BOUNDEDNESS OF MAXIMAL OPERATORS
AND MAXIMAL COMMUTATORS ON
NON-HOMOGENEOUS SPACES

THE ANH BUI

ABSTRACT. Let (X, p) be a non-homogeneous space in the sense that X
is a metric space equipped with an upper doubling measure p. The aim
of this paper is to study the endpoint estimate of the maximal operator
associated to a Calderén-Zygmund operator T' and the L boundedness
of the maximal commutator with RBMO functions

1. INTRODUCTION

Let (X, d, u) be a geometrically doubling regular metric space and have an
upper doubling measure, that is, u is dominated by a function A (see Section
2 for precise definition). A kernel K(-,-) € LL (X x X\{(z,y) : * = y}) is

loc
called a Calderén-Zygmund kernel if the following two conditions hold:

(i) K satisfies the estimates

(1) K (2, y)| < Cmm{A(x,d(x,y))’ A(yvd(%y”};

(i) there exists 0 < § < 1 such that

z,z')?
@) K(ey) - Kl + 1K (0) - Klpa')] < O S8 0 s

whenever d(z,z") < d(x,y)/2.

In what follows, by the associate kernel of a linear operator T', we shall
mean the function K(-,-) defined off-diagonal {(x,y) € X x X : z # y} so
that

Tf(z) = /X K (. y)F () du(y).

holds for all f € L*°(u) with bounded support and z ¢ suppf.

A linear operator T is called a Calderén-Zygmund operator if its associate
kernel K (-,-) satisfies (1) and (2).

In [1] the authors studied the boundedness of Calderén-Zygmund oper-
ators and their commutators with RBMO functions. It was proved that if
the Calderén-Zygmund operator T is bounded on L?(u) then T is of weak
type (1,1) and hence T' is bounded on LP(u) for all 1 < p < oco. More-
over, LP boundedness of the commutators of Calderén-Zygmund operators
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with RBMO functions for 1 < p < oo was also obtained in [1]. The ob-
tained results in [1] can be viewed as extensions of those in [9] to spaces of
non-homogenous type.
In this paper, we consider the maximal operator T, associated with the
Calderén-Zygmund operator T' defined by
T f(x) = sup [Tc f ()],

e>0

where T¢ f(z) = / K(x,y)f(y)du(y). Note that in [1], thanks to Cot-
d(z,y)>e

lar inequality, it was proved that the maximal operator 7T, is bounded on
LP(u) for all 1 < p < co. The aim of this paper is to prove the following
results:
e T, is of weak type (1,1);
e The commutator of T} with an RBMO function is bounded on L?(u)
for 1 < p < o0.

Note that since the kernel K(z,y) = K(z,y)X{d(xy)>e}(7,y) may not
satisfy the condition (2), the Calderén-Zygmund theory may not be appli-
cable to this situation. To overcome this problem, we use the smoothing
technique in [8] by replacing K.(x,y) by some new “smooth” kernels. For
detail, we refer to Section 3.2.

The organization of our paper as follows. Section 2 recalls the concept
of RBMO space and the Calderén-Zygmund decomposition. Section 3 will
be devoted to study the boundedness of the maximal operator T, and the
maximal commutator of T, with an RBMO function. It will be shown that
T is of type weak (1,1) and the maximal commutator T ; is bounded on
LP(p) for all 1 < p < oco.

2. RBMO(p) AND CALDERON-ZYGMUND DECOMPOSITION

Let (X, d) be a metric space. We first review two concepts introduced in

[2].

Geometrically doubling regular metric spaces. (X,d) is geomet-
rically doubling if there exists a number N € N such that every open ball
B(z,r) ={y € X : d(y,z) < r} can be covered by at most N balls of radius
r/2. We use this somewhat non-standard name to clearly differentiate this
property from other types of doubling properties. If there is no specification,
the ball B means the ball center xp with radius rg. Also, we set n = logy N,
which can be viewed as (an upper bound for) a geometric dimension of the
space.

