewhat surprisingly,
the principal graph of the Asaeda-Haagerup subfactor appeared naturally in the classi�cation of similar
quadrilaterals with Galois group Z/2Z. This suggested that there should be a quadrilateral whose upper
inclusions are each AH and whose lower inclusions have index one larger.

The subfactor AH + 1 was constructed in [AG11] by showing the existence of a certain algebra in one
of the even parts of AH . Verifying the existence of this algebra involved computing several complicated
intertwiner diagrams in the bimodule category associated to AH . These computations were performed
using the generalized open string bimodule formalism developed in [AH99]. They also used some data
from a complicated gauge transformation calculation that was the main step in the construction of AH
in [AH99].

Once it had been constructed, it became clear that the AH + 1 subfactor exhibited similar symmetries
to those of AH , and it was conjectured that there should another quadrilateral whose upper inclusions
are each AH + 1 and whose lower inclusions have index one larger.

In this paper, an earlier version of which appeared as an online appendix to [GS14], we construct the
AH + 2 subfactor. The basic method is similar to the construction of AH + 1. We construct an algebra
in one of the even parts of AH + 1 by evaluating certain intertwiner diagrams. But just as evaluating
these diagrams for AH + 1 required data from the calculation in the original construction of AH , to
construct AH + 2 we �rst need to perform an analogue of Asaeda and Haagerup’s calculation for the
AH + 1 subfactor.

This calculation took up about 25 pages in [AH99], and the version we need is more di�cult since
AH + 1 is more complicated than AH . We spare the reader most of the gory details, but include gauge
transformation matrices in an appendix. The correctness of the gauge transformation data is veri�ed in an
accompanying Mathematica notebook. One subtlety which appears in the AH+ 1 case but did not appear
in the AH case is a nontrivial sign occuring in the connection of a certain period two automorphism.

We also include a second, completely di�erent, proof of the existence of both AH + 1 and AH + 2.
This proof is indirect and uses only the existence of 2AH and AH , the outer automorphisms of the
principal even part of 2AH , and fusion combinatorics of the Brauer-Picard groupoid. The existence of
AH was already deduced from the existence of 2AH in [GIS]. That proof used a recognition theorem
from [GS14], in which a 4-supertransitive subfactor can be shown to exist simply by �nding a fusion
category with the same fusion rules as its even part. This approach does not work forAH+1 andAH+2,
since these subfactors are only 3-supertransitive.

However, the presence of outer automorphisms of the principal even part of 2AH implies that the
Brauer-Picard group of AH has a rich structure, and the existence of AH + 1 and AH + 2 can be deduced
using similar combinatorial methods to those in [GS14]. The success of these methods in constructing
�rst AH , and now AH + 1 and AH + 2 as well, without any connection or intertwiner calculations at
all, simply from the existence of 2AH and its outer automorphisms, is a re�ection of the remarkable
combinatorial structure of the Brauer-Picard groupoid.

The subfactor AH + 2 which we construct here has a number of pleasant properties. It is 3-
supertransitive, self-dual, and the odd and even part together form a Z/2Z-graded fusion category
[GJS15]. There is an irreducible noncommuting quadrilateral of subfactors whose upper sides are both
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AH + 1 and whose lower sides are both AH + 2.
The paper is organized as follows.
In Section 2 we review some preliminary notions regarding subfactors, fusion categories, connections,

diagrammatic calculus, and the Brauer-Picard groupoid.
In Section 3 we review some facts about the AH and AH + 1 subfactors and their constructions.
In Section 4 we construct the AH + 2 subfactor by showing the existence of a certain algebra in one

of the even parts of the AH + 1 subfactor.
In Section 5 we give an alternative proof of the existence of both AH + 1 and AH + 2 from the

existence of 2AH and combinatorics of the Brauer-Picard groupoid.
In Appendix A we give the data of a certain gauge transformation between bimodules in the bimodule

category associated to AH + 1; this data is used in Section 3 to check diagrammatic algebra relations in
establishing the existence of AH + 2.

There are two supplementary �les included in the arXiv submission of this paper. The Mathematica
notebook ahp2_gauge.nb veri�es some connection calculations from Section 4 and the correctness of
the gauge transformation data given in Appendix A. This Mathematica notebook is also in the arXiv
submission of [GS14]. The text �le AH1-AH4_Bimodules lists the fusion bimodules between the fusion
rings AH1 and AH4, which are the Grothendieck rings of even parts of the subfactors AH and 2AH ,
respectively; it also gives their multiplicative compatiblity. This complements the text �les in the arXiv
submission of [GS14] which give analogous data for the AHi − AHj fusion bimodules for 1 ≤ i, j ≤ 3.
The AH1 − AH4 bimodules are used in Section 5.

Acknowledgements. This paper grew out of an online appendix to [GS14], which was joint work
with Noah Snyder. In particular, the idea for the second proof of existence of AH + 1 and AH + 2 arose
in conversations with Noah Snyder and uses the methods of [GS14] and the results of [GIS]. We would
like to thank Marta Asaeda for help in computing the connection on AH + 1. We would like to thank
Scott Morrison for initially pointing out to us that the dual graph of AH + 2 must be the same as the
principal graph. This work was partially supported by ARC grant DP140100732.

2 Preliminaries

2.1 Subfactors and tensor categories
A subfactor is a unital inclusion N ⊆M of II1 factors. The subfactor has �nite-index if the commutant
N ′ in the standard representation of N ⊆M on L2(M) is a �nite von Neumann algebra, and the index is
then de�ned as the Murray-von Neumann coupling constant of N in this representation [Jon83].

The principal even part N of a �nite-index subfactor N ⊆M is the category of N −N bimodules
tensor generated by

NMN
∼= NMM ⊗M MMN

and the dual even part is the category of M −M bimodules tensor generated by MMN ⊗N NMM . The
categories N andM are C∗-tensor categories. The subfactor N ⊆ M is said to have �nite depth if N
andM have �nitely many simple objects, up to isomorphism; in this case they are fusion categories. The
odd part of the subfactor is the category K of N −M bimodules which is generated by tensoring objects
of N with NMM ; K is an N −M bimodule category. Together, N , K, andM form a 2-category whose
1-morphisms have duals.
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The principal graph of a �nite-index subfactor N ⊆ M is the bipartite graph with even vertices
indexed by simple objects of N and odd vertices indexed by simple objects in K, with the number of
edges between an even vertex NXN and an odd vertex NY M given by

dim(Hom(NXN ⊗N NMM ,NY M)).

The dual graph is de�ned analogously, usingM instead of N . For a �nite depth subfactor, the norm of
the principal graph is the square root of the index.

