CHAPTER 6

CURRENTS

This chapter provides an introduction to the basic theory of currents, with particular emphasis on integer multiplicity rectifiable n-currents (brieflycalled integer multiplicity currents) , which are essentially just integer n-varifolds equipped with an orientation.* The concept of such currents was introduced in the historic paper [FF] of Federer and Fleming; their advantage is that they are at once able to be represented as "generalized surfaces" (in terms of a countably n-rectifiable set with an integer multiplicity) and at the same time have nice compactness properties (see 27.3 below).

§25. PRELIMINARIES: VECTORS, CO-VECTORS, AND FORMS

$e_{1} \ldots e_{P}$ denote the standard orthonormal basis for \mathbb{R}^{P} and $\omega^{1} \ldots \omega^{P}$ the dual basis for the dual space $\Lambda^{1}\left(\mathbb{R}^{P}\right)$ of $\mathbb{R}^{P} . \Lambda_{n}\left(\mathbb{R}^{P}\right), \Lambda^{n}\left(\mathbb{R}^{P}\right)$ denote the spaces of n-vectors and n-covectors respectively. Thus $v \in \Lambda_{n}\left(\mathbb{R}^{P}\right)$ can be represented

$$
\begin{aligned}
v & =\sum_{1 \leq i_{1}<\ldots<i_{n} \leq P}{ }^{a} i_{1} \ldots i_{n} e_{i_{1}} \wedge \ldots \wedge e_{i_{n}} \\
& =\sum_{\alpha \in I_{n, p}} a_{\alpha} e_{\alpha},
\end{aligned}
$$

using "multi-index" notation in which $\alpha=\left(i_{1} \ldots, i_{n}\right) \in \mathbb{Z}_{+}^{n} \equiv\left\{\left(j_{1}, \ldots, j_{n}\right)\right.$:
each j_{ℓ} is a positive integer $\}$ and $I_{n_{l} P}=\left\{\alpha=\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{Z}_{+}^{n}\right.$: $\left.I \leq i_{1}<\ldots<i_{n} \leq P\right\}$. Similarly any $w \in \Lambda^{n}\left(\mathbb{R}^{P}\right)$ can be represented as

* These are precisely the currents called locally rectifiable in the literature (see [FF], [FHI]); we have adopted the present terminology both because it seems more natural and also because it is consistent with the varifold terminology of Allard (see Chapter 4, Chapter 8).

$$
w=\sum_{\alpha \in I_{n, P}} a_{\alpha} \omega^{\alpha}
$$

where $\omega^{\alpha}=\omega^{i_{1}} \wedge \ldots \wedge \omega^{i_{n}}$ if $\alpha=\left(i_{1} \ldots, i_{n}\right) \in I_{n, P}$. Such a v (respectively w) is called simple if it can be expressed $v_{1} \wedge \ldots \wedge v_{n}$ with $v_{j} \in \mathbb{R}^{P}$ (respectively $w_{1} \wedge \ldots \wedge w_{n}$ with $w_{j} \in \Lambda^{1}\left(\mathbb{R}^{P}\right)$). We assume $\Lambda_{n}\left(\mathbb{R}^{P}\right)$, $\Lambda^{n}\left(\mathbb{R}^{P}\right)$ are equipped with the inner products $<,>$ naturally induced from \mathbb{R}^{P} (making $\left\{e_{\alpha}\right\}_{\alpha \in I_{n, P}},\left\{\omega^{\alpha}\right\}_{\alpha \in I_{n, P}}$ orthonormal bases). Thus

$$
\left\langle\sum_{\alpha \in I_{n, P}} a_{\alpha} e_{\alpha}, \sum_{\alpha \in I_{n, P}} b_{\alpha} e_{\alpha}\right\rangle=\sum_{\alpha \in I_{n, P}} a_{\alpha} b_{\alpha}
$$

and

$$
\left\langle\sum_{\alpha \in I_{n, P}} a_{\alpha} \omega^{\alpha}, \sum_{\alpha \in I_{n, P}} b_{\alpha} \omega^{\alpha}\right\rangle=\sum_{\alpha \in I_{n, P}} a_{\alpha} b_{\alpha}
$$

> For open $U \subset \mathbb{R}^{P}$, $E^{n}(U)$ denotes the set of smooth n-forms $\omega=\sum_{\alpha \in I_{n, P}} a_{\alpha} d x^{\alpha}$ where $a_{\alpha} \in C^{\infty}(U)$ and $d x^{\alpha}=d x^{i_{1}} \wedge \ldots \wedge d x^{i_{n}}$ if $\alpha=\left(i_{1}, \ldots, i_{n}\right) \in I_{n, p} . d x^{j}$ as usual denotes the 1 -form given by 25.1

$$
d x^{j}(f)=\frac{\partial f}{\partial x^{j}}, f \in C^{\infty}(U)
$$

If we make the usual identifications of $T_{x} \mathbb{R}^{P}$ and $\Lambda^{1}\left(T_{x} \mathbb{R}^{P}\right)$ with \mathbb{R}^{P} and $\Lambda^{1}\left(\mathbb{R}^{P}\right)$, we are able to interpret $\omega \in E^{n}(U)$ as an element of $C^{\infty}\left(U ; \Lambda^{n} \mathbb{R}^{P}\right)$; we shall do this frequently in the sequel.

$$
\text { The exterior derivative } E^{n}(U) \rightarrow E^{n+1}(U) \text { is defined as usual by }
$$

$$
d \omega=\sum_{j=1}^{P} \sum_{\alpha \in I_{n, P}} \frac{\partial a_{\alpha}}{\partial x^{j}} d x^{j} \wedge d x^{\alpha}
$$

if $\omega=\sum_{\alpha \in I_{n, P}} a_{\alpha} d x^{\alpha}$. By direct computation (using $\frac{\partial^{2} a_{\alpha}}{\partial x^{i} \partial x^{j}}=\frac{\partial^{2} a_{\alpha}}{\partial x^{j} \partial x^{i}}$
and $d x^{i} \wedge d x^{j}=-d x^{j} \wedge d x^{i}$) one checks that
25.3

$$
d^{2} \omega=0 \quad \forall \omega \in E^{\mathrm{n}}(\mathrm{U})
$$

Given $\omega=\sum_{\alpha \in I_{n, Q}} a_{\alpha}(y) d y^{\alpha} \in E^{n}(V), V \subset \mathbb{R}^{Q} \quad$ open, and a smooth
$\operatorname{map} f: U \rightarrow V$, we define the "pulled back" form $f^{\#} \omega \in E^{n}(U)$ by
25.4

$$
f^{\#} \omega=\sum_{\alpha=\left(i_{1}, \ldots, i_{n}\right) \in I_{n, Q}} a_{\alpha} \circ f d f^{i_{1}} \wedge \ldots \wedge d f^{i_{n}}
$$

where $d f^{j}$ is $\sum_{i=1}^{p} \frac{\partial f^{j}}{\partial x^{i}} d x^{i}, j=1, \ldots, Q$.

Notice that the exterior derivative commutes with pulling back:
25.5

$$
d f^{\#}=f^{\#} d
$$

We let $D^{n}(U)$ denote the set of $\omega=\sum_{\alpha \in I_{n, P}} a_{\alpha} d x^{\alpha} \in E^{n}(U)$ such that each a_{α} has compact support. We topologize $D^{n}(U)$ with the usual locally convex topology, characterized by the assertion that $\omega^{k}=\sum_{\alpha \in I_{n, P}} a_{\alpha}^{(k)} d x^{\alpha} \rightarrow$ $\omega=\sum_{\alpha \in I_{n, P}} a_{\alpha} d x^{\alpha}$ if there is a fixed compact $K \subset U$ such that $\operatorname{spt} a_{\alpha}^{(k)} \subset K$ $\forall \alpha \in I_{n, P}, k \geq 1$, and if $\lim _{D^{\beta}} a_{\alpha}^{(k)}=D^{\beta} a_{\alpha} \quad \forall \alpha \in I_{n, P}$ and every multiindex β. For any $\omega \in D^{n}(U)$, we define
25.6

$$
|\omega|=\sup _{x \in U}\langle\omega(x), \omega(x)\rangle^{\frac{1}{2}} .
$$

Notice that if $f: U \rightarrow V$ is smooth (U, V open in $\mathbb{R}^{P}, \mathbb{R}^{Q}$) and if f is proper (i.e. $f^{-1}(K)$ is a compact subset of U whenever K is a compact subset of V) then $f^{\#} \omega \in \mathcal{D}^{n}(U)$ whenever $\omega \in D^{n}(V)$.

§26. GENERAL CURRENTS

Throughout this section U is an open subset of \mathbb{R}^{P}.
26.1 DEFINITION An n-dimensional current (briefly called an n-current) in U is a continuous linear functional on $D^{n}(U)$. The set of such n-currents will be denoted $D_{n}(U)$.

Note that in case $n=0$ the n-currents in U are just the schwartz distributions on U. More importantly though, the n-currents, $n \geq 1$, can be interpreted as a generalization of the n-dimensional oriented submanifolds M having locally finite H^{n}-measure in U. Indeed given such an $M \subset U$ with orientation ξ (thus $\xi(x)$ is continuous on M with $\xi(x)= \pm \tau_{1} \wedge \ldots \wedge \tau_{n}$ $\forall x \in M$, where $\tau_{1} \ldots, \tau_{n}$ is an orthonormal basis for $T_{x} M$ * * then there is a corresponding n-current $\llbracket M \rrbracket \in D_{n}(U)$ defined by

$$
\llbracket M \rrbracket(\omega)=\int_{M}<w(x), \xi(x)>d H^{n}(x), \omega \in D^{n}(U)
$$

where $<,>$ denotes the dual pairing for $\Lambda^{n}\left(\mathbb{R}^{P}\right), \Lambda_{n}\left(\mathbb{R}^{P}\right)$. (That is, the n-current $\llbracket M \rrbracket$ is obtained by integration of n-forms over M in the usual sense of differential geometry: $\llbracket M \rrbracket(\omega)=\int_{M} \omega$ in the usual notation of differential geometry.)

Motivated by the classical stokes' theorem $\left(\int_{M} d \omega=\int_{\partial M} \omega\right.$ if M is a compact smooth manifold with smooth boundary) we are led (by 26.2) to quite generally define the boundary ∂T of an n-current $T \in D_{n}(U)$ by
26.3

$$
\partial T(\omega)=T(\partial \omega), \omega \in D^{n}(U)
$$

* Thus $\xi(x) \in \Lambda_{n}\left(T_{x}{ }^{M}\right)$; notice this differs from the usual convention of differential geometry where we would take $\xi(x) \in \Lambda^{n}\left(T_{x} M\right)$.

```
(and \partialT = 0 if n=0); thus \partialT \in D D N-1 (U) if T G D D (U) . Here and
subsequently we define }\mp@subsup{D}{|n-1}{(U)}=0\mathrm{ in case }n=0
```

 Notice that \(\partial^{2} \mathrm{~T}=0\) by 25.3
 Again motivated by the special example \(T=\llbracket M \rrbracket\) as in 26.2 we define
 the mass of T, $M_{=}(T)$ for $T \in D_{n}(U)$ by
26.4

$$
\underline{M}(T)=\sup ^{\underline{M}}|\omega| \leq 1, \omega \in D^{n}(U) T(\omega)
$$

(so that $M(T)=H^{n}(M)$ in case $T=\llbracket M \rrbracket$ as in 26.2). More generally for any open $W \subset U$ we define
26.5

$$
{\underset{M}{W}}_{M_{W}(T)=\sup |\omega| \leq 1, \omega \in D^{n}(U)} T(\omega)
$$

26.6 REMARK Notice that there is some flexibility in the definition of M; we would still get the "correct" value $H^{n}(M)$ for the case $T=\llbracket M \rrbracket$ if we were to make the definition $M(T)=\sup _{\|\omega(x)\| \leq 1} T(\omega)$,

$$
\omega \in \mathcal{D}^{\mathrm{n}}(\mathrm{U})
$$

provided only that \|\| is a norm for $\Lambda^{n}\left(\mathbb{R}^{P}\right)$ with the properties:
(1) $\langle\omega, \xi\rangle \leq\|\omega\||\xi|$ whenever $\xi \in \Lambda_{n}\left(\mathbb{R}^{P}\right)$ is simple and
(2) for each fixed simple $\xi \in \Lambda_{n}\left(\mathbb{R}^{P}\right)$, equality holds in (1) for some $\omega \neq 0$.
(Evidently $\|\|=\mid$ is one such norm.) Notice that the smallest possible norm for $\Lambda^{n}\left(\mathbb{R}^{P}\right)$ having these properties is defined by

$$
\begin{gathered}
\|\omega\|=\sup _{\xi \in \Lambda_{n}\left(\mathbb{R}^{P}\right),|\xi|=1}<\omega, \xi> \\
\xi \text { simple }
\end{gathered}
$$

(\| \| is called the co-mass norm for $\left.\Lambda^{n}\left(\mathbb{R}^{P}\right).\right)$ There is a good argument to say that one should adopt this norm in the definition of $M(T)$ (and indeed
this is usually done - see e.g. [FF], [FH1]) since, by virtue of the consequent maximality of $M(T)$ it is more likely to yield equality in the general inequality $\underset{=}{M}(T) \leq \lim$ inf $\left.\underset{\underline{M}}{\underline{M}}\left\|M_{j}\right\|\right)$, if $\left\{M_{j}\right\}$ is a sequence of C^{1} submanifolds with weak limit T (see 26.12 below). Nevertheless we will here stick to the definition 26.4 , because it has certain advantages (e.g. the application of the Riesz representation theorem - see below - is cleaner, and 26.4 does yield the "correct" value in the most important case when T is an integer multiplicity current as in §27.)

Notice that by the Riesz Representation Theorem 4.1 we have that if $T \in D_{n}(U)$ satisfies ${\underset{W}{W}}^{(T)}(T) \quad \forall W \subset \subset U$, then there is a Radon measure μ_{T} on U and μ_{T}-measurable function \vec{T} with values in $\Lambda_{n}\left(\mathbb{R}^{P}\right) \cdot|\vec{T}|=1$ $\mu_{T}-a . e$. such that
26.7

$$
T(\omega)=\int\langle\omega(x), \vec{T}(x)\rangle d \mu_{T}(x)
$$

μ_{T} (the total variation measure associated with T) is characterized by
26.8

$$
\begin{gathered}
\mu_{T}(W)=\sup _{\omega \in D^{n}(U),|\omega| \leq 1} T(\omega) \quad\left(\equiv M_{W}(T)\right) \\
\operatorname{spt} \subset W
\end{gathered}
$$

for any open $W \subset U$. In particular

$$
\mu_{T}(U)=M(T)
$$

Notice that for such a T we can define, for any μ_{T}-measurable subset A of U (and in particular for any Borel set $A \subset U$), a new current $T L A \in D_{n}(U)$ by

$$
(T L A)(\omega)=\int_{A}\langle\omega, \vec{T}\rangle d \mu_{T}
$$

More generally, if ϕ is any locally μ_{T}-integrable function on U then we can define $T L \phi \in \mathcal{D}_{n}(U)$ by
26.10

$$
(T L \phi)(\omega)=\int \phi\langle\omega, \xi\rangle d \mu_{T}
$$

Given $T \in D_{n}(U)$ we define the support spt T of T to be the relatively closed subset of U defined by
26.11
spt $T=U \sim U W$
where the union is over all open sets W such that $T(\omega)=0$ whenever $\omega \in D^{n}(U)$ with spt $\omega \subset W$. Notice that if $M_{W}(T)<\infty$ for each $W \subset \subset U$ and if μ_{T} is the corresponding total variation measure (as in $26.7,26.8$) then

$$
\text { spt } T=\text { spt } \mu_{T}
$$

where spt μ_{T} is the support of μ_{T} in the usual sense of Radon measures in U.

Given a sequence $\left\{T_{q}\right\} \subset D_{n}(U)$, we write $T_{q} \rightarrow T$ in $U\left(T \in D_{n}(U)\right)$ if $\left\{T_{q}\right\}$ converges weakly to T in the usual sense of distributions:
26.12

$$
T_{q}-T \Leftrightarrow \lim T_{q}(\omega)=T(\omega) \quad \forall \omega \in D^{n}(U)
$$

Notice that mass is trivially lower semi-continuous with respect to weak convergence: if $T_{q} \perp T$ in U then
26.13

$$
M_{W}(T) \leq \underset{q \rightarrow \infty}{\lim \inf } M_{W}\left(T_{q}\right) \quad \forall \text { open } W \subset U .
$$

Notice also that by applying the standard Banach-Alaoglu theorem [Roy] (in the Banach spaces $M_{n}(W)=\left\{T \in \mathcal{D}_{n}(W): \underline{M}_{W}(T)<\infty\right\}, W \subset \subset$) we deduce
26.14 LEMMA If $\left\{T_{q}\right\} \subset D_{n}(U)$ and $\sup _{q \geq 1}{\underset{=}{W}}\left(T_{q}\right)<\infty$ for each $W \subset \subset U$, then there is a subsequence $\left\{T_{q_{1}},\right\}$ and $a \quad T \in D_{n}(U)$ such that $T_{q^{\prime}} \rightarrow T$ in U. The following terminology will be used frequently:
26.15 TERMINOLOGY Given $T_{1} \in D_{n}\left(U_{1}\right), T_{2} \in D_{n}\left(U_{2}\right)$ and an open $W \subset U_{1} \cap U_{2}$, we say $T_{1}=T_{2}$ in W if $T_{1}(\omega)=T_{2}(\omega)$ whenever ω is a smooth n-form in $\mathbb{R}^{\mathrm{n}+\mathrm{k}}$ with spt $\omega \subset W$.

Next we want to describe the cartesian product of currents $T_{1} \in D_{r}\left(U_{1}\right)$, $T_{2} \in D_{S}\left(U_{2}\right), U_{1} \subset \mathbb{R}^{P_{1}}, U_{2} \subset \mathbb{R}^{P_{2}}$ open. We are motivated by the case when $T_{1}=\llbracket M_{1} \rrbracket$ and $T_{2}=\llbracket M_{2} \rrbracket$ (Cf. 26.2) where M_{1}, M_{2} are oriented submanifolds of dimension r, s respectively. We want to define $T_{1} \times T_{2} \in D_{r+s}\left(U_{1} \times U_{2}\right)$ in such a way that for this special case (when $T_{j}=\llbracket M_{j} \rrbracket$) we get $\llbracket M_{1} \rrbracket \times \llbracket M_{2} \rrbracket=\llbracket M_{1} \times M_{2} \rrbracket$. We are thus inevitably led to the following
26.16 DEFINITION If $\omega \in D^{r+s}\left(U_{1} \times U_{2}\right)$ is written in the form $\omega=\sum_{(\alpha, \beta) \in I_{r^{\prime}, P_{1}} \times I_{s^{\prime}, P_{2}} a_{\alpha \beta}(x, y) d x^{\alpha} \wedge d y^{\beta} \quad \text { (using multi-index notation as in } \S 26 \text {) }}^{r^{\prime}+s^{\prime}=r+s}$. then we define

$$
T_{1} \times T_{2}(\omega)=T_{1}\left(\sum_{\alpha \in I_{r, P}} T_{2}\left(\sum_{\beta \in I_{S, P_{2}}} a_{\alpha \beta}(x, y) d y^{\beta}\right) d x^{\alpha}\right)
$$

(Notice in particular this gives $T_{1} \times T_{2}\left(\omega_{1} \wedge \omega_{2}\right)=0$ if $\omega_{1} \in D^{r^{\prime}}\left(U_{1}\right)$, $\omega_{2} \in \mathcal{D}^{\prime \prime}\left(U_{2}\right)$ with $r^{\prime}+s^{\prime}=r+s$ but $\left.\left(r^{\prime}, s^{\prime}\right) \neq(r, s).\right)$

One readily checks, using this definition and the definition of ∂ (in 26.3) that
26.17

$$
\partial\left(T_{1} \times T_{2}\right)=\left(\partial T_{1}\right) \times T_{2}+(-1)^{r_{T_{1}}} \times \partial T_{2} .
$$

(Notice this is valid also in case r or $s=0$ if we interpret the appropriate terms as zero; e.g. if $r=0$ then $\partial\left(T_{1} \times T_{2}\right)=T_{1} \times \partial T_{2}$.)