Upper doubling measures. A metric measure space (X,d, u) is said
to be upper doubling measure if there exists a dominating function A with
the following properties:

(i) A: X x (0,00) +— (0, 00);

(ii) for x € X, r — A(z,7) is increasing;
(iii) there exists a constant C > 0 such that

Az, 2r) < Cy\\(z, 1)
for all z € X and r > 0;
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(iv) and the following inequality holds
plw,r) < M, r)
for all z € X and r > 0, where p(z,r) = p(B(x,r)).
(v) Mz, r) = Ay,r) for all r > 0;z,y € X and d(z,y) <.

Throughout the paper, we always assume that (X, d, p) is geometrically
doubling regular metric spaces and the measure p is upper doubling mea-
sures.

For o, > 1, a ball B C X is called (o, 5)-doubling if pu(aB) < Bu(B).
The following result asserts the existence of a lot of small and big doubling
balls.

Lemma 2.1 ([2]). The following statements hold:

(i) If p > C’;OgQa, then for any ball B C X there exists j € N such that
o/ B is (o, B)-doubling.

(ii) If B > o™, here n is doubling order of \, then for any ball B C X there
exists j € N such that a7 B is (a, B)-doubling.

For any two balls B C @, we defined

1
3 Kpo=1+ /
( ) Q rp<d(z,zp)<rq A(I‘Bvd(xﬂ‘rB))

We have the following properties.

du(x).

Lemma 2.2. (i) If Q C R C S are balls in X, then
max{Kq r, Krs} < Kgs < C(Kgr+ Kgs).

(it) If Q C R are comparable size, then Ko r < C.
(iii) If aQ,...oN71Q are non («a, B)-doubling balls (with 3 > Ci\ogQ “) then
KQ@NQ S C

The proof of Lemma 2.2 is not difficult and we omit the details here.

Associated to two balls B C @, the coefficient K 33,62 can be defined as

follows: let Np g be the smallest integer satisfying 6VB.erg > rQ, then we
set

NB.o k
p(6"B)
4 Khrpi=1 E _—
( ) B,Q + P )\(xB,GkTB)

In general, it is not difficult to show that Kp o < CK J’BQ. In the particular
case when \ satisfies A\(z,ar) = a™\(x,r) for all z € X and a,r > 0 for
some m > 0, we have Kp g ~ KJ’B’Q.

2.1. Definition of RBMO(u). Adapting to definition of RBMO spaces of
Tolsa in [9], T. Hytonen introduced the RBMO(u), see [2].



BOUNDEDNESS OF MAXIMAL OPERATORS 25

Definition 2.3. Fiz a parameter p > 1. A function f € L (n) is said to

be in the space RBMO(u) if there exists a number C, and for every ball B,
a number fp such that

1
5 /f$—deum§C
(5) u(pB)BH) |dp(x)
and, whenever B, By are two balls with B C By, one has
(6) \fB — fB,| < CKp .

The infimum of the values C' in (6) is taken to be the RBMO norm of f and
denoted by || f|lrBMO()-

The RBMO norm |[|-||ggmoy,) is independent of p > 1. Moreover the John-
Nirenberg inequality holds for RBMO(u). Precisely, we have the following
result, see Corollary 6.3 in [2].

Proposition 2.4. For any p > 1 and p € [1,00), there exists a constant C
so that for every f € RBMO(u) and every ball By,

1

1/
(m /BO |f(x) — fgolpdu(m)) < C fllrBMo(u)-

2.2. Calderén-Zygmund decomposition. In non-doubling setting, the
Calderén-Zygmund decomposition in R™ was first investigated by [9] and
then was generalized to the general case of non-homogeneous spaces (X, 1)

by [1].
Proposition 2.5. (Calderén-Zygmund decomposition) For any f € L'(p)
and any A >0 (with A > Bol| fl| 1w /1lpll if [|nl] < 0o0) we have:

(a) There exists a family of finite disjoint balls {6Q;}; such that the
family of balls {Q;}: is pairwise disjoint and

! A
" /~L(62Qi)/@ fldn> 2.
L A
(8) /WQ”L')/(}QZ-MCZMS o’ for alln > 6,
(9) If] < A a.e. (1) on Rd\UGQi.