De�nition 2.1.1. An algebra in a monoidal category is an object A together with maps 1 → A (unit)
and A⊗ A→ A (multiplication) satisfying the usual associativity and identity relations. An algebra in a
C∗-tensor category is called a Q-system if the unit is a scalar multiple of an isometry and multiplication is a
scalar multiple of a co-isometry. A Q-system A is said to be irreducible if dim(Hom(1, A)) = 1.

If N ⊆M is a �nite-index subfactor, then NMN has the structure of a Q-system in N . Conversely,
given an irreducible Q-systemA in a C∗-tensor category with simple identity object, there is a �nite-index
subfactor N ⊆ M whose prinicipal even part N is equivalent to the tensor category generated by A
[Lon94].

In a C∗-tensor category with simple identity object, there is a notion of dimension of objects, which is
positive for nonzero objects, multiplicative in tensor products, and additive in direct sums. The dimension
of an irreducble Q-system is the index of the corresponding subfactor [LR97].

2.2 Connections and bimodules
The theory of paragroups and connections on graphs is due to Ocneanu. A 4-graph is a square of bipartite
�nite graphs Gi, i ∈ Z4 on vertex sets Vi, i ∈ Z4, as in Figure 1. A biunitary connection α consists of a
4-graph and a function assigning complex numbers to cells, which are loops around the square.

r r
r rV0 V1

V3 V2

G0

G2

G3 G1α

Figure 1: Schematic representation of a connection; cells are loops around the square.

This function is required to satisfy several axioms: unitarity, initialization, harmonicity, and renor-
malization; see [EK98].

For a �nite depth subfactor N ⊆M , one considers the following 4-graph: the upper left vertices V0
are the even vertices of the principal graph, the lower right vertices V2 are the even vertices of the dual
graph, and V1 and V3 are each the (common) odd vertices of the principal and dual graphs. The upper
graph G0 and the left graph G3 are each the principal graph, with the even vertices of G0 identi�ed with
the duals of the corresponding vertices of G3, and the lower and right graphs G1 and G2 are each the dual
graph, again with the even vertices identi�ed according to duality. Then there is a biunitary connection
on this 4-graph associated to N ⊆ M whose gauge equivalence class is a complete invariant for the
subfactor.
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In fact one can construct a subfactor from any biunitary connection on a 4-graph (with G0 and G2
connected), but in general the connection of the resulting subfactor is di�erent than the input connection.
For a connection to come from a subfactor, an additional axiom called �atness is required to be satis�ed. To
construct a subfactor with a given pair of principal and dual graphs, one can try to write down a biunitary
connection for the graphs and check for �atness. However verifying �atness is usually exceedingly
di�cult in practice, and Asaeda and Haagerup took a di�erent approach to construct their subfactors.

We brie�y summarize their theory of generalized open string bimodules; for more details see [AH99].
Given a biunitary connection with G0 and G2 connected, one can associate II1 factors N and M to

G0 and G2, respectively, and an N −M bimodule to the connection. There is a notion of direct sum of
connections with the same horizontal graphs G0 and G2, in which one takes disjoint unions of the vertical
graphs. There is also a notion of product of connections where the lower graph of the �rst connection is
the same as the upper graph of the second connection, in which vertical edges are composed and the
connection values multiplied accordingly. Finally there is an opposite connection with the upper and
lower graphs reversed. These operations on connections correspond to the direct sum, relative tensor
product, and contragedient operations on the corresponding bimodules over II1 factors. Isomorphisms
between bimodules correspond to gauge transformations of the vertical graphs of the corresponding
connections. We will often identify connections with their corresponding bimodules.

If N ⊆ M is a �nite depth hyper�nite subfactor with connection κ, then the bimodule N#XM#

associated to κ gives a subfactor N# ⊆ (M#)′ which is isomorphic to N ⊆M . Then by taking products
of κ and its opposite connection, and decomposing these products into irreducible summands, we get a
concrete representation of the 2-category of bimodules associated to N ⊆M , which allows us to perform
calculations involving intertwiners.

2.3 Diagrammatic calculus
To perform calculations in the 2-category coming from a subfactor, we use a standard diagrammatic
calculus. Intertwiners are represented by vertices or boxes, with emanating edges labeled by the source
and target objects. Following sector notation, we use Greek letters to label objects and often suppress
tensor product symbols and “Hom”. Thus for example the diagram

  ρ

  σ   η
  

represents an intertwiner in (ρ, ση).
Composition is represented by vertical concatenation of diagrams, and tensor product is represented

by horizontal concatenation of diagrams. Straight strings represent identity morphisms, and diagrams
are read from top to bottom.

If ρ and ρ̄ are contragredient bimodules, then there are scalar multiples of isometries

  _
  ρ          ρ

∈ (1, ρρ̄),
  ρ          ρ
  _

∈ (ρ̄ρ, 1),
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called coevaluation and evaluation, such that
ρ

  ρ          ρ
  _

ρ

ρ

=

ρ

 ρ

and

  _

  _

ρ

ρ

ρ   ρ          ρ
  _

  _

=

ρ

 ρ

.

A self-dual bimodule ρ ∼= ρ̄ is called symmetrically self-dual (or real) if under the identi�cation of ρ with
ρ̄, the evaluation and coevaluation maps are adjoints of each other.

We now consider the 2-category coming from a biunitary connection on a 4-graph with connected
horizontal graphs as in Figure 1. For a pair of connections with the same horizontal graphs, bimodule
intertwiners are described by collections of maps on the vertical edge spaces. That is, if ρ and σ are two
connections with the same horizontal graphs G0 and G2 and u ∈ (ρ, σ) is an intertwiner, then for each
pair of vertices a ∈ V0 and b ∈ V3, we have a map from the vector space with basis indexed by the edges
connecting a and b in the left graph of ρ to the vector space with edges indexed by the edges connecting
a and b in the left graph of σ, and similarly for each pair of vertices c ∈ V1 and d ∈ V3 (for the right
graphs). The collection of these linear maps for all pairs of vertices in (V0, V3) and (V1, V2) completely
determines u, and composition of intertwiners is given by composition of the corresponding linear maps
on the vertical edge spaces.

If u ∈ (ρ, σ) is an intertwiner, a ∈ V0 and b ∈ V3 are vertices, and (ab)i and (ab)j are edges connecting
a and b in the left graphs of ρ and σ, respectively, then we denote by u((ab)i, (ab)j) the corresponding
coe�cient of the vertical edge space map associated to u. We can represent coe�cients of intertwiners
between tensor products of bimodules by coloring the regions of the intertwiner diagrams with vertices
of the 4-graph and the strings of the diagram with edges (except that in all of the diagrams in this paper,
there is a unique edge connecting each pair of vertices, so we omit the labeling of the edges).