An important special case of 26.17 occurs when we take $T \in D_{n}(U)$, $U \subset \mathbb{R}^{P}$, and we let $\llbracket(0,1) \rrbracket$ be the 1 -current defined as in 26.3 with $M=(0,1) \subset \mathbb{R}((0,1)$ having its usual orientation). Then 26.17 gives
26.18

$$
\begin{aligned}
\partial(\llbracket(0,1) \rrbracket \times T) & =(\{1\}-\{0\}) \times T-\llbracket(0,1) \rrbracket \times \partial T \\
& \equiv\{1\} \times T-\{0\} \times T-\mathbb{T}(0,1) \rrbracket \times \partial T
\end{aligned}
$$

Here and subsequently $\{p\}$, for a point $p \in U$, means the 0 -current $\in D_{0}(U)$ defined by
26.19

$$
\{p\}(\omega)=\omega(p), \omega \in D^{0}(U) \quad\left(\equiv C_{C}^{\infty}(U)\right)
$$

Next we want to discuss the notion of "pushing forward" a current T via a smooth map $f: U \rightarrow V, U \subset \mathbb{R}^{P}, V \subset \mathbb{R}^{Q}$ open. The main restriction needed is that $f \mid s p t T$ is proper; that is $f^{-1}(K) \cap$ spt T is a compact subset of U whenever K is a compact subset of V. Assuming this, we can define
26.20

$$
f_{\#} T(\omega)=T\left(\zeta f^{\#} \omega\right) \quad \forall \omega \in D^{\mathrm{n}}(\mathrm{~V})
$$

where ζ is any function $\epsilon C_{C}^{\infty}(U)$ such that $\zeta \equiv 1$ in a neighbourhood of spt $T \cap \operatorname{spt} f^{\#} \omega$. One easily checks that the definition of $f_{\#} T$ in 26.20 is independent of ζ. (Of course such ζ exist and $\zeta f^{\#} \omega \in D^{n}(U)$ because $f \mid$ spt T is proper and spt ω is a compact subset of V.)

26.21 REMARKS

(1) Notice that $\partial f_{\#} T=f_{\#} \partial T$ whenever f, T are as in 26.20.
(2) If $\underset{W}{M}(T)<\infty$ for each $W \subset U$, so that T has a representation as in 26.7, then it is straightforward to check that $f \#^{T}$ is given explicitly by

$$
\begin{aligned}
f_{\#}^{T}(\omega) & =\int\left\langle E^{\#} \omega, \vec{T}\right\rangle d \mu_{T} \\
& =\int\left\langle\omega(f(x)), d f_{x \#} \vec{T}(x)>d \mu_{T}(x)\right.
\end{aligned}
$$

Notice that we can thus make sense of $f_{\#^{T}}$ in case f is merely C^{1} (with $f \mid s p t T$ proper).
(3) If $T=\llbracket M \rrbracket$ as in 26.2 , then the above remark (2) tells us that if $f \mid(\bar{M} \cap U)$ is proper,

$$
\begin{equation*}
f_{\#} T(\omega)=\int_{M}<\omega(x), d f_{x \#} \xi(x)>d H^{n}(x) \tag{*}
\end{equation*}
$$

where ξ is the oxientation for M. Notice that this makes sense if f is only Lipschitz (by virtue of Rademacher's Theorem 5.2). If f is $1: 1$ and if Jf is the Jacobian of f as in 8.3, then the area formula evidently tells us that (since $d f_{x \#} \xi(x)=J f(x) \tau(f(x)$), where τ is the orientation for $f\left(M_{+}\right), M_{+}=\{x \in M: J f(x)>0\}$, induced by $\left.f\right)$

$$
\mathrm{f}_{\#} \mathrm{~T}(\omega)=\int_{\mathrm{f}\left(\mathrm{M}_{+}\right)}<\omega(\mathrm{y}), \tau(\mathrm{y})>d H^{\mathrm{n}}(\mathrm{y})
$$

(Which confirms that our definition of $f_{\#^{T}}$ is "correct".)

By using the above notions we can derive the important homotopy formula for currents as follows:

If $f, g: U \rightarrow V$ are smooth $\left(V \subset \mathbb{R}^{2}\right)$ and $h:[0,1] \times U \rightarrow V$ is smooth

* For a linear map $\ell: \mathbb{R}^{P} \rightarrow \mathbb{R}^{2}$ and for $v=\sum_{\alpha \in I_{n, P}} a_{\alpha} e_{\alpha} \in \Lambda_{n}\left(\mathbb{R}^{P}\right)$ we define
$\ell_{\#} v \in \Lambda_{n}\left(\mathbb{R}^{2}\right)$ by $\ell_{\#} v=\sum_{\alpha \in I_{n, P}} a_{\alpha} \ell_{\#} e_{\alpha}=\sum_{\alpha=\left(i_{1}, \ldots, i_{n}\right) \in I_{n, P}} a_{\alpha \ell\left(e_{i_{1}}\right) \wedge \ldots \wedge \ell\left(e_{i_{n}}\right) .}$ Then $\left\langle w, \ell_{\#} v\right\rangle=\left\langle l^{\#} w, v\right\rangle, w \in \Lambda^{n}\left(\mathbb{R}^{2}\right)$.
with $h(0, x) \equiv f(x), h(1, x) \equiv g(x)$, if $T \in D_{n}(U)$, and if $h \mid[0,1] \times$ spt T is proper, then (by the above discussion) $h_{\#}(\llbracket(0,1) \rrbracket \times T)$ is well defined $\left(\in D_{n+1}(V)\right)$ and

$$
\begin{aligned}
\partial h_{\#}(\llbracket(0,1) \rrbracket \times T) & =h_{\#} \partial(\llbracket(0,1) \rrbracket \times T) \\
& =h_{\#}(\{1\} \times T-\{0\} \times T-\llbracket(0,1) \rrbracket \times \partial T) \\
& \equiv g_{\#} T-\mathrm{E}_{\#} T-h_{\#}(\llbracket(0,1) \rrbracket \times \partial T) .
\end{aligned}
$$

Thus we obtain the homotopy formula
26.22

$$
g_{\#} T-f_{\#} T=\partial h_{\#}(\llbracket(0,1) \rrbracket \times T)+h_{\#}(\llbracket(0,1) \rrbracket \times \partial T) .
$$

Notice that an important case of the above is given by

$$
\begin{equation*}
h(t, x)=t g(x)+(1-t) f(x)=f(x)+t(g(x)-f(x)) \tag{*}
\end{equation*}
$$

(i.e. h is an "affine homotopy" from f to g). In this case we note that by using the integral representation 26.7 and Remark $26.21(2)$ above that

$$
\left.\underline{M}\left(h_{\#} \|(0,1) \rrbracket \times T\right)\right) \leq \sup _{\operatorname{spt} T}|f-g| \cdot \sup _{x \in \operatorname{sptT}}\left(\left|d f_{x}\right|+\left|d g_{x}\right|\right) M(T)
$$

(Indeed $\overrightarrow{\llbracket(0,1) \rrbracket \times T}=e_{1} \wedge \vec{T}$ and $\mu_{\llbracket(0,1) \rrbracket \times{ }_{T}}=L^{1} \times \mu_{T}$, so by Remark 26.21(2) we have

$$
\begin{aligned}
& h_{\#}(\llbracket(0,1) \rrbracket \times T)(\omega)=\int\left\langle\omega(h(t, x)), d f_{(t, x) \#} e_{1} \wedge \vec{T}(x)\right\rangle d \mu_{T}(x) d t \\
&=\int\left\langle\omega(h(t, x)),(g(x)-f(x)) \wedge\left(t d f_{x}+(1-t) d f_{x}\right) \overrightarrow{\#}^{\vec{T}}(x)\right\rangle \\
& d \mu_{T}(x) d t
\end{aligned}
$$

and 26.23 follows immediately.)

We now give a couple of important applications of the above homotopy formula.
26.24 LEMMA If $T \in D_{n}(U), M_{W}(T), M_{W}(\partial T)<\infty \quad \forall W \subset C$ and if $E, g: U \rightarrow V$ are C^{1} with $f \mid$ spt $T=g \mid$ spt T proper, then $f_{\#} T=g_{\#} T$. (Note that $f_{\#} T, g_{\#} T$ are well-defined by $\left.26.21(2).\right)$

Proof By the homotopy formula 26.22 we have, with $h(t, x)=\operatorname{tg}(x)+(1-t) f(x)$,

$$
\begin{aligned}
g_{\#} T(\omega)-f_{\#} T(\omega) & =\partial h_{\#}(\llbracket(0,1) \rrbracket \times T)(\omega)+h_{\#}(\llbracket(0,1) \rrbracket \times \partial T)(\omega) \\
& =h_{\#}(\llbracket(0,1) \rrbracket \times T)(d \omega)+h_{\#}(\llbracket(0,1) \rrbracket \times \partial T)(\omega),
\end{aligned}
$$

so that, by 26.23 ,

$$
\begin{aligned}
\left|f_{\#} T(\omega)-g_{\#} T(\omega)\right| & \leq c(M(T)|d \omega|+M(\partial T)|\omega|) \sup _{x \in \operatorname{spt}}|f-g| \\
& =0, \text { since } f=g \text { on spt } T .
\end{aligned}
$$

The homotopy formula also enables us to define $f \#^{T}$ in case f is merely Lipschitz, provided $f \mid s p t T$ is proper and ${\underset{W}{W}}(T), M_{W}(\partial T)<\infty \quad \forall W \subset \subset U$. In the following lemma we let $f^{(\sigma)}=f * \phi_{\sigma}, \phi_{\sigma}(x)=\sigma^{-n} \phi\left(\sigma^{-1} x\right)$, with ϕ a mollifier as in $\S 6$.
26.25 LEMMA If $T \in D_{n}(U), M_{W}(T), M_{W}(\partial T)<\infty \quad \forall W \subset \subset U$, and if
 for each $\omega \in D^{\mathrm{n}}(\mathrm{V}) ; \mathrm{E}_{\#^{T}(\omega)}$ is defined to be this limit; then spt $f_{\#} T \subset f(\operatorname{spt} T)$ and $M_{W}\left(f_{\#^{T}} T\right) \leq\left(\operatorname{ess} \sup _{f^{-1}(W)}|D f|\right)^{n_{M}^{M}}{ }_{f^{-1}(W)}(T) \quad \forall W \subset C V$. Proof If σ, τ are sufficiently small (depending on ω) then the homotopy formula gives

$$
f_{\sigma \#} T(\omega)-f_{\tau \#} T(\omega)=h_{\#}(\llbracket(0,1) \rrbracket \times T)(d \omega)+h_{\#}(\llbracket(0,1) \rrbracket \times \partial T)(\omega)
$$

Where $h:[0,1] \times U \rightarrow V$ is defined by $h(t, x)=t f_{\sigma}(x)+(1-t) f_{\tau}(x)$. Then by 26.23, for sufficiently small σ, τ, we have

$$
\left|f_{\sigma \#} T(\omega)-f_{\tau \#} T(\omega)\right| \leq c \sup _{f^{-1}(K) \cap \operatorname{sptT}}\left|f_{\sigma}-f_{\tau}\right| \cdot \operatorname{Lip} f
$$

where K is a compact subset of V with spt $\omega \subset$ interior (K). Since $f_{\sigma} \rightarrow f$ uniformly on compact subsets of U. the result now clearly follows.

Next we want to define the notion of the cone over a given current $T \in D_{n}(U)$. We want to define this in such a way that if $T=\llbracket M \rrbracket$ where M is a submanifold of $S^{P-1} \subset \mathbb{R}^{P}$ then the cone over T is just $\mathbb{C} C_{M} \rrbracket$, $C_{M}=\{\lambda x: x \in M, 0<\lambda \leq 1\}$. We are thus led generally to make the definition that the cone over T, denoted $0 * T$, is defined by
26.26

$$
0 \times T=h_{\#}(\mathbb{W}(0,1) \rrbracket \times T)
$$

whenever $T \in D_{n}(U)$ with U star-shaped relative to 0 and spt T compact, where $h: \mathbb{R} \times \mathbb{R}^{P} \rightarrow \mathbb{R}^{P}$ is defined by $h(t, x)=t x$. Thus 0 T $\in \mathcal{D}_{n+1}$ (U) and (by the homotopy formula)

$$
\partial 0 \mathrm{~T}=\mathrm{T}-0 \not 2 \mathrm{~T}
$$

The following Constancy Theorem is very useful:
26.27 THEOREM If U is open in $\mathbb{R}^{n}($ i.e. $P=n)$, if U is connected, if $T \in D_{n}(U)$ and $\partial T=0$, then there is a constant c such that $T=c\|U\|$ (using the notation of 26.2 in the special case $n=P, M=U$; U is of course equipped with the standard orientation $e_{1} \wedge \ldots \wedge e_{n}$. .

Proof We are given

$$
\begin{equation*}
T(d \omega)=0 \quad \text { whenever } \quad \omega \in D^{n-1}(U) \tag{1}
\end{equation*}
$$

Let $\phi_{\sigma}(x)=\sigma^{-n} \phi\left(\bar{\sigma}^{-1} x\right)$, with ϕ a mollifier as in $\S 6$, and define $T_{\sigma} \quad b y$

$$
T_{\sigma}(\omega)=T\left(\phi_{\sigma} * \omega\right)
$$

if dist $(\operatorname{spt} \omega, \partial U)>\sigma .\left(\phi_{\sigma} * \omega\right.$ means $\left(\phi_{\sigma} * a\right) d x^{1} \wedge \ldots \wedge d x^{n}$ if $\omega=a d x^{1} \wedge \ldots \wedge d x^{n}, \quad a \in C_{C}^{\infty}(U) ;$ since $P=n$, any $\omega \in D^{n}(U)$ has this form.)

Now if $W \subset \in U$ and $\sigma<\operatorname{dist}(W, \partial U)$, we claim there is a constant $c=c(T, W, \sigma)$ such that

$$
\begin{equation*}
\left|T_{\sigma}(\omega)\right| \leq c \int_{U}|\omega| d L^{n} . \tag{2}
\end{equation*}
$$

Indeed this follows directly from the fact that for fixed σ, W the set $S=\left\{\phi_{\sigma} * \omega: \omega \in D^{n}(U)\right.$, spt $\left.\omega \subset W, \int_{U}|\omega| \partial L^{n} \leq 1\right\}$ is compact in $D^{n}(U)$, relative to the norm | . By the Riesz Representation Theorem 4.1, we see that (1) implies

$$
\begin{equation*}
T_{\sigma}(\omega)=\int a \theta_{\sigma} d L^{n}, \omega=a d x^{1} \wedge \ldots \wedge d x^{n} \tag{3}
\end{equation*}
$$

$a \in C_{C}^{\infty}(W)$.

On the other hand if spt $\omega \subset W, \omega \in D^{n-1}(U)$, then

$$
T_{\sigma}(d \omega)=T\left(\phi_{\sigma} * d \omega\right)=T\left(d \phi_{\sigma} * \omega\right)=\partial T\left(\phi_{\sigma} * \omega\right)=0
$$

by (1). In particular, taking $\omega=a d x^{1} \wedge \ldots \wedge d x^{j-1} \wedge d x^{j+1} \wedge \ldots \wedge d x^{n}$, so that $d \omega= \pm \partial a / \partial x^{j} d x^{1} \wedge \ldots \wedge d x^{n}$, and using (3) we have

$$
\int D_{j} a \theta_{\sigma} d L^{n}=0, j=1, \ldots, n
$$

for $a \in C_{C}^{\infty}(U)$ with spt $a \subset W$. This evidently implies that $\theta_{\sigma}=$ constant (depending on σ) on each component of W. The required result now follows from (3) by letting $\sigma \not \downarrow 0$ and $W \uparrow U$.
26.28 REMARK Notice that if we mexely have $M(\partial T)<\infty$ then the obvious modifications of the above argument (note that (3) still holds) give first that

$$
\left|\int D_{j} a \theta_{\sigma} d L^{n}\right| \leq c \sup |a| M(\partial T)
$$

with c independent of σ, for $a \in C_{C}^{\infty}(U)$ such that dist(spt a, ∂U) $>\sigma$. Thus (see $\S 6$ and in particular Theorem 6.3) we deduce that $\theta_{\sigma_{k}} \rightarrow \theta$ in $L_{l o C}^{1}(U)$ (for some sequence $\sigma_{k} \psi 0$), with $\theta \in \operatorname{BV}_{l o c}(U)$, and (from (3))

$$
\begin{equation*}
T \omega=\int a \theta d L^{n}, \quad \omega=a d x^{1} \wedge \ldots \wedge d x^{n} \in D^{n}(U) . \tag{*}
\end{equation*}
$$

Using the definition of $\underline{\underline{M}}(\partial T)$, we easily then check that ${\underset{W}{W}}^{(\partial T})=|D \theta|(W)$ for each open $W \subset U$ (and $M_{W}(\mathbb{T})=\int_{W}|\theta| d L^{n}$). Indeed in the present case $n=p$, any $\omega \in D^{n-1}(U)$ can be written $\omega=\sum_{j=1}^{n}(-1)^{j} a_{j} d x^{1} \wedge \ldots \wedge d x^{j-1} \wedge$ $d x^{j+1} \wedge \ldots \wedge d x^{n}$ for suitable $a_{j} \in C_{C}^{\infty}(U)$, and $d \omega=\operatorname{div} \underline{a} d x^{1} \wedge \ldots \wedge d x^{n}$ for such $\omega\left(\underline{a}=\left(a_{1}, \ldots, a_{n}\right)\right)$. Therefore by (*) above we have

$$
\partial T(\omega)=T(d \omega)=\int \operatorname{div} \underline{a} \theta d L^{n}
$$

\left. and the assertion ${\underset{W}{W}}^{(\partial T}\right)=|\mathrm{D} \theta|(\mathrm{W})$ then follows directly from the definition of $\underline{M}_{W}(\partial T)$ and $|D \theta|$ (in §6).

In the following lemma, for $\alpha=\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{Z}^{n}$ with $1 \leq i_{1}<i_{2}<\ldots<i_{n} \leq P$, we let p_{α} denote the orthogonal projection of \mathbb{R}^{P} onto \mathbb{R}^{n} given by

$$
\left(x^{1}, \ldots, x^{p}\right) \mapsto\left(x^{i_{1}}, \ldots, x^{i_{n}}\right)
$$

26.29 LEMMA Suppose E is a closed subset of U , U open in \mathbb{R}^{P}, with $L^{n}\left(p_{\alpha}(E)\right)=0$ for each multi-index $\alpha=\left(i_{1}, \ldots, i_{n}\right), 1 \leq i_{1}<i_{2}<\ldots<i_{n} \leq P$. Then $T L E=0$ whenever $T \in D_{n}(U)$ with $M_{W}(T), M_{W}(\partial T)<\infty$ for every $W \subset \subset U$.
26.30 REMARK The hypothesis $L^{n}\left(p_{\alpha}(E)\right)=0$ is trivially satisfied if $H^{n}(E)=0$, so in particular we deduce $T L E=0$ if $T \in D_{n}(U)$ with $M_{W}(T), M_{W}(\partial T)<\infty \quad \forall W \subset C U$ and $H^{n}(E)=0$.