(b) For each i, let R; be a (3 x 62, C;\Og23X62+1)— doubling ball concentric
with Q;, with [(R;) > 621(Q;) and we denote w; = %. Then

k
there exists a family of functions p; with constant signs and supp

(pi) C R; satisfying

(10) /%‘dﬂ = fwidp,
6Q;

(11) > el < BA,



26 THE ANH BUI

(where B is some constant), and:
(12) iR < C [ o fld

We will end this section by the following lemma which is useful in the
sequel, see [1].

Lemma 2.6. For any two concentric balls Q C R such that there are no
(a, B)-doubling balls B > C’;OgQa of the form o*Q,k € N such that Q C
a*Q C R, we have

1
/R\Q Mg, d(g, ) @) = €

3. BOUNDEDNESS OF MAXIMAL OPERATOR T, AND MAXIMAL
COMMUTATOR

3.1. The weak type of (1,1) of T,. In [1], the Cotlar inequality is ob-
tained. More precisely, we have the following result.

Theorem 3.1. Let T be a L? bounded Calderdn-Zygmund operator. Then
there exist C' > 0 and 0 < n < 1 such that for any bounded function with
bounded support f and x € X we have

T.f(2) < C(Mys(Tf)(@) + Mg ().

where

1
M, = sup / fld
)™ a5e w(pQ) Q‘ i

B 1 oo\ /P
Moo () = 20 <u(pQ) /Q rdn)

For the proof we refer the reader to [1, Theorem 6.6].

Therefore, from the boundedness on LP(u) of M,y and M, ,, the bound-
edness of Ty on LP(u) follows. The endpoint estimate of T}, will be asserted
in the following theorem.

and

Theorem 3.2. Let T be a Calderdn-Zygmund operator. If T is bounded on
L?(u) then the maximal operator T, is of weak type (1,1).

Proof. To do this, we will claim that there exists C' > 0 such that for any
A>0and f € L' (u) N L%(u) we have

C
plz : |Ti(z)| > A} < XHf”Ll(u)-

We can assume that A > Bol|f||z1()/llul]. Otherwise, there is nothing to
prove. We use the same notations as in Proposition 2.5 with R; which

is chosen as the smallest (3 x 62, C’i\og23X62+1)— doubling ball of the family
{3 x 62Q;};. Then we can write f = g + b, with

9= fXX\UiGQi + Z‘Pi
7
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and

b —Zb —Zwif ©i)-

Taking into account (7), one has
C C
Q) < T3 [ Wan < [ 1k

where in the last inequality we use the pairwise disjoint property of the

family {Q;}.
We need only to show that

ple € X\U Qi 2.1 > A} < [ 1fldn

We have
p{z € X\ U; 62Q; : |Tuf(2)] > N} < pix € X\ U; 62Q; : |Tug(x)| > \/2}
+ p{z € X\ U; 62Q; : [T.b(x)| > A/2}
=11 + Is.

Note that |g| < CA. Therefore, the first term I; is dominated by

C 9 C

- < = .

AQ/\Q\ dp < /lgldﬂ
On the other hand,

dldn< [ A3 [ s
Jrotaws [ a3 [

< /X Pl + 3 1R il o o
< [Mlaw+e 3 [ 1rwldu<c [ |fian
X —Jx X
Therefore,
9 C
ple € X\Ui6°Q:: ITog(e)] > A2} < S [ 17ld
For I, we have
I < pfr € X\ Ui 6°Qi : Y xx\er,|Tubi(x)| > A/6}
+dr € X\ U 62Qi 3 xonneeo, Tepi(x)| > A/6}

+ o € X\U6°Qi s 3 xamaea, T (wif ) (@)| > A/6)

= K1+ Ko + K3.
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It is easy to estimate the terms K9 and K3. Indeed, we have

Ky < Z/ | Tepildp

2R;\62Q;