Thus for example the diagram

c

  ρ

  σ   η
  

a b

signi�es the value of the coe�cient of the intertwiner for the edge connecting a and b in a vertical graph
of ρ and the product of the edge connecting a and c in a vertical graph of σ with the edge connecting c
and b in a vertical graph of η. To evalaute coe�cients of more complicated intertwiner diagrams, we start
by labeling the top and bottom of the diagram with the edges of the coe�cient we want, and then we
must sum over all states, which are ways of �lling in the diagram with consistent labeling. Each state is in
turn evaluated by taking the products of the values that the labeling assigns to each vertex in the diagram.

A key point is that in most of the computations below, the intertwiner we are looking at lives in a
1-dimensional space, and is thus uniquely speci�ed by a single nonzero coe�cient. Thus we can identify
relatively complicated intertwiners which are built out of numerous compositions and tensor products of
smaller intertwiners simply by labeling the diagram by an appropriate state and evaluating the vertex
coe�cients of the diagram determined by that state. For examples of how this works, see [AG11] or
Lemma 4.3.1 and Theorem 4.3.2 below.
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 1  κ   ρ   π απ   αρ   α

ρα αρα

 η and  
  .

Figure 2: The graphs of the Asaeda-Haagerup subfactor

2.4 The Brauer-Picard groupoid
To any �nite depth subfactor N ⊆ M we have associated a pair of fusion catgories N andM and a
bimodule category NKM between them. The category NKM is invertible in the sense that

NKM �M MKopN ∼= NNN ,

where Kop is the opposite bimodule category, NNN is the trivial module category, and �M is the relative
tensor product of bimodule categories; and a similar identity holds for the product in the other order. An
invertible bimodule category is also called a Morita equivalence.

De�nition 2.4.1. [ENO10] The Brauer-Picard groupoid of a fusion category C is the 3-groupoid whose
objects are fusion categories Morita equivalent to C, whose 1-morphisms are invertible bimodule categories
between such fusion categories, whose 2-morphisms are equivalences of such bimodule categories, and whose
3 morphisms are isomorphisms of such equivalences. The Brauer-Picard group of C is the group of Morita
autoequivalences of C modulo equivalence.

The Brauer-Picard group is an invariant of the Morita equivalence class, and contains as a subgroup
the group of outer automorphisms of C, which give bimodule categories by twisting the trivial bimodule
category on one side by automorphisms.

An e�ective technique for performing calculations in the Brauer-Picard groupoid of a “small” fusion
category using decategori�ed invariants was developed in [GS14]. We �rst compute the Grothendieck
ring for each of the known fusion categories in the groupoid, then compute lists of based modules over
each of these rings, and then look at how these di�erent modules �t together into bimodules. Finally we
look at how di�erent bimodules can be composed, in the sense of being compatible with tensor products of
bimodule categories. This combinatorial data provides strong constraints on the structure of the groupoid,
and sometimes allows us to develop large structures from a very small amount of initial information. We
refer the reader to [GS14] for details.

3 AH , AH + 1, and AH + 2

3.1 The Asaeda-Haagerup subfactor

In [AH99], Asaeda and Haagerup constructed a subfactor with index
5 +
√

17

2
and the graph pair in

Figure 2.
Here we have labeled the even vertices on the principal graph, which correspond to the simple objects

in the principal even part, and κ, which is the fundamental bimodule NMM . (Warning: we use di�erent
labels for the objects than in [AH99].)
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They �rst computed the (unique) connection on the 4-graph associated to this graph pair, which
corresponds to the bimodule κ. Then instead of directly trying to verify �atness of this connection, they
studied the 2-category of bimodules generated by κ.

They decomposed the product connection κκ̄ into a direct sum of the identity connection and another
connection, which corresponds to ρ. Note that while the upper graph of the connection κ is the principal
graph and the lower graph is the dual graph, the upper and lower graphs of ρ are both the principal
graph, since ρ is an N −N bimodule. They then de�ned a connection α whose upper graph and lower
graphs are both the principal graph, and whose vertical edges connect each vertex in the principal graph
to its re�ection in the vertical line through the vertex η in Figure 2. There is a unique connection on this
4-graph, up to gauge equivalence, whose values are identically 1. Finally, they showed that the product
connections ρακ and αρακ give isomorphic bimodules. To prove this they explicitly calculated a vertical
gauge transformation between these two product connections. This calculation is di�cult and occupies
25 pages in their paper. From this isomorphism of bimodules, they deduced the existence of a subfactor
with the given graph pair (and hence �atness of the connection on the original graph pair).

3.2 AH+1
In [AG11] it was shown that with κ and α as above, there is a Q-system for 1 + κ̄ακ, giving a subfactor

with index 1 + dim(κ̄κ) =
7 +
√

17

2
. Note that 1 + κ̄ακ is an object in the dual even part of the Asaeda-

Haagerup subfactor. We brie�y recap the argument, since we will be using similar calculations to show
existence of AH + 2.

The following characterization of Q-systems for 2-supertransitive subfactors is from [GI08].

Lemma 3.2.1. Let σ be a symmetrically self-dual simple object in a C∗-tensor category with simple unit

and with d = dim(σ) > 1. Fix an isometry 1√
d   σ          σ

. Then 1 + σ admits a Q-system i� there exists an

isometry

  σ

  σ          σ

in (σ, σ2) such that

1.

  σ          σ   σ

=

  σ    σ         σ

2.

1

d− 1


  σ          σ

  σ

  σ

−

  σ          σ

  σ

  σ

 =

  σ

        σ    σ          σ

−

  σ

  σ          σ    σ

.
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For σ = κ̄ακ, the intertwiner space (σ, σ2) is 1-dimensional, and is spanned by the diagram

  κ    α    κ    κ    α   κ

  
  _                 _

  _
     κ             α             κ

ρ ρ

  ρ
,

where the trivalent vertices correspond to an embedding of ρ in κκ̄ and the 6-valent vertex corresponds to
an nonzero intertwiner from ραρ to αρα (the space (ραρ, αρα) is also 1-dimensional ). It is then shown
that existence of the Q-system is equivalent to the following relations.

3.2.2. The Asaeda-Haagerup algebra relations:

1.

  
 α       ρ

  α      ρ

ρ

 α
α

ρ

= cIdαρ,

 
  

 

  ρ       α

  α         ρ

α ρ α ρ

= cIdρα

2.  

  α       ρ      α       ρ       α

 

 
  ρ

=  

   
  ρ

  α       ρ      α       ρ       α

3.