Proof of 26.29 Let $\omega \in D^{n}(U)$. Then we can write $\omega=\sum_{\alpha \in I_{n, P}} \omega_{\alpha} d x^{\alpha}$, $\omega_{\alpha} \in C_{C}^{\infty}(U)$, so that

$$
\begin{aligned}
T(\omega) & =\sum_{\alpha} T\left(\omega_{\alpha} \alpha x^{\alpha}\right)=\sum_{\alpha}\left(T L \omega_{\alpha}\right)\left(d x^{\alpha}\right) \\
& =\sum_{\alpha}\left(T L \omega_{\alpha}\right) p_{\alpha}^{\#} d y
\end{aligned}
$$

$\left(d y=d y^{1} \wedge \ldots \wedge d y^{n}, y^{1}, \ldots, y^{n}\right.$ the standard coordinate functions in $\left.\mathbb{R}^{n}.\right)$ Thus

$$
\begin{equation*}
T(\omega)=\sum_{\alpha} p_{\alpha \#}\left(T L \omega_{\alpha}\right)(d y) \tag{1}
\end{equation*}
$$

(which makes sense because spt $T L \omega_{\alpha} \subset$ spt $\omega_{\alpha}=$ compact subset of U). On the other hand

$$
\begin{aligned}
\underline{M}\left(\partial p_{\alpha \#}\left(T L \omega_{\alpha}\right)\right) & =\underline{\underline{M}\left(p_{\alpha \#} \partial\left(T L \omega_{\alpha}\right)\right)} \\
& \leq \underline{\underline{M}\left(\partial\left(T L \omega_{\alpha}\right)\right)<\infty,}
\end{aligned}
$$

(because for any $\tau \in D^{\mathrm{n}-1}(\mathrm{U})$,

$$
\begin{aligned}
\partial\left(T L \omega_{\alpha}\right)(\tau) & =\left(T L \omega_{\alpha}\right)(d \tau) \\
& =T\left(\omega_{\alpha} d \tau\right) \\
& =T\left(\bar{\alpha}\left(\omega_{\alpha} \tau\right)\right)-T\left(d \omega_{\alpha} \wedge \tau\right) \\
& =\partial T\left(\omega_{\alpha} \tau\right)-T\left(d \omega_{\alpha} \wedge \tau\right) ;
\end{aligned}
$$

thus in fact

$$
\begin{aligned}
M_{W}\left(\partial\left(T L \omega_{\alpha}\right)\right) \leq M_{W} & (\partial T)\left|\omega_{\alpha}\right| \\
& \left.\quad+M_{W}(\mathbb{T})\left|\partial \omega_{\alpha}\right| .\right)
\end{aligned}
$$

Therefore by Remark 26.28 we have $\theta_{\alpha} \in \operatorname{BV}\left(p_{\alpha}(U)\right)$ such that $p_{\alpha \#}\left(T L \omega_{\alpha}\right)(\tau)=$ $\int_{p_{\alpha}(U)}<\tau, e_{1} \wedge \ldots \wedge e_{n}>\theta_{\alpha} d L^{n}$, and hence $p_{\alpha \#}\left(T L \omega_{\alpha}\right) L p_{\alpha}(E)=0$ because $L^{n}\left(p_{\alpha}(E)\right)=0$. Then, assuming without loss of generality that E is closed,

$$
\begin{align*}
\underline{M}\left(p_{\alpha \#}\left(T L \omega_{\alpha}\right)\right) & \leq \underline{M}\left(p_{\alpha \#}\left(T L \omega_{\alpha}\right) L\left(\mathbb{R}^{n} \sim p_{\alpha}(E)\right)\right) \tag{2}\\
& =\underline{M}\left(p_{\alpha \#}\left(\left(T L \omega_{\alpha}\right) L\left(\mathbb{R}^{P} \sim p_{\alpha}^{-1} p_{\alpha}(E)\right)\right)\right) \\
& \leq \underline{M}\left(\left(T L \omega_{\alpha}\right) L\left(\mathbb{R}^{P} \sim p_{\alpha}^{-1} p_{\alpha} E\right)\right) \\
& \leq M_{W}\left(T L\left(\mathbb{R}^{P} \sim p_{\alpha}^{-1} p_{\alpha} E\right)\right) \cdot\left|\omega_{\alpha}\right| \\
& \leq M_{W}\left(T L\left(\mathbb{R}^{P} \sim E\right)\right) \cdot\left|\omega_{\alpha}\right|
\end{align*}
$$

for any W such that spt $\omega \subset W \subset U$.

Combining (1) and (2) we then have

$$
M_{W}(T) \leq C{\underset{M}{M}}_{=}\left(T L\left(\mathbb{R}^{P} \sim E\right)\right)
$$

so that in particular

$$
\begin{equation*}
\underline{M}_{W}(T L E) \leq C M_{W}^{M}\left(T L\left(\mathbb{R}^{P} \sim E\right)\right) \tag{3}
\end{equation*}
$$

Letting K be an arbitrary compact subset of E, we can choose $\left\{W_{q}\right\}$ so that $W_{q} \subset \subset U, W_{q+1} \subset W_{q}, \bigcap_{q=1}^{\infty} W_{q}=K$; using (3) with $W=W_{q}$ then gives

§27. INTEGER MULTIPLICITY RECTIFIABLE CURRENTS

In this section we want to develop the theory of integer multiplicity currents $T \in D_{n}(U)$, which, roughly speaking are those currents obtained by assigning (in a H^{n}-measurable fashion) an orientation to the tangent spaces $\mathrm{T}_{\mathrm{X}} \mathrm{V}$ of an integer multiplicity varifold V 。 (See Chapter 4 for terminology.)

These currents are precisely those called locally rectifiable by Federer and Fleming [FF]. [FHI].

Throughout this section $n \geq 1, k \geq 1$ are integers and U is an open subset of \mathbb{R}^{n+k}.
27.1 DEFINITION If $T \in D_{n}(U)$ we say that T is an integer multiplicity rectifiable n-current (briefly an integer multiplicity current) if it can be expressed

$$
\begin{equation*}
T(\omega)=\int_{M}\langle\omega(x), \xi(x)\rangle \theta(x) d H^{n}(x), \omega \in D^{n}(U) \tag{*}
\end{equation*}
$$

where M is an H^{n}-measurable countably n-rectifiable subset of U, θ is a locally H^{n}-integrable positive integer-valued function, and $\xi: M \rightarrow \Lambda_{n}\left(\mathbb{R}^{n+k}\right)$ is a H^{n}-measurable function such that for H^{n}-a.e. point $x \in M, \xi(x)$ can be expressed in the form $\tau_{1} \wedge \ldots \wedge \tau_{n}$, where $\tau_{1}, \ldots, \tau_{n}$ form an orthonormal basis for the approximate tangent space $T_{x} M$. (See Chapter 3.4.) Thus $\xi(=\vec{T})$ orients the approximate tangent spaces of M in an H^{n}-measurable way. The function θ in (*) is called the multiplicity and ξ is called the orientation for T. If T is as in (*) we shall often write $T=\underline{\underline{T}}(M, \theta, \xi)$. Notice that there is associated with any such T the integer multiplicity varifold $V=\underline{\underline{V}}(M, \theta)$ in U.

27.2 REMARKS

(1) If $T_{1}, T_{2} \in D_{n}(U)$ are integer multiplicity, then so is $\mathrm{p}_{1} \mathrm{~T}_{1}+\mathrm{p}_{2} \mathrm{~T}_{2} \cdot \mathrm{p}_{1}, \mathrm{p}_{2} \in \mathbb{Z}$.
(2) If $T_{1}=\underline{\underline{T}}\left(M_{1}, \theta_{1}, \xi_{1}\right) \in D_{r}(U), T_{2}=\underline{\underline{T}}\left(M_{2}, \theta_{2}, \xi_{2}\right) \in D_{S}(V)\left(V \subset \mathbb{R}^{Q}\right.$ open), then $T_{1} \times T_{2} \in D_{r+s}(U \times V)$ is also integer multiplicity, and in fact

$$
T_{1} \times T_{2}=\underline{\underline{\tau}}\left(M_{1} \times M_{2}, \theta_{1} \theta_{2}, \xi_{1} \wedge \xi_{2}\right)
$$

(3) If $f: U \rightarrow V$ is Lipschitz, $T=\underline{\underline{\tau}}(M, \theta, \xi) \in D_{n}(U) \quad(M \subset U)$ and $f \mid$ spt T is proper, then we can define $f_{\#^{T} \in D_{n}(V) \text { by }, ~(V)}$

$$
\begin{equation*}
f_{\#} T(\omega)=\int_{M}<\omega(f(x)), d^{M} f_{x \#} \xi(x)>\theta(x) d H^{n}(x) . \tag{*}
\end{equation*}
$$

Since $\left|d^{M} f_{x \#} \xi(x)\right|=J^{M} f(x)$ (as in $\S 12$) by the area formula this can be written

$$
\begin{equation*}
f_{\#^{T}}{ }^{T}(\omega)=\int_{f(M)}\left\langle\omega(y), \sum_{x \in f^{-1}(y) \cap_{M_{+}}} \theta(x) \frac{d^{M_{f}} f_{x \#} \xi(x)}{\left|d^{M} f_{x \#} \xi(x)\right|}\right\rangle d H^{n}(y) \tag{**}
\end{equation*}
$$

where $M_{+}=\left\{x \in M: J_{M} f(x)>0\right\}$. Furthermore at points y where the approximate tangent space $T_{Y}(f(M))$ exists (which is H^{n}-a.e. y by virtue of the fact that $f(M)$ is countably n-rectifiable) and where $T_{x} M, d^{M} f_{x}$ exist $\forall x \in f^{-1}(y)$ (which is again for H^{n}-a.e. y because $T_{x} M^{M}, d^{M_{f}}$ exist for H^{n}-a.e. $x \in M_{+}$), we have
(***)

$$
\frac{d^{M} f_{x \#} \xi(x)}{\left|d^{M} f_{x \#} \xi(x)\right|}= \pm \tau_{1} \wedge \ldots \wedge \tau_{n}
$$

where $\tau_{1}, \ldots, \tau_{n}$ is an orthonormal basis for $T_{Y}(f(M))$. Hence (**) gives

$$
f_{\#} T(\omega)=\int_{f(M)}<\omega(y), \eta(y)>N(y) d H^{n}(y)
$$

where $\eta(y)$ is a suitable orientation for the approximate tangent space $T_{Y}(f(M))$ and $N(y)$ is a non-negative integer. N, η in fact satisfy

$$
\sum_{x \in f^{-1}(y) \cap_{+}^{M}} \theta(x) \frac{d^{M_{f}} f_{x \#} \xi(x)}{\left|d^{M_{f^{\#}}} \xi(x)\right|}=N(y) \eta(y)
$$

so that for $H^{n}-a . e . ~ y \in f(M)$ we have

$$
\mathbb{N}(y) \leq \sum_{x \in f^{-1}(y) \cap M_{+}} \theta(x)
$$

and

$$
N(y) \equiv \sum_{x \in f^{-1}(y) \cap M_{+}} \theta(x) \quad(\bmod 2)
$$

Notice that, in case f is $C^{1}, f_{\#} T$ agrees with the previous definition in 26.20 (see also $26.21(2))$. Notice also that if $f: U \rightarrow W$ is Lipschitz and if $V=\underline{\underline{V}}(\mathbb{M}, \theta)$ is the varifold associated with $T=\underline{\underline{I}}(M, \theta, \xi)$, then

$$
\mu_{\mathrm{f}_{\#} \mathrm{~T}} \leq \mu_{\mathrm{f}_{\#} \mathrm{~V}}
$$

(in the sense of measures) with equality if and only if, for $H^{n}-a . e$. $y \in f(M)$, the sign in (***) above remains constant as x varies over $f^{-1}(y) \cap M_{+}$. In particular we have $\mu_{f_{\#} T}=\mu_{f_{\#} V}$ in case f is $1: 1$.

A fact of central importance concerning integer multiplicity currents is the following compactness theorem, first proved by Federer and Fleming [FF]. 27.3 THEOREM If $\left\{\mathrm{T}_{\mathrm{j}}\right\} \subset{D_{n}}(\mathrm{U})$ is a sequence of integer multiplicity currents with

$$
\sup _{j \geq 1}\left(M_{W}\left(T_{j}\right)+M_{W}\left(\partial T_{j}\right)\right)<\infty \quad \forall W \subset \subset U
$$

then there is an integer multiplicity $T \in D_{n}(U)$ and a subsequence $\left\{T_{j}\right\}$ such that $T_{j}{ }^{\prime}-T$ in U.

We shall give the proof of this in Chapter 8. Notice that the existence of a $T \in D_{n}(U)$ and a subsequence $\left\{T_{j},\right\}$ with $T_{j}{ }^{\prime} \perp T$ is a consequence of the elementary lemma 26.14; only the fact that T is an integer multiplicity current is non-trivial.
27.4 REMARK Note that the proof of 27.3 in the codimension 1 case (when $\mathrm{P}=\mathrm{n}+1$) is a direct consequence of the Remark 26.28 and the compactness theorem 6.3 for BV functions.

In contrast to the difficulty in proving 27.3, it is quite straightforward to prove that if T_{j} converges to T in the strong sense that $\lim M_{W}\left(T_{j}-T\right)=0 \quad \forall W \subset \subset U$, and if T_{j} are integer multiplicity $\forall j$, then T is integer multiplicity. Indeed we have the following lemma.
27.5 LEMMA The set of integer multiplicity currents in $D_{n}(U)$ is complete with respect to the topology given by the family $\left\{\underline{M}_{W}\right\}_{W C C U}$ of semi-norms.

Proof Let $\left\{T_{Q}\right\}$ be a sequence of integer multiplicity currents in $D_{n}(U)$, and $\left\{T_{Q}\right\}$ is Cauchy with respect to the semi-norms $M_{W}, W \subset C U$. Suppose $T_{Q}=\underline{\underline{\tau}}\left(M_{Q}, \theta_{Q}, \xi_{Q}\right) \quad\left(\theta_{Q} \quad\right.$ positive integer-valued on $\quad M_{Q},{ }_{Q} \quad$ countably n-rectifiable, $H^{n}\left(M_{Q}{ }^{n W}\right)<\infty$ for each $\left.w \subset C U.\right)$ Then

$$
\begin{equation*}
M_{W}\left(T_{Q}-T_{P}\right) \equiv \int_{W}\left|\theta_{P} \xi_{P}-\theta_{Q} \xi_{Q}\right| d H^{n}<\varepsilon_{W}(Q) \tag{1}
\end{equation*}
$$

$\forall P \geq Q$, where $\varepsilon_{W}(Q) \downarrow 0$ as $Q \rightarrow \infty$ and where we adopt the convention $\xi_{P}=0, \theta_{P}=0$ on $U \sim M_{P}$. In particular, since $\left|\xi_{P}\right|=1$ on M_{P}, we get

$$
\begin{equation*}
\int_{W}\left|\theta_{P}-\theta_{Q}\right| d H^{n}<\varepsilon_{W}(Q) \quad \forall P \geq Q . \tag{2}
\end{equation*}
$$

and hence θ_{P} converges in $L^{1}\left(H^{n}\right)$ locally in U to an integer-valued function θ. Of course (2) implies

$$
\begin{equation*}
H^{n}\left(\left(\left(M_{+} \sim M_{Q}\right) \cup\left(M_{Q} \sim M_{+}\right)\right) \cap W\right) \leq \varepsilon_{W}(Q), \tag{3}
\end{equation*}
$$

where $M_{+}=\{x \in U: \theta(x)>0\}$. (1), (2) also imply

$$
\begin{equation*}
\int_{W} \theta_{P}\left|\xi_{P}-\xi_{Q}\right| d H^{n} \leq 2 \varepsilon_{W}(Q) \quad \forall P \geq 2 \tag{4}
\end{equation*}
$$

and hence by (3) ξ_{p} converges in $L^{1}\left(H^{\mathrm{n}}\right)$ locally in U to a function ξ with values in $\Lambda_{n}\left(\mathbb{R}^{n+k}\right)$ with $|\xi|=1$ and ξ simple on M_{+}.

Now $\xi_{Q}(x) \in \Lambda_{n}\left(T_{x} M_{Q}\right)$, H^{n}-a.e. $x \in M_{Q}$, and (by (3)) $T_{x} M_{+}=T_{x} M_{Q}$ except for a set of measure $\leq \varepsilon_{W}(Q)$ in $M_{+} \cap W$. It follows that $\xi(x) \in \Lambda_{n}\left(T_{x} M_{+}\right)$for H^{n}-a.e. $x \in M_{+}$and we have shown that $M_{W}\left(T_{P}-T\right) \rightarrow 0$,

Finally, we shall need the following useful decomposition theorem for codimension 1 integer multiplicity currents.
27.6 THEOREM Suppose $P=n+1$ (i.e. U is open in \mathbb{R}^{n+1}) and R is an integer multiplicity current in $D_{n+1}(U)$ with ${\underset{\#}{W}}^{(J R)}<\infty \quad \forall W \subset \subset$. Then $T=\partial R$ is integer multiplicity, and in fact we can find a decreasing sequence of L^{n+1}-measurable sets $\left\{U_{j}\right\}^{\infty}=-\infty$ of locally finite perimeter in U such that (in U)

$$
\begin{aligned}
& R=\sum_{j=1}^{\infty} \llbracket U_{j} \rrbracket-\sum_{j=-\infty}^{0} \llbracket v_{j} \rrbracket, v_{j}=U \sim U_{j}, j \leq 0, \\
& T=\sum_{j=-\infty}^{\infty} \partial \llbracket U_{j} \rrbracket .
\end{aligned}
$$

and

$$
\mu_{T}=\sum_{j=-\infty}^{\infty} \mu_{\partial \llbracket U_{j} \rrbracket} ;
$$

in particular

$$
M_{W}(T)=\sum_{j=-\infty}^{\infty} M_{W}\left(\partial\left\|U_{j}\right\|\right) \quad \forall W \subset \subset U
$$

27.7 REMARK Let $*: C_{C}^{\infty}\left(U ; \mathbb{R}^{n+1}\right) \rightarrow D^{n}(U)$ be defined by
*g $=\sum_{j=1}^{n+1}(-1)^{j-1} g_{j} d x^{1} \wedge \ldots \wedge d x^{j-1} \wedge d x^{j+1} \wedge \ldots \wedge d x^{n+1}$, so that $d * g=\operatorname{div} g d x^{1} \wedge \ldots \wedge d x^{n+1}$. Then for any L^{n+1} - measurable $A \subset U$ we have

$$
\begin{aligned}
\partial \llbracket A \rrbracket(* g) & =\llbracket A \rrbracket(d * g) \\
& =\int_{U} X_{A} \operatorname{divg} d^{n+1},
\end{aligned}
$$

and hence by definition of $\left|D X_{A}\right|$ (in §6) and $\underline{=}(T)$ (in §26) we see that
(*) A has locally finite perimeter in $U \Leftrightarrow M_{W}(\partial \llbracket A \rrbracket)<\infty \quad \forall W \subset C U$, and in this case
(**)

$$
\begin{cases}M_{W}(\partial \llbracket A \rrbracket)=\int_{W}\left|D X_{A}\right| & \forall W \subset \subset U \\ \partial \llbracket \vec{A} \rrbracket=* \nu_{A},\left|D X_{A}\right| \text { a.e. in } U .\end{cases}
$$

Here ν_{A} is the inward unit normal function for A (defined on the reduced boundary $\partial * A$ as in 14.3).

Proof of $27.6 \quad R$ must have the form

$$
R=\underline{\underline{I}}(V, \theta, \xi)
$$

where V is an L^{n+1}-measurable subset of U and $\xi(x)= \pm e_{1} \wedge \ldots \wedge e_{n+1}$ for each $x \in V$. Thus letting
we have
(1)

$$
R(\omega)=\int_{V} a \tilde{\theta} d L^{n+1}
$$

$\omega=a d x^{1} \wedge \ldots \wedge d x^{n+1} \in D^{n+1}(U)$ and (cf. 26.28)

$$
\begin{equation*}
M_{W}(R)=\int_{W}|\tilde{\theta}| d L^{n+1}, \underline{M}_{W}(T)=\int_{W}|D \tilde{\theta}| \quad \forall W \subset \subset U \tag{2}
\end{equation*}
$$

(and $\left.\tilde{\theta} \in B V_{10 C}(U)\right)$.