< )‘zi:/zRi |Tsipi|dp
C 1/2
3% (/ [T )2

Using the L? boundedness of T, we get that

KQA 2 ([, lelan) )
< 5y E il Loo (uy (1)
C C
< — . = — .
<5 [ sn =5 [ 17t

and

<S8 [ ol [ K

2R;\62Q; €>0

C
< XL gy i) i)
C 1
S oo, N S )i
C 1
SO i ) ) )0

Z /R\m e dute) [ 1)) )lduty)
< S [ 1w )ldnt) - (due to Lemma 26

We now take care of the term K. For each ¢ and z € X\2R;, we consider
three cases:

Case 1. e < d(z,R;): We have,
(@) = | [ Kot

Case 2. € > d(z,R;) + 2rg,:  In this situation, it is easy to see that
‘Tebi(‘r)’ =0.
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Case 3. d(z,R;) < e < d(z,R;) + 2rg,: It can be verified that for
y € R; we have d(z,y) > d(z,R;) > 3(d(z, R;) + 2rg,) > &. Therefore, one
has, by (1)

| Tebi(z |<‘/K:vy y)du(y +‘/$y )bi(y)dp(y)

C
< \/R K(x,y)bi(y)du(y)( + /d(w)se N gy @ldn ).

Since A(z, -) is increasing and d(z,y) > §, we can write

(@) < | [ Koty bi(y)ldi(y)

+/B(:c,e) |
/RZ_ K(z,y)bi(y)du(y) +/B(x7€ !
C

IN

C
Az, §
o o)

)
) Z, 66)
[ Ko+ e [ e

IN

Hence, in general, we have, for each i and = € X\2R;,

ol <| [ K onmam| s s [ i)

It follows that
> xxerITebi(@)] <D xxen, /RK(x,y)bi(y)du(y)’
: /
+3 () dpa(y
> s B(M)\ )l ()

< Z XX\2R;

+CMg Z|b| ) < Ay + Ay

y)d(y)

uniformly in € > 0.
So, we can write

= p{z € X\ U; 6°Q; : ZXX\QR | Tub(z)| > A/6}

Su{x EX\UiG QZ’:Al > /\/12}+u{x EX\Ui62QZ':A2 > /\/12}
< K11 + K.
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For the term K11, using [ bidu = 0 and (2), we have

K < fz Joon L Km0t
< % > [ / (K (,9) = Ko ) (0)d() o)
Z / - / K (2, 28,))b:(9)|du(y)du(a)
Y Lo s ”;Rd)f Sl
<% Z Joon  dmm e xR))wi(y)\du(y)du(a:)

6

R
<< bi(y)|dp(
=3 ;/X\m T e [, it

By decomposing X \2R; into the annuli associated to the ball R;, we can
show that

)

%
d du(z) < C
feoom, TN ) <
for all 7.
Therefore, we can dominate the term Ki; by

K11<*Z y)|du(y)
c
32 /R i‘@”i'dMy)U; [ twrldnto)
C C
<5 [ wsant <5 [ vian

We now proceed with Kiz. Since Mg (-) is of type weak (1,1), we have

K12<Z/ |bi|dp

([ tosddn+ [ jussian)
— Nx b

C C
<= , <= .
<X [ st <3 [ 11

This completes our proof. O

3.2. Boundedness of the maximal commutators. In this section we
restrict ourself to consider the spaces (X, u) in which \(z,ar) = a™\(x,r)
for all x € X and a,r > 0 for some m. Recall that in such spaces (X, u),
Kpg =~ Kp for all balls B C Q.
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For b € RBMO(u), we defined the maximal commutator T} ; by

T, =
bf(2) = max

Tt =mas| | — b)) (2, ) )ity
e>0 d(z y)>e

As mentioned earlier, one problem in studying the boundedness of the max-

imal commutators is that the kernel of T, may not be a Calderén-Zygmund

kernel. This causes certain difficulties in estimating maximal commutators

T p. To overcome this problem, we will exploit the ideas in [8].