  ρ       α       ρ

  α       ρ       α      ρ       α   

ρ

ρ

ρ  ρ

α

=

  ρ       α       ρ

  α       ρ       α      ρ       α

  

ρ
 ρ

α

 ρ

ρ

4.

     κ    κ    α    κ    κ

  α    κ    κ    α   κ    κ    α

        _                 _

         _               _

=

  α    κ    κ    α   κ    κ    α

        _                 _

    x

     κ    κ    α    κ    κ
    

     _                _

.

(Where c is a scalar).

The intertwiners in the above relations are complicated, involving many compositions and tensor
products. However in all but the last equation, the intertwiners live in 1-dimensional spaces, and are
therefore determined by a single scalar coe�cient. These coe�cients can be found by evaluating diagrams
on specifc states. The states are evaluated by decomposing the diagrams into tensor products and
compositions of intertwiners ρ → ρ2 and αρα → ραρ, which can in turn be expressed in terms of
the more elementary intertwiners 1 → κκ̄, 1 → κ̄κ, ρ → κκ̄, and ρακ → αρακ. These elementary
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intertwiners act on vertical edges in the 4-graphs by explicit formulas given by gauge transformation
matrices. In particular, the calculation uses data from Asaeda and Haagerup’s calculation of the gauge
transformation between ρακ and αρακ to establish the Q-system relations.

4 AH+2

4.1 The construction
The graph pair for the AH + 1 subfactor is given in Figure 3, where once again we have labeled the even
vertices in the principal graph (recycling some of the same letters as before).

απ

1 κ ρ ααρ

ρα αρα

η

π and  
  .

Figure 3: The graphs for AH + 1

The dual even part of AH + 1 is the same as that of AH , but the principal even part is di�erent - this
can be seen by checking the Frobenius-Perron weights of the principal graph.

It was conjectured in [AG11] that the construction of AH + 1 can be iterated once more, and that

there is again a Q-system for 1 + κ̄ακ, giving a subfactor with index
9 +
√

17

2
. Once again the Q-system

equations can be reduced to the relations 3.2.2, but without a concrete realization of the 2-category of
bimodules for AH + 1, we have no way to evaluate the intertwiner diagrams. Therefore, we must �rst
replicate Asaeda and Haagerup’s AH gauge transformation calculations for the AH + 1 subfactor. This
does not present theoretical di�culties but is somewhat more complicated than the original case.

4.2 Connection for AH+1
We are interested in the 4-graph given in Figure 4.2, where we use a labeling and display similar to that
used by [AH99]. Note that in the �gure we have “unwrapped the square”, so reading from top to bottom,
we have �rst the upper, then right, then lower, then �nally left graphs.
Lemma 4.2.1. There is a unique connection on the 4-graph for κ up to gauge choice, which may be taken to
be real.

We now give the connection for κ using the following notation, referring to Figure 2 for labeling of
vertices. The connection is given by matrices corresponding to pairs u− v with u ∈ V0 and v ∈ V2 (not
to be read as “u minus v”) , where the rows and columns are indexed by V3 and V1, respectively.

In this case the connection consists of several 2× 2 matrices and a bunch of 1× 1 matrices; for the
1 × 1 matrics we suppress the matrix notation and simply refer to the entry as u − v. Following the
notation of [AH99] we introduce the positive numbers

βn =

√
7 +
√

17

2
− n, n ≤ 5.
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  *   b       d
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 e         e
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  b
    ~

  *
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  * 
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  b d   e   e   g  g
                                ~  ~
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    ~

A
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V3

V0  b
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  *   b       d  e         e   g       g
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  b
    ~

  *
     ~

 a  c a c f
~   ~

 c  c f a

  

  *
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a
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     d   e  e   g   g b
 ~ ~

*
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~ ~
b

   ~
*

  ~

  ~

Figure 4: The 4-graphs for the connections of κ (left) and ρ (right) in AH + 1

Then the connection is:

b− 2 a c

A
−1

β2
1

ββ2
β2
1

C
ββ2
β2
1

1

β2
1

d− 4 c c̃

C
−1

β−1

β

β−1

C̃
−β
β−1

−1

β−1

e− 4 c f

C
−β5
β1β3

√
2β

β1β3

F

√
2β

β1β3

β5
β1β3

ẽ− 4 c̃ f

C̃
2

β−1

−β3
β−1

F
β3
β−1

2

β−1

ẽ− 5 c̃ f

C̃
2

β2
1

√
2β−1
β1β2

F
−
√

2β−1
β1β2

2

β2
1

The 1× 1 entries e− 2, ẽ− 6, and g − 5 are −1; all the other 1× 1 entries are 1.
Next we want to decompose κκ̄ into 1 + ρ. The 4-graph for ρ can be found by removing the identity

from the vertical graphs in the the product connection κκ̄; see Figure 4.2.
We �rst de�ne an isometry from the identity connection to κκ̄ given by the vertical edge space maps

in Table 1.
To �nd the connection for ρ we map the vertical edge spaces of its 4-graph to the orthgonal com-

plements of the images of the vertical edge spaces of the identity in κκ̄ under the map in Table 1. The
4-graph for ρ has some double edges so we use subscripts to distinguish them (e.g. ff1 and ff2 are the
two edges connecting f to f in the right vertical graph). The vertical edge space maps are given in Table
2.

The connection for ρ is then de�ned by pulling back the connection from κκ̄ using this map. With
this de�nition, we have κκ̄ = 1 + ρ, as required.

Next, we will need the connection for α. As in the AH case, the vertical graphs for α connect each
vertex to its re�ection in the vertical line through η in Figure 3. However, unlike in the AH case, where
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∗∗ 7→ ∗A∗ aa 7→ 1
β
a1a+ β1