Define

$$
\begin{aligned}
U_{j} & =\{x \in U: \tilde{\theta}(x) \geq j\}, j \in \mathbb{Z} \\
V_{j} & =\{x \in U: \tilde{\theta}(x) \leq-1-j\}, j \geq 0 \\
(& \left.\equiv U \sim U_{-j}\right)
\end{aligned}
$$

Then one checks directly that
(3)

$$
\tilde{\theta}=\sum_{j=1}^{\infty} x_{U_{j}}-\sum_{j=0}^{\infty} x_{V_{j}}
$$

$\left(X_{A}=\right.$ characteristic function of $\left.A, A \subset U\right)$, and hence by (1)
(4)

$$
R=\sum_{j=1}^{\infty} \llbracket U_{j} \rrbracket-\sum_{j=0}^{\infty} \llbracket v_{j} \rrbracket \text { in } U
$$

Since $T(\omega)=\partial R(\omega)=R(\partial \omega), \omega \in D^{n}(U)$, we then have
(5)

$$
\begin{aligned}
T=\partial R & \left.=\sum_{j=1}^{\infty} \partial \llbracket U_{j} \rrbracket-\sum_{j=0}^{\infty} \partial \llbracket v_{j} \rrbracket\right] \\
& =\sum_{j=-\infty}^{\infty} \partial \llbracket U_{j} \rrbracket
\end{aligned}
$$

so we have the required decomposition, and it remains only to pro"e that each U_{j} has locally finite perimeter in U and that the corresponding measures add.

To check this, take $\psi_{j} \in C^{1}(\mathbb{R})$ with

$$
\left\{\begin{array}{l}
\psi_{j}(t)=0 \quad \text { for } \quad t \leq j-1+\varepsilon, \quad \psi_{j}(t)=1, \quad t \geq j-\varepsilon \\
0 \leq \psi_{j} \leq 1, \quad \sup \left|\psi_{j}\right| \leq 1+3 \varepsilon
\end{array}\right.
$$

where $\varepsilon \in\left(0, \frac{1}{2}\right)$. Then if $a \in C_{C}^{\infty}(U)$ and $g=\left(g^{1}, \ldots, g^{n+1}\right), g^{j} \in C_{C}^{\infty}(U)$, with $|g| \leq a$, we have (since $X_{U_{j}}=\psi_{j} \circ \tilde{\theta} \forall j$) that for any $M \leq N$
(6)

$$
\begin{aligned}
\int_{U} \operatorname{div} g \sum_{j=M}^{N} X_{U} d L^{n+1} & =\int_{U} \operatorname{div} g \sum_{j=M}^{N} \psi_{j} \circ \tilde{\theta} d L^{n+1} \\
& =\lim _{\sigma \neq 0} \int_{U} \operatorname{div} g \sum_{j=M}^{N} \psi_{j} \circ \tilde{\theta}^{(\sigma)} d L^{n+1} \\
& \left.=-\underset{\sigma \nmid 0}{ } \int_{U} g \cdot \operatorname{grad} \tilde{\theta}^{(\sigma)} \psi_{j}^{\prime} \tilde{\theta}^{(\sigma)}\right) d L^{n+1} \\
& \leq(1+3 \varepsilon) \lim \int_{U} a\left|\operatorname{grad} \tilde{\theta}^{(\sigma)}\right| d L^{n+1} \\
& =(1+3 \varepsilon) \int_{U} a|D \tilde{\theta}|=(1+3 \varepsilon) \int_{U} a d \mu_{T}
\end{aligned}
$$

by Lemma 6.2 and (2). (Here $\tilde{\theta}^{(\sigma)}$ are the mollified functions corresponding to $\tilde{\theta}$ as in 6.2.)

Then, taking $M=N$, we deduce that each U_{j} has locally finite perimeter in U. On the other hand taking $M=-N$ and defining $R_{N}=\sum_{j=1}^{N} \llbracket U_{j} \rrbracket-\sum_{j=0}^{N} \llbracket V_{j} \rrbracket$ we see that (with g as in 27.7) (6) implies

$$
\left|R_{N}(d * g)\right| \leq(1+3 \varepsilon) \int_{U} a d \mu_{T}
$$

and hence, with $T_{N}=\partial R_{N}$.

$$
\begin{equation*}
\int_{\mathrm{U}} a d \mu_{T_{N}} \leq \int_{\mathrm{U}} a d \mu_{T} \quad \forall \mathrm{~N} \geq 1 \tag{7}
\end{equation*}
$$

$a \geq 0$, $a \in C_{C}^{\infty}(U)$. On the other hand by 14.1 we have

$$
\begin{align*}
R_{N}(d * g) & =\sum_{j=-N}^{N} \int_{U} \operatorname{div} g X_{U} d L^{n+1} \tag{8}\\
& =-\sum_{j=-N}^{N} \int_{\partial{ }_{U}{ }_{U}} v_{j}{ }^{\circ} g d H^{n}
\end{align*}
$$

where ν_{j} is the inward unit normal for U_{j} and $\partial^{*} U_{j}$ is the reduced boundary for U_{j} (see §14 and in particular Lemma 14.3). By virtue of the fact that $U_{j+1} \subset U_{j}$ we see from $14.3(2)$ that $\nu_{j} \equiv \nu_{k}$ on $\partial U_{j} \cap \partial U_{k}$ $\forall j, k$. Hence (8) can be written

$$
\mathrm{T}_{\mathrm{N}}(* g)=-\int_{\mathrm{U}} \nu \cdot g h_{\mathrm{N}} d H^{\mathrm{n}}
$$

 on $\quad \partial{ }^{*} U_{j}$. Since $|\nu| \equiv 1$ on $\underset{j=-\infty}{U} \partial^{*} U_{j}$ this evidently gives

$$
\begin{aligned}
\int a d \mu_{T_{N}} & =\int a h_{N} d H^{n} \\
& =\sum_{j=-N}^{N} \int_{\partial * U_{j}} a d H^{n} \\
& =\sum_{j=-N}^{N} \int a d \mu_{\partial\left\|U_{j}\right\|}
\end{aligned}
$$

Letting $N \rightarrow \infty$ we thus have (by (7))

$$
\mu_{T} \geq \sum_{j=-\infty}^{\infty} \mu_{\partial \llbracket U_{j} \rrbracket}
$$

Since the reverse inequality follows directly from (5), the proof is complete.
27.8 COROLLARY Let R be integer multiplicity $\in D_{n+1}(U), U \subset \mathbb{R}^{P}, P \geq n+1$, and suppose there is an ($\mathrm{n}+1$)-dimensional C^{1} submanifold N of \mathbb{R}^{P} with spt $R \subset N \cap U$. Suppose further that $T=\partial R$ and $M_{W}(T)<\infty \quad \forall W \subset C U$. Then $T\left(\in D_{n}(U)\right)$ is integer multiplicity and for each point $y \in N \cap U$ there is $W_{Y} \subset \subset U, Y \in W_{Y}$, and H^{n+1} measurable subsets $\left\{U_{j}\right\}_{j=-\infty}^{\infty}$ with $U_{j+1} \subset U_{j} \subset N \cap U, M_{W}\left(\partial \mathbb{M} U_{j} \mathbb{H}\right)<\infty \quad \forall j$, and with the following identities holding in w_{y} :

$$
\begin{aligned}
R & =\sum_{j=1}^{\infty} \llbracket U_{j} \rrbracket-\sum_{j=0}^{\infty} \llbracket U \sim U_{-j} \rrbracket \\
T & =\sum_{j=-\infty}^{\infty} \partial \llbracket U_{j} \rrbracket \\
\mu_{T} & =\sum_{j=-\infty}^{\infty} \mu_{\partial \llbracket U_{j} \rrbracket} \rrbracket
\end{aligned}
$$

Proof The proof is an easy consequence of 27.6 using local coordinate representations for N.
§28. SLICING

We first want to define the notion of slice for integer multiplicity currents. Preparatory to this we have the following lemma:
28.1 LEMMA If M is H^{n}-measurable, countably n-rectifiable, f is Lipschitz on \mathbb{R}^{n+k} and $M_{+}=\left\{x \in M:\left|\nabla^{M} f(x)\right|>0\right\}$, then for L^{1}-almost all $t \in \mathbb{R}$ the following statements hold:
(1) $M_{t} \equiv f^{-1}(\mathrm{t}) \cap \mathrm{M}_{+}$is countably $H^{\mathrm{n}-1}$-rectifiable
(2) For H^{n-1}-a.e. $x \in M_{t}, T_{x} M_{t}$ and $T_{x}{ }^{M}$ both exist, $T_{x} M_{t}$ is an $(\mathrm{n}-1)$-dimensional subspace of $\mathrm{T}_{\mathrm{X}} \mathrm{M}$, and in fact

$$
\begin{equation*}
T_{x} M=\left\{y+\lambda \nabla M_{f(x)}: y \in T_{x} M_{t}, \lambda \in \mathbb{R}\right\} \tag{*}
\end{equation*}
$$

Furthermore for any non-negative H^{n}-measurable function g on M we have

$$
\int_{-\infty}^{\infty}\left(\int_{M_{t}} g d H^{n-1}\right) d t=\int_{M}\left|\nabla^{M_{f}} f\right| g d H^{n} .
$$

Proof In fact (1) is just a restatement of Remark 12.8(2), and (2) follows from 11.6 together with the facts that for L^{1}-a.e. $t \in \mathbb{R}$ and H^{n-1}-a.e. $x \in M_{t}$

$$
\begin{equation*}
\left.\nabla^{M_{f}(x) \in T_{x}} \quad \text { (by definition of } \nabla^{M_{f}} \text { in } \S 12\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle\nabla_{f(x), \tau\rangle}^{M_{f}}=0 \quad \forall \tau \in T_{x} M_{t}\right. \tag{2}
\end{equation*}
$$

(This last follows for example from the definition 12.1 of $\nabla^{M} f(x)$.)

The last part of the lemma is just a restatement of the appropriate version of the co-area formula (discussed in §12).
28.2 REMARK Note that by replacing g (in 28.1 above) by $g \times$ characteristic function of $\{x: f(x)<t\}$ we get the identity

$$
\int_{M \cap\{f(x)<t\}}\left|\nabla^{M_{f}}\right| g d H^{\mathrm{n}}=\int_{-\infty}^{t} \int_{M_{s}} g d H^{\mathrm{n}-1} d s
$$

so that the left side as an absolutely continuous function of t and

$$
\frac{d}{d t} \int_{M \cap\{f(x)<t\}}\left|\nabla^{M} f\right| g d H^{n}=\int_{M_{t}} g d H^{n-1}, \text { a.e. } t \in \mathbb{R}
$$

Now let $T=\underline{=}(\mathbb{M}, \theta, \xi)$ be an integer multiplicity current in U (U open in $\mathbb{R}^{n+k}, M \subset U$) , let f be Lipschitz in U and let θ_{+}be defined $H^{n}-a \cdot e$. in M by

$$
\theta_{+}(x)=\left\{\begin{array}{lll}
0 & \text { if } & \nabla^{M} f(x)=0 \\
\theta(x) & \text { if } & \nabla^{M} f(x) \neq 0
\end{array}\right.
$$

For the $\left(L^{1}\right.$-almost all) $t \in \mathbb{R}$ such that $T_{X} M, T_{X} M_{t}$ exist for H^{n-1} - a.e. $x \in M_{t}$ and such that (*) of 28.1 holds, we have

and has unit length (for H^{n-1}-a.e. $x \in M_{t}$). Here we use the notation that if $v \in \Lambda_{n}\left(T_{X} M\right)$ and $w \in T_{X} M$, then $v L w \in \Lambda_{n-1}\left(T_{X} M\right)$ is defined by

$$
\langle v L w, a\rangle=\langle v, w \wedge a\rangle, a \in \Lambda_{n-1}\left(T_{X} M\right) \text {. }
$$

Using this notation we can now define the notion of a slice of T by f: we continue to assume $T \in D_{n}(U)$ is given by $T=T(M, \theta, \xi)$ as above. 28.4 DEFINITION For the (L^{1}-almost all) $t \in \mathbb{R}$ since that $T_{X} M_{X} T_{X}$ exist and $28.1(*)$ holds $H^{n-1}-a . e . ~ x \in M_{t}$, with the notation introduced above (and bearing in mind 28.3) we define the integer multiplicity current $\langle T, f, t\rangle \in D_{n-1}$ (U) by

$$
\left\langle T, I_{s}, t\right\rangle=I\left(M_{t}, \theta_{t}, \xi_{t}\right),
$$

where

$$
\xi_{t}(x)=\xi(x) L \nabla^{M_{f}}(x) /\left|\nabla^{M_{f}}(x)\right|, \quad \theta_{t}=\theta_{+} \mid M_{t}
$$

So defined, $\langle T, f, t\rangle$ is called the slice of T by f at t.

The main facts concerning the slices $\langle T, f, t\rangle$ are given in the following lemma:

28.5 LEMMA

(1) For each open $W \subset U$
$\int_{-\infty}^{\infty} M_{W}(\langle T, f, t\rangle) d t=\int_{M \cap W}\left|\nabla^{M} f\right| \theta d H^{n} \leq\left(\text { ess } \sup _{M \cap W}\left|\nabla^{M} f\right|\right)_{M}^{M}(T)$.
(2) If $M_{W}(\partial T)<\infty \quad \forall W \subset \subset U$, then for L^{1}-a.e. $t \in \mathbb{R}$

$$
\langle T, f, t\rangle=\partial[T L\{f<t\}]-(\partial T) L\{f<t\}
$$

(3) If ∂T is integer multiplicity in $D_{n-1}(U)$, then for $L^{1}-a \cdot e . t \in \mathbb{R}$

$$
\langle\partial T, f, t\rangle=-\partial\langle T, f, t\rangle
$$

Proof (1) is a direct consequence of the last part of Lemma 28.1 (with $g=\theta_{+}$).

To prove (2) we first recall that, since M is countably n-rectifiable, we can write (see Remark 11.7)

$$
\begin{equation*}
M=\bigcup_{j=0}^{\infty} M_{j} \tag{1}
\end{equation*}
$$

where $M_{i} \cap M_{j}=\emptyset \quad \forall i \neq j, \quad H^{n}\left(M_{0}\right)=0$, and $M_{j} \subset N_{j} \quad j \geq 1$, with N_{j} an embedded C^{1} submanifold of \mathbb{R}^{n+k}. By virtue of this decomposition and the definition of ∇^{M} (in §12) it easily follows that if h is Lipschitz on \mathbb{R}^{n+k} and if $h^{(\sigma)}$ are the mollified functions (as in $\S 6$) then, as $\sigma \downarrow 0$,

$$
\begin{equation*}
v \cdot \nabla^{M_{h}}(\sigma) \rightarrow V \cdot V_{h}^{M} \quad\left(\text { weak convergence in } I^{2}\left(\mu_{T}\right)\right) \tag{2}
\end{equation*}
$$

for any fixed bounded H^{n}-measurable v with values in \mathbb{R}^{n+k}. (Indeed to check this, we have merely to check that (2) holds with N_{j} in place of M_{j} and with v vanishing on $\mathbb{R}^{n+k} \sim M_{j}$; since N_{j} is C^{1} this follows fairly easily by approximating v by smooth functions and using the fact chat $h^{(\sigma)}$ converges to h unifomly.)

Next let $\varepsilon>0$ and let γ be the Lipschitz function on \mathbb{R} defined by

$$
\gamma(s)=\left\{\begin{array}{cc}
1, & s<t-\varepsilon \\
\text { linear, } & t-\varepsilon \leq s \leq t \\
0, & s>t
\end{array}\right.
$$

and apply the above to $h=\gamma_{0 f}$. Then letting $\omega \in D^{n}(U)$ we have

$$
\begin{aligned}
\partial T\left(h^{(\sigma)} \omega\right) & =T\left(d\left(h^{(\sigma)} \omega\right)\right) \\
& =T\left(d h^{(\sigma)} \wedge \omega\right)+T\left(h^{(\sigma)} d \omega\right)
\end{aligned}
$$

Then using the integral representations of the form 26.7 for ∂T we see that

$$
\begin{equation*}
(\partial T L h)(\omega)=\lim _{\sigma \downarrow 0} T\left(\partial h^{(\sigma)} \wedge \omega\right)+(T L h)(\partial \omega) \tag{3}
\end{equation*}
$$

Since $\xi(x)$ orients $T X^{M}$, we have
(4)

$$
\begin{aligned}
\left\langle\xi(x), \partial h^{(\sigma)} \wedge \omega\right\rangle & =\left\langle\xi(x),\left(d h^{(\sigma)}(x)\right)^{T} \wedge \omega^{T}\right\rangle \\
& =\left\langle\xi(x),\left(d h^{(\sigma)}(x)\right)^{T} \wedge \omega\right\rangle
\end{aligned}
$$

(where ($)^{T}$ denotes the orthogonal projection of $\Lambda^{q}\left(\mathbb{R}^{n+k}\right.$) onto $\left.\Lambda^{q}\left(T_{x}\right)^{M}\right)$). Thus

$$
\begin{aligned}
T\left(d h^{(\sigma)} \wedge \omega\right) & =\int_{M}\left\langle\xi(x),\left(d h^{(\sigma)}(x)\right)^{T} \wedge \omega\right\rangle \theta d H^{n} \\
& =\int_{M}\left\langle\xi(x) L \nabla^{M} h^{(\sigma)}(x), \omega\right\rangle \theta d H^{n}
\end{aligned}
$$

$$
\begin{equation*}
\lim _{\sigma \downarrow 0} T\left(d h^{(\sigma)} \wedge \omega\right)=\int_{M}\left\langle\xi(x) L \nabla^{M} h(x), \omega\right\rangle \theta d H^{n} . \tag{5}
\end{equation*}
$$

By definition 12.1 of $\nabla^{M} h$ and by the chain rule for the composition of Lipschitz functions we have

$$
\begin{equation*}
\nabla^{\mathbb{M}_{h}}=\gamma^{\prime \prime}(f) \nabla^{\mathbb{M}_{f}} \quad H^{\mathrm{n}}-\text { a.e. on } \quad \mathrm{M} \tag{6}
\end{equation*}
$$

(where we set $\gamma^{\prime}(f)=0$ when f takes the "bad" values t or $t-\varepsilon$; note that $\nabla^{M_{h}} h(x)=\nabla^{M} f(x)=0$ for $H^{n}-$ a.e. in $\{x \in M: f(x)=c\}$, c any given constant).

Using (5), (6) in (3), we thus deduce

$$
(\partial T L h)(\omega)=-\varepsilon^{-1} \int_{M} \quad(t-\varepsilon<f<t\}<l \mid \nabla^{M}
$$

$$
+(T L h)(d \omega)
$$

Finally we let $\varepsilon \downarrow 0$ and we use Remark 28.2 with $g=\theta\left\langle\xi L \nabla^{M} f /\right| \nabla^{M} f \mid$, $\left.\omega\right\rangle$ in order to complete the proof of (2); by considering a countable dense set of $\omega \in D^{n}(U)$ one can of course show that 28.2 is applicable with $g=\theta\left\langle\xi L \nabla^{M} f /\right| \nabla^{M} f|, \omega\rangle$ except for a set F of t having L^{1}-measure zero, with F independent of ω.

Finally to prove part (3) of the theorem, we first apply part (2) with ∂T in place of T. Since $\partial^{2} T=0$, this gives

$$
\langle\partial T, f, t\rangle=\partial[(\partial T) L\{f<t\}]
$$

On the other hand, applying ∂ to each side of the original identity (for T) of (2), we get

$$
\partial[(\partial T) L\{f\langle t\}]=-\partial\langle T, f, t\rangle
$$

and hence (3) is established.

Motivated by the above discussion we are led to define slices for an arbitrary current $\in D_{n}(U)$ which, together with its boundary, has locally finite mass in U. Specifically, suppose $M_{W}(T)+M_{W}(\partial T)<\infty \quad \forall W \subset C U$. Then we define "slices"
28.6

$$
\langle T, f, t\rangle=\partial(T L\{f<t\})-(\partial T) L\{f<t\}
$$

and
28.7

$$
\left.\left.\left\langle T, f_{,}, t_{+}\right\rangle=-\partial(T L\{f\rangle t\}\right)+(\partial T) L\{f\rangle t\right\} .
$$

Of course $\left\langle T_{\theta} f_{\theta} t_{+}\right\rangle=\left\langle\mathbb{T}_{\theta} f_{\theta} t^{\prime}\right\rangle$ (and the common value is denoted $\left\langle T_{\theta} f_{0} t\right\rangle$) for all but the countably many values of t such that $M(T L\{f=t\})$ $+\underset{\underline{M}}{\underline{M}}((\partial T) L\{£=t\})>0$.