Let ¢ and ¢ be C*° non-negative functions such that ¢’(t) < %, P'(t) < %
and X2.00) < @ < X[1,00), X[0,1/2) < ¥ < X[0,3)- Associated to ¢, ¢ and T', we
introduced the maximal operators:

T f(x) = sup SJ;%’)/ K(z,y)¢ ))f(y)du(y)‘
and
TY f(x) = sup segg’/ K(z, y)p ))f(y)du(y)‘-

It is not difficult to show that
max{T? f(z), T f(z)} < T.f(z) + CMs) f(x).

Hence T and T are bounded on LP(),1 < p < c.
Define the maximal commutators associated with 79 and T by setting

Tfjbf(x) = max T:?bf(ac))

e>0

= max / (b(m) - b(y))K(x,y)¢<
X

e>0

and

TV, f (@) = max |7/, ()]

—max| [ (b(z) b)) K z.)o
X

>0

It is not hard to show that
(13) Topf STOf + T, f.

We are now in position to establish the boundedness of the maximal com-
mutator T p.

Theorem 3.3. Let T be a Calderon-Zygmund operator. If T is bounded
on L*(u) then the mazimal commutator Ty is bounded on LP(u) for all
1 < p < o0o. More precisely, there exists a constant C' > 0 such that

1T fll o) < CllbllrRBMO () Lf [ 22 (10)
for all f € LP(p).
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Proof. We will show that there exists a constant C' > 0 such that

1T fll 2oy < CllbllrRBMO () Lf [ 20(10)

for all f € LP(u).
From (13), we need only to show that for p > 1, we have

(14) Hbeme(m < Clbllremo 1 | e ()
and
(15) T f | 2oy < CllblREMOG) I|F Il LoG0)-

The proofs of (14) and (15) are completely analogous. So, we only deal
with (14).

For each ball B C X, we denote
hp == —mp(TL((b— bs) fxx\sp):

As in the proof of [9, Thorem 9.1] (see also [1, Theorem 5.9]), it suffices to
claim that for all balls z € Q C R

1
10— /Q T, — holdu < Clbllnmmo(Mys/ (x) + MyeT? f(x))
for all z and B with x € B, and

(17) |hq — hi| < CllbllrByo (Mps f(z) + T f (2)) K3 &-

To estimate (16), we write

T2, f = hol = (b —bQ)T?f — T((b—bg)f) — hol
< (b= b)T f + T ((b— bg) f1)| + [T ((b — bg) f2) + ho

where fi = fxs, and fo = f — fi. For the first term, by Holder inequality,
5
we have

T PR L AV
el /Q 0~ btV < (o /Q (b bg) [ d)

1 1/p
X (—— [ |T¢fPd
< C||bllrBymo ()M TS f ().

For the second term, by Holder inequality and the uniform boundedness of
T? on LP(1), we have

M(éQ)/Q 20 = bo)f1)ldn < CliblrBymo () Mp5f (2)-
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Let us take care of the third term. For x,y € Q and € > 0, we write

T(b~ bo) o)) - T¢((b—bQ)f2)( )
=\ [ 2o ME2) — K 26(1E2))06:) ~ bo)s(Ghaut)
xX\£Q €

<| [ g z>>¢(d<i ) (b(z) ~ bo) ()i (2)

| oK) (o W2y o(M22Y) (4(2) - bo) f(2)an(2)
< Ay + As.

For the term Aj, by (2), we have

18
- o ) = K 2166) — ) (2t
<[, go L 0(2) ~ b))
< cz L S 0(2) ~ b (22
< 026*5 Lo Xo G 1) ) Sln(2)
< c’ifs—ké Lo T gy 00~ B ()

™ kS 1

- 01;06 (5 x 6Q) /6k+1Q |(6(2) = bgr1) f(2)ldn(2)
o kS 1

i CkZOG m /6k+1Q ’(bﬁk-HQ - bQ)f(Z)’d,U/(Z)

<CY 677 bllrprog M) f(x) + C Y (k + 167 |[bllrpyog M f (2)
k=0 k=0

= CO|bl|[rB7o () M(5) f ().