β
a2a

bb 7→ 1
β1
bAb+ β2

β1
bCb cc 7→ β3√

2β
c2c+ 1

β
c3c+ β−1√

2β
c4c

dd 7→ 1√
2
dCd+ 1√

2
dC̃d c̃c̃ 7→ β−1√

2β
c̃4c̃+ β1√

2β
c̃5c̃

∗̃∗̃ 7→ ∗̃Ã∗̃ ãã 7→ ã6ã

gg 7→ gFg ff 7→ β3
β
f4f + β3

2
√
2
f5f + 1

β1
f6f

ee 7→
√
2

β1
eCe+

√
2

β2
eFe

ẽẽ 7→
√
2

β1
ẽC̃ẽ+

√
2

β2
ẽF ẽ

g̃g̃ 7→
√
2

β3
g̃C̃g̃ + 1

β1
g̃Ag̃

b̃b̃ 7→ b̃F b̃

Table 1: The vertical edge space maps for the embedding of 1 in κκ̄

bb 7→ β2
β1
bAb− 1

β1
bCb aa 7→ β1

β
a1a− 1

β
a2a

dd 7→ 1√
2
dCd− 1√

2
dC̃d cc1 7→ 1

ββ2
c2c− β−1

2
√
2
c3c+ β−1

2(β2)2
c4c

ee 7→
√
2

β2
eCe−

√
2

β1
eFe cc2 7→ β3

β2
c2c− 1

β2
c4c

ẽẽ 7→
√
2

β2
ẽC̃ẽ−

√
2

β1
ẽF ẽ c̃f1 7→ c̃4f

g̃g̃ 7→ 1
β1
g̃C̃g̃ −

√
2

β3
g̃Ag̃ c̃f1 7→ c̃5f

f c̃1 7→ f4c̃
f c̃2 7→ f5c̃
ff1 7→ 1√

2
f4f − 1√

β1
f5f − 1

β3
f6f

ff2 7→ − β5
2β2
f4f + β1

2
√
2
f5f − 1

β3
f6f

Table 2: The vertical edge space maps for the embedding of ρ in κκ̄. The coe�cients associated to all
simple edges between distinct vertices are set to equal 1.
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the only connection for the 4-graph of α up to gauge equivalence is the trivial one, here there are two
di�erent possible connections for the 4-graph of α.

Lemma 4.2.2. The connection for α has all entries equal to 1 except for the e− f entry, which is −1.

Proof. There are two connections up to gauge equivalence: the one mentioned in the statement and the
one with all entries equal to 1. However for the connection with all entries equal to 1, we discovered by
trial and error that the connections ρακ and αρακ are not vertical gauge equivalent.

Finally, we compute the composite connections ρακ and αρακ by direct mutiplication, and then
compute a vertical gauge transformation between them. The gauge transformation matrices are given
in Appendix A, and their correctness is veri�ed in the Mathematica notebook accompanying the arXiv
submission of this paper.

4.3 Verifying the Asaeda-Haagerup algebra relations
Now that we have the necessary connections and gauge transformations, we are ready to evaluate
intertwiner diagrams and verify the Q-system equations for 1 + κ̄ακ.

First we �x some basic intertwiners. Let rκ ∈ (1, κκ̄) be the isometry de�ned by the vertical edge
space maps in Table 1. Let v ∈ (ρ, κκ̄) be the isometry de�ned by the vertical edge space maps in Table
2. Let w ∈ (ρακ, αρακ) be the isomorphism de�ned by the vertical gauge transformation given in the
appendix.

Next we de�ne some diagrams as in [AG11]. We set the coevaluation

  κ          κ
  _ =

√
βrκ

and let

  κ          κ
    _ =

√
βr̄κ

be the adjoint of the corresponding evaluation. By the duality relation, we have that for any upper vertex
x connected to a lower vertex Y ,

rκ(xx, xY x)r̄κ(Y Y, Y xY ) =
1

β
.

Also set
  ρ

  κ   κ
  _

=

√
β

β1
v,

  α    ρ    α   κ

        ρ    α    κ

= w.

For each of these diagrams de�ne the diagram obtained by re�ecting across the horizontal axis to be
the adjoint. De�ne

  

  κ

    

  

  ρ           κ

=

  ρ

  κ   κ
  _

  κ

,

  κ          ρ
    _  

  κ
  _

=

  ρ

  κ   κ
  _

  κ
  _
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and again de�ne the diagrams obtained by horizontal re�ections to be the adjoints.
Then it is straightforward to check that

  

  κ

    

  

  ρ           κ

=
  ρ

  
  κ          κ

  _
  ρ

  κ

,

  κ          ρ
    _  

  κ
  _

=
  ρ

  
  κ          κ

  _
  ρ

  κ
  _

.

Next let

  
  ρ          ρ
  =

β1
β

  ρ          ρ

κ κ
_

,

  ρ

  ρ   ρ
  

=
β1
β2

  ρ

  ρ
  
  ρ

  κ κ
_

κ
,

  α       ρ      α

  ρ       α       ρ

=
β1
β

 
     α   ρ    α 

  ρ    α       ρ

κ

 κ

.

Again, let each of the diagrams re�ected in the horizontal be the adjoint, and again we have
      

  

  ρ          ρ

  ρ

=

  ρ

  ρ   ρ
  

  ρ

=

  ρ

  ρ   ρ
  

  ρ

.

We now compute a bunch of coe�cients for later use.

Lemma 4.3.1. We have the following coe�cients.

1.

    
  ρ          ρ

 *

  b
=

g   
  ρ          ρ
  

*
   ~

~ = β1,
    
  ρ          ρ

   ~
b

g
=

~

  
  ρ          ρ
  

~
g

g

= 1

2.

−
 g

  ρ

  ρ   ρ
  

~
*

~

 ~ 

g

=

  ρ

  ρ   ρ
  

* b

 b

= β2

√
β1
2
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e

  ρ

  ρ   ρ
   b

 ~

g

=

~

  ρ

  ρ   ρ
   b

 ~

g e

=  

  ρ

  ρ   ρ
  

e
~

b
 ~

 g

=  

  ρ

  ρ   ρ
  

eb
 ~

 g

=

√
β1
2

3.

*

  α       ρ      α

  ρ       α       ρ

g
~

g  ~

~

b

b

*

=
*

  α       ρ      α

  ρ       α       ρ

 

b

b
~

~

~

g

g

*

= − 1√
β1

~

  α       ρ      α

  ρ       α       ρ

 

b

b

~
e
~

e

b b

= ~

  α       ρ      α

  ρ       α       ρ

g
~

g e

e

g
~

g

 

= −
g

  α       ρ      α

  ρ       α       ρ

g
~

g e
 ~

e

g
~

= − ~

  α       ρ      α

  ρ       α       ρ

 

b

b

~
e

e

b b
~

=

√
β1
β2

*

  α       ρ      α

  ρ       α       ρ

~

g
~

g

 

~

b

b
* = −

b

  α       ρ      α

  ρ       α       ρ

~

~

g

g
*

*
~       

b

=
√
β1

Proof. These calculations are similar to those in [AG11]. Each coe�cient diagram is expressed as a
product of simpler diagrams, which are evaluated using Tables 1 and 2 (for rκ and v) and Appendix A (for
w). For the convenience of the reader we review one calculation of each type here.

1.

    
  ρ          ρ

 *

  b
=
β1
β

  ρ          ρ

*

b

A

=
β1
β

(
  κ          κ

  _

*

A )(
  κ          κ

    _

A

b
)(

  ρ

  κ   κ
  _

* b

  A

)(

  ρ

  κ   κ
  _  A

b * )

=
β1
β

β2

β1
rκ(∗∗, ∗A∗)r̄κ(AA,AbA)v(∗b, ∗Ab)v(b∗, bA∗)

= β(1)(
β1
β

)(1)(1) = β1.