The important properties of the above slices are that if f is Lipschitz on U (and if we continue to assume $M_{W}(T)+{ }_{=W}^{M}(\partial T)<\infty \quad \forall W \subset C$), then 28.8

$$
\operatorname{spt}\left\langle T, f, t_{ \pm}\right\rangle \subset \operatorname{spt} T \cap\{x: f(x)=t\}
$$

and, \forall open $W \subset U$.

Notice that $M_{W}(T L\{f<t\})$ is increasing in t, hence is differentiable for L^{1} - a.e. $t \in \mathbb{R}$ and $\int_{a}^{b} \frac{d}{d t} M_{W}(T L\{f<t\}) d t \leq M_{W}(T L\{a<f<b\})$. Thus 28.9 gives
28.10

$$
\int_{a}^{* b} M_{W}\left(<T, f, t_{ \pm}>\right) d t \leq e s s \sup _{W}|D f| M_{W}(T L\{a<f<b\})
$$

for every open $W \subset U$.
To prove 28.8 and 28.9 we consider first the case when f is C^{1} and take any smooth increasing function $\gamma: \mathbb{R} \rightarrow \mathbb{R}_{+}$and note that

$$
\begin{align*}
\partial(T L \gamma \circ f) & (\omega)-((\partial T) L \gamma \circ f)(\omega) \tag{*}\\
= & (T L \gamma \circ f)(\partial \omega)-((\partial T) L \gamma \circ f)(\omega) \\
= & T(\gamma \circ f \partial \omega)-T(d(\gamma \circ f(\omega)) \\
= & -T\left(\gamma^{\prime}(f) d f \wedge \omega\right) .
\end{align*}
$$

Now let $\varepsilon>0$ be arbitrary and choose γ such that

$$
\gamma(t)=0 \text { for } t<a, \gamma(t)=1 \text { for } t>b, 0 \leq \gamma^{\prime}(t) \leq \frac{1+\varepsilon}{b-a} \text { for } a<t<b \text {. }
$$

Then the left side of (*) converges to $\left\langle T, f, a_{+}\right\rangle$if we let $b \downarrow a$, and hence 28.8 follows because spt $\gamma^{\prime} \subset[a, b]$. Furthermore the right side R of (*) evidently satisfies

$$
|R| \leq\left(\sup _{W}|D f|\right)\left(\frac{1+\varepsilon}{b-a}\right) M_{W}(T L\{a<f<b\})|\omega| \quad(\text { spt } \omega C W)
$$

and so we also conclude the first part of 28.9 for $f \in C^{1}$. We similarly establish the second part for $f \in C^{1}$. To handle general Lipschitz f we simply use $f^{(\sigma)}$ in place of f in 28.6, 28.7 and in the above proof, then let $\sigma \downarrow 0$ where appropriate.
§29. THE DEFORMATION THEOREM

The deformation theorem, given below in Theorem 29.1 and Corollary 29.3 is a central result in the theory of currents, and was first proved by Federer and Fleming [FF].

The special notation for this section is as follows:

$$
\begin{aligned}
& 1 \leq n, 1 \leq k, \\
& C=[0,1] \times \ldots \times[0,1] \quad \text { (Standard unit cube in } \mathbb{R}^{n+k} \text {) } \\
& \mathbb{Z}^{n+k}=\left\{z=\left(z^{1} \ldots, z^{n+k}\right): z^{j} \in \mathbb{Z}\right\} \quad\left(c \mathbb{R}^{n+k}\right) \\
& L_{j}=j \text {-skeleton of the decomposition } U U_{\mathbb{z}^{n+k}}^{(z+C)}
\end{aligned}
$$

of \mathbb{R}^{n+k}

$$
\begin{aligned}
& L_{j}=\text { collection of j-faces in } L_{j} \\
& =\left\{z+F: z \in \mathbb{z}^{n+k}, F \text { is a closed j-face of } C\right\} \\
& L_{j}(\rho)=\left\{\rho F: F \in L_{j}\right\}, \rho>0 \\
& S_{1} \ldots S_{N} \quad\left(N=\binom{n+k}{n+1}=\binom{n+k}{k-1}\right) \text { denote the }
\end{aligned}
$$

$(n+1)$-dimensional subspaces of \mathbb{R}^{n+k} which contain an ($n+1$)-face of the standard cube C.

$$
p_{j} \text { denotes the orthogonal projection of } \mathbb{R}^{n+k} \text { onto } s_{j}, j=1, \ldots, n \text {. }
$$

29.1 THEOREM (Deformation Theorem, unscaled version)

Suppose T is an n-current in \mathbb{R}^{n+k} (i.e. $T \in D_{n}\left(\mathbb{R}^{n+k}\right)$) with $\underline{\underline{M}}(T)+\underline{\underline{M}}(\partial T)<\infty$. Then we can write

$$
T-P=\partial R+S
$$

where P, R, S satisfy

$$
\left.P=\sum_{F \in L_{n}} \beta_{F} \llbracket F\right] \quad\left(\beta_{F} \in \mathbb{R}\right)
$$

with

$$
\begin{aligned}
& \underline{M}(P) \leq C M(T) \quad, \underline{M}(\partial P) \leq C M(\partial T) \\
& \underline{M}(R) \leq C M(T) \quad, \underline{M}(S) \leq C M(\partial T)
\end{aligned}
$$

$(c=c(n, k)), \quad$ and

$$
\begin{aligned}
& \text { spt } P U \operatorname{spt} R \subset\{x: \operatorname{dist}(x, \operatorname{spt} T)<2 \sqrt{n+k}\} \\
& \text { spt } \partial p U \operatorname{spt} S \subset\{x: \operatorname{dist}(x, \operatorname{spt} \partial T)<2 \sqrt{n+k}\}
\end{aligned}
$$

In case T is an integer multiplicity current, then P, R can be chosen to be integer multiplicity currents (and the β_{F} appearing in the definition of P are integers). If in addition ∂T is integer multiplicity*, then s can be chosen to be integer multiplicity.

29.2 REMARKS

(1) Note that this is slightly sharper than the corresponding theorem in [FF], [FHI], because there is no term involving $M(\partial T)$ in the bound for $M(P) \quad$.
(2) It follows automatically from the other conclusions of the theorem that $\underset{=}{M}(\partial S) \leq M(\partial T)$. Also, it follows from the inequalities $\underline{M}(\partial P), \underline{M}(S) \leq C M(\partial T)$ that $S=0$ and $\partial P=0$ when $\partial T=0$.

The following "scaled version" of 29.1 is obtained from the above by first changing scale $x \rightarrow \rho^{-1} x$, then applying 29.1 , then changing scale back by $x \rightarrow \rho x$.

[^0]
29.3 COROLLARY (Deformation Theorem, scaled version)

Suppose T, $\partial \mathrm{T}$ are as in 29.1, and $\rho>0$. Then

$$
T-P=\partial R+S
$$

where P, R, S satisfy

$$
\begin{gathered}
P=\sum_{F \in L_{j}(\rho)} \beta_{F}[F] \quad\left(\beta_{F} \in \mathbb{R}\right) \\
\underline{M}(P) \leq C M(T) \quad M(\partial P) \leq C M(\partial T) \\
M(R) \leq C \rho M(T) \quad M(S) \leq C P M(\partial T)
\end{gathered}
$$

and

$$
\begin{aligned}
& \text { spt } P U \operatorname{spt} R \subset\{x: \operatorname{dist}(x, \operatorname{spt} T)<2 \sqrt{n+k} \rho\} \\
& \text { spt } \partial P U \operatorname{spt} S \subset\{x: \operatorname{dist}(x, \operatorname{spt} \partial T)<2 \sqrt{n+k} \rho\} .
\end{aligned}
$$

As in 29.1, in case T is integer multiplicity, so are $P, R ;$ if ∂T is integer multiplicity then so is s.

The main step in the proof of the deformation theorem will involve "pushing" T onto the n-skeleton L_{n} via a certain retraction map ψ. We first have to establish the existence of a suitable class of retraction maps. This is done in the following lemma, in which we use the notation:

$$
\begin{aligned}
q & =\text { centre point of } C=\left(\frac{1}{2}, \frac{1}{2}, \ldots, \frac{1}{2}\right) \\
L_{k-1}(a) & =a+I_{k-1} \quad\left(a \text { a given point in } B_{\frac{1}{4}}(q)\right), \\
I_{k-1}(a ; \rho) & =\left\{x \in \mathbb{R}^{n+k}: \operatorname{dist}\left(x, L_{k-1}(a)\right)<\rho\right\} \quad\left(\rho \in\left(0, \frac{1}{4}\right)\right) .
\end{aligned}
$$

Note that $\operatorname{dist}\left(L_{k-1}(a), L_{n}\right) \geq \frac{1}{4}$ for any point $a \in B_{\frac{1}{4}}(q)$.
29.4 LEMMA For every $a \in \mathrm{~B}_{\frac{1}{4}}(\mathrm{q})$ there is a locally Lipschitz map

$$
\psi: \mathbb{R}^{n+k} \sim I_{k-1}(a) \rightarrow \mathbb{R}^{n+k} \sim I_{k-1}(a)
$$

such that

$$
\begin{gathered}
\psi\left(C \sim L_{k-1}(a)\right)=C \cap L_{n}, \psi \mid C \cap L_{n}={\underset{=}{=} C \cap L_{n}} . \\
|D \psi(x)| \leq c / \rho, L^{n+k}-a . e . x \in C \sim L_{k-1}(a ; \rho), \rho \in\left(0, \frac{1}{d}\right)
\end{gathered}
$$

$(\mathrm{c}=\mathrm{c}(\mathrm{n}, \mathrm{k}))$, and such that

$$
\psi(z+x)=z+\psi(x), x \in \mathbb{R}^{n+k} \sim L_{k-1}(a), z \in \mathbb{z}^{n+k}
$$

Proof We first construct a locally Lipschitz retraction $\psi_{0}: C \sim L_{k-1}(a)$ onto the n -faces of C . This is done as follows:

Firstly for each j-face F of $C, j \geq n+1$, let $a_{F} \in F$ denote the orthogonal projection of a onto F, and let ψ_{F} denote the retraction of $\bar{F} \sim\left\{a_{F}\right\}$ onto ∂F which takes a point $x \in \bar{F} \sim\left\{a_{F}\right\}$ to the point $y \in \partial F$ such that $x \in\left\{a_{F}+\lambda\left(y-a_{F}\right): \lambda \in(0,1]\right\}$. (Thus ψ_{F} is the "radial retraction" of F with a_{F} as origin.) of course $\psi_{F} \mid \partial_{F}=\underline{\#}_{\partial_{F}}$. Notice also that for any j-face F of $C, j \geq n+1$, the line segment $\overline{a a_{F}}$ is contained in $L_{k-1}(a)$; in fact if J_{F} denotes the set of ℓ such that S_{ℓ} (see notation prior to 29.1) is parallel to an ($n+1$)-face of F, then (because $\overline{a_{F}}$ is orthogonal to F, hence orthogonal to each $S_{\ell}, \ell \in J_{F}$) we have

$$
\begin{equation*}
\overline{a_{F}} \subset \prod_{l \in J_{F}} p_{l}^{-1}\left(p_{\ell}(a)\right), \tag{1}
\end{equation*}
$$

and this is contained in $I_{k-1}(a)$, because (by definition)

$$
\begin{equation*}
L_{k-1}(a)=\bigcup_{\ell=1}^{N} \bigcup_{z \in \mathbb{Z}^{n+k}}^{U}\left(z+p_{\ell}^{-1}\left(p_{\ell}(a)\right)\right) \tag{2}
\end{equation*}
$$

Next, for each $j \geq n+1$, define

$$
\begin{aligned}
\psi^{(j)}: & U\left\{\bar{F} \sim\left\{a_{F}\right\}: F\right. \\
& \rightarrow U\{\bar{G}: G \text { is a }(j-1) \text {-face of } C\} \\
& \rightarrow U
\end{aligned}
$$

by setting

$$
\psi^{(j)} \mid \bar{F} \sim\left\{a_{F}\right\}=\psi_{F}
$$

(Notice that then $\psi^{(j)}$ is locally Lipschitz on its domain by virtue of the fact that each ψ_{F} is the identity on $\partial F, F$ any j-face of $\left.C.\right)$

Then the composite $\psi^{(n+1)} \circ \psi^{(n+2)} \circ \ldots \circ \psi^{(n+k)}$ makes sense on $C \sim I_{k-1}(a)$ (by (1)), so we can set

$$
\psi_{0}=\psi^{(n+1)} \circ \psi^{(n+2)} \circ \ldots \circ \psi^{(n+k)} \mid C \sim I_{k-1}(a)
$$

Notice that ψ_{0} has the additional property that if

$$
z \in \mathbb{Z}^{n+k} \text { and } x, z+x \in C \text {, then } \psi_{0}(z+x)=z+\psi_{0}(x)
$$

(Indeed $x, z+x \in C$ means that either $x, z+x$ are in I_{n} (where ψ_{0} is the identity) or else lie in the interior of parallel j-faces $F_{1}, F_{2}=z+F_{1}$ $(j \geq n+1)$ of C with z orthogonal to F_{1} and $a_{F_{2}}=z+a_{F_{1}}$.) It follows that we can then define a retraction ψ of all of $C \sim I_{k-1}(a)$ onto I_{n} by setting

$$
\psi(z+x)=z+\psi_{0}(x), x \in C \sim I_{k-1}(a), z \in \mathbb{Z}^{n+k}
$$

We now claim that

$$
\begin{equation*}
\sup |D \psi| \leq c / \rho \quad \text { on } \quad \mathbb{R}^{n+k} \sim L_{k-1}(a, \rho), c=c(n, k) \tag{3}
\end{equation*}
$$

(This will evidently complete the proof of the lemma.)

We can prove (3) by induction on k as follows. First note that (3) is evident from construction in case $k=1$. Hence assume $k \geq 2$ and assume (3) holds in case $k-1$ replaces k in the above construction. Let x be any point of interior $(C) \sim I_{k-1}(a ; \rho)$, let $y=\psi^{n+k}(x) \quad\left(\psi^{n+k}\right.$ is the radial retraction of $C \sim\{a\}$ onto ∂C), and let F be any closed ($n+k-1$)-face of C which contains Y.

Suppose now new coordinates are selected so that $F \subset \mathbb{R}^{n+k-1} \times\{0\} \subset \mathbb{R}^{n+k}$, and also let $\tilde{\mathrm{L}}_{\mathrm{k}-2}(\mathrm{a})=\mathrm{L}_{\mathrm{k}-1}$ (a) $\cap \mathbb{R}^{\mathrm{n}+\mathrm{k}-1} \times\{0\}$). By virtue of (1) we have $a_{F} \in L_{k-1}(a)$, hence

$$
\begin{equation*}
\left|y-a_{F}\right| \geq \operatorname{dist}\left(y, L_{k-1}(a)\right) \tag{4}
\end{equation*}
$$

Let p_{F} be the orthogonal projection of \mathbb{R}^{n+k} onto $\mathbb{R}^{n+k-1} \times\{0\}$ ($\left.\quad \mathrm{F}\right)$, so that $a_{F}=p_{F}(a)$. Evidently $\left|p_{F}(x)-a_{F}\right| \geq \operatorname{dist}\left(x, p_{F}^{-1}\left(p_{F}(a)\right)\right)$ and hence by (2) we deduce

$$
\begin{equation*}
\left|p_{F}(x)-a_{F}\right| \geq \operatorname{dist}\left(x, I_{k-1}(a)\right) \tag{5}
\end{equation*}
$$

Furthermore by definition of y we know that $y-a=\frac{|y-a|}{|x-a|}(x-a)$ and hence, applying p_{F}, we have

$$
y-a_{F}=\frac{|y-a|}{|x-a|} p_{F}(x-a)
$$

Hence since $|y-a| \geq 3 / 4$, we have
(6)

$$
\left|y-a_{F}\right| \geq(3 / 4)\left|p_{F}(x-a)\right| /|x-a|
$$

Now let $\tilde{\psi}$ be the retraction of $F \sim \tilde{L}_{k-2}(a)$ onto the n-faces of F ($\tilde{\psi}$ defined as for ψ but with $(k-1)$ in place of k, a_{F} in place of a, \mathbb{R}^{n+k-1} in place of \mathbb{R}^{n+k} and $\tilde{L}_{k-2}(a)=L_{k-2}\left(a_{F}\right)$ in place of $L_{k-1}(a)$). By the inductive hypothesis, together with (4), (5), (6) we have

$$
\begin{align*}
|\bar{D} \tilde{\psi}(y)| & \left.\leq \frac{c}{\operatorname{dist}\left(y, \tilde{L}_{k-2}(a)\right)},|\bar{D} \tilde{\psi}(y)|=\lim _{z \rightarrow y} \sup \frac{|\tilde{\psi}(z)-\tilde{\psi}(y)|}{|z-y|}\right) \tag{7}\\
& \leq \frac{c}{\left|y-a_{F}\right|}(4 / 3) \subset \frac{|x-a|}{\left|p_{F}(x-a)\right|} \\
& \leq(4 / 3) c \frac{|x-a|}{\operatorname{dist}\left(x, I_{k-1}(a)\right)} .
\end{align*}
$$

Also, by the definition of ψ^{n+k} we have that

$$
\begin{equation*}
\left|\bar{D} \psi^{n+k}(x)\right| \leq \frac{c}{|x-a|} \cdot\left|\bar{D} \psi^{n+k}(x)\right|=\lim _{y \rightarrow x} \sup _{y} \frac{\left|\psi^{n+k}(y)-\psi^{n+k}(x)\right|}{|y-x|} \tag{8}
\end{equation*}
$$

Since $\psi(x)=\tilde{\psi} \circ \psi^{n+k}(x)$, we have by (7), (8) and the chain rule that

$$
\begin{aligned}
|\overline{\mathrm{D}} \psi(\mathrm{x})| & \leq|\overline{\mathrm{D}} \tilde{\psi}(\mathrm{y})|\left|\overline{\mathrm{D}} \psi^{\mathrm{n}+\mathrm{k}}(\mathrm{x})\right| \leq \frac{\mathrm{c}}{|\mathrm{x}-\mathrm{a}|} \frac{|\mathrm{x}-\mathrm{a}|}{\operatorname{dist}\left(\mathrm{x}, \mathrm{~L}_{\mathrm{k}-1}(\mathrm{a})\right)} \\
& =\frac{c}{\operatorname{dist}\left(x, L_{k-1}(a)\right)}
\end{aligned}
$$

Proof of Deformation Theorem

We use the subspaces $S_{1} \ldots, S_{N}$ and projections $p_{1} \ldots, p_{N}$ introduced at the beginning of the section. Let $F_{j}=C \cap S_{j}$ (so that F_{j} is a closed $(n+1)$-dimensional face of C), let x_{j} be the central point of F_{j}, and for each $j=1, \ldots, N$ define a "good" subset $G_{j} \subset F_{j} \cap B_{\frac{1}{4}}\left(x_{j}\right)$ by
$g \in G_{j} \Leftrightarrow g \in F_{j} \cap B_{\frac{1}{4}}\left(x_{j}\right)$ and
(1) $\quad \stackrel{M(T L}{=}{\left.\underset{z \in \mathbb{Z}^{n+k} \cap S_{j}}{U} p_{j}^{-1}\left(B_{\rho}(g+z)\right)\right) \leq \beta \rho^{n+1} \xrightarrow[M]{M}(T) \quad \forall \rho \in\left(0, \frac{1}{4}\right)}^{=}$
(β to be chosen, $\left.G_{j}=G_{j}(\beta)\right)$.