Since ¢/(t) < % for z € 6k+1%Q\6ng and z,y € Q,
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From this estimate, we obtain that

A2<Z/

s KA () (1)

X |(b(2) = bQ) f(2)]du()

= 1
<c3 /6 sz Mo d ) N

3 1
cd 67k Y - dula),
- kzzo /6k+1§Q\6ng Nag, 6Frg) UF) ~ ba)f (2)ldu(z)

At this stage, repeating the argument as in (18), we also obtain that Ay <
ClIbllreymo(w) M(s) f (). This together with (18) gives for all z,y € Q

IT2((b— bo) f2)(x) — T2 ((b—bg) f2)(y)| < CllbllrBmOo (1) Mp,5 f (%)

uniformly in e. Taking the mean value inequality above over the ball () with
respect to y, we have

60 [, 0= bQ)2) + haldh < Cllloniog Moy £(x).
for all € > 0. Therefore, the proof of (16) is complete.

It remains to check (17). For two balls @ C R, let N be an integer number
such that (N —1) is the smallest number satisfying rg < 6¥~1rg. Then, we
break the term |hg — hpg| into five terms:

mQ(T2((b = ba)fxxsq) — mr(T2((b— br)fxx\sp)|
< ImQ(T2((b —bQ) fxsqeQ)| + ImQ(T2((bg — br) FXx\6Q)]
T2((b = br) fxevgro0)|
+ ImQ(T2((b = br) fxx\6vq) — mr(T((b—br) fXx\6v0)
+ [mr(T2((b - br)fXeng\oR)
= My + Ms + M3 + My + Ms.
Let us estimate M first. For y € () we have, by Proposition 3.2

\Tf((b - bQ)fXGQ\gQ)(‘r)’

C
/ b bollf|du
6Q

)
(
+ [mq

(
(

< -
o )\(I’, TQ)

1(30Q) 1 r N/
= Mz, 30rg) (u(5 X 6Q) /6Q b= bol” d“)

L pan)
X <u(5 < 6Q) /6Q\f! dﬂ)
< C|lbllrBMo My 5 f ().

Likewise, M5 < ||b|[rBmo M, 5f(z). Hence, we have
My + M; < C|[bllrBmo My 5 f ().
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For the term Mo, it is verified that for x,y € Q
T2 fxxveQ) < TP f(2) + CMpsf ().
This implies
Imq(T?((bg — br) fxx\60)| < CKQr(TS f(x) + Mysf(z)).
As in estimates Ay and As, one gets that
My < ClbllrBMo My 5 f ().
For the last term M3, we have, for y € Q,

N—-1

1
19) |T2((b—b <C S — b—b du.
(19) [0 v € 3 s [, bl s

Since |b — br| < |b — bge+1g| + |br — bgrr1g], further going we have

IT2((b = br) fxevo\60(W)]
N-—1

DI ij,C [ - teaglslan
b= 6-+1Q\65Q

b [ b bengliridn]
6k+1Q\6kQ

N-—
u(5 x 6*+1Q) 1
b—b d
Z $Q,6k’l”Q [,u(6k+2Q) / | 6k+1QHf| 12
6k+1Q\6kQ

k=1

1
20 —_ br — b d
(20) tmgy | e teellflan
6k+1Q\6kQ
By Holder inequality and the similar argument in estimate the term M4 we

have
1

u(5 x 6F2Q) / b — bgrr10l| fldu < [[bllRBMO M) 5 f(2)

6ET1Q\6%Q
and

1
rang | e

6k+1Q\6kQ

s5f(x).

These two above estimates together with (19) give

IT2((b—br) fXxev oo (W) < CKZ rlblrBMO M)y 5 f ()

uniformly in € > 0.
It follows that M3 < CKC??,RHbHRBMOMpéf(:L‘). From the estimates of
My, My, M3, My and Ms, (17) follows. This completes our proof. O
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