2.
  ρ

  ρ   ρ
  

* b

 b

=
β1
β2

  ρ

  ρ
  
  ρ

* b

 b

 A =
β1
β2

(
  κ          κ

    _

A

b
)(

  ρ

  κ   κ
  _

* b

  A

)(

  ρ

  κ   κ
  _

* b

  A

)(

  ρ

  κ   κ
  _

  b b

 A

)

=
β1
β2

β2

β
3
2
1

r̄κ(AA,AbA)v(∗b, ∗Ab)v(∗b, ∗Ab)v(bb, bAb)

= β

√
β1
2

(
β1
β

)(1)(1)(−β2
β1

) = −β2

√
β1
2
.
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3.

*

  α       ρ      α

  ρ       α       ρ

 

b

b
~

~

~

g

g

*

=
β1
β

g

 
     α   ρ    α 

  ρ    α       ρ

 * *
~

b

 b

A
~

~ ~
g

=
β1
β

(
g

  α    ρ    α   κ

        ρ    α    κ

b

b
~

~

* *
~

A
~

g

)( g

  ρ

  κ   κ
  _  A

~

~ ~
* )(

A
  κ          κ

  _
~

~
g

)

=
β1
β

β√
β1
w(bb̃gg̃Ã, b ∗ ∗̃Ã)v(∗̃g̃, ∗̃Ãg̃)r(g̃g̃, g̃Ãg̃)

=
√
β1(−1)(1)(

1

β1
) =

1√
β1
.

With these coe�cients we can verify the Asaeda-Haagerup relations 3.2.2.

Theorem 4.3.2. The Asaeda-Haagerup algebra relations 3.2.2 are satis�ed for AH + 1.

Proof. 1. The left hand side of each equation is a scalar, so we can evaluate the unique state comptabile
with any given edge. For the �rst equation we have:

  g

  
 α       ρ

  α      ρ

*
*
~

~

*
~

b

  b
  ~

g

= (

 

    
 

  α          α

 g

 g

∼  

)(
    
  ρ          ρ

 *

  b
)(

*

  α       ρ      α

  ρ       α       ρ

 

b

b
~

~

~

g

g

*

)(
b

  α       ρ      α

  ρ       α       ρ

~

~

g

g
*

*
~       

b

)

= β1
1√
β1

√
β1 = β1.

The second equation is computed similarly, using the unique state for the edge pair (∗bb̃, ∗bb̃).

2. Since dim(ρ, αραρα) = 1, we can compare the two sides of the equations using any nonzero
coe�cient. We choose the coe�cient corresponding to the edges (∗b, ∗∗̃g̃gb̃b), which admits a
unique compatible state for each of the diagrams in the equation. Then we have

 g

 

  α       ρ      α       ρ       α

 

 
  ρ

* b

  
  

  *
  ~ b

~
 ~
 g

=

g

 

   
  ρ

  α       ρ      α       ρ       α

* b

 *
 ~

~
b
~

g

= −
√
β1,

where as before we evaluate the states by breaking up each diagram as a product of smaller diagrams.
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3. In this case, dim(ραρ, αραρα) = 2, so it is not su�cient to compare a single nonzero coe�cient.
However, using the labeling in Figure 3, we have that ραρ = αρα+π+απ and αραρα = ρ+π+απ,
so the common summands are π and απ. The vertical graphs for ρ and αρα do not have any edges
connecting ∗ to e or ẽ, so the (simple) edges ∗bb̃e and ∗bb̃ẽ in ραρmust belong to the two summands
π and απ = πα, and one must belong to each. Therefore to determine an intertwiner it is su�cient
to evaluate state diagrams for these two edges.
We have

−
~

  ρ       α       ρ

  α       ρ       α      ρ       α   

* b
b
~

 *
 ~  ~

b

b
~

e

 g g  e

= −
~

  ρ       α       ρ

  α       ρ       α      ρ       α

*
 b b

~

*
~

~

 ~

  

g

 g

  g

g

 e

 e

=

~

  ρ       α       ρ

  α       ρ       α      ρ       α   

* b
b
~

 *
 ~  ~

b

b
~

e

 g g e

=

~

  ρ       α       ρ

  α       ρ       α      ρ       α

*
 b b

~

*
~

~

 ~

  

g

 g

  g

g

 e

 e

=
(β1)

2

2
.

4. The proof is the same as in [AG11] and we omit it.

Theorem 4.3.3. There exists a subfactor whose principal and dual graphs are both

 
  

.

Proof. Since the Asaeda-Haagerup algebra relations 3.2.2 are satis�ed for AH + 1, there is a Q-system
for 1 + κ̄ακ by the same argument as in [AG11], giving a subfactor with index 9+

√
17

2
. The principal and

dual graphs can be easily computed by standard fusion rule calculations.

We call this subfactor the AH + 2 subfactor.

Corollary 4.3.4. There is an irreducible, noncommuting quadrilateral of factors
P ⊂ M
∪ ∪
N ⊂ Q

such that

P ⊂M andQ ⊂M are both the AH + 1 subfactor andN ⊂ P andN ⊂ Q are both the AH + 2 subfactor.

5 A di�erent proof for the existence of AH + 1 and AH + 2

A new construction of the Asaeda-Haagerup subfactor was given in [GIS]. First a new subfactor with
index 5 +

√
17 and principal graph
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AH1

AH2

AH3

AH4

AH + 1

2AH

AH

AH + 2

Figure 5: Some small index subfactors in the Brauer-Picard groupoid

which we call 2AH , was constructed from endomorphisms of a Cuntz algebra. Then it was shown
that the dual even part of this subfactor has the same fusion rules as the principal even part of the
Asaeda-Haagerup subfactor. Finally, because this dual even part contains a self-dual simple object ρ
satisfying ρ2 = 1 + ρ+ π, with π irreducible, 1 + ρ must admit a Q-system by the recognition theorem
[GS14, Theorem 3.4]. The Q-system for 1 + ρ gives a subfactor with the Asaeda-Haagerup principal
graph (by uniqueness of the connection for this graph, it is the same subfactor constructed by Asaeda
and Haagerup).

The condition ρ2 = 1 + ρ+ π corresponds to 4-supertransitivity of the Asaeda-Haagerup subfactor -
this means that the principal graph has a single branch of at least 4 edges emanating from the vertex
labeled by 1 before any branching out occurs. (The Asaeda-Haagerup subfactor is in fact 5-supertransitive).
The AH + 1 and AH + 2 subfactors are only 3-supertransitive, so the recognition theorem of [GS14] does
not apply. Nevertheless, it is possible to deduce the existence of AH + 1 and AH + 2 from the existence
of 2AH and AH using combinatorics of the Brauer-Picard groupoid.