We now claim that the "bad" set $B_{j}=F_{j} \cap B_{\frac{1}{4}}\left(x_{j}\right) \sim G_{j}$ in fact has L^{n+1}-measure (taken in S_{j}) small; in fact we claim

$$
\begin{equation*}
L^{n+1}\left(B_{j}\right) \leq 20^{n+1} B^{-1} \omega_{n+1}\left(\frac{1}{4}\right)^{n+1}\left(\omega_{n+1}=L^{n+1}\left(B_{1}(0)\right)\right) \tag{2}
\end{equation*}
$$

which is indeed small if we choose large β. To see (2), we argue as follows. For each $b \in B_{j}$ there is (by definition) $a \quad \rho_{b} \in\left(0, \frac{1}{4}\right)$ such that

$$
\begin{equation*}
\left.\stackrel{M(T L}{z \in \mathbb{Z}^{n+k} \cap S_{j}} \sum_{j}^{-1}\left(B_{\rho_{b}}(b+z)\right)\right) \geq \beta \rho_{b}^{n+1} \stackrel{M}{=}(T) \tag{3}
\end{equation*}
$$

and by the covering theorem 3.3 there is a pairwise disjoint subcollection $\left\{\mathrm{B}_{\rho_{\ell}}\left(\mathrm{b}{ }_{\ell}\right)\right\}_{\ell=1,2 \ldots\left(\rho_{\ell}=\rho_{b_{\ell}}\right)}$ of the collection $\left\{B_{\rho_{b}}(b)\right\}_{b \in B_{j}}$ such that
(4)

$$
B_{j} \subset \bigcup_{\ell} B_{5 \rho_{l}}\left(b_{l}\right)
$$

But then, setting $b=b_{\ell}$ in (3) and summing, we get

$$
\begin{equation*}
\beta\left(\sum_{\ell} \rho_{\ell}^{n+1}\right) \stackrel{\left.M(T) \leq M(T) \quad \text { (i.e. } \sum_{\ell} \rho_{\ell}^{n+1} \leq \beta^{-1}\right), ~ ; ~}{=} \tag{*}
\end{equation*}
$$

(using the fact that $\left\{p_{j}^{-1} B_{\rho_{\ell}}\left(b_{\ell}+z\right)\right\}_{\ell=1,2}, \ldots$ is a pairwise disjoint $z \in \mathbb{Z}^{n+k} \cap s_{j}$
collection for fixed j). Thus by (4) we conclude

$$
L^{n+1}\left(B_{j}\right) \leq \beta^{-1} 5^{n+1} \omega_{n+1}
$$

which after trivial re-arrangement gives (2) as required. Thus we have

$$
L^{n+1}\left(G_{j}\right) \geq\left(1-20^{n+1} \beta^{-1}\right) \omega_{n+1}\left(\frac{1}{4}\right)^{n+1}
$$

and it follows that

$$
\begin{equation*}
L^{n+k}\left(p_{j}^{-1}\left(G_{j}\right) \cap B_{\frac{1}{4}}(q)\right) \geq\left(1-\frac{\omega_{n+1}}{\omega_{n+k}} 20^{n+1} B^{-1}\right) \omega_{n+k}\left(\frac{1}{4}\right)^{n+k} \tag{5}
\end{equation*}
$$

where q is the centre point $\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)$ of C. (So $p_{j}(q)=x_{j}$.)
(*) We of course assume $T \neq 0$ 。

Then selecting β large enough so that $20^{n+1} \omega_{n+1} N \beta^{-1}<\omega_{n+k} /(n+k)$, we see from (5) that we can choose a point $a \in \bigcap_{j=1}^{N} p_{j}^{-1}\left(G_{j}\right) \cap B_{\frac{3}{4}}(q)$. Next let $I_{k-1}(a)=a+I_{k-1}, I_{k-1}(a ; \rho)=\left\{x \in \mathbb{R}^{n+k}: \operatorname{dist}\left(x, L_{k-1}(a)\right)<\rho\right\}$ (as in the proof of 29.4) and note that in fact

$$
L_{k-1}(a ; p)=\bigcup_{j=1}^{N} U_{z \in \mathbb{Z}^{n+k} \cap S_{j}}^{p_{j}^{-I}\left(B_{p}\left(p_{j}(a)+z\right)\right)}
$$

Then since $p_{j}(a) \in G_{j}$ we have (by definition of G_{j})

$$
\begin{equation*}
M\left(T L I_{k-1}(a ; \rho)\right) \leq \mathbb{N} \beta \rho^{n+1} \underline{M}(T) \quad \forall \rho \in\left(0, \frac{1}{4}\right) \tag{6}
\end{equation*}
$$

Indeed let us suppose that we take β such that $20^{n+1} \omega_{n+1} N \beta^{-1}<\omega_{n+k} / 2(n+k)$. Then more than half the ball $B_{\frac{1}{4}}(q)$ is in the set $\bigcap_{j=1}^{N} p_{j}^{-1}\left(G_{j}\right)$ and hence, repeating the whole argument above with ∂T in place of T, we can actually select a so that, in addition to (6), we also have

$$
\begin{equation*}
M\left(\partial T L L_{k-1}(a ; \rho)\right) \leq N \beta \rho^{n+1} \underline{M}(\partial T) \quad \forall \rho \in\left(0, \frac{1}{4}\right) \tag{7}
\end{equation*}
$$

Now let ψ be the retraction of $\mathbb{R}^{n+k} \sim L_{k-1}(a)$ onto L_{n} given in Lemma 29.4, and let

$$
\begin{equation*}
T_{\rho}=T L L_{k-1}(a ; \rho),(\partial T)_{\rho}=T L L_{k-1}(a ; \rho) \tag{8}
\end{equation*}
$$

so that by (6), (7)

$$
\begin{equation*}
\underline{M}\left(T_{\rho}\right) \leq c \rho^{n+1} \underline{M}(T) \quad, \underline{M}\left((\partial T)_{\rho}\right) \leq c \rho^{n+1} \stackrel{M}{=}(\partial T) \tag{9}
\end{equation*}
$$

Furthermore by 28.10 we know that for each $\rho \in\left(0, \frac{1}{4}\right)$ we can find $\rho^{*} \in(\rho / 2, \rho)$ such that

$$
\begin{equation*}
\underline{M}\left(\left\langle T, d, \rho^{*}\right\rangle\right) \leq \frac{C}{\rho} \underline{M}\left(T_{\rho}-T_{\rho / 2}\right) \leq c \rho^{n} \underline{M}(T), \tag{10}
\end{equation*}
$$

where d is the (Lipschitz) distance function to $L_{k-1}(a)$
$\left(d(x)=\operatorname{dist}\left(x, L_{k-1}(a)\right), \operatorname{Lip}(d)=1\right)$ and $\left\langle T, d, \rho^{*}\right\rangle$ is the slice of T by d at ρ^{*}. (Notice that we can choose ρ^{*} such that (10) holds and such that $\left\langle T, d, \rho^{*}\right\rangle$ is integer multiplicity in case T is integer multiplicity see Lemma 28.5 and the following discussion.)

We now want to apply the homotopy formula 26.22 to the case when $h(x, t)=x+t(\psi(x)-x), x \in \mathbb{R}^{n+k} \sim I_{k-1}(a ; \sigma), \sigma>0$. Notice that h is only Lipschitz on $\mathbb{R}^{n+k} \sim L_{k-1}(a ; \sigma)$, so we define $h_{\#}, \psi_{\#}$ as in Lemma 26.25. (We shall apply $h_{\#}, \psi_{\#}$ only to currents supported away from $[0,1] \times L_{k-1}$ (a) and $L_{k-1}(a)$ respectively.)

Keeping this in mind we note that by 29.4 , (6) and (7) we have

$$
\begin{equation*}
\stackrel{M}{=}\left(\psi_{\#}\left(T_{\rho}-T{ }_{\rho / 2}\right)\right) \leq \frac{c}{\rho^{n}} \rho^{n+1} \stackrel{M}{=}(T) \leq C \rho M(T) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\stackrel{M}{=}\left(\psi_{\#}\left((\partial T)_{\rho}-(\partial T)_{\rho / 2}\right)\right) \leq \frac{C}{\rho^{n-1}} \rho^{n+1} \stackrel{M}{=}(\partial T) \leq \operatorname{C\rho M}(\partial T) \tag{12}
\end{equation*}
$$

Similarly by the homotopy formula 26.22, together with 26.23 and (6), (7) above, we have

$$
\begin{equation*}
\stackrel{M}{=}\left(\mathrm{h}_{\#}\left(\llbracket(0,1) \rrbracket \times\left(\mathrm{T}_{\rho}-\mathrm{T}_{\rho / 2}\right)\right)\right) \leq \mathrm{C} \rho \underline{M}(\mathrm{~T}) \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\underline{\underline{M}\left(h_{\#}\left(\llbracket(0,1) \rrbracket \times\left((\partial \mathrm{T})_{\rho}-(\partial \mathrm{T})_{\rho / 2}\right)\right) \leq \operatorname{c\rho M}(\partial \mathrm{T})\right.} \tag{14}
\end{equation*}
$$

Notice also that by (6), (10) and 26.23 we have

$$
\begin{equation*}
\stackrel{M}{=}\left(\psi_{\#}<T, d, \rho^{*}>\right) \leq \mathrm{c} \mathrm{\rho M}(\mathrm{~T}) \tag{15}
\end{equation*}
$$

and
(16)

$$
\underline{\underline{M}}\left(h_{\#}(\mathbb{U}(0,1) \rrbracket \times\langle T, d, \rho *>)) \leq C \rho M\left(\mathbb{T}^{\prime}\right) .\right.
$$

Next note that by iteration (11). (12) imply
(17)

$$
\left\{\begin{array}{l}
\stackrel{M}{=}\left(\psi_{\#}\left(T_{\rho}-T_{\rho / 2} \nu\right)\right) \leq 2 \mathrm{C} \rho M(T) \\
\underline{=}\left(\psi_{\#}\left((\partial T)_{\rho}-(\partial T)_{\rho / 2} \nu\right)\right) \leq 2 \mathrm{C} \mathrm{\rho} M(\partial T)
\end{array}\right.
$$

for each integer $v \geq 1$, where c is as in (11), (12) (c independent of ν). Selecting $\rho=\frac{1}{4}$ and using the arbitrariness of v, it follows that (18) $\quad\left\{\begin{array}{l}\underline{M}\left(\psi_{\#}\left(T-T_{\sigma}\right)\right) \leq \mathrm{CM}(T) \\ \underline{=}\left(\psi_{\#}\left(\partial T-(\partial T)_{\sigma}\right)\right) \leq C M(\partial T)\end{array}\right.$
for each $\sigma \in(0,1)$ (with c independent of σ).

Now select $\rho=\rho_{\nu} \equiv 2^{-\nu}$ and $\rho_{\nu}^{*} \in\left[2^{-\nu-1}, 2^{-\nu}\right]$ such that (10), (15),
(16) hold with ρ_{ν}^{*} in place of ρ^{*}; then by (15), (16), (17), (18) we have that

$$
\begin{aligned}
& \psi_{\#}\left(T-T_{\rho_{V}^{*}}\right), h_{\#}\left(\llbracket(0,1) \rrbracket \times\left(T-T_{\rho_{V}^{*}}\right)\right), \\
& \left.\psi_{\#}\left(\partial T-\partial T_{\rho_{V}^{*}}\right), h_{\#}(\llbracket 0,1) \rrbracket \times \partial\left(T-T_{\rho_{V}^{*}}\right)\right)
\end{aligned}
$$

are Cauchy sequences relative to $\stackrel{M}{=}$, and $\underset{=}{M}\left(\left\langle T, d_{,} \rho_{\nu}^{*}\right\rangle\right)+\underline{\underline{M}}\left(\psi_{\#}\left\langle T, d, \rho_{\nu}^{*}\right) \rightarrow 0\right.$. Hence there are currents $Q, S_{1} \in D_{n}\left(\mathbb{R}^{n+k}\right)$ and $R_{1} \in D_{n+1}\left(\mathbb{R}^{n+k}\right)$ such that
(19)

$$
\left\{\begin{array}{l}
\lim \stackrel{M}{=}\left(Q-\psi_{\#}\left(T-T_{\rho_{V}^{*}}\right)\right)=0 \\
\lim \stackrel{M}{=}\left(S_{1}-h_{\#}\left(\llbracket(0,1) \rrbracket \times \partial\left(T-T_{\rho_{*}^{*}}\right)\right)\right)=0 \\
\lim \stackrel{M}{=}\left(R_{1}-h_{\#}\left(\llbracket(0,1) \rrbracket \times\left(T-T_{\rho_{V}^{*}}\right)\right)=0\right.
\end{array}\right.
$$

Furthermore by the homotopy formula and 26.23 we have for each v
(20)

$$
\begin{aligned}
T-T_{\rho_{V}^{*}}- & \psi_{\#}\left(T-T_{\rho_{V}^{*}}\right) \\
= & \partial\left(h_{\#}\left(\llbracket(0,1) \rrbracket \times\left(T-T_{\rho_{V}^{*}}\right)\right)\right. \\
& -h_{\#}\left(\llbracket(0,1) \rrbracket \times \partial\left(T-T_{\rho_{V}^{*}}\right)\right) 。
\end{aligned}
$$

Since $\partial T_{\rho_{V}^{*}}=(\partial T)_{\rho_{V}^{*}}-\left\langle T, d_{,} \rho_{V}^{*}\right\rangle$ (by the definition $28.6,28.7$ of slice) we thus get that

$$
\begin{equation*}
T-Q=\partial R_{1}+S_{1} \tag{21}
\end{equation*}
$$

(Notice that Q, R_{1} are integer multiplicity by (19), 28.4, 28.5 and 27.5 in case T is integer multiplicity; similarly S_{1} is integer multiplicity if ∂T is.)

Using the fact that ψ retracts $\mathbb{R}^{n+k} \sim L_{k-1}(a)$ onto L_{n} we know (by 26.23) that spt $\psi_{\#}\left(T-T_{\rho_{*}^{*}}\right) \subset L_{n}$, and hence
spt $Q \subset I_{n}$ 。
We also have (since $\psi(z+C) \subset z+C \quad \forall z \in \mathbb{Z}^{n+k}$) that

$$
\left\{\begin{array}{l}
\operatorname{spt} R_{1} \cup \text { spt } Q \subset\{x: \operatorname{dist}(x, \text { spt } T)<\sqrt{n+k}\} \tag{23}\\
\operatorname{spt} S_{1} \subset\{x: \operatorname{dist}(x, \text { spt } \partial T)<\sqrt{n+k}\}
\end{array}\right.
$$

and, by (18), (19), we have

$$
\left\{\begin{array}{l}
\underline{M}(Q) \leq C M(T), \underline{M}\left(R_{1}\right) \leq C M(T) \tag{24}\\
\underline{M}\left(S_{1}\right) \leq C M(\partial T)
\end{array}\right.
$$

Also by (18) and the semi-continuity of M under weak convergence, we have

$$
\begin{align*}
\underline{M}(\partial Q) & \leq \lim \text { inf } \stackrel{M}{=}\left(\partial \psi_{\#}\left(T-T_{\rho_{*}^{*}}\right)\right) \tag{25}\\
& =\lim \text { inf } \underset{=}{M}\left(\psi_{\#} \partial\left(T-T_{\rho_{V}^{*}}\right)\right) \\
& \leq C M(\partial T) .
\end{align*}
$$

Now let F be a given face of $L_{n}\left(\right.$ i.e. $F \in L_{n}$) and let $\stackrel{o}{F}=$ interior of F. Assume for the moment that $F \subset \mathbb{R}^{n} \times\{0\}\left(\subset \mathbb{R}^{n+k}\right)$, and let p be the orthogonal projection onto $\mathbb{R}^{\mathbb{n}} \times\{0\}$. By construction of ψ we know that $p \circ \psi=\psi$ in a neighbourhood of any point $y \in \stackrel{\circ}{F}$. We therefore have (since Q is given by (18)) that

$$
\begin{equation*}
\mathrm{p}_{\#}(Q L \stackrel{\circ}{\mathrm{~F}})=Q L \stackrel{\circ}{\mathrm{~F}} . \tag{26}
\end{equation*}
$$

It then follows, by the obvious modifications of the arguments in the proof of the constancy theorem (Theorem 26.27) and in Remark 26.28, that

$$
\begin{equation*}
(Q L \stackrel{\circ}{F})(\omega)=\int_{\underset{F}{\circ}}\left\langle e_{1} \wedge \ldots \wedge e_{n}, \omega(x)>\theta_{F}(x) d L^{n}(x)\right. \tag{27}
\end{equation*}
$$

$\forall \omega \in D^{n}\left(\mathbb{R}^{\mathrm{n}+\mathrm{k}}\right)$, for some $B V_{l o c}\left(\mathbb{R}^{\mathrm{n}}\right)$ function θ_{F}, and

$$
\begin{equation*}
\stackrel{M}{=}(Q L \stackrel{\circ}{F})=\int_{\underset{F}{ }}\left|\theta_{F}\right| d L^{n}, \underline{M}((\partial Q) L \stackrel{\circ}{F})=\int_{\underset{F}{\circ}}\left|D \theta_{F}\right| \tag{28}
\end{equation*}
$$

Furthermore, since

$$
(Q L \stackrel{\circ}{F}-\beta \llbracket F \rrbracket)(\omega)=\int_{\stackrel{\circ}{F}}\left(\theta_{F}-\beta\right)<e_{1} \wedge \ldots \wedge e_{n^{\prime}} \omega(x)>\alpha L^{n}(x)
$$

(by (27)), we have (again using the reasoning of 26.28)
(29)

$$
\left\{\begin{array}{l}
\underline{M}(Q L \stackrel{\circ}{F}-\beta \llbracket F \rrbracket)=\int_{\circ}\left|\theta_{F}-\beta\right| d L^{n} \\
\underline{M}(\partial(Q L \stackrel{\circ}{F}-\beta \llbracket F \rrbracket))=\int_{\mathbb{R}^{n}}\left|D\left(X_{\mathrm{F}}\left(\theta_{F}-\beta\right)\right)\right|,
\end{array}\right.
$$

where $X_{\mathrm{o}}=$ characteristic function of $\stackrel{\circ}{F}$.

Thus taking $\beta=\beta_{F}$ such that
(30)

$$
\min \left\{L^{n}\left\{x \in \stackrel{\circ}{F}: \theta_{F} \geq \beta\right\}, L^{n}\left\{x \in \stackrel{\circ}{F}: \theta_{F}(x) \leq \beta\right\} \geq \frac{1}{2}\right.
$$

(which we can do because $L^{n}(\underset{F}{ })=1$; notice that we can take $\beta_{F} \in \mathbb{Z}$ if θ_{F} is integer-valued), we have by $6.4,6.6,(28)$ and (29) that

$$
\left\{\begin{array}{l}
\underline{M}(Q L \stackrel{\circ}{F}-\beta \llbracket F \rrbracket) \leq c \int_{\underset{F}{ }}\left|D \theta_{F}\right|=C M(Q L \stackrel{\circ}{F}) \tag{31}\\
\underline{M}(\partial(Q L \stackrel{\circ}{F}-\beta \llbracket F \rrbracket)) \leq c \int_{\underset{F}{\circ}}\left|D \theta_{F}\right|=c M(Q L \stackrel{\circ}{F}) .
\end{array}\right.
$$

We also have by 26.30

$$
\begin{equation*}
Q L \partial F=0 . \tag{32}
\end{equation*}
$$

Then summing over $F \in L_{n}$ and using (31), (32) we have, with $P=\sum_{F \in L_{n}} \beta_{F} \llbracket F \rrbracket$, that

$$
\left\{\begin{array}{l}
\underline{M}(Q-P) \leq C M(\partial Q) \tag{33}\\
\underline{M}(\partial Q-\partial P) \leq C M(\partial Q)
\end{array}\right.
$$

Actually by (30) we have

$$
\begin{equation*}
\left|\beta_{F}\right| \leq 2 \int_{\mathrm{O}}\left|\theta_{F}\right| d L^{n} \tag{34}
\end{equation*}
$$

$$
\begin{equation*}
M(P) \leq C M(Q) \tag{35}
\end{equation*}
$$

Notice that the second part of (33) gives

$$
\underline{M}(\partial P) \leq C M(\partial Q)
$$

Finally we note that (21) can be written

$$
\begin{equation*}
T-P=\partial R_{1}+\left(S_{1}+(Q-P)\right) \tag{37}
\end{equation*}
$$

Setting $R=R_{1}, S=S_{1}+(Q-P)$, the theorem now follows immediately from (23), (24), (25) and (33), (35), (36), (37); the fact that P, R are integer multiplicity if T is should be evident from the remarks during the course of the above proof, as should be the fact that S is integer multiplicity if $T, \partial T$ are。
§30. APPLICATIONS OF THE DEFORMATION THEOREM

We here establish a couple of simple (but very important) applications of the deformation theorem, namely the isoperimetric theorem and the weak polyhedral approximation theorem. This latter theorem, when combined with the compactness theorem 27.3 implies the important "boundary rectifiability theorem" (30.3 below) , which asserts that if T is an integer multiplicity current in $D_{n}(U)$ and if $M_{W}(\partial T)<\infty \quad \forall W \subset \subset U$, then $\partial T\left(\in D_{n-1}(U)\right)$ is integer mutiplicity. (Notice that in the case $k=0$, this has already been established in 27.6.)