In [GIS], the Brauer-Picard groupoid of the Asaeda-Haagerup fusion categories was described. There
are six di�erent fusion categories in the Morita equivalence class, denoted in caligraphic font as AH1 −
AH6.

The relationship of these categories to the small-index subfactors is as follows: AH1 is the common
dual even part of the AH , AH + 1, and AH + 2 subfactors, AH2 is the principal even part of the AH
subfactor, AH3 is the principal even part of AH + 1, andAH4 is the principal even part of the new 2AH
subfactor. The principal even part of AH + 2 is also AH1. This information is summarized in Figure 5.

The Brauer-Picard group is Z2 × Z2, and all four invertible AHi − AHj bimodule categories for
1 ≤ i, j ≤ 3 were described in [GS14]. However the calculations behind these results used the existence
of AH + 1 and AH + 2, and preceded the discovery of 2AH .

Now we will only assume the existence of 2AH , and as a consequence AH . Then we have three
fusion categories which arise as even parts of these two subfactors, namely, AH1, AH2, and AH4.

The fusion category AH4 contains eight simple objects. There is a tensor subcategory equivalent to
VecZ4 , with simple objects αi, i ∈ Z4 and a simple object ξ satisfying

αiξ = ξα−i, ξ2 = 1 + 2
∑
i∈Z4

αiξ.
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We have
dim(ξ) = d := 4 +

√
17.

There is a Q-system for 1 + ξ, which gives the 2AH subfactor. The corresponding dual Q-system in AH2

is 1 + απ (where we use the labeling from Figure 2.)

Lemma 5.0.1. The Brauer-Picard group of the Asaeda-Haagerup fusion categories contains Z2 × Z2.

Proof. In fact as noted above, the Brauer-Picard group of the Asaeda-Haagerup fusion categories is
isomorphic to Z2 × Z2, which is [GS14, Theorem 6.7(b)]. However, the proof there used the existence of
AH + 1 and AH + 2, so we need a di�erent approach here.

The construction of 2AH in [GIS] proceeded by explicitly constructing the endomorphisms αi and ξ
in AH4 on the von Neumann algebra closure of a Cuntz algebra and then verifying that 1 + ξ admits a
Q-system.

However, there are actually two inequivalent Q-systems for 1 + αiξ for each i. By enlarging the
Cuntz algebra, one can explicitly construct a graded extension of AH4 by Z2 × Z2 generated by an outer
automorphism which switches the two Q-systems for 1 + ξ and an outer automorphism which switches
ξ and α1ξ. (This result was announced in [GIS] although the details of the construction do not appear
there.)

In the following lemmas, we will need to perform some combinatorial calculations in the Brauer-Picard
groupoid, following the methods of [GS14]. We brie�y explain some of the notation from there, which
we also employ here. The Grothendieck ring of each fusion category AH4 is denoted by AHi (not to be
confused with AH , AH + 1, and AH + 2, which refer to subfactors).

In an arXiv supplement to [GS14] (see arxiv:1202.4396), there are text �les AH1Modules, AH2Modules,
and AH3Modules, which give lists of (right) fusion modules over the fusion rings AH1, AH2, and AH3,
respectively. Each fusion module is given as a list of non-negative integer matrices. The ijth entry of the
kth matrix gives (κkξi, κj), where the ξi are the basis elements of the fusion ring and the κj are the basis
elements of the fusion module.

We use nj to refer to the nth fusion module on the list of fusion modules for AHi. For example, 162

refers to the 16th fusion module on the list of AH2 fusion modules given in the �le AH2Modules. The
text �le Bimodules, also in the arXiv supplement, gives lists of AHi − AHj fusion bimodules for each
1 ≤ i, j ≤ 3. The bimodule nij refers to the nth bimodule on the list of AHi − AHj bimodules in the �le
Bimodules.

We say that a fusion module ni is realized if there is a AHi module category whose fusion module
is ni, and ni is realized uniquely if there is a unique such module category; and similarly for fusion
bimodules and bimodule categories.

If a fusion module ni is realized by a module categoryMAHi
, then one can read from the data of nj

the list of objects which have algebra/Q-system structures whose categories of modules are equivalent
toM - such objects are described by the jth columns of the jth matrices in the list of matrices for ni.
We will say that a Q-system γ ∈ AHi is associated to a fusion module ni, or vice versa, if the module
category of γ realizes ni. Similarly, γ is associated to nji if the bimodule category of γ realizes nji.

For the small index subfactors, it is easy to see which fusion modules they correspond to. For example,
the subfactor AH corresponds to a Q-system for 1 + ρ in AH2, so we look for a fusion module over AH2

which has a matrix containing a column with 1’s as the entries corresponding to the basis elements for 1
and ρ and with 0’s for the other entries; the only such fusion module is 162.
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The key idea in the following calculations is the notion of multiplicative compatibility of bimodule
categories. A triple (lij,mjk, nik) is said to be multiplicatively compatible if nik passes certain combinato-
rial obstruction tests for being realized by the tensor product of bimodule categories realizing lij and mjk

(see [GS14] for details). The �le BimoduleCompatibility gives, for each pair (lij,mjk) with 1 ≤ i, j, k ≤ 3,
the set of AHi − AHk fusion bimodules which form compatible triples with the pair.

The notation used is
lij ·mjk = {xik, yik, ...}.

If the right hand side is a singleton set, we say that lij ·mjk is a unique multiplication and suppress the
braces. There are certain obvious facts that can be deduced from the multiplicative compatibility tables.
For example, if lij · mjk = {} then lij and mjk cannot both be realized. If lij · mjk = nik is a unique
multiplication and lij and mjk are both realized then so is nik.

We wll also need the fusion bimodule lists and multiplicative compatibility rules for AH1 − AH4 and
AH4 − AH1 bimodules; we include these in the arXiv submission in the text �le AH1-AH4_Bimodules.

Lemma 5.0.2. There are two invertible AH1 −AH4 bimodule category realizing the fusion bimodule 814,
and two realizing the fusion bimodule 914.

Proof. There is an invertible AH1 − AH2 bimodule category associated to a Q-system for 1 + ρ in
AH2 (coming from the subfactor AH), and an invertible AH2 − AH4 bimodule category associated
to a Q-system for 1 + απ in AH2 (coming from the subfactor 2AH). Since (1 + ρ, 1 + απ) = 1, this
means that there is an invertible AH1 −AH4 bimodule category associated to a Q-system of dimension
dim(1 + ρ)dim(1 + απ) = 1+d

2
(1 + d) = 1 + 5d. By inspecting the list of AH1 −AH4 bimodules, we

see that the only two candidates are 814 and 914. Also, since two of the four outer automorphisms ofAH4

�x ρ and two send ρ to α1ρ, any bimodule category realizing 814 is sent to a bimodule category realizing
814 by two of the four outer automorphisms, and is sent to a bimodule category realizing 914 by the other
two outer automorphisms; and similarly for bimodule categories realizing 914. So there must be at least
two invertible AH1 −AH4 realizing each of 814 and 914.

By considering the opposite bimodule categories, we see that there are also twoAH4−AH1 realizing
each of 841 and 941.

Lemma 5.0.3. There are invertible bimodule categories realizing 1011, 1211, 1311, and 1411.

Proof. Looking at the multiplicative compatibility lists forAH1−AH4 fusion bimodules withAH4−AH1

fusion bimodules in the �le AH1-AH4_Bimodules, we �nd that

814 · 841 = {1211, 1411}, 814 · 941 = {811, 1011, 1311}.

This means that that there is a subgroup of the Brauer-Picard group of AH1 which is isomorphic to
Z2 × Z2 and contains two bimodule categories realizing fusion bimodules from the set {1211, 1411} and
two bimodule categories realizing bimodules from the set {811, 1011, 1311}.

The fusion bimodule 1411 is realized uniquely by the trivial bimodule category (which is the identity
in the Brauer-Picard groupoid), since AH1 has no outer automorphisms by the argument in [GS14].
Looking at the multiplicative compatibility lists for AH1 −AH1 bimodule categories (in the �le Bimod-
uleCompatibility from [GS14]), we see that a11 · a11 for a = 8, 10, 12, 13 is compatible only with 1411, so
each of the fusion bimodules 1211, 1011 ,1211, 1311, if realized, is realized uniquely by [GS14, Lemma 6.4].
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Also, 1211 is realized since it is the only other member of the multiplicative compatibility list for 814 · 841

alongside 1411.
Finally, we show that 811 cannot be realized. The multiplicative compatiblity list for 1211 · 811 is

{811, 1011}. So if 811 is realized, then since it is necessarily realized uniquely, then the bimodule categories
realizing 1211 and 811 have a tensor product realizing 1011. Then since the multiplicative compatiblity list
for 1211 · 1011 is {1311}, the fusion bimodule 1311 is realized as well. But there is no group structure on
any order 4 subset of the 5 fusion bimodules which is compatible with these multiplication constraints.
So 811 is not realized, and the other four are.

Corollary 5.0.4. The subfactor AH + 2 exists.

Proof. The AH + 2 subfactor corresponds to a Q-system associated to a bimodule category realizing the
fusion bimodule 1211.

Lemma 5.0.5. There is a fusion categoryAH3 with Grothendieck ring AH3, and anAH2−AH3-bimodule
category realizing 623.

Proof. We consider the list of fusion modules over AH2 from the text �le AH2Modules in [GS14]. The
subfactor AH is associated to the fusion module 162. We see from looking at the list of Q-systems
associated to 162 that there is a Q-system containing both invertible objects 1 and α in AH2. Therefore
there is a Q-system structure on 1 +α. The possible fusion modules corresponding to such a Q-system are
142 and 152. We compute the possible dual fusion rings for these two fusion modules using the methods
of [GIS] and �nd that the only possible dual ring is AH3, which must therefore be the Grothendieck
ring of the dual category AH3 of (1 + α) − (1 + α) bimodules in AH2. Finally, we check the list of
AH2 − AH3 fusion bimodules, and the only one compatible with the Q-system 1 + α is 623.

Lemma 5.0.6. There is an AH1 −AH3 bimodule category realizing 613.

Proof. The odd part of the (dual) Asaeda-Haagerup subfactor realizes the fusion bimodule 912. Multiplica-
tive compatibility rules for 912 and 623 show that there is a AH1 −AH3 bimodule category realizing 713.
Then multiplicative compatibility for 1311 with 713 shows that there is a bimodule category realizing 613.

Corollary 5.0.7. The subfactor AH + 1 exists.

Proof. The AH + 1 subfactor corresponds to a Q-system associated to a bimodule category realizing the
fusion bimodule 613.

A The vertical gauge transformation between ρακ and αρακ for
AH + 1

In this appendix we give the details for the vertical gauge transformation between ρακ and αρακ for
AH + 1. We denote composite edges in the 4-graphs of ρακ and αρακ by words in the appropriate
vertices. Thus for example c̃f1f6 denotes the (right) vertical edge in ρακ which is composed of the edge
c̃f1 in the 4 graph of ρ (with the subscript distinguishing among the two edges connecting c̃ and f ),
followed by the edge ff in the 4-graph of α, followed by the edge f6 in the 4-graph of κ. Then the
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vertical gauge transformation data consists of a square matrix for each pair of initial and terminal vertices
of edges in the 4-graphs of ρακ and αρακ, with columns indexed by edges in ρακ and rows indexed by
edges in αρακ. For AH + 1, there are 25 1× 1 matrices, 14 2× 2 matrices, 10 3× 3 matrices, 3 4× 4
matrices, and a 5× 5 matrix.

We now list the data, which was found using similar methods to the calculations in [AH99]. The fact
that this is indeed a vertical gauge transformation is veri�ed in the accompanying Mathematica notebook.

The following 1× 1 gauge matrices have entries with the value 1:

ã− 6, ã− 4, b̃− Ã, ẽ− Ã, ẽ− A, a− 5, c− 3, c̃− 2, ∗̃ − F, b− C.

The following 1× 1 gauge matrices have entries with the value −1:

ã− 5, a− 4, a− 6, b̃− C, ∗ − F, e− Ã, c̃− 3, c− 2,

b− Ã, f − 1, e− A, g − A, g − C̃, g̃ − A, g̃ − C̃.
The larger matrices are as follows:
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√
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ff1f6 ff2f6( )
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,

dddC dẽeC( )
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,
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−1 0 ddeẽC̃
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bb̃eẽC̃√

9+
√
17

4

√
7−
√
17

4
bb̃gg̃C̃

,
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eddC eẽeC eb̃bC


−
√

1
2

(
5−
√

17
)
−
√
− 5

16
+ 3

√
17

16
−
√
−19

16
+ 5

√
17

16
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ẽddC ẽẽeC ẽb̃bC
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ẽddC̃ ẽeẽC̃ ẽgg̃C̃


−
√

1
2

(
5−
√

17
) √

− 5
16

+ 3
√
17

16

√
−19

16
+ 5

√
17

16
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