30.1 THEOREM (Isoperimetric Theorem)

Suppose $T \in D_{n-1}\left(\mathbb{R}^{n+k}\right)$ is integer multiplicity, $n \geq 2$, spt T is compact and $\partial T=0$. Then there is an integer multiplicity current $R \in D_{n}\left(\mathbb{R}^{n+k}\right)$ with spt R compact, $\partial R=T$, and

$$
\stackrel{M(R)^{\frac{n-1}{n}} \leq C M(T), ~}{=}=
$$

where $\mathrm{c}=\mathrm{c}(\mathrm{n}, \mathrm{k})$.

Proof The case $T=0$ is trivial, so assume $T \neq 0$. Let P, R, S be integer multiplicity currents as in 29.3, where for the moment $\rho>0$ is arbitrary, and note that $S=0$ because $\partial T=0$. Evidently (since $\left.H^{n-1}(F)=\rho^{n-1} \quad \forall F \in F_{n-1}(\rho)\right)$ we have

$$
\begin{equation*}
\underline{M}(P)=N(\rho) \rho^{n-1} \tag{*}
\end{equation*}
$$

for some non-negative integer $N(p)$. But since $M(P) \leq C M(T)$ (from 29.3) we see that necessarily $N(\rho)=0$ in (*) if we choose $\rho=(2 \mathrm{CM}(T))^{\frac{1}{\mathrm{n}-\mathrm{I}}}$. Then $P=0$, and 29.3 gives $T=\partial R$ for some integer multiplicity current R with spt R compact and $M(R) \leq C \rho M(T)=C^{\prime}(M(T))^{\frac{1}{n-1}}$.

30.2 THEOREM (Weak polyhedral approximation theorem)

Given any integer multiplicity $T \in D_{n}(U)$ with $M_{W}(\partial T)<\infty \quad \forall W \subset \subset U$, there is a sequence $\left\{\mathrm{P}_{\mathrm{k}}\right\}$ of currents of the form

$$
\begin{equation*}
P_{k}=\sum_{F \in F_{n}^{\left(\rho_{k}\right)}} \beta_{F}^{(k)} \mathbb{F} \mathbb{F}, \quad\left(\beta_{F}^{(k)} \in \mathbb{Z}\right), \quad \rho_{k} \nLeftarrow 0 \tag{**}
\end{equation*}
$$

such that $P_{k} \rightarrow T$ (and hence also $\partial \mathrm{P}_{\mathrm{k}} \rightarrow \partial \mathrm{T}$) in U (in the sense of 26.12).

Proof First consider the case $U=\mathbb{R}^{n+k}$ and $M(T), M(\partial T)<\infty$. In this case we simply use the deformation theorem: for any sequence $\rho_{k} \downarrow 0$, the scaled version of the deformation theorem (with $\rho=\rho_{k}$) gives P_{k} as in (**) such that
(1)

$$
T-P_{k}=\partial R_{k}+S_{k}
$$

for some R_{k}, S_{k} such that

$$
\left\{\begin{array}{l}
\underline{M}\left(R_{k}\right) \leq c \rho_{k} \underline{M}(T) \rightarrow 0 \tag{2}\\
\underline{M}\left(S_{k}\right) \leq c \rho_{k} \stackrel{M}{=}(\partial T) \rightarrow 0
\end{array}\right.
$$

and.

$$
\underline{\underline{M}}\left(P_{k}\right) \leq C \underline{M}(T) \quad, \underline{\underline{M}}\left(\partial P_{k}\right) \leq C \underline{\underline{M}}(\partial T) .
$$

Evidently (1), (2) give $P_{k}(\omega) \rightarrow \mathbb{T}_{k}(\omega) \quad \forall \omega \in D^{n}\left(\mathbb{R}^{n+k}\right)$, and $\partial P_{k}=0$ if $\partial T=0$, so the theorem is proved in case $U=\mathbb{R}^{n+k}$ and $T, \partial T$ are of finite mass.

In the general case we take any Lipschitz function ϕ on $\mathbb{R}^{\mathrm{n}+\mathrm{k}}$ such that $\phi>0$ in $U, \phi \equiv 0$ in $\mathbb{R}^{n+k} \sim U$ and such that $\{x=\phi(x)>\lambda\} \subset \subset U$ $\forall \lambda>0$. For L^{I}-a.e. $\lambda>0$, 28.5 implies that $T_{\lambda} \equiv T L\{x: \phi(x)>\lambda\}$ is such that $\underset{=}{M}\left(\partial T_{\lambda}\right)<\infty$. Since spt $T_{\lambda} \subset \subset U$, we can apply the argument above to approximate T_{λ} for any such λ. Taking a suitable sequence $\lambda_{j} \psi 0$, the required approximation then immediately follows.

30.3 THEOREM (Boundary rectifiability theorem)

Suppose T is an integer multiplicity current in $D_{n}(U)$ with $M_{W}(\partial T)<\infty \quad \forall W \subset \in U$. Then $\partial T\left(\in D_{n-1}(U)\right)$ is an integer multiplicity current.

Proof A direct consequence of 30.2 above and the compactness theorem 27.3.
30.4 REMARK Notice that only the case $\partial T_{j}=0 \quad \forall j$ of 27.3 is needed in the above proof,
§31. THE FLAT METRIC ${ }^{(*)}$ TOPOLOGY

The main result to be proved here is the equivalence of weak convergence and "flat metric" convergence (see below for terminology) for a sequence of
(*) Note that the word "flat" here has no physical or geometric significance, but relates rather to Whitney's use of the symbol b (the "flat" symbol in musical notation) in his work. We mention this because it is often a source of confusion.
integer multiplicity currents $\left\{T_{j}\right\} \subset D_{n}(U)$ such that $\sup _{j \geq 1}\left(M_{W}\left(T_{j}\right)+M_{W}\left(\partial T_{j}\right)\right)<\infty \quad \forall W \subset \subset U$.

We let U denote (as usual) an arbitrary open subset of \mathbb{R}^{n+k}.

$$
\begin{array}{r}
I=\left\{T \in D_{n}(U): T\right. \text { is integer multiplicity and } \\
\left.M_{=W}(\partial T)<\infty \quad \forall W \subset \subset U\right\}
\end{array}
$$

and

$$
I_{M, W}=\{T \in I: s p t T \subset \bar{W}, M(T)+M(\partial T) \leq M\}
$$

for any $M>0$ and $W \subset C U$.

On I we define a family of pseudometrics $\left\{d_{W}\right\}_{W C C U}$ by
31.1

$$
d_{W}\left(T_{1}, T_{2}\right)=\inf \left\{_{M_{W}}(S)+M_{W}(R): T_{1}-T_{2}=\partial R+S\right.
$$

where $R \in D_{n+1}(U), S \in D_{n}(U)$ are integer multiplicity\}

We henceforth assume I is equipped with the topology given (in the usual way) by the family $\left\{\alpha_{W}\right\}_{\text {Wccu }}$ of pseudometrics. This topology is called the "flat metric topology" for 1 : there is a countable base of neighbourhoods at each point, and $T_{j} \rightarrow T$ in this topology if and only if $d_{W}\left(T_{j}, T\right) \rightarrow 0 \quad \forall W C C U$.
31.2 THEOREM Let $T,\left\{T_{j}\right\} \subset D_{n}(U)$ be integer multiplicity with $\sup _{j \geq 1}\left\{M_{W}\left(T_{j}\right)+M_{W}\left(\partial T_{j}\right)\right\}<\infty \quad \forall W \subset C U$. Then $T_{j}-T \quad$ (in the sense of 26.12) if and only if $\alpha_{W}\left(T_{j}, T\right) \rightarrow 0$ for each $W \subset U$.
31.3 REMARK Notice that no use is made of the compactness theorem 27.3 in this theorem; however if we combine the compactness theorem with it, then we get the statement that for any family of positive (finite) constants
$\{c(W)\}_{W C C U}$ the set $\left\{T \in I: M_{W}(T)+M_{W}(\partial T) \leq c(W) \quad \forall W \subset C U\right\}$ is sequentially compact when equipped with the flat metric topology.

Proof of 31.2 First note that the "if" part of the theorem is trivial (indeed for a given $W \subset \subset U$, the statement $d_{W}\left(\mathbb{T}_{j}, T\right) \rightarrow 0$ evidently implies $\left(T_{j}-T\right)(\omega) \rightarrow 0$ for any fixed $\omega \in D^{n}(\mathbb{U})$ with spt $\left.\omega \subset W\right) \cdots$

For the "only if" part of the theorem, the main difficulty is to establish the appropriate "total boundedness" property; specifically we show that for any given $\varepsilon>0$ and $W \subset \subset \tilde{W} \subset \subset U$, we can find $N=N(\varepsilon, W, \tilde{W}, M)$ and integer multiplicity currents $P_{1} \ldots \ldots P_{N} \in D_{n}(U)$ such that

$$
\begin{equation*}
I_{M, W} \subset \sum_{j=1}^{N} B_{\left.\varepsilon, \tilde{W}^{\left(P_{j}\right.}\right)} \tag{1}
\end{equation*}
$$

where, for any $P \in I,{ }^{B} \varepsilon, \tilde{w}^{(P)}=\left\{S \in I: \sigma_{\tilde{W}}(S, P)<\varepsilon\right\}$. This is an easy consequence of the deformation theorem: in fact for any $\rho>0,29.3$ guarantees that for $T \in I_{M, W}$ we can find integer multiplicity P, R, S such that

$$
\begin{equation*}
T-P=\partial R+S \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
P=\sum_{F \in F_{n}(\rho)} \beta_{F} \| F \rrbracket, \beta_{F} \in \mathbb{Z} \tag{3}
\end{equation*}
$$

(4)
spt $P \subset\{x: \operatorname{dist}(x$, spt $T)<2 \sqrt{n+k} p\}$

$$
\begin{equation*}
\underline{\equiv}(P)\left(\equiv \sum_{F \in F_{n}(\rho)}\left|\beta_{F}\right| \rho^{n}\right) \leq C M(T) \leq C M \tag{5}
\end{equation*}
$$

(6) $\quad\left\{\begin{array}{c}\text { spt } R U \text { spt } S \subset\{x: \operatorname{dist}(x, \text { spt } T)<2 \sqrt{n+k} \rho\} \\ \underline{\underline{M}}(R)+\underline{\underline{M}}(S) \leq \operatorname{c\rho M}(T) \leq \mathrm{CpM} .\end{array}\right.$

Then for ρ small enough to ensure $2 \sqrt{n+k} \rho<\operatorname{dist}(W, \partial \widetilde{W})$, we see from (2), (6) that

$$
\alpha_{\tilde{W}}(T, P) \leq C \rho M .
$$

Hence, since there are only finitely many $P_{1} \ldots P_{N}$ currents P as in (3), (4), (5) (N depends only on M, W, n, k, ρ), we have (1) as required.

Next note that (by 28.5 (1), (2) and an argument as in 10.7(2)) we can find a subsequence $\left\{T_{j},\right\} \subset\left\{T_{j}\right\}$ and a sequence $\left\{W_{i}\right\}, W_{i} \subset \subset W_{i+1} \subset \subset U$, ∞
$U W_{i}=U$, such that $\sup _{j^{\prime} \geq 1}=\left(\partial\left(T_{j}, L W_{i}\right)\right)<\infty \quad \forall i$. Thus from now on we can assume without loss of generality that $W \subset C U$ and

$$
\begin{equation*}
\operatorname{spt} T_{j} \subset \bar{W} \quad \forall j \tag{7}
\end{equation*}
$$

Then take any \tilde{W} such that $W \subset \subset \tilde{W} \subset \subset U$ and apply (1) with $\varepsilon=1, \frac{1}{2}, \frac{1}{4}$ etc. to extract a subsequence $\left\{T_{j_{r}}\right\}_{r=1,2, \ldots}$ from $\left\{T_{j}\right\} \quad$ such that

$$
d_{\tilde{W}}\left(T_{j_{r+1}}, T_{j_{r}}\right)<2^{-r}
$$

and hence

$$
\begin{equation*}
T_{j_{r+1}}-T_{j_{r}}=\partial R_{r}+S_{r} \tag{8}
\end{equation*}
$$

where R_{r}, S_{r} are integer multiplicity,

$$
\begin{aligned}
& \text { spt } R_{r} U \text { spt } S_{r} \subset \tilde{W} \\
& M\left(R_{r}\right)+M\left(S_{r}\right) \leq \frac{1}{2^{r}}
\end{aligned}
$$

Therefore by 27.5 we can define integer multiplicity $R^{(\ell)}, S^{(\ell)}$ by the M-absolutely convergent series

$$
R^{(\ell)}=\sum_{r=\ell}^{\infty} R_{r}, S^{(\ell)}=\sum_{r=\ell}^{\infty} S_{r} ;
$$

then

$$
\underline{M}\left(R^{(l)}\right)+\underline{M}\left(S^{(l)}\right) \leq 2^{-l+1}
$$

and (from (8))

$$
T-T_{j_{\ell}}=\partial R^{(\ell)}+S^{(\ell)}
$$

Thus we have a subsequence $\left\{T_{j_{l}}\right\}$ of $\left\{T_{j}\right\}$ such that $d_{\tilde{W}}\left(T_{l} T_{j}\right) \rightarrow 0$. Since we can thus extract a subsequence converging relative to di from any given subsequence of $\left\{T_{j}\right\}$, we then have $\partial_{\tilde{W}}\left(T_{j} T_{j}\right) \rightarrow 0$; since this can be repeated with $W=W_{i}, \tilde{W}=W_{i+1} \quad \forall i \quad\left(W_{i}\right.$ as above), the required result evidently follows.
§32. RECTIFIABILITY THEOREM, AND PROOF OF THE COMPACTNESS THEOREM.

Here we prove the important rectifiability theorem for currents T which, together with ∂T, have locally finite mass and which have the additional property that $\theta^{* n}\left(\mu_{T}, x\right)>0$ for μ_{T}-a.e. x. The main tool of the proof is the structure theorem 13.2. Having established the rectifiability theorem, we show (in $32.2,32.3$) that it is then straightforward to establish the compactness theorem 27.3. Although this proof of compactness theorem has the advantage of being conceptually straightforward, it is rather lengthy if one takes into account the effort needed to prove the structure theorem. Recently B. Solomon [SB] showed that it is possible to prove the compactness theorem (and to develop the whole theory of integer multiplicity currents) without use of the structure theorm.

32.1 THEOREM (Rectifiability Theorem)

Suppose $T \in D_{n}(U)$ is such that $M_{W}(T)+M_{W}(\partial T)<\infty \quad \forall W \subset \subset U$, and $\theta^{* n}\left(\mu_{T}, x\right)>0$ for $\mu_{T}-$ a.e. $x \in U$. Then T is rectifiable; that is

$$
\begin{equation*}
T=\underline{\underline{\tau}}(M, \theta, \xi) \quad,(\tag{*}
\end{equation*}
$$

where M is countably n-rectifiable, H^{n}-measurable, θ is a positive locally H^{n}-integrable function on M , and $\xi(\mathrm{x})$ orients the approximate tangent space $T_{X} M$ of M for H^{n}-a.e. $x \in M$.

Proof First note that (by Theorem 3.2(1))

$$
\begin{equation*}
H^{n}\left\{x \in W: \theta^{\star n}\left(\mu_{T^{\prime}} x\right)>K\right\} \leq K^{-1} M_{W}(\mathbb{T}) \tag{1}
\end{equation*}
$$

for $W \subset C$, and hence

$$
\begin{equation*}
H^{n}\left\{x \in U: \theta^{* n}\left(\mu_{T}, x\right)=\infty\right\}=0 \tag{2}
\end{equation*}
$$

Notice that the same argument applies with ∂T in place of T in order to give

$$
\begin{equation*}
H^{n}\left\{x \in U: \theta^{\star n}\left(\mu_{\partial T}, x\right)=\infty\right\}=0 . \tag{3}
\end{equation*}
$$

(Notice we could also conclude $H^{d}\left\{x \in U: \theta^{* d}\left(\mu_{\partial T}, x\right)=\infty\right\}=0$ for any $d>0$ by $3.2(1)$.
 from 26.29 (see in particular Remark 26.30) that (by (2))

$$
\begin{equation*}
\mu_{T}\left\{x \in U: \theta^{* n}\left(\mu_{T}, x\right)=\infty\right\}=0, \tag{4}
\end{equation*}
$$

and (by (3))

$$
\begin{equation*}
\mu_{T}\left\{x \in U: \theta^{* n}\left(\mu_{\partial T^{\prime}} x\right)=\infty\right\}=0 \tag{5}
\end{equation*}
$$

(*) The notation here is as for integer multiplicity rectifiable currents (§27):

$$
\underline{\underline{\tau}}(\mathrm{M}, \theta, \xi)(\omega)=\int_{\mathrm{M}}\langle\xi, \omega\rangle \theta d H^{\mathrm{n}} .
$$

although of course θ is not assumed to be integer-valued here.

Now let

$$
M=\left\{x \in U: \theta^{* n}\left(\mu_{T}, x\right)>0\right\}
$$

and note by (I) that M is the countable union of sets of finite H^{n}-measure. Furthermore by 26.29 we know that $\mu_{T}(P)=0$ for each purely unrectifiable subset of M, and hence

$$
\begin{equation*}
H^{n}(P)=0 \quad \forall \text { purely unrectifiable } P \subset M \tag{6}
\end{equation*}
$$

by virtue of $3.2(1)$ and the fact that $\theta^{* n}\left(\mu_{T \mathbb{T}}, x\right)>0$ for every $x \in M$ (by definition of M). Then by the structure theorem 13.2 we deduce that

$$
\begin{equation*}
\mathrm{M} \text { is countably n-rectifiable. } \tag{7}
\end{equation*}
$$

Furthermore (since $\theta^{* n}\left(\mu_{T}, x\right)>0$ for μ_{T}-a.e. $x \in U$ by assumption), we have

$$
\begin{equation*}
T=T L M \tag{8}
\end{equation*}
$$

Next we note that μ_{T} is absolutely continuous with respect to H^{n} (by (4) and $3.2(2)$) , and hence by the differentiation theorem 4.7 we have

$$
\mu_{\mathrm{T}}=H^{\mathrm{n}} L \theta
$$

where θ is a positive locally H^{n}-integrable function on M and $\theta \equiv 0$ on $U \sim M$. Then by the Riesz representation theorem 4.1 we have

$$
\begin{equation*}
T(\omega)=\int_{U}\langle\xi, \omega\rangle \theta d H^{n} \tag{9}
\end{equation*}
$$

for some H^{n}-measurable, $\Lambda_{n}\left(\mathbb{R}^{n+k}\right)$-valued function $\xi,|\xi|=1$.

It thus remains only to prove that $\xi(x)$ orients $T_{x} M$ for $H^{n}-a . e . x \in M$. (i.e. $\xi(x)= \pm \tau_{1} \wedge \ldots \wedge \tau_{n}$ for $H^{n}-$ a.e. $x \in M$, where $\tau_{1} \ldots, \tau_{n}$ is any orthonormal basis for the approximate tangent space $T_{X} M$ of M.) To see
this, write $M=\bigcup_{j=0}^{\infty} M_{j}, M_{j}$ pairwise disjoint, $H^{M_{(}}\left(M_{0}\right)=0, M_{j} \subset N_{j}, N_{j}$ a C^{1} submanifold of $\mathbb{R}^{n+k}, j \geq 1$. Now, by 3.5 , if $j \geq 1$ we have, for H^{n}-a.e. $x \in M_{j}$,

$$
\begin{equation*}
\theta^{* n}\left(\mu, \underset{r \neq j}{U} M_{r}, x\right)=0 \tag{10}
\end{equation*}
$$

Hence, writing as usual $\eta_{x, \lambda}(y)=\lambda^{-1}(y-x)$, we have for any $\omega \in D^{n}\left(\mathbb{R}^{n+k}\right)$ that, for all $x \in M_{j}$ such that (10) holds, and for λ small enough to ensure that spt $\omega \subset \eta_{x, \lambda}(U)$,

$$
\begin{aligned}
\eta_{x, \lambda \#^{T}(\omega)} & =T\left(\eta_{x}, \lambda^{\#} \omega\right) \\
& =\int_{N_{j}}\left\langle\xi, \eta_{x, \lambda}{ }^{\#} \omega\right\rangle \theta d H^{n}+\varepsilon(\lambda),
\end{aligned}
$$

where $\varepsilon(\lambda) \rightarrow 0$ as $\lambda \downarrow 0 .(\varepsilon(\lambda)$ depending on x and ω.$) That is$

$$
\eta_{x, \lambda \#^{T}}(\omega)=\int_{\eta_{x, \lambda\left(N_{j}\right)}}\langle\xi(x+\lambda z), \omega(z)\rangle \theta(x+\lambda z) d H^{n}(z)+\varepsilon(\lambda)
$$

for all $x \in M_{j}$ such that (10) holds. Since N_{j} is C^{1}, this gives

$$
\begin{equation*}
\lim _{\lambda \downarrow 0} \eta_{x, \lambda \#^{T}}(\omega)=\theta(x) \int_{P}\langle\xi(x), \omega(z)\rangle d H^{n}(z) \tag{11}
\end{equation*}
$$

for H^{n}-a.e. $x \in M_{j}$ (independent of ω), where P is the tangent space $T_{x} N_{j}$ of N_{j} at x. Thus (by definition of $T_{x} M$ - see §12) we have (11) with $P=T_{X} M$ for H^{n}-a.e. $x \in M_{j}$. On the other hand by (5) we have

$$
\begin{aligned}
\partial \eta_{x, \lambda \#} T(\omega) & =\eta_{x, \lambda \nRightarrow} \partial T(\omega)=\partial T\left(\eta_{x, \lambda}^{\#} \omega\right) \\
& =o(\lambda) \quad \text { as } \quad \lambda \nLeftarrow 0
\end{aligned}
$$

for H^{n}-a.e. $x \in M_{j}$ (independent of ω). Thus for such x

$$
\begin{equation*}
\lim _{\lambda \downarrow 0}\left(\partial \eta_{x, \lambda \#}{ }^{T}\right)(\omega)=0 \tag{12}
\end{equation*}
$$

On the other hand for μ_{T}-a.e. $x \in U$, for any $W \subset \subset \mathbb{R}^{n+k}$, we have by (4) that

$$
\begin{equation*}
\lim _{\lambda \downarrow 0} \sup _{M_{W}}^{=}\left(\eta_{x, \lambda \#} T\right)<\infty \tag{13}
\end{equation*}
$$

Thus (by (11), (12), (13)), for $H^{n}-a . e . ~ x \in M$, we can find a sequence $\lambda_{\ell} \psi 0$ such that

$$
\eta_{x, ~} \lambda_{\ell} \#^{T}-S_{x} \cdot \partial S_{x}=0
$$

where $S_{x} \in D_{n}\left(\mathbb{R}^{n+k}\right)$ is defined by

$$
\begin{equation*}
{ }^{\circ} S_{X}(\omega)=\theta(x) \int_{P}\langle\xi(x), \omega(z)\rangle d H^{n}(z) \tag{14}
\end{equation*}
$$

$\omega \in D^{n}\left(\mathbb{R}^{n+k}\right), P=T_{X} M$. We now claim that (14), taken together with the fact that $\partial S_{X}=0$, implies that $\xi(x)$ orients P. To see this, assume (without loss of generality) that $P=\mathbb{R}^{n} \times\{0\} \subset \mathbb{R}^{n+k}$ and select $\omega \in D^{n-1}\left(\mathbb{R}^{n+k}\right)$ so that $\omega(y)=y^{j} \phi(y) d y^{i_{1}} \wedge \ldots \wedge d y^{i^{n}-1}$, where $y=\left(y^{1}, \ldots, y^{n+k}\right), j \geq n+1,\left\{i_{1}, \ldots, i_{n-1}\right\} \subset\{1, \ldots, n+k\}$, and $\phi \in C_{C}^{\infty}\left(\mathbb{R}^{n+k}\right)$. Then since $y_{j} \equiv 0$ on $\mathbb{R}^{n} \times\{0\}$ we deduce, from (14) and the fact that $\partial S_{x}=0$,

$$
\begin{aligned}
0=\partial S_{x}(\omega) & =S_{x}(d \omega)=\theta(x) \int_{P} \phi(y)\left\langle\xi(x), d y^{j} \wedge d y^{i_{I}} \wedge \ldots \wedge d y^{i_{n-1}}>\right. \\
& =\theta(x) \int_{P} \phi(y) \xi(x) \cdot\left(e_{j} \wedge e_{i_{1}} \wedge \ldots \wedge e_{i_{n-1}}\right) d H^{n}(y) .
\end{aligned}
$$

That is, since $\phi \in C_{C}^{\infty}\left(\mathbb{R}^{n+k}\right)$ is arbitrary, we deduce that
$\xi(x) \cdot\left(e_{j} \wedge e_{i_{1}} \wedge \ldots \wedge e_{i_{n-1}}\right)=0$ whenever $j \geq n+1$ and
$\left\{i_{1}, \ldots, i_{n-1}\right\} \subset\{1, \ldots, n+k\}$. Thus we must have (since $|\xi(x)|=1$),
$\xi(x)= \pm e_{1} \wedge \ldots \wedge e_{n}$ as required.

We can now give the proof of the compactness theorem 27.3. For convenience we first re-state the theorem in a slightly weaker form. (See the remark (2) following the statement for the proof that the previous version 27.3 follows.)
32.2 THEOREM Suppose $\left\{T_{j}\right\} \subset D_{n}(U)$, suppose $T_{j}, \partial T_{j}$ are integer multiplicity for each j,

$$
\begin{equation*}
\sup _{j \geq 1}\left(M_{=}\left(T_{j}\right)+M_{=W}\left(\partial T_{j}\right)\right)<\infty \quad \forall W \subset \subset U \tag{*}
\end{equation*}
$$

and suppose $T_{j} \rightarrow T \in D_{n}(U)$. Then T is an integer multiplicity current.

32.3 REMARKS

(1) Note that the general case of the theorem follows from the special case when $U=\mathbb{R}^{P}$ and spt $T_{j} \subset K$ for some fixed compact K; in fact if T_{j} are as in the theorem and if $\xi \in U$, then by 28.5 (1), (2) and an argument like that in Remark 10.7 (2) we know that, for $L^{1}-$ a.e. $r>0$, $\partial\left(T_{j}, L B_{r}(\xi)\right)$ are integer multiplicity and (*) holds with $T_{j}, L B_{r}(\xi)$ in place of T_{j} for some subsequence $\left\{j^{\wedge}\right\} \subset\{j\}$ (depending on r).
(2) The previous (formally slightly stronger) version 27.3 of the above theorem follows by using 30.3. (Note that the proof of 30.3 needed only the weaker version of the compactness theorem given above in 32.2; indeed, as mentioned in Remark 30.4, it used only the case $\partial T_{j}=0$ of 27.3 .

Proof of 32.2 We shall use induction on n with $U \subset \mathbb{R}^{P}$ (U, P fixed independent of n). First note that the theorem is trivial in case $n=0$. Then assume $n \geq 1$ and suppose the theorem is true with $n-1$ in place of n.

By the above remark (1) we shall assume without loss of generality that spt $T_{j} \subset K$ for some fixed compact K, and that $U=\mathbb{R}^{P}$. Furthermore, by
remark (1) in combination with the inductive hypothesis, for each $\xi \in \mathbb{R}^{P}$ we have

$\partial\left(T L B_{r}(\xi)\right)$ is an integer multiplicity curpent

(in $D_{n-1}\left(\mathbb{R}^{\mathrm{P}}\right)$) for L^{1}-a.e. $r>0$.
From the above assumptions $U=\mathbb{R}^{P}, \operatorname{spt} T_{j} \subset K$ we know that $0 \nVdash \partial T-T$ zero boundary and is the weak limit of $0 * 2 T_{j}-T_{j} ;$ since $0 \nVdash \partial T$ is integer multiplicity (by the inductive hypothesis) we thus see that the general case of the theorem follows from the special case when $\partial T=0$. We shall therefore henceforth also assume $\partial T=0$.

Next, define (for $\xi \in \mathbb{R}^{P}$ fixed)

$$
f(r)=M\left(T L B_{r}(\xi)\right), r>0
$$

By virtue of 28.9 we have (since $\partial T=0$)
(2)

$$
M\left(\partial\left(T L B_{r}(\xi)\right)\right) \leq f^{\prime}(r), L^{I}-a_{0} e . r>0 .
$$

(Notice that $f^{\prime}(r)$ exists a.e. $r>0$ because $f(r)$ is increasing.)
On the other hand if $\theta^{* n}\left(\mu_{T}, \xi\right)<\eta(\eta>0$ a given constant), then $\lim \sup \frac{f(\rho)}{\omega_{n} \rho^{n}}<\eta$, and hence for each $\delta>0$ we can arrange

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{f}^{1 / \mathrm{n}}(x)\right) \leq 2 \omega_{\mathrm{n}}^{1 / n} \eta \tag{3}
\end{equation*}
$$

for a set of $r \in(0, \delta)$ of positive L^{1}-measure. (Because $\delta^{-1} \int_{0}^{\delta} \frac{d}{d r}\left(f^{1 / n}(r)\right) d r \leq \delta^{-1} f^{1 / n}(\delta) \leq \omega_{n}^{1 / n} \eta$ for ail sufficiently small $\delta>0$.)

Now by (1) and the isoperimetric theorem, we can find an integer multiplicity $S_{r} \in D_{n}\left(\mathbb{R}^{P}\right)$ such that $\partial S_{r}=\partial\left(T L B_{r}(\xi)\right)$ and
(4)

$$
\begin{aligned}
M\left(S_{r}\right)^{\frac{n-1}{n}} & \leq \operatorname{CM}\left(\partial\left(T L B_{r}(\xi)\right)\right) \\
& \leq \operatorname{CrM}\left(T L B_{r}(\xi)\right)^{\frac{n-1}{n}} \quad \text { (by (2),(3)) }
\end{aligned}
$$

for a set of r of positive L^{1}-measure in $(0, \delta)$.* Since δ was arbitrary we then have both (1), (4) for a sequence of $x \downarrow 0$. But then (since we can repeat this for any ξ such that $\Theta^{* n}\left(\mu_{T}, \xi\right)<\eta$) if C is any compact subset of $\left\{x \in \mathbb{R}^{P}: \theta^{* n}\left(\mu_{T}, x\right)<\eta\right\}$, by Remark $4.5(2)$ we get for each given $\rho>0$ a pairwise disjoint family $B_{j}=\bar{B}_{r_{j}}\left(\xi_{j}\right)$ of closed balls covering μ_{T}-almost all of C , with

$$
\begin{equation*}
U_{j} B_{j} \subset\{x: \operatorname{dist}(x, C)<\rho\} \tag{5}
\end{equation*}
$$

and with

$$
\begin{equation*}
\underline{M}\left(S_{j}^{(\rho)}\right) \leq \mathrm{CnM}\left(T L B_{j}\right) \tag{6}
\end{equation*}
$$

for some integer multiplicity $S_{j}^{(\rho)}$ with

$$
\begin{equation*}
\partial S_{j}^{(\rho)}=\partial\left(T L B_{j}\right) \tag{7}
\end{equation*}
$$

Now because of (7) we have $S_{j}^{(\rho)}-T L B_{j}=\partial\left(\left\{\xi_{j}\right\} \nVdash\left(S_{j}^{(\rho)}-T L B_{j}\right)\right)$, and hence (by $26.23,26.26$) we have for $\omega \in D^{n}\left(\mathbb{R}^{P}\right)$

$$
\begin{align*}
\left|\left(S_{j}^{(\rho)}-T L B_{j}\right)(\omega)\right| & \leq \operatorname{C\rho M}\left(S_{j}^{(\rho)}-T L B_{j}\right)|d \omega| \tag{8}\\
& \leq \operatorname{C\rho M}\left(T L B_{j}\right)|d \omega|
\end{align*}
$$

Therefore we have $\sum_{j}\left(S_{j}^{(\rho)}-T L B_{j}\right) \rightarrow 0$ as $\rho \downarrow 0$, and hence

$$
\begin{equation*}
T+\sum_{j}\left(S_{j}^{(p)}-T L B_{j}\right) \perp T \tag{9}
\end{equation*}
$$

as $\rho \downarrow 0$. However since the series $\sum_{j} S_{j}^{(\rho)}$ and $\sum_{j} T L B_{j}$ are M-absolutely convergent (by (6) and the fact that the B_{j} are disjoint), we deduce that the left side in (9) can be written $T L\left(\mathbb{R}^{P} \sim \underset{j}{U} B_{j}\right)+\sum_{j} S_{j}^{(\rho)}$ and hence

[^1](using (6) again, together with the lower-semicontinuity of M_{W} (W open) under weak convergence)
\[

$$
\begin{array}{r}
\mu_{\mathrm{T}}(\{\mathrm{x}: \operatorname{dist}(\mathrm{x}, \mathrm{C})<\rho\}) \leq \mu_{\mathrm{T}}(\{\mathrm{x}: \operatorname{dist}(\mathrm{x}, \mathrm{C})<\rho\} \sim \mathrm{C})+ \\
\mathrm{c} \mu_{\mathrm{T}}(\{\mathrm{x}: \operatorname{dist}(\mathrm{x}, \mathrm{C})<\rho\})
\end{array}
$$
\]

Choosing η such that $\quad \eta \leq \frac{1}{2}$, this gives

$$
\mu_{T}\left(\{x: \operatorname{dist}(x, C)<\rho) \leq 2 \mu_{T}(\{x: \operatorname{dist}(x, C)<\rho\} \sim C\}\right.
$$

Letting $\rho \downarrow 0$, we get $\mu_{T}(C)=0$.

Thus we have shown that $\Theta^{* n}\left(\mu_{T}, x\right)>0$ for μ_{T}-a.e. $x \in \mathbb{R}^{P}$. We can therefore apply 32.1 in order to conclude that $T=\underline{\underline{T}}(M, \theta, \xi)$ as in 32.1. It thus remains only to prove that θ is integer-valued. This is achieved as follows:

First note that for $L^{n}-$ a.e. $x \in M$ we have (cf. the argument leading to (11) in the proof of 32.1)

$$
\begin{equation*}
\eta_{x, \lambda \#^{T}} \rightarrow \theta(x) \llbracket T_{x}^{M} \rrbracket \quad \text { as } \quad \lambda \downarrow 0 \tag{10}
\end{equation*}
$$

where $\left[T_{x} M \rrbracket\right.$ is oriented by $\xi(x)$. Assuming without loss of generality that $T_{x} M=\mathbb{R}^{n} \times\{0\} \subset \mathbb{R}^{P}$ and setting $d(y)=\operatorname{dist}\left(y, \mathbb{R}^{n} \times\{0\}\right)$, by $28.5(1)$ we can find a sequence $\lambda_{j} \downarrow 0$ and a $\rho>0$ such that $\left\langle\eta_{x, \lambda_{j}} \#^{T, d, \rho>}\right.$ is integer multiplicity with

$$
M_{\Omega}\left(\left\langle\eta_{x,} \lambda_{j} \#^{T,}, d, p\right\rangle\right) \leq c \quad \text { (independent of } j \text {) }
$$

where $\Omega=B_{1}^{n}(0) \times \mathbb{R}^{\mathrm{P}-\mathrm{n}} \subset \mathbb{R}^{\mathrm{P}}$. Then by 28.5(2) we have $s_{j} \equiv\left(\eta_{x, \lambda_{j} \#^{T}} L\{y: d(y)<\rho\}\right.$ is such that, writing $\Omega=B_{1}^{n}(0) \times \mathbb{R}^{P-n} \subset \mathbb{R}^{P}$,

$$
\begin{equation*}
\sup _{j \geq 1}\left(M_{\Omega}\left(S_{j}\right)+M_{\Omega}\left(\partial S_{j}\right)\right)<\infty \tag{11}
\end{equation*}
$$

Now let p denote the restriction to Ω of the orthogonal projection of \mathbb{R}^{P} onto \mathbb{R}^{n}; and let \tilde{S}_{j} be the current in $D_{n}(\Omega)$ obtained by setting $\tilde{S}_{j}(\omega)=s_{j}(\tilde{\omega}), \quad \dot{\omega} \in D^{n}(\Omega), \tilde{\omega} \in D^{n}\left(\mathbb{R}^{P}\right)$ such that $\tilde{\omega}=\omega$ in Ω and $\tilde{\omega} \equiv 0$ on $\mathbb{R}^{P} \sim \Omega$. Then we have $p_{\#} \tilde{S}_{j} \in D_{n}\left(B_{1}^{n}(0)\right)$, and hence, by 26.28 and (11) above,

$$
p_{\#} \tilde{S}_{j}(\omega)=\int_{B_{1}^{n}(0)} a \theta_{j} d L^{n}, \omega=a d x^{1} \wedge \ldots \wedge d x^{n}, a \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)
$$

for some integer-valued $\mathrm{BV}_{\text {loc }}\left(\mathrm{B}_{1}^{\mathrm{n}}(0)\right)$ function θ_{j} with

$$
\left\{\begin{array}{l}
{\stackrel{M}{B_{1}}(0)}\left(p_{\#} \tilde{S}_{j}\right)=\int_{B_{1}^{n}(0)}\left|\theta_{j}\right| d L^{n} \tag{12}\\
\underline{M}_{B_{1}^{n}(0)}^{M}\left(\partial p_{\#}^{\#^{\prime}} \tilde{S}_{j}\right)=\int_{B_{1}^{n}(0)}\left|D \theta_{j}\right| .
\end{array}\right.
$$

Then by (11), (12) we deduce $\int_{B_{1}^{n}(0)}\left|D \theta_{j}\right|+\int_{B_{1}^{n}(0)}\left|\theta_{j}\right| d L^{n} \leq c$, c independent of j, and hence by the compactness theorem 6.3 we know θ_{j} converges strongly in L^{1} in $B_{1}^{n}(0)$ to an integer-valued $B V$ function θ_{*}. On the other hand $S_{j} \rightarrow \theta(x) \llbracket \mathbb{R}^{n} \times\{0\} \rrbracket$ by (10), and hence $p_{\#} \tilde{S}_{j} \rightarrow \theta(x) p_{\#} \llbracket \mathbb{R}^{n} \times\{0\} \rrbracket=\theta(x) \llbracket \mathbb{R}^{n} \rrbracket$ in $B_{1}^{n}(0)$. We thus deduce that $\theta_{*} \equiv \theta(x)$ in $B_{1}^{n}(0)$; thus $\theta(x) \in \mathbb{Z}$ as required.

[^0]: * Actually ∂T automatically is integer multiplicity if T is integer multiplicity and $M(\partial T)<\infty$, see Theorem 30.3.

[^1]: * In case $n=1$, (1), (2), (3) (for $\eta<\frac{1}{4}$) imply $\partial\left(T L B_{r}(\xi)\right)=0$, hence we get, in place of (4) $\stackrel{M}{=}\left(S_{r}\right) \leq \underline{M}\left(T L B_{r}(\xi)\right)$ trivially by taking $S_{r}=0$ 。

